射频滤波器的主要技术路线
- 格式:pdf
- 大小:876.84 KB
- 文档页数:8
RF滤波器的原理与设计无线通讯系统中信号的频率是非常关键的参数,因为频率决定了信号的性质。
高频信号有许多广泛的应用,但错误的处理可能会引起严重的问题。
RF滤波器是一个可以过滤无线电频率,从而改善RF电路性能的无源电子器件。
RF滤波器的设计是一个关键的挑战,需要选择正确的滤波器类型和构造合适的电路。
在本文中,我们将深入探讨RF滤波器的原理和设计。
一、RF滤波器的原理RF滤波器可以解决无线电通信中的大部分频率问题。
所有的信号处理设备都需要使用滤波器来消除所需的频率之外的干扰。
RF滤波器是一种无源电路,它们通过固定电容和电感的不同组合来阻止或通过不同频率信号。
RF滤波器分为低通、高通、带通和带阻滤波器:1.低通滤波器低通滤波器通过阻止高频信号并通过低频信号来实现它的目的。
低通滤波器不会阻止低频信号通过,因为需要通过低频信号。
例如:在语音通话中,人的声音被转换为声波,并将转换的信息传送到基站,但在传送之前,是否有必要有一个低通滤波器来防止高频噪声的干扰?2.高通滤波器与低通滤波器相反,高通滤波器通过阻止低频信号并通过高频信号来实现它的目标。
高通滤波器通常用于过滤噪音。
例如:在视频监控领域,因为需要传输数据,追求图像的摄像头可能会拍摄到某些人造光源和天然光源对图像的损害,也就是高频干扰。
3.带通滤波器带通滤波器允许特定的频率范围通过,它的作用是只传输特定频率范围内的信号,并将不想要的信号过滤掉。
例如:电台播放的是某个频道,而不是播放整个电磁谱。
4.带阻滤波器带阻滤波器则是将某个特定的频率范围封锁在滤波器之外,它的作用是阻止特定频率范围内的信号,只允许通过其他频率。
例如:在任何电子信号处理过程中,水平噪声是最常见的问题。
二、RF滤波器类型RF滤波器可以按其通信模式分为以下几类:1.谐振器谐振器是一种既可以是带通滤波器也可以是带阻滤波器的晶体电路。
在带通和带阻滤波器中使用谐振器来支持它们的基本功能。
谐振器通过固定电容和电感的不同组合来阻止或通过不同频率信号。
射频滤波器原理
射频滤波器是一种用于在射频信号中筛选特定频率成分的电子设备。
它的主要原理是基于电路中元件对不同频率信号的阻抗特性,对信号进行选择性的衰减或放大。
射频信号通常包含多个频率成分,而滤波器的任务就是从这些频率成分中选择性地通过或抑制某些特定频率范围的信号。
一种最常见的射频滤波器类型是低通滤波器,它可以通过滤除高频成分,只保留低频成分。
低通滤波器通常由电容和电感两种元件组成,它们分别对高频和低频信号有不同的阻抗特性。
另一种常见的射频滤波器是高通滤波器,它与低通滤波器相反,可以滤除低频成分,只保留高频成分。
高通滤波器通常由电容和电阻组成,电容对低频信号具有高阻抗,电阻对高频信号具有高阻抗。
除了低通和高通滤波器之外,还有带通滤波器和带阻滤波器等其他类型的射频滤波器。
带通滤波器可以通过选择性地通过一定频率范围内的信号,而抑制其他频率范围的信号。
带阻滤波器则可以选择性地抑制一定频率范围内的信号,而通过其他频率范围的信号。
射频滤波器在无线通信系统、雷达系统、无线电设备等射频应用中扮演着重要角色。
它可以用于增强信号质量、抑制干扰信号、限制带宽等方面。
通过合理设计和选择滤波器类型、参数,可以满足不同射频应用的特定要求。
射频谐振器滤波器原理射频谐振器滤波器是一种常见的电子滤波器,通过利用电路中的谐振现象来实现对特定频率的信号的滤波。
它在无线通信、射频电子设备、无线电广播等领域中有着广泛的应用。
射频谐振器滤波器的原理基于电路中的谐振现象。
谐振是指当电路中的电感和电容元件的电感值和电容值满足一定条件时,电路中的电压和电流会出现共振现象,使得特定频率的信号得到放大,而其他频率的信号则被抑制。
射频谐振器滤波器通常由电感、电容和电阻等元件组成。
其中,电感和电容元件构成了谐振回路,而电阻则用于阻尼谐振回路的振荡。
电感和电容元件的数值决定了滤波器的中心频率和带宽,而电阻的数值则影响了滤波器的品质因数。
射频谐振器滤波器可以分为两种基本类型:串联谐振器和并联谐振器。
串联谐振器将电感和电容元件串联连接,而并联谐振器则将电感和电容元件并联连接。
它们在滤波特性和应用场景上有所不同。
串联谐振器滤波器在电路中起到压缩频带的作用,可以将特定频率附近的信号放大,而其他频率的信号则被抑制。
它通常用于需要提取特定频率信号的场合,比如无线通信中的频率选择性放大。
并联谐振器滤波器则在电路中起到放大频带的作用,可以将特定频率附近的信号放大,而其他频率的信号则被抑制。
它通常用于需要抑制特定频率信号的场合,比如无线电广播中的陷波滤波器。
射频谐振器滤波器的性能主要由其谐振特性和滤波特性决定。
谐振特性是指滤波器在谐振频率附近的频率响应,通常表示为谐振峰的幅度和带宽。
滤波特性是指滤波器对不同频率信号的响应,通常表示为滤波器的频率响应曲线。
谐振特性和滤波特性的设计取决于滤波器的工作频率和应用需求。
在设计射频谐振器滤波器时,需要根据具体的频率范围、带宽要求和滤波特性等因素选择合适的电感和电容元件,并通过调整电路参数来实现滤波器的性能优化。
射频谐振器滤波器利用电路中的谐振现象来实现对特定频率的信号的滤波。
它在无线通信、射频电子设备、无线电广播等领域中发挥着重要的作用。
【超详细】图解手机射频电路设计原理及应用射频电路组成和特点:普通手机射频电路由接收通路、发射通路、本振电路三大电路组成。
其主要负责接收信号解调;发射信息调制。
早期手机通过超外差变频(手机有一级、二级混频和一本、二本振电路),后才解调出接收基带信息;新型手机则直接解调出接收基带信息(零中频)。
更有些手机则把频合、接收压控振荡器(RX—VCO)也都集成在中频内部。
(射频电路方框图)(一)、接收电路的结构和工作原理:接收时,天线把基站发送来电磁波转为微弱交流电流信号经滤波,高频放大后,送入中频内进行解调,得到接收基带信息(RXI-P、RXI-N、RXQ-P、RXQ-N);送到逻辑音频电路进一步处理。
1、该电路掌握重点:(1)、接收电路结构。
(2)、各元件的功能与作用。
(3)、接收信号流程。
电路分析:(1)、电路结构。
接收电路由天线、天线开关、滤波器、高放管(低噪声放大器)、中频集成块(接收解调器)等电路组成。
早期手机有一级、二级混频电路,其目的把接收频率降低后再解调(如下图)。
(接收电路方框图)(2)、各元件的功能与作用。
1)、手机天线:结构:(如下图)由手机天线分外置和内置天线两种;由天线座、螺线管、塑料封套组成。
作用:a)、接收时把基站发送来电磁波转为微弱交流电流信号。
b)、发射时把功放放大后的交流电流转化为电磁波信号。
2)、天线开关:结构:(如下图)手机天线开关(合路器、双工滤波器)由四个电子开关构成。
(图一)(图二)作用:其主要作用有两个:a)、完成接收和发射切换;b)、完成900M/1800M信号接收切换。
逻辑电路根据手机工作状态分别送出控制信号(GSM-RX-EN;DCS- RX-EN;GSM-TX-EN;DCS- TX-EN),令各自通路导通,使接收和发射信号各走其道,互不干扰。
由于手机工作时接收和发射不能同时在一个时隙工作(即接收时不发射,发射时不接收)。
因此后期新型手机把接收通路的两开关去掉,只留两个发射转换开关;接收切换任务交由高放管完成。
第9章射频滤波器设计射频滤波器在无线通信系统中起着至关重要的作用,用于滤除不需要的频率分量,以便在接收机中获得高质量的信号。
本章将介绍射频滤波器的设计原理和常见的设计方法。
射频滤波器的设计原理基于频率选择性,即对于输入信号中的特定频率分量,滤波器会通过或抑制。
滤波器的设计目标通常包括带宽、频率响应、衰减等参数。
常见的射频滤波器设计方法有主动滤波器和被动滤波器。
主动滤波器是利用放大器和反馈网络来实现频率选择性,具有较高的增益和较低的损耗,但需要外部电源供电。
被动滤波器则是利用电感、电容和电阻等被动元件来实现频率选择性,没有外部电源需求,但具有较高的损耗。
对于主动滤波器的设计,常见的方法包括巴特沃斯滤波器、切比雪夫滤波器和椭圆滤波器等。
这些滤波器的设计基于无源RC滤波器的改进,通过选择合适的放大器增益和反馈网络参数,可以实现不同的频率响应和带宽。
被动滤波器的设计则依赖于电感、电容和电阻等被动元件的选择和组合。
常见的被动滤波器包括低通滤波器、高通滤波器、带通滤波器和带阻滤波器等。
这些滤波器的设计原理基于被动元件的阻抗特性和频率响应。
在射频滤波器设计中,还需要考虑到滤波器的稳定性和抗干扰能力。
稳定性是指滤波器在不同工作条件下的频率响应和增益的稳定性,抗干扰能力是指滤波器对于外部干扰信号的抑制能力。
这些因素需要在设计中进行考虑,并采取相应的措施来提高滤波器的性能。
最后,射频滤波器的设计还需要经过仿真和实验验证。
仿真可以通过电路仿真软件进行,可以对滤波器的频率响应和增益等参数进行评估。
实验验证可以通过实际搭建滤波器电路,并通过测试仪器进行性能测试。
综上所述,射频滤波器设计是无线通信系统中重要的一部分,需要考虑到频率响应、带宽、稳定性和抗干扰能力等因素。
设计方法包括主动滤波器和被动滤波器,设计过程需要经过仿真和实验验证。
通过合理的设计和优化,可以实现高性能的射频滤波器。
射频滤波器工艺流程
射频滤波器是一种用于选择性地通过或者抑制特定频率的电子
设备,它在无线通信系统、雷达系统和其他射频应用中起着至关重
要的作用。
其工艺流程可以分为以下几个主要步骤:
1. 设计阶段,在设计阶段,工程师首先确定滤波器需要滤除或
通过的频率范围,并选择合适的滤波器拓扑结构,如低通滤波器、
高通滤波器、带通滤波器或带阻滤波器。
然后进行电路仿真和优化,以确保滤波器的性能满足要求。
2. 材料选择,根据设计要求,选择合适的基底材料和介质材料,通常使用的材料包括陶瓷、玻璃纤维、聚酰亚胺等,这些材料具有
良好的介电特性和机械性能。
3. 制备基底,制备滤波器的基底是制造过程中的关键步骤,通
常采用化学蚀刻、机械加工或压铸成型等工艺来制备具有特定形状
和尺寸的基底。
4. 添加金属层,通过蒸镀、溅射或印刷工艺在基底上添加金属层,形成滤波器的电气结构,包括电容、电感和传输线等元件。
5. 芯片制造,对于集成滤波器,需要在芯片上进行电路布图设
计和制造,包括光刻、蒸镀、蚀刻等工艺步骤。
6. 组装和封装,将制备好的滤波器芯片和其他元件进行组装和
封装,通常采用焊接、粘接或封装工艺,以保护滤波器并方便其在
电路板上的安装和连接。
7. 测试和调试,对制造好的滤波器进行严格的测试和调试,包
括频率响应测试、功率损耗测试等,以确保滤波器的性能符合设计
要求。
总的来说,射频滤波器的工艺流程涉及到材料选择、基底制备、金属层添加、芯片制造、组装封装和测试调试等多个环节,每个环
节都需要精密的工艺控制和严格的质量检验,以确保最终产品的性
能和可靠性。
射频滤波器设计一、引言射频滤波器是一种重要的电子元件,用于滤除射频电路中不需要的频率成分,以保证系统的正常运行。
本文将介绍射频滤波器的设计方法和步骤。
二、射频滤波器的类型根据滤波器的工作原理,射频滤波器可以分为主动滤波器和被动滤波器两大类。
主动滤波器采用放大器等主动元件来实现滤波功能,适用于对信号进行加工和处理的场合;被动滤波器则由电感、电容和电阻等被动元件构成,适用于对信号频率进行筛选和分离的场合。
三、射频滤波器设计步骤1. 确定滤波器的规格和参数:根据应用场景和需求,确定滤波器的工作频率范围、通带衰减、阻带衰减等参数。
2. 选择滤波器的拓扑结构:根据规格和参数要求,选择合适的滤波器结构,如低通滤波器、高通滤波器、带通滤波器或带阻滤波器等。
3. 选择滤波器的元件:根据选定的拓扑结构,选择合适的电感、电容和电阻等元件,并计算它们的数值。
4. 进行滤波器的电路设计:根据元件的数值,设计滤波器的电路图,并进行仿真和优化,以满足预定的滤波规格和参数。
5. 制作滤波器的原型:根据设计的电路图和元件数值,制作滤波器的原型电路板。
6. 进行滤波器的测试和调整:使用仪器设备对滤波器进行测试,如频率响应、插入损耗等,根据测试结果对滤波器进行调整和优化。
7. 滤波器的最终验证和生产:经过调整和优化后的滤波器,需要进行最终的验证测试,确保其满足设计要求。
之后,可以进行批量生产和应用,以满足实际的工程需求。
四、射频滤波器设计的注意事项1. 保持信号的完整性:滤波器的设计需要综合考虑信号质量与功耗等因素,确保通信信号的完整性。
2. 抑制杂散信号:射频滤波器的设计要能有效抑制杂散信号,以避免对系统产生不需要的干扰。
3. 阻止电磁干扰:射频滤波器也需要具备一定的抗干扰能力,以阻止外界的电磁干扰对系统的影响。
4. 注意滤波器的可靠性和稳定性:射频滤波器在工作过程中需要保持一定的可靠性和稳定性,以确保系统的正常运行。
五、结语射频滤波器的设计是一项复杂而重要的工作,它能够有效地滤除射频电路中不需要的频率成分,保障系统的稳定运行。
射频滤波器的种类、作用及原理一、概述1.射频滤波器定义凡是可以使信号中特定的频率成分通过,而极大地衰减或抑制其他频率成分的装置或系统都称之为滤波器,相当于频率“筛子”。
2.射频滤波器分类幅频特性如下频率通带:能通过滤波器的频率范围频率阻带:被滤波器抑制或极大地衰减的信号频率范围。
截止频率:通带与阻带的交界点。
2)按物理原理分:机械式、电路式按处理信号分:模拟、数字3.射频滤波器的作用1)将有用的信号与噪声分离,提高信号的抗干扰性及信噪比;2)滤掉不感兴趣的频率成分,提高分析精度;3)从复杂频率成分中分离出单一的频率分量。
二、理想滤波器与实际滤波器1.理想滤波器的频率特性理想滤波器:使通带内信号的幅值和相位都不失真,阻喧内的频率成分都衰减为零的滤波器,其通带和阻带之间有明显的分界线。
如理想低通滤波器的频率响应函数为理想滤波器实际上并不存在。
2.实际滤波器实际滤波器的幅频特性如下图所示实际滤波器的特性需要以下参数描述:①信频程选择性:与上、下截止频率处相比,频率变化一倍频程时幅频特性的衰减量,即信频程选择性总是小于等于零,显然,计算信量的衰减量越大,选择性越好。
②滤波器因素:-60dB处的带宽与-3dB处的带宽之比值,即③分辨力:即分离信号中相邻频率成分的能力,用品质因素Q描述。
3.实际带通滤波器的形式①恒定带宽带通滤波器:B=常量,与中心频率f0无关。
②恒定百分比带通滤波器:在高频区恒定百分比带通滤波器的分辨率比恒定带宽带通滤波器差。
三、RC无源模拟式滤波器1.一阶RC低通滤波器2.一阶高通滤波器3.带通滤波器将RC低通和高通滤波器串联起来,就可以组成RC带通滤波器。
四、数字滤波器简介数学滤波:通过一定的计算方法和计算程序对离散信号进行加工,将其改造成新要求的。
离散信号,有低通、高通、带通、带阻之分。
数字滤波是对模拟滤波的一种模拟。
如模拟RC低通滤波器,输出与输入的关系式为:关于优译:优译创立于中国深圳市,注册资金2亿元人民币,是集军民用微波通信器件开发、设计与生产的一体化企业,产品远销海内外。
射频大功率合成和滤波器方向射频大功率合成和滤波器在无线通信系统中起着至关重要的作用。
射频大功率合成主要是指将低功率信号合成为高功率射频信号的技术,而滤波器则是用于去除信号中的杂散频率和噪声,以保证信号质量和系统性能的关键器件。
射频大功率合成技术是在无线通信领域中广泛应用的一种技术。
它通过将多个低功率信号合成为一个高功率射频信号,能够实现信号的放大和频率的变换。
在无线通信系统中,射频大功率合成技术被广泛应用于信号发射和接收过程中。
例如,在无线电通信中,射频大功率合成器可以将多个低功率信号合成为一个高功率射频信号,从而实现信号的放大和传输。
在雷达系统中,射频大功率合成器可以将多个低功率脉冲信号合成为一个高功率脉冲信号,从而实现雷达信号的发射和探测。
射频大功率合成技术的关键是合成器的设计。
合成器通常由多个功率放大器和相位控制器组成。
功率放大器负责将低功率信号放大至所需的高功率水平,而相位控制器则负责控制各个低功率信号的相位,以实现信号的合成。
在设计合成器时,需要考虑功率放大器的线性度、功率效率和带宽等指标,以及相位控制器的相位调节范围和分辨率等指标。
此外,还需要考虑合成器的稳定性和抗干扰能力等因素,以确保合成器在实际应用中能够稳定可靠地工作。
滤波器是射频系统中常用的一种设备,用于去除信号中的杂散频率和噪声。
滤波器可以分为低通滤波器、高通滤波器、带通滤波器和带阻滤波器等不同类型。
低通滤波器可以通过滤除高频部分来实现信号的频率限制;高通滤波器则可以通过滤除低频部分来实现信号的频率限制。
带通滤波器可以通过滤除不需要的频率分量来实现信号的频率选择;带阻滤波器则可以通过滤除特定频率范围内的信号来实现信号的频率屏蔽。
滤波器的设计和性能评估主要涉及到滤波器的频率响应、幅频特性、群延迟、插入损耗、阻带衰减等指标。
在设计滤波器时,需要根据系统的需求和信号的特点选择合适的滤波器类型,并进行参数优化和仿真验证。
此外,还需要考虑滤波器的实现方式和制造工艺,以确保滤波器能够满足系统的性能要求和工作环境的限制。
1.射频滤波器:射频前端中价值量最大的细分领域
1.1 射频滤波器的产品类别
手机终端的通信模块主要由天线、射频前端模块、射频收发模块、基带信号处理等组
成。
射频前端介于天线和射频收发模块之间,是移动智能终端产品的重要组成部分。
射频前端器件主要包括滤波器(Filters)、低噪声放大器(LNA)、功率放大器(PA)、射
频开关(RF Switch)、天线调谐开关(RF Antenna Switch)、双工器(duplexer)等。
其
中滤波器的功能是通过电容、电感、电阻等电学元件组合来将特定频率外的信号滤除,
保留特定频段内的信号。
目前手机中常用的滤波器产品形态包括
(1)声表面波滤波器(Saw Filter,Surface Acoustic Wave Filter)
(2)固贴式薄膜体声波滤波器(Baw Filter,SMR Bulk Acoustic Wave Filter)
(3)薄膜腔体谐振滤波器(Fbar,Film Bulk Acoustic Resonator)
(4)滤波器模组,如DiFEM(分集接受模组,集成射频开关和滤波器)、LFEM(集
成射频开关、滤波器及LNA)、FeMid(集成开关、滤波器和双工器)、PaMid(集
成多模式多频带PA和FeMid)
图1:智能手机通信系统结构示意图
资料来源:Wind,国元证券研究中心
5G驱动下,射频前端市场到2023年超过2400亿元。
根据Yole数据,2017年全球
射频前端市场规模约为150亿美金,预计到2023年射频前端产值将达到350亿美金
(折合2434亿元)。
其中,射频滤波器市场规模达225亿美金(折合1565亿元),PA
市场规模达70亿美金,射频开关市场达30亿美金,射频Tuner 市场达10亿美金,LNA 市场达6亿美金,毫米波射频模组市场达4.2亿美金。
图2: 射频前端领域各子行业的市场规模
资料来源:Yole , 国元证券研究中心
1.2 射频滤波器是射频领域最大的子行业
滤波器是射频前端各领域产值占比最高的产品,据Resonant 数据,2020年滤波器占射频前端市场份额将达50%以上。
从射频前端使用滤波器的价值量来看,伴随着频段的增多,滤波器在射频前端价值量占比在扩大。
根据Qorvo 的预测,滤波器在射频器件中的重要性越来越明显,滤波器的价值占比也从3G 终端的33%提升到全网通LTE 终端的57%。
据中国产业信息网预测,到5G 时代,滤波器的应用量将进一步增加(特别是体声波滤波器),单台手机的滤波器价值将达到10美元以上。
滤波器已经超越PA 成为整个射频前端模块市场中最重要的组成部分。
图3: 2017年射频市场占比
图4: 2023年射频市场占比 资料来源:Qorvo , 国元证券研究中心
资料来源:Qorvo , 国元证券研究中心 另据Resonant 数据,射频前端2020年市场规模约为220亿美元(折合1530亿元),滤波器市场规模约为150亿美元(折合1043亿元)。
到2025年,射频前端市场规模将达到400亿美元,滤波器市场规模将达到280亿美元。
图5: 2016至2025年滤波器市场空间(亿美元) 资料来源:Resonant , 国元证券研究中心
2.射频滤波器的主要技术路线
2.1 射频滤波器产品分为表声波、体声波两大技术方向
射频滤波器可分为表声波滤波器和体声波滤波器,其中表声波滤波器细分为Saw 滤波器、TC-Saw 、I.H.P-Saw (Incredible High Performance Saw )等。
体声波滤波器细分为Baw 、FBAR 、XBAR 滤波器等。
图6: 声学滤波器产品细分
资料来源:滤波器, 国元证券研究中心
体声波滤波器适用频率显著高于表声波滤波器,其中,XBAR 产品最高适用频率可达8GHz 。
而由Murata 率先推出的IHP-Saw 滤波器最高适用频率达3.5GHz ,可与常规Baw 滤波器高频性能相当。
50
100
150
200
250
300
2016201720182019202020212022202320242025
声学滤波器
表面声波 体声波
TC-Saw I.H.P-Saw Saw Baw-SMR FBAR XBAR
图7:声学滤波器产品频谱覆盖情况
资料来源:Akoustis, Yole, Oppenheimer & Co. Estimate,国元证券研究中心
2.2 三类主流射频滤波器:Saw、Baw-SMR、Fbar
2.2.1声表面波滤波器(Saw Filter)
Saw是一种沿着固体表面传播的声波,一个基本的Saw滤波器是由压电材料和两个IDT(interdigital transducer)组成。
IDT核心作用在能量转换,在输出端把接收的声波转变成电信号,在输入端把接收的电信号转变成声波。
这种转变主要依赖中间的压电材料,压电材料的晶体受到外界压力时会发生形变,晶体内原子间距离发生变化,打破原来的正负电荷平衡,晶体表面产生电压,相反当晶体两端受到电压时,晶体也会发生形变。
Saw滤波器常用的压电材料有LiTaO3,LiNbO3,SiO2。
当Saw滤波器工作时,输入端IDT接收电压信号使压电材料产生机械压力并以声波形式沿着表面传播,而垂直方向上的声波幅度快速衰落,输出端IDT接收水平方向的声波,并转换为电信号。
叉指换能器(IDT)由输入及输出埠的IDT电极组成。
当在输出埠外加电压时,输入端的IDT电极会产生逆压电效应,将电压讯号转换为声能讯号,激发表面声波,并在压电基板上传播。
当表面声波传至输出埠的IDT电极时,输出端的IDT电极会产生正压电效应,将接收之声波还原为电压信号。
图8:S aw元件示意图
资料来源:《表面声波元件之设计及其在宽频振荡器之应用》,国元证券研究中心
Saw的频率基本可以参考公式:F = V/λ,其中V是Saw的速率,大约为3100m/s,λ是IDT电极间距。
从公式可以看出Saw滤波器的频率与IDT电极间距成反比,频率越高,IDT电极间距越小。
在IDT小间距下,电流密度太大会导致电子迁移和发热。