桥梁地震反应分析
- 格式:ppt
- 大小:11.12 MB
- 文档页数:147
斜交桥梁地震响应特点探讨我国山区公路建设,由于其地形、地貌条件,呈现出弯多、坡陡、斜交、墩高等特点,这些桥梁大多数采用跨径20~50米不等的简支梁桥或者2~7跨一联的连续梁桥[1]。
当桥梁位于弯道上时,其地震响应,特别是在高烈度地震作用下的响应,有着其自身的特点,其空间作用特别突出,如果简单地对桥墩按规范里面的反应谱法進行平面计算,而不考虑空间作用,这样计算有很多问题考虑不到,其计算结果与空间地震响应有着很大的区别[2,3]。
山区桥梁大多数处于弯道上,而且很多位于高烈度地震区,对这种桥梁进行地震响应分析和研究,在此基础上提出抗震措施,是非常必要的。
1.地震中梁桥的损伤形式[3-11]地震作用下,上部结构的损坏形式可归纳为三种:自身损伤、位移损伤和碰撞损伤。
由于上部结构刚度大,结构整体性好,所以自身损伤发生的概率极小。
大多数损伤是由位移和碰撞导致。
曲线桥在地震作用下,由于受力的不均衡,桥面系有扭转的趋势,从而导致其弯扭耦合作用,造成桥梁上部结构与支座发生部分脱空,引起落梁或者上部结构的破坏[12]。
其中伸缩缝是上部结构的薄弱点,它虽然能满足预计地震下产生的位移,但是相邻梁体、梁体与桥台间位移变化从而引起碰撞,一系列因素的相互作用最终可能导致落梁。
支座的破坏形式主要表现为:支座位移、锚固螺栓拔出、剪断、活动支座脱落、支座本身构造上的破坏[7]。
支座的震害是地震中较为普遍的现象[3-7]。
结构间的支承连接通常是结构稳定的基础,由于支承连接的破坏引起桥梁坍塌的例子不在少数。
支座损害是由于桥梁结构非同向运动,使得上、下部结构的支承连接件产生了不能承受的相对位移而失效,出现这种情况的原因是支座在设计时没有充分考虑抗震的要求,支座形式选择不当和支挡措施不足引起的。
下部结构失效是指桥墩、桥台和基础的失效,它的损坏使桥梁失去承受竖向承载力的能力,所以下部结构的失效往往是桥梁倒塌的直接原因。
2.结构的有限元模拟本文中,对桥梁进行有限元建模时,根据不同的构件属性选择不同的单元类型进行模拟:上部结构梁体和下部结构桥墩采用梁单元模拟,伸缩缝采用连接单元中的间隙元模拟,图1为间隙元示意图。
大桥抗震分析报告目录一、工程概况 (1)二、设计规和标准 (3)三、设防标准、性能目标及计算方法 (3)六、地震作用参数 (4)七、桥墩顺桥向抗震计算.... 错误!未定义书签。
八、桥墩横桥向水平地震力及抗震验算 (24)九、结论 (36)一、工程概况某路XX大桥为两联等截面连续梁,每联为四跨(4×40m),总桥面宽为33.5m由左右两半幅桥面组成,每半幅桥的上部结构均由5片预应力混凝土小箱梁组成(见图1.2)。
下部结构采用等截面矩形空心薄壁墩、直径1.5m为桩基础。
桥跨的总体布置见图1.1。
台墩墩墩墩墩墩墩台第1联第2联图1.1 XX大桥立面示意图图1.2 上部结构断面图图1.3 下部结构构造图联间墩设GYZ450X99型圆形板式支座,每片梁下为两个支座,联端为活动盆式支座。
桥上二期恒载(含桥面铺装、栏杆、防撞墙和上水管等)为21.7kN/m。
主梁为C50混凝土、盖梁和桥墩为C35混凝土,桩基础为C25混凝土。
主梁混凝土的容重取26 kN/m3、其它的容重取25 kN/m3,混凝土的其它参数均按现行《公路钢筋混凝土及预应力混凝土桥涵设计规》取值,见表1.1。
表1.1 计算参数取值混凝土弹模(107kPa)基础土对桩基础对的约束作用采用弹簧模拟,弹簧的刚度用m法计算。
查《公路桥涵地基=2与基础设计规》(JTG D63-2007),静力计算时土的m值取10000kN/m4,动力计算时处取m动×m=20000 kN/m4。
桩径d=1.5m,桩形状换算系数kf=0.9,桩的计算宽度b=1.0×0.9×(1.5+1)=2.25m。
建立有限元模型,桩基划分为单元长1m,在每个节点设水平节点弹性支承,弹簧刚度:K=1×2.25×20000×Z=4500Z(kN/m)式中,Z为设置弹簧处距地面的距离。
二、设计规和标准1、设计规(1)《城市桥梁设计准则》(CJJ 11-93)(2)《城市桥梁设计荷载标准》(CJJ 77-98)(3)《公路桥涵设计通用规》(JTG D60-2004)(4)《公路钢筋混凝土及预应力混凝土桥涵设计规》(JTG D62-2004)(5)《公路桥涵地基与基础设计规》(JTG D63-2007)(6)《公路桥梁抗震设计细则》(JTG/T B02-01-2008)2、设计标准:(1)立交等级:城市枢纽型互通式立交;道路等级:城市I级主干道(2)设计荷载:城-A级(公路-I级)(3)设计基准期:100年(4)设计安全等级:二级;结构重要性系数:1.0(5)抗震设防烈度8度,设计地震加速度峰值0.20g(6)场地类别为II类场地,特征周期0.40s三、设防标准、性能目标及计算方法根据《公路桥梁抗震设计细则》(JTG/T B02-01-2008)(以下简称“抗震细则”)的规定,进行本工程的抗震设计和计算。
工程科技系梁对连续钢构桥的地震反应分析张燕飞1胡国民2(1、内蒙古通辽市交通工程局,内蒙古通辽0280002、长安大学,陕西西安710064)1概述目前,随着混凝土强度的不断改善,设计和施工工艺的不断完善,连续钢构桥越来越受到桥梁工程师的青睐。
连续钢构桥上部结构连续长度,桥墩高度有不断增大的趋势。
特别是在跨径在200至300m之间刚构桥应用越来越多。
随着连续钢构桥的大量建设,其在地震作用下的反应分析成为研究的热点。
本文探讨系梁对连续刚构桥在地震能力的影响,以地震做用下控制截面的内力,位移等来分析系梁的作用,并加以算例说明。
2抗震分析理论2.1动态时程分析原理动态时程分析法是随着强震记录的增多和计算机技术的广泛应用而发展起来的,是公认的精细分析方法。
目前,对于重要、复杂、大跨的桥梁抗震计算都建议采用动态时程分析法。
地震作用下,桥梁结构地震运动微分方程为:公式中:[M]、[C]、[K]分别为系统的总体质量矩阵、阻尼矩阵和刚度矩阵,{U}为对应的自由度的广义坐标列阵,P(t)为外荷载。
上述方程是二阶微分方程,右端输入的实际是地震加速度时程,它是不规则的,难以用确定的函数表达。
解方程较为有效的方法是逐步积分法,逐步积分法根据已知的位移、速度、加速度和荷载条件,从前一时刻计算下一时刻地震反应,具体计算步骤分为如下三步。
a.将振动时程分为一系列相等或不相等的微小时间间隔Δt;b.假定在Δt时间间隔内,位移、速度、加速度按一定规律变化建立三者之间的关系;c.求解ti+Δt时刻结构的地震反应;通过对上述b、c两个步骤采用不同假定,发展了很多积分方法。
根据对位移、速度和加速度之间关系的不同假定,时程分析计算的方法可以分为:NewMark-β法以及Wilson-θ法本文在计算分析时采用midascivil大型通用有限元分析程序中的常加速度法。
2.2地震动的输入采用1940年美国帝国峡谷地震的EI-Centro地震波输入。
简析桥梁震害成因与抗震设计桥梁设计时需保证其可靠安全性,防止桥梁受到地震的影响而遭到破坏,出现严重破坏。
所以,在地震多发区域架设桥梁时,须保证其具备一定的抗震性。
力求保证桥梁在经历地震之后,还能保持其基本功能,尽量减少地震所带来的危害,以便日后修复。
本文主要对桥梁结构震害成因与抗震设计措施进行分析研究。
标签:桥梁工程;结构;抗震;设计1、桥梁震害分析根据大量研究与调查我国震例以及桥梁结构抗震性能可发现,我国桥梁震害主要有如下几种:(1)地基基础破坏。
导致地基破坏原因通常是因为稳定性差、不均匀沉降等,而这都有可能会导致出现地层下沉、断裂以及水平滑移等现象进而对结构物造成破坏。
地基破坏以及基础破坏息息相关,如若地震影响到结构周围地基,则会降低结构强度,极易导致基础滑移或沉降情况发生,还可能致使倾斜或是剪断等情况出现,严重的还会导致墩台折断、倾斜或是倒塌。
(2)桥台沉陷。
地震出现时,如无完全固结桥台及其后填土,则纵向压力及被动土压力会变大,并逐步由桥台移动至桥跨方向。
(3)墩柱破坏。
该现象往往是因为弯曲强度小、剪切强度小以及弯曲延性差等原因导致,而其往往会引发连锁反应。
(4)支座破坏。
受到地震作用力影响,支座锚固螺栓可能会出现剪断、拔出等情况,从而改变了结构力传递方式。
2、地震对桥梁的破坏性分析地震所引起的地面振动是一种复杂的运动,它是由纵波和横波共同作用的结果。
在震中区,纵波使地面上下颠动,横波使地面水平晃动。
地震是自然界中一种突发性的严重灾害,具有典型的偶然性和短暂性。
(1)场地和地基的破坏作用当地震发生时,首先是场地和地基破坏,从而产生桥梁破损并引起其他灾害。
地震发生后,桥梁的破坏形式一般表现为:桥台锥体、墩周铺护开裂,甚至滑移;墩台身位移,支座锚栓剪断,严重时产生落梁现象;砂土液化,桥墩下沉;墩台身开裂,严重时桥梁倒塌。
(2)场地的振动作用场地的振动作用是指由于强烈的地面运动引起桥梁的振动而产生的破坏作用。