金属抗癌药物的最新研究进展
- 格式:doc
- 大小:348.00 KB
- 文档页数:12
金属配合物在生物医学领域的应用研究近年来,金属配合物在生物医学领域的应用逐渐受到人们的关注。
金属配合物是指由金属离子和一个或多个配体通过配位键连接而成的化合物。
它们具有独特的化学性质和生物活性,因此在药物研究、分子影像和生物传感等方面具有广阔的应用前景。
金属配合物作为药物研究领域的重要一环,已经推动了新药开发的进展。
例如,白蛋白结合的铂配合物是一种常用的抗癌药物,其通过与白蛋白结合,延长了药物在体内的半衰期,提高了药物的稳定性和生物利用度。
此外,金属配合物还可以增强药物的靶向性和选择性。
以金属配合物为基础的抗病毒药物研究也取得了一定的成果。
研究人员通过调节金属配合物的结构和性质,设计出了一系列具有高效抗病毒作用的药物,有效地抑制了病毒的生长和复制。
金属配合物在分子影像学中的应用也引起了研究人员的兴趣。
分子影像技术是一种可以观察和描述生物分子在体内活动和分布的方法。
金属配合物能够通过与靶向分子发生特异性配位,提供高对比度的影像信号,从而实现对疾病状态的准确检测。
例如,金属配合物被广泛应用于磁共振成像(MRI)中,通过调节配体的结构和性质,改变金属配合物的弛豫时间,从而实现对特定疾病的早期诊断和治疗监测。
除了在药物研究和分子影像领域的应用,金属配合物在生物传感器的研究中也发挥着重要作用。
生物传感器是一种能够检测和测量生物体内特定化学物质或生物过程的设备。
金属配合物作为传感器的信号增强剂,能够提高传感器的灵敏度和选择性。
研究人员利用金属配合物的热物理性质和发光性能,设计了一系列用于检测生物分子、离子和气体的传感器。
这些传感器在生命科学研究、环境监测和食品质量控制等方面具有重要的应用前景。
然而,金属配合物在生物医学领域的应用还面临着一些挑战和问题。
首先,一些金属配合物在体内可能产生毒副作用,限制了其应用范围。
因此,研究人员需要精心设计金属配合物的结构以提高其安全性和生物相容性。
其次,金属配合物的合成方法和制备工艺也需要进一步改进,以提高其稳定性和纯度,同时减少成本和环境污染。
Schiff碱金属配合物抗肿瘤活性研究进展Schiff碱金属配合物抗肿瘤活性的研究已逐渐成为配位化学及抗肿瘤药物研究的热点,该文简要介绍了近年来国内、外Schiff碱金属配合物抗肿瘤活性的最新研究进展,揭示了其相关作用机制,并阐述了其作为新型抗肿瘤药的优势。
对Schiff碱配体及金属进行合成、改造、组合和筛选,从而合成具有潜力的新型抗肿瘤药物,这对肿瘤化疗药的研发具有重要意义。
标签:Schiff 碱;配合物;抗肿瘤活性;抗肿瘤药物Schiff碱(Schiff Bases)是一类含有甲亚胺基的化合物,Schiff碱基团通过碳-氮双键(-C=N-)上的氮原子及与之相邻的具有孤对电子的氧(O)、硫(S)、磷(P)原子作为供体与金属原子(或离子)配位,形成各种Schiff碱金属配合物。
研究表明Schiff碱金属配合物具有良好的抗肿瘤活性,由于其具有一系列重要的生物学活性,如损伤DNA、断裂质粒、断裂蛋白及促使癌细胞凋亡作用[1],它已成为新型抗肿瘤药的备选者之一。
Schiff碱金属配合物的抗肿瘤活性研究已逐渐成为配位化学及抗肿瘤药物研究的热点,该文将对近年来国内、外Schiff 碱金属配合物抗肿瘤活性的最新研究进展作一综述,现报道如下。
1 Schiff碱的抗肿瘤活性在近年的抗肿瘤药物研发中,发现一些Schiff碱及其衍生物具有抗肿瘤活性。
氟喹诺酮类是一种常用的抗菌药物,但研究发现一些氟喹诺酮类也有一定的抗肿瘤活性,其抗菌和抗肿瘤作用的靶点分别是原核生物Ⅱ型拓扑异构酶和真核生物Ⅱ型拓扑异构酶。
由于氟喹诺酮类抗菌和抗肿瘤机制相似,且作用靶点的酶序列也具有相似性,因此已有很多研究尝试通过修饰和优化具有抗菌作用的氟喹诺酮类结构,研发新型氟喹诺酮类抗肿瘤药物。
Hu等人[2]设计合成了源于氧氟沙星的抗肿瘤化合物。
他们以反式苯三唑取代氧氟沙星C-3位的羧基,进而合成了两个系列11种含有Schiff碱和Schiff-mannich碱侧链的衍生物。
铜(Ⅱ)配合物抗癌活性研究进展金属配合物抗癌药物的研究已经成为抗肿瘤药物研究的热点之一。
越来越多的研究表明铜(Ⅱ)配合物具有较好的抗癌活性。
本文在参阅大量文献的基础上,对铜(Ⅱ)配合物的结构特征﹑和铂(Ⅱ)配合物的活性对比、与DNA的作用﹑与氨基酸的共价作用及对癌细胞的诱导凋亡作用等方面作了介绍。
标签:铜(Ⅱ)配合物;结构特征;抗癌活性;共价作用;诱导凋亡60年代末期,顺铂(cis-platin)做为抗肿瘤药物应用于临床,引导金属配合物抗癌药物研究步入了一个新领域,引起了人们对金属配合物抗肿瘤研究的重视。
近年来已证实锗、钼、钯、铜、锌等金属配合物也具有抗肿瘤活性,对金属配合物的研究已经成为抗肿瘤药物研究中的热点之一[1]。
铜是一种很重要的微量金属元素,它在人体内的含量仅次于铁和锌。
所有的动物、植物都需要靠它来生存和维持正常的生理机能。
同时铜还是机体内氧化还原体系中有着独特作用的催化剂。
目前已知铜存在于生物体内金属蛋白和金属酶的活性部位,对造血系统和中枢神经系统的发育,骨骼和结缔组织的形成以及皮肤色素的沉积等过程具有重要作用[2]。
铜作为配合物的活性中心还存在于具有生物功能的蛋白质分子中,其配合物多变的配位结构和活化小分子的催化活性,使其对生命体系有特殊的生物活性和催化作用。
而目前的研究表明:铜是生物体内正常的新陈代谢所必须的,亦是治疗许多疾病的一个主要因素。
近期研究也证实铜与肿瘤血管的形成有密切关系,因此铜配合物已成为抗肿瘤药物的研究热点。
早在1912年,德国就用一种由铜的氯化物和蛋黄素组成的混合物来治疗患有面部癌的患者。
这一治疗的成功说明铜化合物具有抗癌功能[3]。
在众多的过渡金属中,铜具有良好的配位特性,且其配合物具有良好的光裂解活性[4],众多的研究者们开始将铜配合物作为研究对象。
本研究在参阅大量文献的基础上,结合自己的工作,从以下几方面对铜(Ⅱ)配合物抗癌活性的研究进展作了介绍。
1 铜(Ⅱ)配合物的结构特征Cu(Ⅱ)金属原子的配位多含O、N原子,Cu(Ⅱ)配位数从4~6多变,配位构型有四面体、三角双锥、八面体等。
铂类金属配合物作为抗癌药物的研究进展摘要:在目前研究中的新型抗癌药物当中,金属配合物类抗癌药物已成为重要的一类。
金属类抗癌药物有许多其它药物无法比拟的独特性质。
近些年来,新的高效、低毒、具有抗癌活性的金属化合物不断被合成出来。
其中有铂类抗癌药物应用最为广泛,本文介绍了这类金属配合物在抗癌领域中的研究进展与应用。
关键词:抗癌药物,金属配合物,药物分类,作用机理1. 引言癌症是严重危害人类健康的一大顽固病症。
根据世界卫生组织曾披露的癌症发展趋势表明,预计2015 年发达国家癌症死亡人数将为300 万人,发展中国家为600 万人,全年预计死亡人数达900 万人。
专家预计癌症将成为人类的第一杀手。
目前,化疗和放疗是治疗癌症的重要手段,但是其毒副作用比较大,于是寻求高效、低毒的抗癌药物一直是人们不懈努力,不断追求的奋斗目标。
自20世纪60年代顺铂被研究具有抗癌活性以来[1],金属配合物的药用性引起了人们的广泛关注,开辟了金属配合物抗癌药物研究的新领域。
随着人们对金属配合物的药理作用认识的进一步深入,新的高效、低毒、具有抗癌活性的金属配合物不断被合成出来,该领域的研究范围也变得更加广泛,取得了许多令人鼓舞的成就,成为目前和今后的研究热点,在这类配合物当中,铂金属配合物的研究最为广泛。
本文介绍了铂类金属配合物作为抗癌药物在抗癌领域中的研究与应用。
2. 铂类抗癌药物铂族金属包括铂、钯、铑、铱、锇、钌六种元素。
它们具有一些独特的和卓越的理化性质,一直在高新技术方面发挥着重要的作用,被喻为现代工业的维生素。
1967年,美国科学家Rosenberg1]首次观察到铂类化合物能抑制细胞生长,从此开展了此类构型独特的抗肿瘤药物治疗肿瘤细胞的实验。
第一代铂族抗癌药物顺铂(Cisplati n)于1978年上市。
第二代铂族抗癌药物卡铂(Carboplati n)于1986年上市。
第三代铂族抗癌药物奥沙利铂(Oxaliplati n)于1996年在法国上市。
重金属在药理学中的作用研究重金属是一类具有高密度和毒性的金属元素,在环境中广泛存在。
它们可以通过工业排放、农药使用等途径进入我们的生活环境,对人类健康造成潜在威胁。
然而,除了其毒性之外,重金属在药理学中的作用也值得关注和研究。
本文将探讨重金属在药理学中的作用及其研究进展。
一、重金属的药理学作用1. 抗癌作用重金属元素如铂、锇等被广泛应用于化疗药物中。
这些化合物能够与DNA结合,干扰肿瘤细胞的生长和分裂,从而抑制癌细胞的增殖。
铂类化疗药物如顺铂、卡铂等已经成为临床上治疗多种癌症的重要药物,为患者的生存率提供了显著改善。
2. 抗炎作用某些重金属元素具有一定的抗炎作用。
例如,铜可以促进伤口愈合和抗菌,被广泛应用于医疗和保健产品中。
镉、铅等重金属元素在低剂量下也可以发挥一定的抗炎作用,对炎症相关的疾病具有一定的疗效。
3. 抗氧化作用一些重金属元素可以作为抗氧化剂,帮助清除体内的自由基,减轻氧化应激对人体的伤害。
铜、铁等元素在维持细胞健康和延缓衰老过程中发挥重要作用。
此外,硒、锌等重金属元素也能够增强机体的抗氧化能力,有助于预防氧化应激相关的疾病。
二、重金属在药理学研究中的进展1. 重金属配合物的合成与药效优化研究人员通过合成不同结构的重金属配合物,并测试其在药理学上的作用。
这些研究旨在发现更有效的化合物,提高其药效和减少毒副作用。
例如,一些研究正在探索铂类化疗药物的新配方,以提高其抗癌活性并降低耐药性的发生。
2. 重金属与药物相互作用的机制研究重金属元素与药物分子之间的相互作用机制对于理解其药理学作用至关重要。
一些研究使用计算化学和分子模拟等方法,研究重金属与药物之间的结合方式、结合位点以及相互作用的力学性质。
这些研究为合理设计新的药物分子提供了重要的理论依据。
3. 重金属在药物传递系统中的应用重金属的特殊性质使其在药物传递系统中具有一定的应用潜力。
一些研究利用重金属纳米微粒作为载体,将药物包裹其中,增加药物的稳定性和生物利用度。
铁死亡调节剂与顺铂毒性研究的最新进展摘要:顺铂(CDDP)是第一种用于抗肿瘤药的重金属化合物,但它所导致的顺铂毒性(cisplatin-induced toxicity)使患者的生活质量大打折扣,这一点严重局限了CDDP的临床应用。
故预防和治疗肿瘤化疗后顺铂毒性成为了一个重要课题。
铁死亡(ferroptosis)是科学家们近几年发现的一种新型的非凋亡调控的细胞死亡方式,其特点是铁依赖的脂质过氧化物的积累。
越来越多的文献报道铁死亡参与了多种恶性肿瘤顺铂化疗过程,应用铁死亡调节剂(ferroptosis regulator)可以在一定程度上影响顺铂毒性。
因此,本文将对铁死亡调节剂的相关分子机制及其在顺铂诱导的耳毒性、肾毒性和细胞毒性研究中的应用和影响进行综述,旨在为临床实践中预防和治疗顺铂毒性寻找理论依据和靶标。
关键词:顺铂毒性;铁死亡调节剂;分子机制众所周知,顺铂(CDDP)是一种广泛应用于临床的抗肿瘤药物,在卵巢癌,乳腺癌,骨肉瘤,肺癌,头颈癌等恶性肿瘤都表现出显著疗效[1]。
伴随着化疗剂量的升高,顺铂的治疗效果越来越好,但其毒副作用也越来越强,这严重影响癌症患者的愈后,大大限制了它的临床应用。
顺铂毒性(cisplatin-induced toxicity)主要表现为肾毒性(nephrotoxicity)、耳毒性(ototoxicity)和细胞毒性(cytotoxicity)[2,3,4]。
导致顺铂毒性很难治愈或预防的主要原因就是它的具体分子机制尚不清楚。
因此,进一步探究顺铂毒性发生机制,发现新的治疗靶点,寻找有效的防治方法和药物已经迫在眉睫。
2012年Dixon等人提出了一种在形态学,生物化学和遗传学上与细胞凋亡和坏死不同的新型细胞死亡方式—铁死亡(ferroptosis),它是铁依赖性的,由活性氧(ROS)和脂质过氧化物(LPO)的积累介导[5]。
铁死亡可以由许多小分子化合物诱导和抑制,涉及参与许多疾病,在恶性肿瘤顺铂化疗过程中也发挥重大作用。
文章编号 1000-5269(2003)02-0209-06铂类金属抗癌药物的研究进展郭建阳1,郑念耿2(1.贵州大学化学系,贵州贵阳 550025;2.安徽全椒古何中学,安徽全椒 2395411)摘 要 铂类金属抗癌配合物的研究始于1969年,经过30多年的发展,取得了重大进展。
顺铂、卡铂的开发成功和临床应用给癌症的治疗带来了一场新的革命,几种新型的铂类抗癌药物已推出。
作者综述铂类金属抗癌药物的历史、现状、发展及其作用机理。
关键词 顺式铂配合物;反式铂配合物;抗癌药物;机理中图分类号 O614.829+6; 文献标识码 A0 前言自1967年美国密执安州立大学教授Rosenberg B .和Ca mp V .发现顺铂具有抗癌活性以来,铂类金属抗癌药物的合成应用和研究得到了迅速的发展[1]。
顺铂和卡铂已成为癌症化疗不可缺少的药物。
1995年WH O 对上百种治癌药物进行排名,顺铂的综合评价(疗效,市场等)位居榜前,列第2位。
另据统计,在我国以顺铂为主或有顺铂参加配伍的化疗方案占所有化疗方案的70%~80%。
顺铂和卡铂所获得的成就,极大地鼓舞了各国学者去研究更好、更有效的新药。
在过去的25年里有几千个新的铂族化合物进入筛选,其中的28个化合物进入临床研究,有4个化合物已获得批准进入市场,还有2~3个化合物将获得生产批文。
展现了铂族抗癌药物良好的应用前景。
1 顺式构型的铂类抗癌药物1.1 第—代铂族抗癌药物———顺铂(Cisplatin )顺铂(Cisplatin )是顺式-二氯二氨合铂(Ⅱ)的简称,分子式是cis -Pt [(NH 3)2Cl 2],相对分子质量为300。
其结构式为:顺铂是最经典的无机配合物,1965年美国生理学家Rosenberg B .等在研究电磁场作用下微生物的生长情况时偶然发现其抗癌作用,Rosenber g 意识到了潜在的科学意义。
目前它已成为治疗癌症最有效的药物之一。
其特点是:抗癌作用强,抗癌活性高;与其他抗癌药物缺乏交叉耐药性,有利于临床的联合用药。
- 180 -end-expiratory pressure alone minimizes atelectasis formation in nonabdominal surgery:a randomized controlled trial[J].Anesthesiology,2018,128(6):1117-1124.[39] KIM N,LEE S H,CHOI K W,et al.Effects of positive end-expiratory pressure on pulmonary oxygenation and biventricular function during one-lung ventilation:a randomized crossover study[J].J Clin Med,2019,8(5):740.[40] KATZ J A,LAVERNE R G,FAIRLEY H B,et al.Pulmonaryoxygen exchange during endobronchial anesthesia:effect of tidal volume and PEEP[J].Anesthesiology,1982,56(3):164-171.[41] SENT ÜRK N M,DILEK A,CAMCI E,et al.Effects ofpositive end-expiratory pressure on ventilatory and oxygenation parameters during pressure-controlled one-lung ventilation[J]. J Cardiothorac Vasc Anesth,2005,19(1):71-75.[42] KANG W S,KIM S H,CHUNG J parison of pulmonarygas exchange according to intraoperative ventilation modes for mitral valve repair surgery via thoracotomy with one-lung ventilation:a randomized controlled trial[J].J Cardiothorac Vasc Anesth,2014,28(4):908-913.(收稿日期:2023-03-03) (本文编辑:田婧)*基金项目:安溪县科技计划项目(2022S002)①福建省安溪县医院 福建 安溪 362400通信作者:许永鹏铁死亡诱导剂在结直肠癌中的研究进展*陈伟鸿① 苏小苹① 苏宇超① 黄栋钦① 许永鹏① 【摘要】 结直肠癌(colorectal cancer,CRC)是全球第三大常见癌症,传统治疗方案对CRC 晚期患者的疗效不佳,因此,发现新的治疗策略可能有助于改善CRC 患者的治疗和预后。
中药及其天然产物通过靶向铁死亡治疗癌症研究进展
焦泉慧;钟凌云;程子文;吕小斌;章常华
【期刊名称】《医药导报》
【年(卷),期】2024(43)3
【摘要】铁死亡是一种独特的铁依赖性的细胞死亡方式,一种不同于细胞凋亡、各种形式的坏死和自噬的新型死亡表型。
许多从中药中提取的活性成分可在不同癌症中通过诱导铁死亡发挥抗癌作用。
越来越多的研究发现,对铁死亡的调控可影响肿
瘤细胞对药物的敏感性,甚至逆转耐药。
一些天然产物与化学治疗药物如顺铂、氟
尿嘧啶、吉西他滨等联用可通过诱导铁死亡增强癌细胞对药物的敏感性。
该文主要总结了可以通过诱导铁死亡发挥抗癌作用的中药及其天然产物,可为癌症治疗和逆
转耐药提供新思路,同时也为发掘中药的潜在优势、拓宽中药的应用范围提供参考。
【总页数】6页(P408-413)
【作者】焦泉慧;钟凌云;程子文;吕小斌;章常华
【作者单位】江西中医药大学药学院;南昌市第一医院中心实验室
【正文语种】中文
【中图分类】R286;R95
【相关文献】
1.靶向铁死亡信号通路抗肿瘤天然产物的研究进展
2.通过靶向自噬治疗动脉粥样硬化的天然产物研究进展
3.天然产物靶向程序性细胞死亡治疗类风湿关节炎的研究
进展4.靶向抑制铁死亡在脑出血后继发性脑损伤治疗中的作用研究进展5.靶向Nrf2-铁死亡通路与缺血性脑卒中后脑损伤治疗研究进展
因版权原因,仅展示原文概要,查看原文内容请购买。
铂类金属抗癌药物的研究进展化学化工学院化学系021131097 魏永懿前言自1967年美国密执安州立大学教授Rosenberg B.和Camp V.发现顺铂具有抗癌活性以来,铂类金属抗癌药物的合成应用和研究得到了迅速的发展。
顺铂和卡铂已成为癌症化疗不可缺少的药物。
1995年WHO对上百种治癌药物进行排名,顺铂的综合评价(疗效,市场等)位居榜前,列第2位。
另据统计,在我国以顺铂为主或有顺铂参加配伍的化疗方案占所有化疗方案的70%—80%。
顺铂和卡铂所获得的成就,极大地鼓舞了各国学者去研究更好、更有效的新药。
在过去的25年里有几千个新的铂族化合物进入筛选,其中的28个化合物进入临床研究,有4个化合物已获得批准进入市场,还有2—3个化合物将获得生产批文。
展现了铂族抗癌药物良好的应用前景。
铂类抗癌药物的市场销售额几十年来增长迅速。
1996年顺铂和卡铂已进入全世界销售额领先的十大抗肿瘤药物之中,分别列第8应和第5位。
1999年卡铂又进入全球最畅销的前150个非处方药行列中,列第66位。
其市场潜力巨大,同时展现了铂族抗癌药物良好的应用前景。
铂类抗癌物质的发现过程事情发生在1965年。
一天,在美国密执根大学的实验室里,卢森堡博士和同事一起正在做一个关于电场对细菌影响的实验。
他们选用大肠义氏杆菌(Eshefichia Co1i)作为研究对象。
首先把它们放入一种“C”介质的培养液中(此培养液由NH4Cl2g/L,NaH2P046g/L,KH2P043g/L,NaCl3g/L,MgCl20.01g/L,Na2SO40.026g/L组成,鼓入压缩空气,然后在培养室中放入两个半圆柱形的惰性金属铂电极,电极接上演串可以50周/秒-100000周/秒改变的交流电源。
实验开始了。
当频率为1000周/秒的交流电加在电极两端,通2安培的电流两小时后,发生了怪事:在显微镜下观察到培养液中的大肠杆菌疯狂地伸长,茵体成丝状。
它的长度竟然为正常细菌的300倍,然而细菌的个数却没有增加。
金属抗癌配合物的研究进展Research Progress of Metal Anti-cancer CoordinationComplexesXXX(华中师范大学,武汉430079)摘要:癌症是一种严重威胁人类身体健康的常见病和多发病。
当前治疗癌症的主要方法有手术、放射、化疗、基因疗法和免疫疗法等。
自六十年代末发现顺铂有抗癌活性以来,金属配合物的抗癌性引起人们的广泛关注,越来越多的研究人员致力于合成高效、广谱、低毒新型的金属抗癌药物。
金属配合物包括有机铂类化合物、有机锡配合物、有机锗配合物和茂钛衍生物、多酸化合物等。
本文综述了最近几年新开发的金属配合物在抗癌方面的研究进展和应用现状。
关键词:金属配合物抗癌Abstract:Cancer , one of the common and frequently-occurring diseases , seriously threats human being health.The main treating methods of cancer include surgery, radiation, chemotherapy, gene therapy and immunotherapy and so on. Since people found Cisplatin which has anticancer activity the late sixties metal complexes has caused widespread concern.A growing number of researchers dedicated to efficient new metal anti-cancer drugs that is synthetic, broad-spectrum, low toxicity . The metal complexes include organic platinum compounds, organic tin complex, organic germanium complex and titanocene derivative, acid compounds.This review highlights the development and actuality of metal complexes in recent years.Key words:Metal coordination Complexes;Anticancer1 引言生命是宝贵的,同时也是脆弱的,癌症造成的死亡率不容忽视。
铁死亡机制及其抗癌纳米制剂的研究进展
罗丽;王子涵;刘奕辰;贾思宇;陈慧;蒋欣怡;季鹏
【期刊名称】《山东化工》
【年(卷),期】2024(53)8
【摘要】铁死亡(Ferroptosis),一种铁依赖的,区别于凋亡、坏死、自噬的新型细胞程序性死亡。
铁死亡在器官损伤和组织退行性变,以及抑制肿瘤细胞增殖中发挥重要作用。
目前,利用铁死亡诱导杀灭癌细胞已成为一种新的癌症治疗方法。
通过药理调控诱导和抑制铁死亡,在治疗耐药肿瘤、缺血性器官损伤和其他与广泛脂质过氧化相关的退行性疾病方面有着巨大潜能。
铁死亡起效迅速,不受细胞膜上特定蛋白介导的多耐药性影响,无细胞凋亡抑制,因此可用于研发肿瘤治疗制剂。
纳米材料诱导铁死亡被认为是一种基于纳米材料的工程化治疗剂新策略,以实现对各种癌症高效治疗。
本次综述主要介绍癌细胞铁死亡的意义,几种癌细胞铁死亡诱导型纳米材料,以及铁死亡诱导型纳米材料在治疗癌症中的应用和纳米材料诱导癌细胞铁死亡的优势和展望。
【总页数】4页(P105-107)
【作者】罗丽;王子涵;刘奕辰;贾思宇;陈慧;蒋欣怡;季鹏
【作者单位】扬州大学医学院临床学院附属泰兴市人民医院检验科;泰州学院医药与化学化工学院
【正文语种】中文
【中图分类】TQ460
【相关文献】
1.铁死亡诱导药物及其抗癌机制研究进展
2.铁死亡在酪氨酸激酶抑制剂治疗肝细胞癌及其耐药机制的研究进展
3.基于铁死亡机制的多模式联合治疗肿瘤的纳米递药系统的研究进展
4.铁死亡纳米制剂在肿瘤治疗应用中的研究进展
5.熊果酸纳米制剂抗癌机制的研究进展
因版权原因,仅展示原文概要,查看原文内容请购买。
第34卷第6期化㊀学㊀研㊀究Vol.34㊀No.62023年11月CHEMICAL㊀RESEARCHNov.2023一锅法合成噁唑啉金属配合物研究进展罗㊀梅∗(合肥工业大学化学与化工学院,安徽合肥230009)收稿日期:2022⁃02⁃28作者简介:罗梅(1969-),女,副教授,研究方向为金属有机化学㊂∗通信作者,E⁃mail:luomei@pku.edu.cn摘㊀要:一锅法合成金属配合物是近年来金属有机化学研究的一个热点之一㊂在对国内外噁唑啉金属配合物的合成及应用进行大量文献调研基础上,综述了本课题组近年来用腈类与手性氨基醇作用,在不同物质的量的金属盐如氯化锌㊁乙酸铜和氯化钴等金属氯化物或金属乙酸盐作用下,一锅法一步合成系列噁唑啉金属配合物及应用研究进展㊂同时,对该方法在其他噁唑啉金属配合物合成及应用领域提出展望㊂关键词:一锅法;噁唑啉金属配合物;腈类;手性氨基醇;金属盐中图分类号:O627文献标志码:A文章编号:1008-1011(2023)06-0538-11Therecentprogressofone⁃potsynthesisofoxazolinylorganometalliccomplexesLUOMei∗SchoolofChemicalEngineering HefeiUniversityofTechnology Hefei230009 Anhui ChinaAbstract One⁃potsynthesisoforganometalliccomplexesisoneofthehotspotsinorganometallicchemistryinrecentyears.Basedonthefullofliteratureinvestigationsonthesynthesisandapplicationofoxazolinylcomplexes,wediscussedtheprogressonthesynthesisandapplicationsofoxazolinylligandsandaccordinglycomplexesinrecentyearswhichstartingfromtherawmaterialsnitrilesrefluxedwithchiralaminoalcoholsinonestepundertheactionofdifferentmolaramountsofmetalsaltssuchaszincchloride,copperacetateandcobaltchlorideandothermetalchloridesormetalacetates.Additionally,thetheoreticalcalculationofthiskindofreaction: one⁃potsynthesisoftheorganometalliccomplexes iscarriedoutbyGaussiansoftware,andareasonablereactionmechanismisputforward.Therefore,aseriesofcrystallineoxazolinylmetalcomplexeshavebeenreviewedindetail.Inaddition,thesynthesisofthesecomplexesissummarizedandtheprospectoftheirdevelopmentisalsoprospected.Keywords:one⁃pot;oxazolinylmetalcomplexes;nitriles;aminoalcohols;metalsalts1㊀噁唑啉金属配合物国内外研究进展噁唑啉金属配合物是近年来金属有机化学研究的热点之一㊂其合成方法是是由配体噁唑啉环中的C=N双键中的氮原子与过渡金属如锌㊁铜㊁钴㊁镍及锰或贵金属铂㊁钯等原子配位形成的配合物㊂其国内外研究现状及发展动态分析如下:1.1㊀噁唑啉配体合成方法的研究进展配体噁唑啉的合成始于1884年,后来许多著名有机化学家又相继研究了其他噁唑啉及衍生物的方法㊂如Pfaltz研究小组[1]于1990年研究了含C2对称轴的手性噁唑啉配体化合物,Apprel课题组[2]于1975年发展了一锅法合成噁唑啉环的合成方法,而在国内上海有机所麻生明院士团队[3]近年来也报道了噁唑啉的合成新方法㊂该合成方法常见的主要有以下几种[4-8]:1)酰氯和氨基醇直接缩合形成双羟酰胺,然后由羟酰胺关环生成双噁唑啉(见图1)㊂该方法使用多种关环试剂,如Me2MCl2(M:Sn㊁Si)㊁ZnCl2㊁BF3第6期罗㊀梅:一锅法合成噁唑啉金属配合物研究进展539㊀㊃Et2O㊁DAST等㊂图1㊀酰氯和氨基醇经两步反应合成双噁唑啉的路线图Fig.1㊀Synthesisofbi⁃oxazolinesfromthereactionacylchloridewithaminoalcohol2)直接由羧酸酯与氨基醇缩合形成双羟酰胺,然后进行关环合成双噁唑啉(见图2)㊂图2㊀羧酸酯和氨基醇合成双噁唑啉的路线图Fig.2㊀Synthsisofbi⁃oxazolinesfromthereactionofcarboxylicacidesterwithaminoalcohols3)第三种方法是由二氰类出发,在氯化锌催化下,与手性氨基醇反应,一步得到噁唑啉[9-12](见图3)㊂图3㊀腈类和氨基醇合成双噁唑啉的路线图Fig.3㊀Synthsisofbi⁃oxazolinesfromthereactionofnitrileswithaminoalcohols1.2㊀噁唑啉金属配合物的合成方法研究进展1)直接合成法配体噁唑啉直接与金属盐反应得到噁唑啉金属配合物,这是最经典的金属有机配合物的合成方法之一㊂从第一个金属配合物Zeise盐K[Pt(C2H4)Cl3]㊃H2O的出现到现在,是最通用的合成方法㊂关于一锅法合成化合物的报道已出现很多,但是三组分直接一锅法合成金属配合物的报道不多㊂大多数金属配合物的合成使用的是经典的合成方法,如国内的研究小组北京大学席振峰课题组[13]/张文雄课题组[13]/杨震课题组[14]/莫凡洋课题组[15]/王剑波课题组[15]/余志祥课题组[16]㊁上海有机所戴立信课题组[17]/刘桂霞㊁陆熙炎课题组[18]/麻生明课题组[19]/丁奎岭课题组[20]/马大为课题组[21]/唐勇课题组/谢作伟课题组[22]/侯雪龙课题组/吴云东[23]/施敏课题组[24]/游书力课题组[24]/陈耀峰课题组[25]/向丽课题组[26]㊁中科院大连化物所万伯顺课题组[27]㊁河南师范大学张晓鹏课题组[28]㊁浙江工业大学李传莹课题组[29]㊁郑州大学李霄鹏课题组[30]㊁山东大学史晓东课题组[31]㊁温州医科大学的吴戈课题组[32]㊁山东省医科学院的柴会宁课题组[33]㊁天津师范大学柳青湘课题组[34]㊁复旦大学金国新课题组[35]㊁周锡庚/张立新课题组[36]㊁中国科学技术大学王官武课题组[37]/王中夏课题组[38]/汪志勇课题组[39]/田仕凯课题组[40]/汪义丰课题组[41]㊁安徽师范大学王邵武课题组[42/商永嘉课题组[43]/周双六课题组[44]/朱先翠课题组[44]㊁安徽工程大学王芬华课题组[44]㊁南京大学陆红健课题组[45]/王新平课题组[46]㊁天津大学张志伟课题组[47]㊁东北师范大学潘玲课题组[48]㊁南京工业大学姜耀甲课题组[49]㊁重庆文理学院崔海磊课题组[50]等㊂他们的研究工作对金属有机配合物的合成及催化应用做出了一定的贡献,推动了金属有机化学的发展㊂2)一锅法一锅法合成噁唑啉金属配合物,是近年来出现的新型有机合成方法之一[51-53]㊂通常金属有机配合物的合成方法是先合成配体,再与金属盐作用合成金属配合物㊂但是,本项目组,由于意外得到系列噁唑啉过渡金属噁唑啉配合物,因此提出并建立了手性噁唑啉过渡金属配合物合成方法的体系㊂该合成方法理论可行,其反应通式如下(见图4):图4㊀噁唑啉过渡金属配合物合成反应通式图Fig.4㊀Generalreactionsyntheticroutetotheoxazolinyl⁃metalcomplexesfromthereactionofnitrileswithaminoalcohols540㊀化㊀学㊀研㊀究2023年三组分一锅法在有机反应中的应用,具体表现在合成手性噁唑啉过渡金属配合物的应用㊂这个课题的发现是这样的:由腈类出发,与手性氨基醇作用,在合成噁唑啉配体过程中,由于加入氯化锌的量过大,奇怪的是得到了一个不在预料中的配合物晶体,由此产生了灵感㊂更换不同的腈类化合物,调节不同的金属盐,由两步法直接变成一步法合成手性噁唑啉等过渡金属配合物㊂该合成方法具备原创性:虽然三组分一锅法合成有机合物早已被接受㊂但是,将其中一种组分变成金属盐,是近年来合成配合物的创新型方法之一㊂该类配合物的合成方法已相继被我们课题组报道[51-53]㊂该合成方法缩短了常规的两步法(先合成配体再合成配合物),仅用一步反应得到配合物,具备原创性㊂由于原料及产物均在高浓度的路易斯酸催化剂环境中,因此,产物的结构应该是出乎意料的化合物及配合物㊂金属盐作为三组分之一,同时又可用于催化两种有机原料㊂而且,本课题组将一锅法合成噁唑啉等胺类及金属配合物这个规律又用于其它有机反应[53]㊂因此,该研究有待于进一步深化,为开辟金属有机化学的新领域作出贡献㊂另外,该合成方法的出现是必然的㊂首先是腈类化合物与手性氨基醇作用合成手性配体噁唑啉,再与金属盐作用,一步合成噁唑啉金属配合物㊂但是,将金属盐作为另一种催化剂,不断的调节金属盐与配体原料的比例,必然会相继得到系列噁唑啉金属配合物㊂本课题组已合成的配合物如下(见图5㊁图6):a)氯化锌⁃噁唑啉配合物;b)过渡金属盐⁃水杨噁唑啉金属配合物㊂迄今为止,噁唑啉等金属配合物的合成,使用的仅是以邻羟基苯甲腈为原料合成相应的噁唑啉金属配合物,其他的腈类原料正在尝试㊂另外,该合成方法也可用于合成除噁唑啉以外的其他胺类金属配合物㊂例如,将苯乙胺与二水合氯化铜及二苯基二氯硅烷或六水合氯化钴及二苯基二氯硅烷分部反应,一锅法得到高产率的铜配合物及钴配合物㊂其合成路线如下(见图7)[53]:㊀第6期罗㊀梅:一锅法合成噁唑啉金属配合物研究进展541图5㊀一锅法合成氯化锌⁃噁唑啉配合物Fig.5㊀One⁃potsynthesisofoxazolinyl⁃ZnCl2complexes542㊀化㊀学㊀研㊀究2023年图6㊀一锅法合成过渡金属盐⁃水杨噁唑啉金属配合物的合成路线图Fig.6㊀One⁃potsynthesisofsalicyloxazolinecomplexes图7㊀一锅法合成其他胺类金属配合物Fig.7㊀One⁃potsynthesisofotheraminemetalcomplexes2㊀研究意义噁唑啉金属配合物是近年来金属有机化学研究的热点之一㊂其合成方法是由配体噁唑啉环中的C=N双键中的氮原子与过渡金属如锌㊁铜㊁钴㊁镍及锰或贵金属铂㊁钯等原子配位形成的配合物㊂其意义具体归纳为两个方面:2.1㊀可用于催化有机反应Bolm研究小组[54],上海交通大学张万斌团队[55]㊁贵州省中科院天然产物化学重点实验室潘卫东团队[56]等也相继报道并发展了系列噁唑啉的合成方法及不对称催化应用㊂如上海交通大学张万斌课题组于2014年对轴手性联苯膦⁃噁唑啉铱络合物催化的不对称氢化反应进行了深入的研究[55];河西学院的王俊科课题组研究了新型噁唑啉自组装手性催化剂的合成及其在不对称催化反应中的应用[57];浙江大学的江黎明课题组合成了手性聚(2⁃噁唑啉),并研究其在不对称有机催化反应中的应用[58]㊂北京化工大学的吴一弦课题组用可控/活性正离子聚合及设计合成了基于聚异丁烯及聚噁唑啉两亲性第6期罗㊀梅:一锅法合成噁唑啉金属配合物研究进展543㊀双接枝共聚物[59],四川大学的李瑞祥课题组也研究了氮膦功能化卡宾配体及其镍钯双金属配合物的合成与催化C-C偶联反应[60]㊂本课题组针对上述课题组国内外研究进展,进行了归纳总结,并举一些典型的例子具体阐述㊂常见的噁唑啉等金属配合物可作为催化剂,如德国的AyyaSwamy等[61]在2020年报道了手性铒卡宾噁唑啉催化剂直接㊁高效的催化还原酮类如4⁃氟苯乙酮㊁5⁃己烯⁃2⁃酮及2⁃甲基⁃1⁃4⁃酮,并得到较高产率及较好旋光纯度的醇类(最高可达93%ee值)(见图8)㊂图8㊀手性铒卡宾噁唑啉催化剂还原酮类如4⁃氟苯乙酮㊁5⁃己烯⁃2⁃酮及2⁃甲基⁃1⁃4⁃酮Fig.8㊀Reductionofketonesoverchiralerbiumcarbenoxazolinecatalysts㊀㊀国内大连化物所的余正坤课题组于2017年,设计了钌噁唑啉吡啶配合物,并研究了其在酮类化合物的氢化还原反应中的应用,最高催化效果达到99.9%[62](见图9)㊂Nikonov等[63]于2015年报道了用铁催化剂催化烯烃的不对称硅氢化反应研究,最高ee值为99%(见图10)㊂图9㊀手性噁唑啉铑金属配合物催化剂催化酮类与异丙醇的反应路线图Fig.9㊀Reactionofketoneswithisopropanolcatalyzedbychiraloxazolinerhodiummetalcomplexcatalyst图10㊀手性噁唑啉铁金属配合物催化剂催化烯烃的不对称硅氢化反应Fig.10㊀Asymmetrichydrosilylationofolefinscatalyzedbychiraloxazolineironmetalcomplexcatalysts544㊀化㊀学㊀研㊀究2023年㊀㊀从以上数据可以看出,噁唑啉等胺类金属配合物在许多有机反应中显示了较好的催化性能㊂2.2㊀噁唑啉类大分子金属配合物可作为抗癌药物㊀㊀癌症是严重危害人类健康的主要疾病之一㊂世界卫生组织曾披露癌症的发展趋势预计2015年发达国家死亡人数将近300万人,发展中国家人数为600万人,全年预计死亡人数达900万人㊂化疗是治疗癌症的重要手段㊂抗癌药是指抵抗癌症的药品㊂目前全球各国已批准上市的抗癌药物大约有130 150种㊂金属配合物作为抗癌药是当今和今后研究的热点之一㊂其中铂类络合物的研究始于六十年代,美国科学家Rosenberg在研究电磁场对微生物的效应时,偶然发现铂电极周围的培养液可抑制大肠杆菌的裂殖而不影响其生长[64]㊂在此启示下,1969年Rosenberg首先报道了铂类络合物的抗肿瘤作用,其中顺式二氯二氨铂以下简称顺铂对实验肿瘤的抑制作用最强㊂通过对顺铂的药理㊁毒理及作用机制的研究,发现顺铂的应用得到限制,但是结合与紫杉醇联合使用治疗癌症,可降低其毒性,已达到治疗效果㊂从而揭开了此类构型独特的抗癌药物发展的序幕㊂随后,各种不同类的高效㊁低毒的金属配合物相继被合成,如铂类抗癌药物㊁有机锡配合物㊁有机锗化合物㊁钯配合物㊁钌配合物㊁铜配合物㊁钛配合物等㊂如国内的湖南中医药大学陈懿课题组等设计了新型高稳定性环状有机铋配合物,并对其抗肿瘤性能进行了研究[65];西北大学的杨科武课题组研究了新型β⁃内膦酰胺与荧光β⁃内酰胺类的合成和对金属β⁃内酰胺酶及其耐药细菌的广谱抑制研究[66];河南大学李明雪课题组研究了杂环缩氨基硫脲及其金属配合物的合成,晶体结构和生物活性[67];陈训课题组以多个C-H键的接力官能团化策略,构建复杂异噁唑类活性分子并进行了抗肿瘤活性研究[68];江西师范大学陈军民课题组以钯催化碳氢键活化反应进行了合成磺胺类药物活性单元的研究[69];成都大学的马文博课题组也采用过渡金属钌催化C-H键官能化合成(氢化)氮杂卓类化合物并进行了初步药理活性研究[70]㊂目前,金属类抗癌药物虽为数众多,但用于临床的不多,存在不同的毒副作用,为了合成抗癌活性高,毒性低且没有耐药性的金属抗癌药物,人们开始打破传统抗癌药物顺铂结构的限制,开辟抗癌药物的新领域㊂关于本课题组一锅法已合成的铜配合物(I),其部分抗癌活性数据测试如表1所示,该配合物的医药用途于2019年已申请一项专利(申请号:2019109883703)[70],其结构式见图11㊂其抗癌活性在人体肺癌,肝癌及白血病等治疗效果比第一代抗癌药顺铂的药效要好,其分析研究结果见表1㊂图11㊀手性双水杨噁唑啉铜配合物Fig.11㊀Syntheticroutetothebis(oxazolines)coppercomplex表1㊀铜配合物(I)的抗癌活性数据Table1㊀CytotoxicityofcomplexesIagainsthumantumourcelllines.细胞系样品人肺癌细胞A549㊀IC50ʃSDμmol/L平均值标准差肝癌SMCC⁃7721(IC50ʃSD)μmol/L平均值标准差白血病HL⁃60(IC50ʃSDμmol/L平均值标准差铜配合物(I)3.50ʃ0.043.290.043.290.04顺铂23.55ʃ0.0912.410.304.500.11㊀㊀因此,在此基础上,本课题不仅将继续研究一锅法合成新型手性噁唑啉金属配合物,而且要开发其具有自主知识产权的手性催化剂及较高的抗癌活性药物分子,并寻找高效㊁选择性好的新有机化合物的合成方法㊂3㊀小结通过上述分析,一锅法合成噁唑啉大分子金属配合物,不仅应用前景广泛,而且合成的噁唑啉大分子配合物在医药㊁化工等领域具有良好的应用前景㊂第6期罗㊀梅:一锅法合成噁唑啉金属配合物研究进展545㊀因此,通过这种合成方法可以合成大分子配合物,能够极大地推动金属配合物在有机合成领域的发展㊂参考文献:[1]PFALTZA.DRURYWJⅢ.Designofchiralligandsforasymmetriccatalysis:fromC2⁃symmetricP,P⁃andN,N⁃ligandstostericallyandelectronicallynonsymmetricalP,N⁃ligands[J].ProceedingsoftheNationalAcademyofSciences,2004,101(16):5723⁃5726.[2]APPELR.Tertiaryphosphane/tetrachloromethane,aversatilereagentforchlorination,dehydration,andP-Nlinkage[J].AngewandteChemieInternationalEditioninEnglish,1975,14(12):801⁃811.[3]LUOHW,YANGZ,LINWL,etal.Acatalytichighlyenantioselectivealleneapproachtooxazolines[J].ChemicalScience,2018,9(7):1964⁃1969.[4]MEYERSAI,SLADEJ.Asymmetricadditionoforganometallicstochiralketooxazolines.Preparationofenantiomericallyenriched.alpha.⁃hydroxyacids[J].TheJournalofOrganicChemistry,1980,45(14):2785⁃2791.[5]VORBRÜGGENH,KROLIKIEWICZK.AsimplesynthesisofΔ2⁃oxazines,Δ2⁃oxazines,Δ2⁃thiazolinesand2⁃substitutedbenzoxazoles[J].Tetrahedron,1993,49(41):9353⁃9372.[6]CWIKA,HELLZ,HEGEDÜSA,etal.Asimplesynthesisof2⁃substitutedoxazolinesandoxazines[J].TetrahedronLetters,2002,43(22):3985⁃3987.[7]PANEKJS,MASSECE.Animprovedsynthesisof(4S,5S)⁃2⁃phenyl⁃4⁃(methoxycarbonyl)⁃5⁃isopropyloxazolinefrom(S)⁃phenylglycinol[J].TheJournalofOrganicChemistry,1998,63(7):2382⁃2384.[8]KAMAT,K,AGATAI,MEYERSA,etal.Anefficientandversatilemethodforthesynthesisofopticallyactive2⁃oxazolines:anacid⁃catalyzedcondensationoforthoesterswithaminoalcohols[J].TheJournalofOrganicChemistry,1998,63(9),3113⁃3116.[9]OUSSAIDB,BERLANJ,SOUFIAOUIM,etal.Improvedsynthesisofoxazolineundermicrowaveirradiation[J].SyntheticCommunications,1995,25(5),659⁃665.[10]BOLMC,WEICKHARDTK,ZEHNDERM,etal.Synthesisofopticallyactivebis(2⁃oxazolines):crystalstructureofa1,2⁃bis(2⁃oxazolinyl)benzeneZnCl2complex[J].ChemischeBerichte,1991,124(5),1173⁃1180.[11]SCHUMACHERDP,CLARKJE,MURPHYBL,etal.Anefficientsynthesisofflorfenicol[J].TheJournalofOrganicChemistry,1990,55(18):5291⁃5294.[12]BOWERJF,MARTINCJ,RAWSONDJ,etal.Diastereoselectiveconversionofsulfidesintosulfoxides.1,5⁃and1,6⁃asymmetricinduction[J].JournaloftheChemicalSociety,PerkinTransactions1,1996,(4),333⁃342.[13]GENGWZ,ZHANGWX,HAOW,etal.Cyclopentadiene⁃phosphine/palladium⁃catalyzedcleavageofC⁃Nbondsinsecondaryamines:synthesisofpyrroleandindolederivativesfromsecondaryaminesandalkenyloraryldibromides[J].JournaloftheAmericanChemicalSociety,2012,134(50):20230⁃20233.[14]YUANHGONGJX,YANGZ.Stereoselectivesynthesisofoxabicyclo[2.2.1]heptenesviaatandemdirhodium(Ⅱ)⁃catalyzedtriazoledenitrogenationand[3+2]cycloaddition[J].OrganicLetters,2016,18(21):5500⁃5503.[15]QIUD,ZHENGZT,YANGMF,etal.Gold(III)⁃catalyzeddirectacetoxylationofareneswithlodobenzenediacetate[J].OrganicLetters,2011,13(19):4988⁃4991.[16]JIWZ,LICL,CHENH,etal.Anewlydesignedheterodieneanditsapplicationtoconstructsix⁃memberedheterocyclescontaininganN-Obond[J].ChemicalCommunications,2019,55(80):12012⁃12015.[17]HEH,LIUWB,DAILX,etal.Enantioselectivesynthesisof2,3⁃dihydro⁃1H⁃benzo[b]azepines:iridium⁃catalyzedtandemallylicvinylation/aminationreaction[J].AngewandteChemieInternationalEdition,2010,49(8):1496⁃1499.[18]LIUGX,LUXY.CationicPalladiumcomplexcatalyzedhighlyenantioselectiveintramolecularadditionofarylboronicacidstoketones.aconvenientsynthesisofopticallyactivecycloalkanols[J].JournaloftheAmericanChemicalSociety,2006,128(51):16504⁃16505.[19]LIQK,FUCL,MASM.Palladium⁃catalyzedasymmetricaminationofallenylphosphates:enantioselectivesynthesisofalleneswithanadditionalunsaturatedunit[J].AngewandteChemieInternationalEdition,2014,53(25):6511⁃6514.[20]LIUJW,HANZB,WANGXM,etal.Highlyregio⁃andenantioselectivealkoxycarbonylativeaminationofterminalallenescatalyzedbyaspiroketal⁃baseddiphosphine/Pd(Ⅱ)complex[J].JournaloftheAmericanChemicalSociety,2015,137(49):15346⁃15349.[21]HEWM,ZHANGZG,MADW.AscalabletotalsynthesisoftheantitumoragentsEt⁃743andlurbinectedin[J].AngewandteChemieInternationalEdition,2019,58(12):3972⁃3975.[22]XIONGH,XUH,LIAOSH,etal.Copper⁃catalyzedhighlyenantioselectivecyclopentannulationofindoleswithdonor⁃acceptorcyclopropanes[J].JournaloftheAmericanChemicalSociety,2013,135(21):7851⁃7854.546㊀化㊀学㊀研㊀究2023年[23]ZHANGK,PENGQ,HOUXL,etal.Highlyenantioselectivepalladium⁃catalyzedalkylationofacyclicamides[J].AngewandteChemieInternationalEdition,2008,47(9):1741⁃1744.[24]YANGS,RUIKH,TANGXY,etal.Rhodium/silversynergisticcatalysisinhighlyenantioselectivecycloisomerization/crosscouplingofketo⁃vinylidenecyclopropaneswithterminalalkynes[J].JournaloftheAmericanChemicalSociety,2017,139(16):5957⁃5964.[25]LUE,CHUHX,CHENYF.Scandiumterminalimidochemistry[J].AccountsofChemicalResearch,2018,51(2):557⁃566.[26]LIUXJ,XIANGL,LOUYRIACE,etal.Divalentytterbiumcomplex⁃catalyzedhomo⁃andcross⁃couplingofprimaryarylsilanes[J].JournaloftheAmericanChemicalSociety,2019,141(1):138⁃142.[27]HUYC,WANGCX,WANGDP,etal.Synthesisoftetrasubstitutedpyrrolesfromterminalalkynesandimines[J].OrganicLetters,2013,15(12):3146⁃3149.[28]ZHANGXP,LIZW,DINGQQ,etal.Alkylamino⁃directedone⁃potreactionofN⁃alkylanilineswithCO,aminesandaldehydesleadingto2,3⁃dihydroquinazolin⁃4(1H)⁃ones[J].AdvancedSynthesis&Catalysis,2019,361(5):976⁃982.[29]HEJ,SHIYP,CHENGWL,etal.Rhodium⁃catalyzedsynthesisof4⁃bromo⁃1,2⁃dihydroisoquinolines:accesstobromoniumylidesbytheintramolecularreactionofabenzylbromideandanα⁃iminocarbene[J].AngewandteChemieInternationalEdition,2016,55(14):4557⁃4561.[30]LIZK,LIYM,ZHAOYM,etal.Synthesisofmetallopolymersanddirectvisualizationofthesinglepolymerchain[J].JournaloftheAmericanChemicalSociety,2020,142(13):6196⁃6205.[31]GENGWZ,ZHANGWX,HAOW,etal.Cyclopentadiene⁃phosphine/palladium⁃catalyzedcleavageofC-Nbondsinsecondaryamines:synthesisofpyrroleandindolederivativesfromsecondaryaminesandalkenyloraryldibromides[J].JournaloftheAmericanChemicalSociety,2012,134(50):20230⁃20233.[32]YUANH,GONGJX,YANGZ,etal.Stereoselectivesynthesisofoxabicyclo[2.2.1]heptenesviaatandemdirhodium(Ⅱ)⁃catalyzedtriazoledenitrogenationand[3+2]cycloaddition[J].OrganicLetters,2016,18(21):5500⁃5503.[33]柴会宁,刘波,刘爱芹,等.非贵金属(Mn,Co,Fe)配合物催化醇类脱氢偶联/缩合反应研究进展[J].分子催化,2018,32(5):481⁃491CHAIH,LIUB,LIUAQ,etal.Researchprogressofnonpreciousmetal(Mn,Co,Fe)complexcatalystsfordehydrogenationcatalysisofalcohols[J].JournalofMolecularCatalysis,2018,32(5):481⁃491.[34]LIUQX,YANGF,ZHAOZX,etal.Preparationofanthracene⁃basedtetraperimidinehexafluorophosphateandselectiverecognitionofchromium(Ⅲ)ions[J].JournalofOrganicChemistry,2019,15:2847⁃2855.[35]DANGLL,SUNZB,SHANWL,etal.Coordination⁃drivenself⁃assemblyofamolecularfigure⁃eightknotandothertopologicallycomplexarchitectures[J].NatureCommunications,2019,10(1):2057.[36]HONGJQ,ZHANGLX,WANGK,etal,Methylidenerare⁃earth⁃metalcomplexmediatedtransformationsofC=N,N=NandN⁃Hbonds:newroutestoimidorare⁃earth⁃metalclusters[J].Chemistry⁃AEuropeanJournal,2013,19(24):7865⁃7873.[37]LIFB,LIUTX,WANGGW.Synthesisoffullerooxazoles:novelreactionsof[60]fullerenewithnitrilespromotedbyferricperchlorate[J].JournalofOrganicChemistry,2008,73(16):6417⁃6420.[38]ZHANGC,WANGZX.N⁃heterocycliccarbene⁃basednickelcomplexes:synthesisandcatalysisincross⁃couplingsofarylchlorideswithArMX(M=MgorZn)[J].Organometallics,2009,28(22):6507⁃6514.[39]SUNQ,LILG,LIULY,etal.Copper⁃catalyzedgeminaldifunctionalizationofterminalalkynesbysplittingsulfonylhydrazonesintotwoparts[J].OrganicLetters,2018,20(18):5592⁃5596.[40]LIMB,LIMB,WANGY,etal.Regioselectiveandstereospecificcross⁃couplingofprimaryallylicamineswithboronicacidsandboronatesthroughpalladium⁃catalyzedC-Nbondcleavage[J].AngewandteChemieInternationalEdition,2012,51(12):2968⁃2971.[41]QIJ,ZHANGFL,JINJK,etal.Newradicalborylationpathwaysfororganoboronsynthesisenabledbyphotoredoxcatalysis[J].AngewandteChemieInternationalEdition,2020,59,12876.[42]LIQH,WANGSW,ZHOUSL,etal.Highlyatomefficientguanylationofbotharomaticandsecondaryaminescatalyzedbysimplelanthanideamides[J].JournalofOrganicChemistry,2007,72(18):6763⁃6767.[43]ZHANGJX,WANGHY,JINQW,etal.Thiourea⁃quaternaryammoniumsaltcatalyzedasymmetric1,3⁃dipolarcycloadditionofiminoesterstoconstructspiro[pyrrolidin⁃3,3'⁃oxindoles][J].OrganicLetters,2016,18(19):4774⁃4777.[44]YANGS,ZHUXC,ZHOUSL,etal.Synthesis,structure,andcatalyticactivityofrare⁃earthmetalamideswitha第6期罗㊀梅:一锅法合成噁唑啉金属配合物研究进展547㊀neutralpyrrolyl⁃functionalizedindolylligand[J].ScienceChinaChemistry,2014,57(8):1090⁃1097.[45]WUYN,ZHANGYP,JIANGMJ,etal.Synergisticcombinationofvisible⁃lightphoto⁃catalyticelectronandenergytransferfacilitatingmulticomponentsynthesisofβ⁃functionalizedα,α⁃diarylethylamines[J].ChemicalCommunications,2019,55(45):6405⁃6408.[46]MENGXM,CUILS,WANGXP,etal.Syntheses,structuraldiversity,magneticpropertiesanddyeabsorptionofvariousCo(Ⅱ)MOFsbasedonasemi⁃flexible4⁃(3,5⁃dicarboxylatobenzyloxy)benzoicacid[J].CrystEngComm,2017,19(44):6630⁃6643.[47]ZHANGZW,LIHB,LIJ,etal.SynthesisofepoxidesfromalkylbromidesandalcoholswithinsitugenerationofdimethylsulfoniumylideinDMSOoxidations[J].TheJournalofOrganicChemistry,2020,85(2):537⁃547.[48]WANGMS,SHIL,LIYF,etal.Synthesisofγ⁃pyronesfromformal[4+2]cyclizationofketenedithioacetalswithacylchlorides[J].JournalofOrganicChemistry,2019,84(15):9603⁃9610.[49]ZHANGPZ,LICK,ZHANGGY,etal.DirectregioselectiveCsp2⁃Htrifluoromethylationofpyrimidinonesandpyridinones[J].Tetrahedron,2016,72(23):3250⁃3255.[50]JIANGXF,TANH,CUIHL.FeCl3mediateddimerizationofdihydropyrrolo[2,1⁃a]isoquinolinesandchlorinationoftetrasubstitutedpyrroles[J].Organic&BiomolecularChemistry,2020,18(4):660⁃665.[51]LUOM,ZHANGJC,PANGWM,etal.One⁃stepmulticomponentsynthesisofchiraloxazolinyl⁃zinccomplexes[J].ChemistryCentralJournal,2017,11(1):81.[52]LUOM,ZHANGJC,YINH,etal.One⁃steptemplatedsynthesisofchiralorganometallicsalicyloxazolinecomplexes[J].BMCChemistry,2019,13(1):51.[53]LUOM,LIHM.One⁃potsynthesisofchiralorganometalliccomplexes[J].JournaloftheIranianChemicalSociety,2020,17:963⁃971.[54]FRINGSM,BOLMC,BLUMA,etal.Sulfoximinesfromamedicinalchemist'sperspective:physicochemicalandinvitroparametersrelevantfordrugdiscovery[J].EuropeanJournalofMedicinalChemistry,2017,126:225⁃245.[55]YUANQJ,LIUDL,ZHANGWB.Iridium⁃catalyzedasymmetrichydrogenationofβ,γ⁃unsaturatedγ⁃lactams:scopeandmechanisticstudies[J].OrganicLetters,2017,19(5):1144⁃1147.[56]LANJJ,HUANGL,LOUHY,etal.DesignandsynthesisofnovelC14⁃urea⁃tetrandrinederivativeswithpotentanti⁃canceractivity[J].EuropeanJournalofMedicinalChemistry,2018,143:1968⁃1980.[57]WANGJK,ZONGYX,WANGXC,etal.Aself⁃assembledbisoxazoline/PdcompositemicrosphereasanexcellentcatalystforSuzuki⁃Miyauracouplingreactions[J].GreenChemistry,2016,18(4):967⁃973.[58]HUFY,XIESL,JIANGLM,etal.Livingcationicring⁃openingpolymerizationof2⁃oxazolinesinitiatedbyrare⁃earthmetaltriflates[J].RSCAdvances,2014,4(104):59917⁃59926.[59]刘晓,李晟冉,吴一弦.活性正离子聚合及原位制备聚醋酸乙烯酯⁃g⁃聚四氢呋喃共聚物/纳米银复合材料[J].高分子学报,2017(11):1753⁃1761.LIUX,LISR,WUYX.Synthesisandcharacterizationofpoly(vinylacetate)⁃g⁃polytetrahydrofurangraftcopolymerwithsilvernanoparticlesviacombinationoflivingcationicpolymerizationandgrafting⁃ontoapproach[J].ActaPolymericaSinica,2017(11):1753⁃1761.[60]ZHENGYL,NIEXF,LONGY,etal.Ruthenium⁃catalyzedsynthesisofN⁃substitutedlactamsbyacceptorlessdehydrogenativecouplingofdiolswithprimaryamines[J].ChemicalCommunications,2019,55(82):12384⁃12387.[61]AYYASWAMYPC,VARENIKOVA,DERUITERG.Directasymmetrichydrogenationanddynamickineticresolutionofarylketonescatalyzedbyaniridium⁃NHCexhibitinghighenantio⁃anddiastereoselectivity[J].Chemistry⁃AEuropeanJournal,2020,26(11):2333⁃2337.[62]CHAIHN,LIUTT,YUZK.NHTseffectontheenantioselectivityofRu(Ⅱ)complexcatalystsbearingachiralbis(NHTs)⁃substitutedimidazolyl⁃oxazolinyl⁃pyridineligandforasymmetrictransferhydrogenationofketones[J].Organometallics,2017,36(21):4136⁃4144.[63]NIKONOVGI.Anironcatalystforasymmetricalkenehydrosilylation[J].ChemCatChem,2015,7(13):1918⁃1919.[64]ROSENBERGB,VANCAMPL,TROSKOJ,etal.Platinumcompounds:anewclassofpotentantitumouragents[J].Nature,1969,222(5191):385⁃386.[65]LEIJ,LIUYP,OUYC,etal.Organoantimony(III)halidecomplexeswithazastibocineframeworkaspotentialantitumoragents:CorrelationbetweencytotoxicactivityandNңSbinter⁃coordination[J].EuropeanJournalofMedicinalChemistry,2019,177,350⁃361.[66]YANGKW,GOLICHFC,SIGDELTK,etal.Phosphinate,sulfonate,andsulfonamidatedipeptidesaspotentialinhibitorsofEscherichiacoliaminopeptidaseN[J].Bioorganic&Medicinal548㊀化㊀学㊀研㊀究2023年ChemistryLetters,2005,15(23):5150⁃5153.[67]LIMX,ZHANGD,ZHANGLZ,etal.Diorganotin(IV)complexeswith2⁃benzoylpyridineand2⁃acetylpyrazineN(4)⁃phenylthiosemicarbazones:synthesis,crystalstructuresandbiologicalactivities[J].JournalofOrganometallicChemistry,2011,696(4):852⁃858.[68]XIEY,LIYL,CHENX,etal.Copper/amine⁃catalyzedformalregioselective[3+2]cycloadditionofanα,β⁃unsaturatedO⁃acetyloximewithenals[J].OrganicChemistryFrontiers,2018,5(10):1698⁃1701.[69]WANGDY,LIUW,YIF.etalPalladium⁃catalyzeddirectC⁃Harylationof3⁃aryl⁃2H⁃benzo[1,2,4]thiadiazine1,1⁃dioxides:anefficientstrategytothesynthesisofbenzothiadiazine⁃1,1⁃dioxidederivatives[J].Organic&BiomolecularChemistry,2016,14(6):1921⁃1924.[70]MAWB,WENGZY,ROGGET,etal.Ruthenium(Ⅱ)⁃catalyzedC-Hchalcogenationofanilides[J].AdvancedSynthesisandCatalysis,2018,360(4):704⁃710.[71]罗梅,李国雄,谢蓝.一种手性噁唑啉铜配合物的用途:CN201910988370.3[P].2020⁃01⁃10.LUOM,LIGX,XIEL.Applicationofachiraloxazolinecoppercomplex:CN201910988370.3[P].2020⁃01⁃10.[责任编辑:任艳蓉]DOI:10.14002/j.hxya.2023.06.005|化学研究,2023,34(6):538-548。
金属抗癌配合物的最新研究进展徐绍彬(化学化工学院,1081109001)摘要自顺铂显示出抗癌活性以来,金属配合物的药用性引起人们的广泛关注,越来越多的科研人员致力于合成高效、广谱、低毒的新型的金属抗癌药物。
本文对最近几年新开发的金属配合物在抗癌方面的研究应用现状做一综述。
关键词金属配合物抗癌癌症是一种常见病和多发症, 对癌症的治疗显得尤其紧迫。
开发新型有效的抗癌药物是当今世界十分迫切的重要课题。
但无论是内科治疗还是外科手术都无法根治癌症。
联合治疗时代的到来主要体现在内科治疗显示其越来越重要地位,尽管目前为止已有数十种化疗或辅助抗癌药物运用于临床,而且对其中的一些肿瘤已取得相当高的治愈率,但大多数药物只能是缓解病情。
因而各国都在抗癌药物的研究与发展上投入了大量的人力、物力,特别是随着人们对金属配合物的药理作用的认识的进一步深人, 新的抗癌活性的金属配合物不断被合成出来,有望在不久的将来能有所突破。
本文对最近几年合成的一些金属配合物如铂类、锗类、钌、铜、银、金等具有抗癌活性的化合物的研究应用状况进行综述。
1 铂类配合物铂类配合物的合成已历经三代。
顺铂是第一代铂类抗癌药物。
目前它已成为广泛用于治疗睾丸癌、子宫颈癌、卵巢癌和膀胱癌的化疗药物之一。
该药的使用局限性是它的耐药性及剂量毒性尤其是对肾脏的损害较大。
第二代铂类配合物结构如图1.2 所示 。
其中以卡铂为代表,其水溶性优于顺铂,肾毒性低于顺铂,主要不良反应为骨髓抑制。
第三代铂类代表化合物是奥沙利铂(Oxalip latin)和乐铂(Lobap latin) 。
奥沙利铂全称是草酸-(反式-L-1, 2-环己二胺)合铂,实验研究表明,对大肠癌、卵巢癌以及乳腺癌等多种动物和人类肿瘤细胞株,包括对顺铂和卡铂耐药株均有显著的抑制作用。
乐铂全称是环丁烷乳酸盐二甲胺合铂( Ⅱ) ,由德国爱斯达制药有限公司开发研制。
研究表明,该药的抗肿瘤效果与顺铂、卡铂的作用相当或者更好, 毒性作用与卡铂相同, 且与顺铂无交叉耐药。
图1.1 第一代主要铂类抗癌药物的结构Carboplatin Spiroplatin Nedaplatin CHIP图1.2 第二代主要铂类抗癌药物的结构lobaplatin图1.3 第三代铂类抗癌药物结构 目前铂类配合物研究的方向是:寻找比顺铂和卡铂疗效更好,不良反应更小,药学特性得到改善的化合物、扩大抗癌谱、开发与顺铂和卡铂无交叉耐药性的新型药物。
Angelina Boccarelli [2] 等人合成了(){}2322and PtCl HN=C CH cis trans ⎡⎤---⎣⎦及()(){}2332and PtCl NH HN=C CH cis trans ⎡⎤---⎣⎦四种配合物,其结构如图4所示。
经过对体外抗癌活性的试验,显示不同程度的抗癌能力,特别是耐药性方面要优于顺铂。
图1.4 2008年,Helen M coley [3] 等人合成及表征铂(II )恶二唑啉配合物并研究了其对铂敏感及耐铂癌细胞系的抗肿瘤活性。
所有配合物的测试表明,对铂敏感细胞系展示出强大的细胞毒性,对顺铂和卡铂具有耐药性的细胞系也依然保有抗癌活性。
结构如图1.5所示。
图1.5Stefanie Zorbas-Seifried [4] 等人合成了两种2-氨基醇-2-氯铂。
结构如图1.6所示。
这种铂配合物的化学结构能够随PH 值的变化而改变,在PH=6时,具有较高的抗癌活性,而在PH=7.4时基本无活性,因而有望开发成为具有高度选择性、低副作用的抗癌药物。
图1.6卟啉类物质是一类具有特殊生物功能的化合物,对于增殖异常的肿瘤细胞具有一定的亲和力。
近年来有学者利用卟啉类化合物能选择性地聚集在肿瘤组织内的特性,将抗癌药物与卟啉衍生物连接,制成多种具有导向作用的抗肿瘤药物。
Christian Lottner[5]合成了一系列不对称四芳基卟啉并将其与铂络合,得到的配合物继承了铂配合物的抑制细胞增长功效及卟啉的光毒性特性。
图1.72004年,Wolfgang Friebolin[6]等人合成一系列烷基黄原酸合铂配合物,反应式如图1.8所示,其中R取代基为各种直链烷烃基、带支链烷烃基及环烷烃基。
在细胞毒性测试实验中,这类配合物表现出强大的抗癌活性,远远高于顺铂。
图1.8Frantisˇek Zÿa´k[7]合成了新型铂(IV)配合物药物LA-12 [(OC-6-43)-bis- (acetato)(1-adamantylamine)amminedichloroplatinum(IV)],结构如图9所示。
这种药物对耐顺铂癌细胞株表现出快速高效的细胞毒性,并且同顺铂不产生交叉耐药性。
图1.9中草药抗癌的生物效独具特色, 即有抗癌, 又有扶正、增效减毒及抗转移等特殊作用, 这种多层次的效应是西药所不具备的, 但中草药也存在剂量大,起效慢等问题。
这可以通过复合金属类抗癌药物加以克服, 这种复合型药物具有巨大的开发前景。
Yee-Ping Ho[8]将中药成份脱甲基斑蝥素与铂配合,制备了一系列基于中药的铂配合物[Pt(C8H8O5)(NH2R)2](图9所示),对SK-Hep-1 (人肝)细胞株表现出优异的抗癌活性,与顺铂无交叉耐药性。
这种中药-铂配合物可能具有双重的抗癌机制。
图1.10 中药-铂配合物Xia Liu[9]等合成一些新式环氧琥珀酸类铂(II)配合物,这类配合物对肺癌细胞株SPC-A1显示出较高的细胞毒性。
图1.11Yao Yu[10]等合成了亲油性的3,5-二异丙基水杨酸铂(II)配合物,对3AO, A549, NCI-H460 和SGC-7901人类癌细胞株显示很高的细胞毒性,其抗癌活性要优于碳铂、奥沙利铂等目前临床使用药物。
图1.12 二异丙基水杨酸合铂(II)配合物多核铂配合物的合成成为研究新型铂类抗癌药物的又一突破。
研究结果表明,它与DNA 发生多点键合,对DNA结构破坏更加严重。
其抗癌活性一般高于顺铂,并与之无交叉耐药性。
Jinchao zhang[11]合成与表征了一系列新型双核铂(II)配合物,并进行了抗癌活性测试。
其中对HL-60, MCF-7, BGC-823, EJ 和HCT-8 癌细胞株展示出强大的细胞毒性,甚至优于顺铂。
L为甲胺、乙胺、二甲胺、丙胺或环己胺图1.13 双核铂(II)配合物2 有机锡类配合物1972年Brown首先发现Ph3SnOOCCH3对癌细胞的生长具有抑制作用,随后Crowe报道了一些二烃基锡衍生物具有抗癌活性以来,这一领域的研究引起了人们的极大兴趣, 80年代后,人们对锡的络合物进行了研究和筛选,发现其中有些锡化合物的抗癌活性比顺铂高出很多,但其缺点是副作用大、抗瘤谱狭窄。
目前对其抗肿瘤机理不甚明确,正在进一步研究。
2003年,Mala Nath[12]等人合成及表征了数种有机锡(IV)二肽衍生物,结构式为R2SnL,R为二丁基或三苯基,L为glycyl–tyrosine (Gly–Tyr),leucyl–tyrosine (Leu–Tyr),glycyl–tryptophane (Gly–Trp),valyl–valine (Val–Val), leucyl–leucine (Leu–Leu) , alanyl–valine (Ala–Val) and glycyl–leucine (Gly–Leu)。
对所有有机锡配合物进行了体外抗癌活性测试,结果表明Ph3Sn(HL)展现出优异的抗癌能力。
dibutyltin(IV) complexes of dipeptide triphenyltin(IV) complex图2.1 有机锡配合物最近Jose′ S. Casas[13]等人合成表征了有机锡(IV)化合物与维生素B6形成的配合物,这种维生素衍生物对癌细胞株HeLa-229, A2780 和A2780cis显示了优于顺铂的体外抗癌活性。
图2.2 锡-维生素配合物3 茂金属类配合物由于Cp2TiCl2、Cp2VCl2具有光谱抗癌活性, 且呈现与顺铂较弱的交叉抗药物活性, 因此对金属茂钛、钒等茂金属配合物研究成为热点。
2005年,Franz-Josef K. Rehmann[14]使用2-呋喃基富烯、2-苯硫基富烯和1-甲基-2-吡咯基富烯分别合成了三种二氯二茂钛,并利用猪肾癌细胞进行细胞毒性测试。
X=O、S、N-Me图3.1 二茂钛类抗癌配合物2008年,zeljko Petrovski[15]等合成了几种二茂铁衍生物,其中邻位双取代的二茂铁衍生物显示出抗癌活性。
当具有细胞毒性的二茂铁衍生物被环糊精(或改性后环糊精)封装后,其水溶性、稳定性、抗癌活性均得到提升。
图3.2 二茂铁类抗癌配合物4 其它金属抗癌配合物Hana Kostrhunova[16]深入研究了锇与DNA的作用机理,证实了金属锇类抗癌药物的药理学行为,合成了四种芳烃基铂类配合物,如图10所示。
所有配合物都表现出抗癌活性,并且作用机理不同于顺铂。
对耐顺铂的A2780细胞株,1~3配合物展现出很高的活性1 2 3 4图4.1Cristina Marzano[17]合成及表征了基于三唑的水溶性三羟甲基膦铜(I)配合物,配体的合成及配合物的结构如图4.2所示。
体外抗癌活性测试表明,这种一价铜配合物的抗癌能力与顺铂相近甚至更高,特别是2号配合物对乳腺癌、肺癌、结肠癌细胞株的毒性远远高于顺铂。
并且能克服顺铂的耐药性。
1 2 3图4.2 三种铜(I)配合物的结构Iris H. Hall[18]深入研究钽(IV)、铌(IV)的碳硼烷配合物的细胞毒性及作用机制。
研究表明这类结构的配合物对各种类型的白血病、淋巴瘤均有良好的抑制作用,并且丝毫不逊色于目前临床应用的标准治疗药物图4.3钽(IV)、铌(IV)的配合物基于金的金属药物在治疗风湿性关节炎方面已应用50多年,并且近70%的治愈率。
近十多年来陆续合成了一些金(I)、金(III)的配合物,研究发现不少金配合物表现出抑制某些癌细胞生长的功效,因而开发基于金的抗癌药物激起人们的兴趣。
Luigi Messori[19]使用多齿配体合成了许多金(III)配合物,如[Au(en)2]Cl3, [Au(dien)Cl]Cl2, [Au(cyclam)]-(ClO4)2Cl, [Au(terpy)C l]Cl2, 和[Au(phen)Cl2]Cl,研究它们在溶液中的稳定性及细胞毒素特征,并特别研究了自由配体的抗癌能力。
图4.4 金(III)配合物Nagavarakishore Pillarsetty[20]合成了亲水性氯化四羟甲基膦合金(I)配合物([Au(P(CH2OH)3)4)]-Cl),并研究其对前列腺癌、胃肠癌、结肠癌细胞生长的抑制能力。