当前位置:文档之家› 双面连续焊和深熔焊工艺成本对比分析

双面连续焊和深熔焊工艺成本对比分析

双面连续焊和深熔焊工艺成本对比分析
双面连续焊和深熔焊工艺成本对比分析

铸铁零件的常用焊接方法

铸铁零件的常用焊接方法 由于铸铁的一些优点,在汽车制造材料中占有很大的比重。铸铁零件大多是加工精度高、价格昂贵的基础零件,如气缸体、气缸盖、变速器壳体等。铸铁零件在制造及使用过程中,经常会出现裂纹、气孔、损坏等情况。据统计,汽车在正常使用情况下,这类零件达到磨损极限时,其尺寸变化只有0.08 %?0.40 %,质 量损失只有0.1 %?1.8 %,此时将零件报废,无疑是非常浪费的。因此,研究和利用先进的修理经验,合理地修复铸铁零件是十分必要地。焊接就是一种非常有效地修复铸铁零件的方法。 铸铁含炭量高、杂质多,并具有塑性低、焊接性差、对冷却速度敏感等特性,焊补后容易出现白口组织和产生裂纹。为改善铸铁零件的焊补质量,可采取以下方法。 1 .热焊法焊前将工件整体或局部预热到600?700C,补焊过程中不低于400C,焊后缓慢冷却至室温。采用热焊法可有效减小焊接接头的温差,从而减小应力,同时还可以改善铸件的塑性,防止出现白口组织和裂纹。 常用的焊接方法是气焊和焊条电弧焊。气焊常用铸铁气焊丝,如HS401 或 HS402配用焊剂CJ201,以去除氧化物。气焊预热方法适于补焊中小型薄壁零件。焊条电弧焊选用铸铁芯铸铁焊条Z248或钢芯铸铁焊条Z208,此法主要用于补焊厚度较大(大于10mm )的铸铁零件。 热焊法的焊接设备主要有加热炉、焊炬、电炉(油炉或地炉)等,焊接工艺如下: 1)焊前准备和预热:清除缺陷周围的油污和氧化皮,露出基体的金属光泽:开坡口,一般坡口深度为焊件壁厚的2/3,角度为70°?120°;将焊件放入炉中缓慢加热至600?700C (不可超过700C)。 2)施焊:采用中性焰或弱碳化焰(施焊过程中不要使铁水流向一侧),待基体金属熔透后,再熔入焊条金属;发现熔池中出现白亮点时,停止填入焊条金属,加入适量焊剂,用焊条将杂物剔除后再继续施焊;为得到平整的焊缝,焊接后的焊缝应稍高出铸铁件表面,并将溢在焊缝外的熔渣重新熔化,待降温到半熔化状态时,用焊丝沿铸件表面将高出部分刮平。 3)焊后冷却:一般应随炉缓慢冷却至室温(一般需48h以上),也可用石 棉布(板)或炭灰覆盖,使焊缝形成均匀的组织,同时防止产生裂纹。 2.冷焊法 此方法是焊前不对工件进行预热,或预热温度不超过300C。常用焊条 电弧焊进行铸铁冷焊。根据铸铁工件的要求,可选用不同的铸铁焊条,如补焊一般灰铸铁零件非加工面选用Z100焊条,补焊高强度灰铸铁及球墨铸铁零件选用Zll6 或 Z117 焊条。

焊接工艺参数

焊接工艺参数 集团标准化小组:[VVOPPT-JOPP28-JPPTL98-LOPPNN]

焊接工艺指导书 电弧焊工艺 1 接口 焊条电弧焊的接头主要有对接接头、T形接头、角接接头和搭接接头四种。 1.1 对接接头 对接接头是最常见的一种接头形式,按照坡口形式的不同,可分为I形对接接头(不开坡口)、V形坡口接头、U形坡口接头、X形坡口接头和双U形坡口接头等。一般厚度在6mm以下,采用不开坡口而留一定间隙的双面焊;中等厚度及大厚度构件的对接焊,为了保证焊透,必须开坡口。V形坡口便于加工,但焊后构件容易发生变形;X形坡口由于焊缝截面对称,焊后工件的变形及内应力比V形坡口小,在相同板厚条件下,X形坡口比V形坡口要减少1/2填充金属量。U形及双U形坡口,焊缝填充金属量更少,焊后变形也很小,但这种坡口加工困难,一般用于重要结构。 1.2 T形接头 根据焊件厚度和承载情况,T形接头可分为不开坡口,单边V形坡口和K形坡口等几种形式。T形接头焊缝大多数情况只能承受较小剪切应力或仅作为非承载焊缝,因此厚度在30mm以下可以不开坡口。对于要求载荷的T形接头,为了保证焊透,应根据工件厚度、接头强度及焊后变形的要求来确定所开坡口形式。 1.3 角接接头 根据坡口形式不同,角接接头分为不开坡口、V形坡口、K形坡口及卷边等几种形式。通常厚度在2mm以下角接接头,可采用卷边型式;厚度在2~8mm以下角接接头,往往不开坡口;大厚度而又必须焊透的角接接头及重要构件角接头,则应开坡口,坡口形式同样要根据工件厚度、结构形式及承载情况而定。 1.4 搭接接头 搭接接头对装配要求不高,也易于装配,但接头承载能力低,一般用在不重要的结构中。搭接接头分为不开坡口搭接和塞焊两种型式。不开坡口搭接一般用于厚度在12mm 以下的钢板,搭接部分长度为3~5δ(δ为板厚) 2 焊条电弧焊工艺参数选择 2.1 焊条直径 焊条直径可根据焊件厚度、接头型式、焊缝位置、焊道层次等因素进行选择。焊件厚度越大,可选用的焊条直径越大;T形接头比对接接头的焊条直径大,而立焊、仰焊及横焊比平焊时所选用焊条直径应小些,一般立焊焊条最大直径不超过5mm,横焊、仰焊不超过4mm;多层焊的第一层焊缝选用细焊条。焊条直径与厚度的关系见表4 2.2 焊接电流是焊条电弧焊中最重要的一个工艺参数,它的大小直接影响焊接质量及焊缝成形。当焊接电流过大时,焊缝厚度和余高增加,焊缝宽度减少,且有可能造成咬边、烧穿等缺陷;当焊接电流过小时,焊缝窄而高,熔池浅,熔合不良,会产生未焊透、夹渣等缺陷。选择焊接电流大小时,要考虑焊条类型、焊条直径、焊件厚度以及接头型式、

常用焊接设备说明

钨极氩弧焊 钨极氩弧焊是气体保护焊中的一种方法,也叫TIG焊,这种方法以燃烧于非熔化极与工件之间的电弧作为热源来进行焊接。钨极氩弧焊可焊易氧化的有色金属及其合金、不锈钢、高温合金、钛及钛合金等。钨极氩弧焊能够焊接各种接头形式的焊缝,焊缝优良、美观、平滑、均匀,特别适用于薄板焊接;焊接时几乎不发生飞溅或烟尘;容易观察和操作;被焊工件可开坡口或不开坡口;焊接时可填充焊丝或不填充焊丝。采用钨极氩弧焊,电弧稳定、热量集中、合金元素烧损小、焊缝的质量高,可靠性高,可以焊接重要构件,可用于核电站及航空、航天工业,是一种高效、优质、经济节能的工艺方法。但钨极氩弧焊焊缝容易受风或外界气流的影响,生产效率低,生产成本较高。根据电流种类,钨极氩弧焊又分为直流钨极氩弧焊、直流脉冲钨极氩弧焊和交流钨极氩弧焊,它们各有不同的工艺特点,应用于不同的场合。 钨极氩弧焊机钨极氩弧焊实际操作

用手工操纵焊条进行焊接的电弧焊方法称为手弧焊,它是利用焊条和焊件之间产生的电弧将焊条和焊件局部加热到熔化状态,焊条端部熔化后的熔滴和熔化的线母材融合一起形成熔池,随着电弧向前移动,熔池液态金属逐步冷却结晶,形成焊缝。 手弧焊的优点是使用的设备简单,方法简便灵活,适应性强,对大部分金属材料的焊接均适用。缺点是生产率较低,特别是在焊接厚板多层焊时,焊接质量不够稳定;可焊最小厚度为 1.0mm,一般易掌握的最小焊接厚度为 1.5mm;对焊工的操作技术要求高,焊接质量在一定程度上决定于焊工的操作技术;对于活泼金属(Ti、Nb、Zr等)和难熔金属(如Mo)由于其保护效果较差,焊接质量达不到要求,不能采用手弧焊。另外对于低熔点金属(如Pb、Sn、Zn)及其合金由于电弧温度太高,也不可能用手弧焊。 手弧焊的主要设备是电焊机,电弧焊时所用的电焊机实际上就是一种弧焊电源,按产生电流种类不同,这种电源可分为弧焊变压器(交流)和直流弧焊发电机及弧焊整流器(直流)。手弧焊适用于碳钢、低合金钢、不锈钢、铜及铜合金等金属材料的焊接。 直流电焊机交流电焊机手弧焊实际操作

熔焊方法及设备考试复习资料..

熔焊方法及设备 绪论 1、焊接定义及焊接方法分类 焊接:焊接是通过加热或加压,或两者并用,并且用或不用填充材料,使工件达到结合的一种加工方法。 焊接方法分为熔焊、钎焊、和压焊三大类 熔焊:熔焊是在不施加压力的情况下,将待焊处的母材加热溶化以形成焊缝的焊接方法。焊接时母材熔化而不施加压力是其基本特征。 压焊:压焊是焊接过程中必须对焊件施加压力(加热或不加热)才能完成焊接的方法。焊接施加压力是其基本特征。 钎焊:钎焊是焊接事采用比母材熔点低的钎料,将焊件和钎料加热到高于钎料熔点但是低于母材熔点的温度,利用液态钎料润湿母材,填充接头间隙,并与母材相互扩散而实现连接的方法。其特征是焊接时母材不发生溶化,仅钎料发生溶化。 熔焊方法的物理本质:在不施加外力的情况下,利用外加热源使木材被连接处发生熔化,使液相与液相之间、液相与固相之间的原子或分子紧密地接触和充分扩散,使原子间距达 到r A,并通过冷却凝固将这种冶金结合保持下来的焊接方法。 熔焊方法的特点:焊接时木材局部在不承受外加压力的情况下被加热熔化;焊接时须采取更为有效的隔离空气的措施;两种被焊材料之间必须具有必要的冶金相容性;焊接时焊接接头经历了更为复杂的冶金过程。 第一章焊接电弧 1、焊接电弧 焊接电弧是由焊接电源供给能量,在具体一定电压的两极之间或电极与母材之间气体介质中产生的一种强烈而持久的放电现象,从其物理本质来看,它是一种在具有一定电压的两电极之间的气体介质中所产生的电流最大、电压最低、温度最高、发光最强的自持放电现象。 激励:激励是当中性气体分子或原子收到外加能量的作用不足以使电子完全脱离气体分子或原子时,而使电子从较低的能量级转移到较高的能级的现象。 2、焊接电弧中气体电离的种类 热电离——气体粒子受热的作用而产生的电离称为热电离。其实质是气体粒子由于受热而产生高速运动和相互之间激烈碰撞而产生的一种电离。 场致电离——当气体中有电场作用时,气体中的带电粒子被加速,电能被转换为带电粒子的动能,当其动能增加到一定程度时,能与中性粒子产生非弹性碰撞,使之电离,这种电离称为场致电离。 光电离——中性粒子接受光辐射的作用而产生的电离现象称为光电离。不是所有的光辐射都可以引发电离,气体都存在一个能产生光电离的临界波长,气体的电离电压不同,其临界波长也不同,只有当接受的光辐射波长小于临界波长时,中性气体粒子才可能被直接电离。 3、焊接电弧中气体的发射有几种 热发射——金属表面承受热作用而产生电子发射的现象称为热发射。 场致发射——当阴极表面空间有强电场存在时,金属电极内的电子在电场静电库仑力的作用下,从电极表面飞出的现象称为场致发射。

手工电弧焊焊接工艺和流程

手工电弧焊焊接工艺和流程工艺适用于低碳钢,低合金高强度钢,及各种大型钢结构工程制造的焊接,确保焊接生产施工质量,特制订本工艺。 一、焊前准备 1、根据施焊结构钢材的强度等级,各种接头型式选择相应强度等级牌号焊条和合适焊条直径。 2、当施工环境温度低于零度,或钢材的含碳量大于%及结构刚性过大,构件较厚时应采用焊前预热措施,预热温度为80℃-100℃,预热范围为板厚的5倍,但不小于100毫米。 3、工件厚度大于6毫米对接焊时,为确保焊透强度,在板材的对接边沿应开切V型或X型坡口,坡口角为60度,钝边P=0-1毫米,装配间隙为0-1毫米,当板厚差≥4毫米时,应对较厚板材的对接边缘进行削斜处理。 4、焊条烘焙:酸性药皮类型焊条焊前烘焙150℃*2保温2小时,碱性药皮类焊条焊前必做进行300℃-350*2烘焙,并保温2小时才能使用。 5、焊前接头清洁要求:在坡口或焊前两侧30毫米范围内,应将影响质量的毛刺,油污,水,锈脏物,氧化皮等必须清洁干净。 6、在板缝二端如余量小于50毫米时,焊缝二端应加引弧,熄弧板,其规格不小于50*50毫米。 二、焊接材料的选用 1、首先应考虑,母材强度等级与焊条强度等级相匹配和不同药皮类型焊条的使用特性。

2、考虑物件工作环境条件,承受动、静载荷的极限,高应力或形状复杂,刚性较大,应选用抗裂性能和冲击韧性好的低氢型焊条。 3、在满足使用性能和操作性能的前提下,应适当选用规格大效率高的铁粉焊条,以提高焊接生产效率。 三、焊接规范 1、应根据板厚选择焊条直径,确定焊接电流(如表)。 板厚(mm)焊条直径(Φ:mm)焊接电流(A:安倍)备注 3 80-90 不开坡口 8 110-150 开V型坡口 16 160-180 开X型坡口 20 180-200 开X型坡口 该电流为平焊位置焊接,立、横、仰焊时焊接电流应降低10-15%,大于16毫米板厚焊接底层选Φ焊条,角焊焊接电流应比对接焊焊接电流稍大。 2、为使对接焊缝焊焊透,其底层焊接应选用比其他层焊接的焊条直径较小。 3、厚件焊接,应严格控制层间温度,各层焊缝不宜过宽,应考虑多道多层焊接。 4、对接焊缝正面焊接后,反面使用碳气刨扣槽,并进行封底焊接。 四、焊接程序 1、焊接板缝,有纵横交叉的焊缝,应先焊端接缝后焊边接缝。 2、焊缝长度超过1米以上,应采用分中对称焊法或逐步码焊法。 3、结构上对接焊缝与角接焊缝同时存在时,应先焊板的对接焊缝,后焊物架对接焊缝。最后焊物架与板的角焊缝。 4、凡对称物件应从中央向前尾方向开始焊接,并左、右方向对称进

熔焊方法与设备

第一章焊接电弧 1、熔焊的基本特征:焊接时母材熔化而不施加压力。物理本质:在不施加外力的情况下,利用外加热源使使母材被连接处以及填充材料发生熔化,使液相与液相、液相与固相之间的原子或分子紧密地接触和充分地扩散,使原子间距达到ra,并通过冷却凝固将这种冶金结合保持下来的焊接方法。 2、熔焊的特点:(1)焊接时母材局部在不承受外加压力的情况下呗加热熔化(2)焊接时必须采取有效的隔离空气的措施(3)两种材料之间须有具有必要的冶金相容性(4)焊接时焊接接头经历了更为复杂的冶金过程。 3焊接电弧:是由焊接电源供给能量,在具有一定电压的两电极之间或电极与母材之间的气体介质中产生的强烈而持久的放电现象。其物理本质:是一种在具有一定电压的两电极之间的气体介质中所产生的电流量大、电压最低、温度最高、发光最强的自持放电现象。 4、气体放电具备条件:一必须有带电粒子,二在两电极之间必须有一定强度的电场。 5、阴极斑点:电弧燃烧时通常在阴极表面上可以看到一个很小但很光亮的斑点是电子集中发射的地方电流密度大 6、阴极区导电机构有:热发射型、场致发射型、等离子型。 7、最小电压原理含义:在电流和周围条件一定的情况下,稳定燃烧的电弧将自动选择一适当的断面,以保证电弧的电场强度具有的数值,即在固定弧长上的电压最小。这意味着电弧总是保持最小的能量消耗。 8、焊接电弧力:1、电磁收缩力 2、等离子流力 3、斑点压力: 1)正离子和电子对电极的冲撞力2)电磁收缩 力3)电极材料蒸发产生的反作用力 9、焊接电弧力的影响因素:1、焊接电力和电弧压力 2 、焊丝直径 3 、电极的极性 4 、气体介质 5、钨极 端部的几何形状 6、电流的脉动 10、焊接电弧的静特性(大题) 焊接电弧的静特性是指在电极材料、气体介质和弧长一定的情况下,电弧稳定燃烧时,焊接电流与电弧电压变化的关系,也称伏-安特性。 1、弧柱电压降:由Uc=I(lc/Scrc)=jc(lc/rc)可知,电压降Uc与电流密度jc成正比,而与其电导率rc 成反比。在ab段,电流I较小,当电流I增加时弧柱的温度和电离度增加使rc增大,同时Sc也增加,而且Sc比I增得快,使电流密度jc减小,所以Uc减小,曲线呈下降特性;在bc段,I适中电导率达到一定程度不再增加,Sc也相应增加,使Ic基本不变,Uc近似等于常数,曲线呈平特性;在cd段 I很大,Sc受到限制,已不能再增大了,所以Uc随电流I增加而增加,曲线呈上升特性。 2、阴极电压降:小电流区:当增加电流时,阴极区遵循最小电压原理,通过成比例的增加阴极斑点面积,来维持阴极区电压降基本不变。而增加电流I时,随着AB和CD面积的扩大,从AD和BC面耗散热量比例减小,因此阴极电压降降低,呈下降特性。中等电流区:仅发生随着电流的增加阴极斑点面积成比例地增加的过程。这使得电弧的电流密度基本不变,因而阴极电压降呈现平特性。大电流区:阴极斑点的面积已覆盖阴极端部的全部面积,阴极斑点面积已不再增大。随着电流的增大阴极区的电流密度增大,导致阴极电压降增高,呈现上升特性。 3、阳极电压降:在小电流区,当电流增加时,温度增加,粒子V加快,碰撞和电离加剧,因此阳极电压降下降,呈下降特性。当I增加到一定值时,阳极区温度T很高,通过热电离就能满足弧柱区对正离子的需要,阳极压降到很低,当I继续增加时,阴极电压降基本不发生变化。所以在中等电流和大电流区呈平特性。 11、焊接电弧稳定性及其影响因素:焊接电弧稳定性:焊接时电弧保持稳定燃烧的程度。 1焊接电源:焊接电源的空载电压越高,越有利于场致发射和场致电离,因此电弧的稳定性越高。 2 焊接电流和电弧电压:焊接电流大时的电弧温度要比焊接电流小时高,因而电弧中的热电离要比焊接电流小 时强烈,能够产生更多的带电粒子,因此电弧更为稳定。电弧电压增大意味着电弧长度的增大,当电弧过长时,电弧会发生剧烈摆动,使电弧的稳定性下降。 3电流种类和极性:焊接电流可分为直流、交流和脉冲直流三种类型,其中直流电弧为最稳定,脉冲直流次之,交流电弧稳定性最差。 4 焊条药皮和焊剂:当焊条药皮或焊剂中含有较多电离能低的元素或他们的化合物时,由于容易电离,使电弧 气氛中的带电粒子增多,因此可以提高电弧的稳定性。 5 磁偏吹:所谓磁偏吹,是指焊接时由于某种原因使电弧周围磁场分布的均匀性受到破坏,从而导致焊接电弧 偏离焊丝的轴线而向某一方向偏吹的现象。 6 其他因素:焊件上如果偶铁锈、水分以及油污等时,由于分解时需要吸热而减少电弧的热能,因此会降低电 弧的稳定性。

熔焊方法及设备

2.焊接熔池通常受哪些力作用,各力对焊缝成形的影响。 熔池金属的重力:水平位置焊接时,熔池金属的重力有助于熔池的稳定性。空间位置焊接时,熔池金属的重力可能破坏熔池的稳定性,使焊缝成形变坏。 表面张力:表面张力将阻止熔池金属在电弧力或熔池金属重力的作用下的流动,同时对熔池金属在熔池界面上的接触角(即润湿性)的大小也有直接影响。所以,表面张力既影响熔池的轮廓形状,也影响熔池金属在坡口里的堆敷情况,即熔池表面形状。 焊接电弧力:斑点压力会使熔池形成涡流现象,使熔深加大;电弧静压力作用于熔池液体表面,是熔池形成下凹的形态;等离子流力比较明显时,也对焊缝成形产生大影响。 熔滴冲击力:富氩气体保护熔化极电弧焊射流过渡时,焊丝前段熔化金属以比较小的熔滴及很高的速度沿焊丝轴向冲向熔池,对熔池形成较大的冲击力,因此也容易形成指状熔深。 7.熔滴在电弧中收哪些力作用? 重力:平焊时,重力促使熔滴脱离焊丝;立焊和仰焊时,重力阻碍熔滴从焊丝末端脱离。 表面张力:是焊丝端头保持熔滴的主要作用力,径向力使熔滴在焊丝末端产生缩颈,轴向力则使熔滴保持在焊丝末端,阻碍熔滴过渡。 电弧力:1)电磁收缩力:在熔滴端部与弧柱间导电的弧根面积的大小将决定该外电磁力方向,如果弧根直径小于熔滴直径,此外电磁合力向上,阻碍熔滴过渡,反之,若弧根面积笼罩整个熔滴,此处电磁合力向下,促使熔滴过渡。 2)等离子流力:有助于熔滴过渡。 3)斑点压力:阻碍熔滴过渡。 爆破力:易造成飞溅。 电弧气体气力:利于熔滴过渡。 8.焊缝在成型时的缺陷通常有哪几种?对应的措施。主要有未熔合、未焊透、烧穿、塌陷、咬边、焊瘤、气孔、加渣、表面波纹不均匀,余高不均匀、熔宽不均匀、缩处有弧坑、蛇形焊缝、火口裂纹、收缩处有弧坑。 为防止产生未熔合和未焊透,应选择合适的焊接参数及焊接热输入量,设计合适的焊接坡口形式及装配间隙,确保焊丝对准焊缝中心进行正确的施焊过程;为防止烧穿和塌陷,要特别注意焊接电流不要过大,焊接速度不要过小等;为防止咬边,高速焊时,要适当的调节焊速,保证焊缝两边金属熔化,横焊位置焊接或角焊缝焊接时,焊接电流不宜过大,电压不宜过高,焊枪角度要合适;为防止焊瘤,焊接时应该选用合适的焊接电流及焊接速度,采用合适的焊条角度及焊接位置;因此,对于其他焊缝成形缺陷的防止措施,依上所述,严格控制焊接工艺参数及焊接工艺。 12.脉冲MIG焊工艺特点:①扩大了焊接电流的调节范围②有效控制熔滴过渡及熔池尺寸,有利于全位置焊接③可有效地控制热输入,改善接头性能④脉冲电弧具有加强熔池搅拌的作用,可以改善熔池冶金性能,有利于消除气孔。 9.埋弧焊的工艺参数,及各对焊缝的影响? 埋弧焊的焊接参数主要有:焊接电流、电弧电压、焊接速度、焊丝直径和伸出长度等。 ①焊接电流 一般焊接条件下,焊缝熔深与焊接电流成正比。随着焊接电流的增加,熔深和焊缝余高都有显著增加,而焊缝的宽度变化不大。同时,焊丝的熔化量也相应增加,这就使焊缝的余高增加。随着焊接电流的减小,熔深和余高都减小。 ②电弧电压 电弧电压的增加,焊接宽度明显增加,而熔深和焊缝余高则有所下降。但是电弧电压太大时,不仅使熔深变小,产生未焊透,而且会导致焊缝成形差、脱渣困难,甚至产生咬边等缺陷。所以在增加电弧电压的同时,还应适当增加焊接电流。 ③焊接速度 当其他焊接参数不变而焊接速度增加时,焊接热输入量相应减小,从而使焊缝的熔深也减小。焊接速度太大会造成未焊透等缺陷。为保证焊接质量必须保证一定的焊接热输入量,即为了提高生产率而提高焊接速度的同时,应相应提高焊接电流和电弧电压。 ④焊丝直径与伸出长度 当其他焊接参数不变而焊丝直径增加时,弧柱直径随之增加,即电流密度减小,会造成焊缝宽度增加,熔深减小。反之,则熔深增加及焊缝宽度减小。 当其他焊接参数不变而焊丝长度增加时,电阻也随之增大,伸出部分焊丝所受到的预热作用增加,焊丝熔化速度加快,结果使熔深变浅,焊缝余高增加,因此须控制焊丝伸出长度,不宜过长。 ⑤焊丝倾角 焊丝的倾斜方向分为前倾和后倾。倾角的方向和大小不同,电弧对熔池的力和热作用也不同,从而影响焊缝成形。当焊丝后倾一定角度时,由于电弧指向焊接方向,使熔池前面的焊件受到了预热作用,电弧对熔池的液态金属排出作用减弱,而导致焊缝宽而熔深变浅。反之,焊缝宽度较小而熔深较大,但易使焊缝边缘产生未熔合和咬边,并且使焊缝成形变差。 ⑥其他 a.坡口形状 b.根部间隙 c.焊件厚度和焊件散热条件。1.能量密度:采用某种热源来加热工件时,单位 有效面积上的热功率称为能量密度。 2.热阴极:当使用熔点和沸点很高的材料(如C、 W等)做阴极时,阴极可以被加热到很高的温 度,电弧的阴极区的电子可以主要依靠阴极热 发射来提供,这种电极被称为热阴极型电极。 3.冷阴极:当使用钢、铜、铝等材料做阴极时, 其熔点和沸点较低,阴极温度不可能很高,热 发射不可能提供足够的电子,这种电极被称为 冷阴极型电极。 3.焊条电弧有那几部分组成?各部分有何特点? 焊接电弧是由阴极区,阳极区和弧柱区三部分组 成 特点:①阴极区:阴极附近的区域很狭窄,电压降 U K比较大,电场强度很大,电弧燃烧时,会出现阴 极斑点。 ②阳极区:阳极附近的区域比阴极区稍宽,电压降 U A比阴极区低,电场强度比阴极区小得多。通常可 见阳极斑点。 ③弧柱区:阴极区与阳极区之间的区域,它的长度很 长,电弧压降U C比前两者均小,电场强度也比较小, 在弧柱长度方向上,带电粒子分布均匀,电压降U C 与电弧长度成正比,在其径向方向上,中心的带电粒 子密度大,而周围小。 4.简述焊接电弧的产热机构。 焊接电弧是具有很强能量的导电体,其能量来 自于焊接电源。单位时间焊接电源向阴极区、弧柱区 和阳极区提供的总热量P可表示为 P=P K+P C+P A=IU K+IU C+IU A①阴极区的产热: P k=I(U K-U W-U T).②阳极区的产热:P A=I(U K+U W+U T). ③弧柱区的产热:P c=IU C. 10.常用电弧焊设备的组成及工艺 2)TIG焊设备:手工TIG焊设备:焊接电源、程序 控制系统、引弧装置、稳弧装置(交流焊接设备用)、 焊枪、供气系统和供水系统等部分。TIG焊焊接电源 交流电源和直流电源。直流电源分为直流正接和直流 反接。在生产中,焊接铝、镁及其合金时一般都采用 交流电。这是因为在工件为阴极的半周里有去除工件 表面氧化膜的作用,在钨极为阴极的半周里钨极可以 得到冷却,并能发射足够的电子以利于电弧稳定。高 频高压式引弧和稳弧装置、高压脉冲式引弧和稳弧装 置应用最多。焊枪的作用:夹持钨极、传导焊接电流 和输送并喷出保护气体。焊枪需满足的要求:①喷出 的保护气体具有良好的流动状态和一定的挺度,以获 得可靠的保护;②枪体有良好的气密性和水密性(用 水冷时),传导电流的零件有良好的导电性;③枪体 能被充分冷却,以保证持久地工作;④喷嘴和钨极之 间有良好绝缘,以免喷嘴和工件不慎接触而发生电 路、打弧;⑤质量轻、结构紧凑,可达到性好,装拆 维修方便。焊枪分为气冷式和水冷式两种。实用的喷 嘴材料有陶瓷、纯铜和石英三种。一般钨极氩弧焊时, 供气系统由气源(高压气瓶)、气体减压阀、气体流量 计、电磁气阀和软管组成。水冷系统重要用来冷却焊 接电缆、焊枪和钨棒。TIG焊焊接过程涉及送气、引 弧、电源输出、焊丝送进以及焊车行走等。自动TIG 焊设备:比手工TIG焊设备多了焊枪移动装置。如 果需要填充焊丝,则包括一个送丝机构,通常将焊枪 和送丝机构共同安装在一台可行走的小车上。 3)MIG焊(熔化极氩弧焊)设备:弧焊电源、送丝 系统、焊枪、行走台车(自动焊)、供气系统、水冷 系统、控制系统等部分组成。熔化极氩弧焊通常采用 直流弧焊电源,电源分为变压器抽头二极管整流式、 晶闸管可控整流式、逆变式等几种。送丝系统:推丝 式、拉丝式、推拉丝式。熔化极氩弧焊焊枪按其应用 方式分为半自动焊枪(手工操作)和自动焊枪(安装 在行走台车上)。纯惰性气体供气系统由气源(高压 气瓶)、气压减压阀、气体流量计、电磁气阀、和送 气软管等组成。水冷式焊枪的水冷系统由水箱、水泵、 水管、水流开关等组成,由水泵打压循环系统流动, 实现冷却水的循环应用。MIG焊设备的控制系统包 括焊接过程程序控制电路、送丝驱动电路等。其中焊 接过程程序控制可以采用两步控制方式或四部控制 方式。 5)等离子弧焊接设备:焊接电源、控制系统、焊枪、 气路系统、水路系统、送丝系统、机械旋转系统、行 走系统以及装夹系统。等离子弧的静特性曲线呈略上 升状,因此等离子弧焊接电源应具有下降或垂降的外 特性。在穿透型焊接时,要求等离子弧焊接电流在气 焊阶段随等离子气体流量一起递增,在收弧阶段两者 同步衰减。等离子弧焊接使用两路气体:等离子气和 保护气。气体从气瓶→减压器→电磁气阀→流量计→ 焊枪所经过的回路构成气路。水冷作用:带走钨极和 喷嘴上的热量。冷却水路为水泵→水冷导线→焊枪下 枪体→喷嘴→焊枪上枪体→水冷导线→水流开关→ 水箱。等离子弧自动焊接纵缝或环缝时,焊枪或焊件 作直线或旋转运动。当焊件间隙大、要求有余高或进 行坡口焊接,要向熔池自动送进焊丝,其驱动电机多 为直流电动机。等离子弧焊机的控制系统包括引弧电 路、程序控制电路、水和气体控制电路、送丝和行走、 或转动控制与调节电路等。 4)CO2气体保护焊设备:CO2半自动焊设备:焊接 电源、控制系统、送丝系统、焊枪和气路系统。CO2 自动焊设备是在半自动焊设备的基础上增加了焊接 行走机构。CO2焊一般采用直流反接。因直流反接 时,使用各种焊接电流值都能获得比较稳定的电弧, 熔滴过渡平稳、飞溅小、焊缝成形好。CO2焊设备 的控制系统应具备以下功能:(1)空载时,可手动调 节下列参数:焊接电流、电弧电压、焊接速度、保护 气体流量以及焊丝的送进与回轴等(2)焊接时,实 现程序自动控制,即:①提前送气、之后停气;②自 动送进焊丝进行引弧和焊接;③焊接结束后,先停丝 后断电。送丝系统分为半自动焊送丝系统和自动焊送 丝系统两类。CO2焊焊枪分为半自动焊枪和自动焊 枪,半自动CO2焊推丝式焊枪有鹅颈式和手枪式, 拉丝式焊枪均为手枪式,因CO2焊多采用细丝焊, 故焊枪多采用空冷式。CO2焊供气系统由CO2气瓶、 预热器、干燥器、减压器、气体流量计和电磁气阀等 组成,与MIG焊不同在于气路中接入预热器和干燥 器。预热器作用:为了防止CO2气体中的水分在钢 瓶出口处及减压表中结冰,使气路堵塞。干燥器作用: 吸收CO2气体中的水分和杂质,以避免焊缝出现气 孔。 11.埋弧焊工作原理:焊接时,颗粒状焊剂由焊剂漏 斗经软化管均匀地堆敷到焊件的待焊处,焊丝由焊丝 盘经送丝机构和导电嘴送入焊接区,电弧在焊剂下面 的焊丝与母材之间燃烧。电弧热使焊丝、焊剂及母材 局部熔化和部分蒸发。金属蒸气、焊剂蒸气、和冶金 过程中析出的气体在电弧的周围形成一个空腔,熔化 的焊剂在空腔的上部形成一层熔渣膜。这层熔渣膜如 同一个屏障,使电弧、液体金属与空气隔离,而且能 将弧光遮蔽在空腔中。在空腔的下部,母材局部熔化 形成熔池;空腔的上部,焊丝熔化形成焊滴,并以渣 壁过渡的形式向熔池中过渡,只有少数熔滴采取自由 过渡。随着电弧的向前移动,电弧力将液态金属推向 后方并逐渐冷却凝固成焊缝,熔渣则凝固成渣壳覆盖 在焊缝表面。在焊接的过程中,焊剂不仅起着保护焊 接金属的作用,而且起着冶金处理的作用,即通过冶 金反应清除有害的杂质和过渡有益的合金元素。 埋弧焊的应用范围:由于埋弧焊具有生产效率高、 焊缝质量好、熔深大、机械化程度高等特点,其应用 范围很广,至今仍是锅炉、压力容器、船舶、桥梁、 起重机械、工程机械、冶金机械、海洋机构、核电设 备等制造的主要焊接手段,特别是对于中厚板、长焊 缝的焊接具有明显的优越性。可焊接的钢种有,碳素 结构钢、低合金结构钢、不锈钢、耐热钢、以及复合 钢等。此外,用埋弧焊堆焊耐热、耐腐蚀合金,或焊 接镍基合金、铜基合金等也能获得很好的效果。 钨极氩弧焊(TIG焊)工作原理:钨极被夹持在电 极夹上,从TIG焊焊枪的喷嘴中伸出一定长度。在 伸出的钨极端部与焊件之间产生电弧,对焊件进行加 热。同时,惰性气体进入腔体,从钨极的周围通过喷 嘴喷向焊接区,以保护钨极、电弧及熔池。使其免受 大气的侵害。当焊接薄板时,一般不需要填充焊丝, 可以利用焊件被焊部位自身熔化形成焊缝。当焊接厚 板和开有坡口的焊件时,可以从电弧的前方把填充金 属以手动或自动的方式,按一定的速度向电弧中送 进。填充金属熔化后进入熔池,与母材熔化金属一起 冷却凝固形成焊缝。钨的熔点高达3653K,与其他金 属相比,具有难熔化。可长时间在高温状态下工作的 性质。TIG焊利用钨的这一性质,在圆棒状的钨极与 母材间产生电弧进行焊接。电弧燃烧过程中,钨极是 不熔化的,故易于维持恒定的电弧长度,保持焊接电 流不变,使焊接过程稳定。惰性气体具有不与其他物 质发生化学反应和不熔于金属的性质。利用这一性 质,TIG焊使用惰性气体完全覆盖电弧和熔化金属, 使电弧不受周围空气的影响和避免熔化金属与周围 的氧、氮等发生反应,从而起到保护的作用。 应用范围:TIG焊的应用很广泛,它可以用于几乎所 有金属和合金的焊接。适用于各种长度焊缝的焊接, 既可以焊薄板,也可焊焊接厚件,可使用于各种位置 焊接。 13.通常减少CO2焊时产生的气孔有哪些方法:①增 强气体的保护效果②选用含有固氮元素(如Ti和Al) 的焊丝③提高CO2气体纯度④采用直流反接,可减 少氢气孔⑤在焊缝金属中添加Si元素,即熔池中含 有足够的脱氧剂。 14.CO2保护焊时为何有较高的抗锈低氢能力? 因为锈是含结晶水的氧化铁,即FeO.H2O。在电弧 热作用下,该结晶水将分解,发生如下的反应:H2O ≒2H+O 由于氢量增加,将增加形成氢气孔的可能性。可是, 在CO2焊的电弧气氛中的二氧化碳和氧的含量很 高,它们将发生如下反应:CO2+2H≒CO+H2O CO2+H≒CO+OH O+2H≒H2O O+H≒OH 这时,反应都向右进行,其生成物是在液体金属中溶 解度很小的水蒸汽和羟基,从而减弱了氢的有害作 用。所以,一般认为CO2焊具有较强的抗潮和抗锈 能力

常用不锈钢焊接方法对不锈钢最常用的焊接方法是手工焊

常用不锈钢焊接方法对不锈钢最常用的焊接方法是手工焊(MMA),其次是金属极气体保护焊(MIG/MAG)和钨极惰性气体保护焊(TIG).虽然这些焊接方法对不锈钢工业的大多数人而言是熟悉的,但是我们认为这个领域值得深入探讨. 1、手工焊(MMA):手工焊是一种非常普遍的、易于使用的焊接方法.电弧的长度靠人的手进行调节,它决定于电焊条和工件之间缝隙的大小.同时,当作为电弧载体时,电焊条也是焊缝填充材料. 这种焊接方法很简单,可以用来焊接几乎所有材料.对于室外使用,它有很好的适应性,即使在水下使用也没问题.大多数电焊机可以TIG焊接.在电极焊中,电弧长度决定于人的手:当你改变电极与工件的缝隙时,你也改变了电弧的长度.在大多数情况下,焊接采用直流电,电极既作为电弧载体,同时也作为焊缝填充材料.电极由合金或非合金金属芯丝和焊条药皮组成.这层药皮保护焊缝不受空气的侵害,同时稳定电弧.它还引起渣层的形成,保护焊缝使它成型.电焊条即可是钛型焊条,也可是缄性的,这决定于药皮的厚度和成分.钛型焊条易于焊接,焊缝扁平美观.此外,焊渣易于去除.如果焊条贮存时间长,必须重新烘烤.因为来自空气的潮气会很快在焊条中积聚. 2、MIG/MAG焊接:这是一种自动气体保护电弧焊接方法.在这种方法中,电弧在保护气体屏蔽下在电流载体金属丝和工件之间烧接.机器送入的金属丝作为焊条,在自身电弧下融化.由于MIG/MAG焊接法的通用性和特殊性的优点,至今她仍然是世界上最为广泛的焊接方法.它使用于钢、非合金钢、低合金钢和高合金为基的材料.这使得它成为理想的生产和修复的焊接方法.当焊接钢时,MAG可以满足只有0.6mm厚的薄规格钢板的要求.这里使用的保护气体是活性气体,如二氧化碳或混合气体.唯一的限制是当进行室外焊接时,必须保护工件不受潮,以保持气体的效果. 3、TIG焊接:电弧在难熔的钨电焊丝和工件之间产生.这里使用的保护气体是纯氩气,送入的焊丝不带电.焊丝既可以手送,也可以机械送.也有一些特定用途不需要送入焊丝.被焊接的材料决定了是采用直流电还是交流电.采用直流电时,钨电焊丝设定为负极.因为它有很深的焊透能力,对于不同种类的钢是很合适的,但对焊缝熔池没有任何“清洁作用”. TIG焊接法的主要优点是可以焊接大材料范围广.包括厚度在0.6mm及其以上的工件,材质包括合金钢、铝、镁、铜及其合金、灰口铸铁、普通干、各种青铜、镍、银、钛和铅.主要的应用领域是焊接薄的和中等厚度的工件,在较厚的

支架制造焊接工艺

液压支架制造工艺规程 焊接 总体要求:严格按照图纸施工,分部件焊接,严格执行焊接参数及 多层多道,严格焊丝选用,磁粉探伤,压架试验。 1、操作前按要求准备必备的工具和设备: (1)图纸; (2)火焰预热; (3)钢刷; (4)清理工具; (5)焊缝测量工具; (6)锤子; 2、焊前准备: (1)检查焊缝根部间隙及坡口尺寸,如发现不合格不得施焊。 (2)发现定位焊缝出现裂纹时,必须清除,重新点焊。 (3)焊道及焊道边缘必须清理干净,不得有影响焊接质量的铁锈、油污、水和涂料等杂物,清 理边缘单侧不得小于20mm。 (4)检查工艺加强筋,加固板安装的是否准确。 (5)检查成型工件是否符合图纸要求。 (6)检查电源的状态,送丝装置,电线和固定器。 检查焊接参数,并作出相应的调整。 检查保护气体流量(建议流量为15 L/分)。 确保焊接结构位置准确。 在焊接处安上接地导线。 检查焊丝的等级和类型,看是否符合焊接和技术要求。 焊接前,需用合适的工具检查预热的温度,看是否达到要求。 3、结构件焊接宜在室内进行;冬季环境温度不得低于5℃,否则应加热到要求温度。 4、加热时用中性焰,不能用切割头加热,也不能定点加热。 5、预热后要等大约一分钟,待温度均匀、稳定后达到80℃左右再开始焊接。 6、焊缝周围75毫米的地方需要检查温度。可能的话,另一面也要检查。焊接处如果有水分 的话,需要加热到60度烘干水分。 7、焊接位置:支架部件应在专用的工装架上施焊,必须要有防倒措施,尽量采用平焊和横焊,

严禁下坡焊,应力集中处,不允许引弧和收弧。 8、焊接方式可以有:平焊,横焊,平角焊。 9、焊接时在钢板的角上不能停留,一直焊接到离角落大约50毫米的地方。 10、所有待焊部件须进行打底焊,厚度8-10mm , 焊后清理,工件整体每焊完一层的一道清理后再焊第二道。 11、焊接时应该先焊定型焊缝,检查完焊接的质量之后进行其它焊缝。 12、每件工件焊接必须从头到尾一次完成(不能长时间的停留),这样可以保持焊接温度一致。 13、所有的焊接部位的焊缝都必须是一条线,焊缝最宽不能超过12毫米。14、焊缝表面高低差不能超过1.5毫米。15、Q460、Q550高强板相互焊接与δs 大于440Mpa 高强板焊前应预热到80℃~150℃。16、Q460、Q550高强板与27SiMn 钢材焊接、Q460、Q550钢材相互焊接,所用焊丝牌号:SLD-60(H08Mn2Si60E);Q460、Q550高强板与ZG25MnTiB 焊接所用焊丝牌号:SLD-60(H08Mn2Si60E),Q550高强板与Q550焊接应选用焊丝牌号:SLD-70(H08Mn2Si70E)应符合GB/T8110规定。17、焊角小于或等于10mm ,坡口深度小于或等于12mm 时可采用一遍或多层成形的焊接方法。带坡口的平焊缝,其工艺参数焊接电流/A 电弧电压/V 气体流量/L.min 焊接线能量/KJ.cm 焊接速度cm/min 焊道温度/℃260-28030-3218-22≤2020-2280℃~150℃室温不低于5℃18、焊角大于10mm ,坡口深度大于12mm 时可采用多层多道的焊接方法:(1) 焊完第一道要清除焊瘤、飞溅等杂物。Q460高强度板和σS 大于440Mpa 温度降至 80℃~150℃再焊第二道(或层)、第三、第四……依次类推。 (2) 如果中断焊接时,预热到80℃~150℃才能再施焊。 (3)根据标准MT/T587-1996多层多道的焊接方法说明如下: 1) 当焊角≤10mm,焊接坡口≤12mm 时,可采用单层或多层焊接方法及焊接顺序见图1和图4所示。 2) 当焊角大于10mm 至16mm 时应采用两层三道焊接方法及焊接顺序见图2所示。 3)第二次焊接必须紧接着上一次停的地方,并且需要有20-40毫米的重叠。 通过管线敷设技术,不仅可以解决吊顶层配置不规范问题,而且可保障各类管路习题到位。在管路敷设过程中,要加强看护验;通电检查所有设备高中资料试卷相互作用与相互关系,根据生产工艺高中资料试卷要求,对电气设备进行空载与带负荷下高中资料试卷调控试验;对设备进行调整使其在正常工况下与过度工作下电力保护装置调试技术,电力保护高中资料试卷配置技术是指机组在进行继电保护高中资料试卷总体配置时,需要在最大限度内来确保机组高中资料试卷安全,并且尽

焊接的正确方法和步骤

(1)焊前处理步骤 焊接前,应对元器件引脚或电路板的焊接部位进行处理,一般有“刮”、“镀”、“测”三个步骤: “刮”:就是在焊接前做好焊接部位的清洁工作。一般采用的工具是小刀和细砂纸,对集成电路的引脚、印制电路板进行清理,去除其上的污垢,清理完后 一般还需要往待拆元器件上涂上助焊剂。 “镀”:就是在刮净的元器件部位上镀锡。具体做法是蘸松香酒精溶液涂在刮净的元器件焊接部位上,再将带锡的热烙铁头压在其上,并转动元器件,使其 均匀地镀上一层很薄的锡层。 “测”:就是利用万用表检测所有镀锡的元器件是否质量可靠,若有质量不可靠或已损坏的元器件,应用同规格元器件替换。 (2)焊接步骤 做好焊前处理之后,就可进行正式焊接。 不同的焊接对象,其需要的电烙铁工作温度也不相同。判断烙铁头的温度时,可将电烙铁碰触松香,若有“吱吱”的声音,说明温度合适;若没有声音,仅能 使松香勉强熔化,则说明温度太低;若烙铁头一碰上松香就大量冒烟,则说明温 度太高。 一般来讲,焊接的步骤主要有三步: (1)烙铁头上先熔化少量的焊锡和松香,将烙铁头和焊锡丝同时对准焊点。 (2)在烙铁头上的助焊剂尚未挥发完时,将烙铁头和焊锡丝同时接触焊点,开始熔化焊锡。 (3)当焊锡浸润整个焊点后,同时移开烙铁头和焊锡丝。 焊接过程一般以2~3s为宜。焊接集成电路时,要严格控制焊料和助焊剂的用量。为了避免因电烙铁绝缘不良或内部发热器对外壳感应电压而损坏集成电路,实际 应用中常采用拔下电烙铁的电源插头趁热焊接的方法。 电烙铁虚焊及其防治方法 焊接时,应保证每个焊点焊接牢固、接触良好,锡点应光亮、圆滑无毛刺, 锡量适中。锡和被焊物熔合牢固,不应有虚焊。所谓虚焊,是指焊点处只有少量 锡焊住,造成接触不良,时通时断。为避免虚焊,应注意以下几点:(1)保证金属表面清洁

金属材料的焊接性能

金属材料的焊接性能 (2014.2.27) 摘要:对各种常用金属材料的焊接性能进行研究,通过参考各类焊接丛书及焊接前辈多年的经验总结,对常用金属材料的焊接工艺可行性起指导作用。 关键词:碳当量;焊接性;焊接工艺参数;焊接接头 1 前言 随着中国特种设备制造业的不断发展,我们在制造产品时所用到的金属材料种类也在不断增加,相应地所必须掌握的各种金属材料的焊接性能也在不断研究和更新中,为了实际产品制造的焊接质量,熟悉金属材料的焊接性能,以制定正确的焊接工艺参数,从而获得优良的焊接接头起到至关重要的指导作用。 2 金属材料的焊接性能 2.1 金属材料焊接性的定义及其影响因素 2.1.1 金属材料焊接性的定义 金属材料的焊接性是指金属材料在采用一定的焊接工艺包括焊接方法、焊接材料、焊接规范及焊接结构形式等条件下,获得优良焊接接头的能力。一种金属,如果能用较多普通又简便的焊接工艺获得优良的焊接接头,则认为这种金属具有良好的焊接性能金属材料焊接性一般分为工艺焊接性和使用焊接性两个方面。 工艺焊接性是指在一定焊接工艺条件下,获得优良,无缺陷焊接接头的能力。它不是金属固有的性质,而是根据某种焊接方法和所采用的具体工艺措施来进行的评定。所以金属材料的工艺焊接性与焊接过程密切相关。 使用焊接性是指焊接接头或整个结构满足产品技术条件规定的使用性能的程度。使用性能取决于焊接结构的工作条件和设计上提出的技术要求。通常包括力学性能、抗低温韧性、抗脆断性能、高温蠕变、疲劳性能、持久强度、耐蚀性能和耐磨性能等。例如我们常用的S30403,S31603不锈钢就具有优良的耐蚀性能,16MnDR,09MnNiDR低温钢也有具备良好的抗低温韧性性能。

焊接方法有哪几种

●闪光焊,钢轨形成对接接头,通电并使其端面逐渐移近,达到局 部接触,利用电阻热加热这些接触点(产生闪光),使端面全部熔化,直至端部在一定深度范围内达到预定温度时,迅速施加顶锻力完成焊接。 优点:闪光焊自动化程度高,工艺稳定,焊接质量优良,焊接接头为致密锻造组织,接头韧性好,力学性能接近钢轨母材,生产效率高,主要用于厂焊或基地焊,部分用于单元轨节焊接。缺点:焊机价格昂贵,一次性投资大,设备复杂且需配备大功率电源、柴油发电机组,焊接工艺参数较多,调节繁琐;同时闪光焊焊接过程中钢轨烧损严重,每个接头消耗钢轨25.1-50mm。 ●气压焊,是利用气体燃料产生的热能将钢轨端部加热到熔化状态 或塑性状态,再施加一定的顶锻压力,完成钢轨焊接。 优点:气压焊的一次性投资少,焊接时间短,焊接质量好,焊接接头也为致密锻造组织,主要用于现场联合接头焊接。钢轨烧损较少,焊接后钢轨缩短约30mm。缺点:焊接时对接头断面的处理要求十分严格,焊接工艺受诸多人为因素影响,接头质量波动较大,不易控制。 ●铝热焊,是利用铝和氧化铁(含添加剂),在一定温度下进行氧化 还原反应,形成高温液态金属注入特制的铸模内,将两个被焊钢轨端部熔化而实现连接的一种焊接方法。 优点:设备简单、操作方便,生产成本较低,且没有顶锻过程,接头外观平顺性好,占用封锁时间短,尤其适用于断轨修复、跨区间无缝线路道岔联焊和运输任务繁忙的线上联焊。缺点:强度低、质量欠稳

定,断头率高,综合性能差,是无缝线路最薄弱环节。 电弧焊,接头间隙,并利用铜挡块强迫成型,冷却后形成焊接接头,属于熔化焊方法。 优点:采用合适的焊条和焊丝成分,电弧焊接头可以得到性能优异的贝氏体组织,综合性能可达到母材水平,抗拉强度和耐磨性能等有时甚至超过钢轨母材。缺点:目前推广较少,此外对焊接工艺、技术水平要求严格。

相关主题
文本预览
相关文档 最新文档