五年级奥数题及答案通用13篇
- 格式:docx
- 大小:22.83 KB
- 文档页数:10
五年级奥数题及参考答案
关于五年级奥数题及参考答案
一列长110米的火车,以每小时30千米的.速度向北驶去,14点10分火车追上一个向北走的工人,15秒后离开工人,14点16分迎面遇到一个向南走的学生,12秒后离开学生。
问工人,学生何时相遇?
参考答案:
设工人速度每小时x千米,
0.11/(30-x)=15/3600,x=3.6千米/小时
设学生速度每小时y千米,
0.11/(30+y)=12/3600,y=3千米/小时
-----------------------------------------------
如果都用算术方法解
求工人速度,15秒=1/240小时
工人速度=30-0.11/(1/240)=30-0.11*240=3.6千米/小时;
求学生速度,12秒=1/300小时
学生速度=0.11/(1/300)-30=33-30=3千米/小时
-----------------------------------
火车14点10分追上工人,14点16分遇到学生,
火车行进路程30*6/60=3千米
从14点10分到14点16分,工人行进3.6*6/60=0.36千米
14点16分,工人与学生相距3-0.36=2.64千米
工人与学生需要2.64/(3.6+3)=0.4小时相遇
0.4小时=24分钟,即14点16分后24分钟,
14点40分,工人与学生相遇.
【关于五年级奥数题及参考答案】。
【导语】芬芳袭⼈花枝俏,喜⽓盈门捷报到。
⼼花怒放看通知,梦想实现今⽇事,喜笑颜开忆往昔,勤学苦读最美丽。
在学习中学会复习,在运⽤中培养能⼒,在总结中不断提⾼。
以下是为⼤家整理的《⼩学五年级奥数练习题及答案【五篇】》供您查阅。
【第⼀篇:⼯地做⼯】有两个⼈在⼀家⼯地做⼯,由于⼀个是学徒,⼀个是技⼯,所以他们的薪⽔是不⼀样的。
技⼯的薪⽔⽐学徒的薪⽔多20美元,但两⼈的薪⽔之差是21美元。
你觉得他俩的薪⽔各是多少?答案与解析: 假设技⼯和学徒的⽐较标准是以1美元为准的。
那么技⼯的薪⽔是20美元50美分,学徒的薪⽔是50美分。
与1美元相⽐,技⼯的薪⽔就是正值,学徒的就是负值,⼆者之差就是21美元,⽽从实际来讲技⼯的薪⽔⽐学徒的⾼20美元。
【第⼆篇:⿊板写字】⿊板上写着8、9、10、11、12、13、14七个数,每次任意擦去两个数,再写上这两个数的和减1。
例如:擦掉9和13,要写上21。
经过⼏次后,⿊板上就会只剩下⼀个数,这个数是⼏?答案与解析: 每次任意擦去两个数,然后写上这两个数的和减1,则可理解为擦去了前6个数字,六个数的和减去3,则结果为8+9+10+11+12+13+3 = 63-3 = 60 ,再次操作,60+14-1=73.【第三篇:使等式成⽴】22.5-(□×32-24×□)÷3.2=10在上⾯算式的两个⽅框中填⼊相同的数,使得等式成⽴。
那么所填的数应是多少?答案与解析:22.5-(□×32-24×□)÷3.2 =22.5-□×(32-24)÷3.2 =22.5-□×8÷3.2 =22.5-□×2.5 因为22.5-□×2.5=10,所以□×2.5=22.5-10,□=(22.5-10)÷2.5=5 答:所填的数应是5。
【第四篇:颠倒数字】将⼀个四位数的数字顺序颠倒过来,得到⼀个新的四位数。
小学五年级奥数题30道(附答案)1.已知一张桌子的价钱是一把椅子的10倍,又知一张桌子比一把椅子多288元,求一张桌子和一把椅子的价钱分别是多少元。
设一把椅子的价钱为x元,则一张桌子的价钱为10x元。
根据题意,有10x - x = 288,解得x = 32,因此一把椅子的价钱为32元,一张桌子的价钱为320元。
2.3箱苹果重45千克,一箱梨比一箱苹果多5千克,求3箱梨的重量是多少千克。
设一箱苹果的重量为x千克,则3箱苹果的重量为3x千克。
根据题意,有3x = 45,解得x = 15,因此一箱苹果的重量为15千克,一箱梨的重量为20千克,因此3箱梨的重量为60千克。
3.甲乙二人从两地同时相对而行,经过4小时,在距离中点4千米处相遇。
甲比乙速度快,甲每小时比乙快10千米,求甲、乙两人的速度分别是多少千米每小时。
设甲的速度为x千米每小时,则乙的速度为x - 10千米每小时。
根据题意,有4x = (4 + 4) * 2,解得x = 4,因此甲的速度为4千米每小时,乙的速度为(4 - 10)千米每小时,即-6千米每小时(表示向相反方向行驶)。
4.XXX和XXX同样多的钱买了同一种铅笔,XXX要了13支,XXX要了7支,XXX又给XXX0.6元钱。
求每支铅笔的价格是多少元。
设每支铅笔的价格为x元,则李军和XXX分别付出的钱数为13x元和7x元。
根据题意,有13x = 7x + 0.6,解得x = 0.1,因此每支铅笔的价格为0.1元。
5.甲乙两辆客车上午8时同时从两个车站出发,相向而行,经过一段时间,两车同时到达一条河的两岸。
由于河上的桥正在维修,车辆禁止通行,两车需交换乘客,然后按原路返回各自出发的车站,到站时已是下午2点。
甲车每小时行40千米,乙车每小时行45千米,求两地相距多少千米。
设两地相距为x千米,则甲车和乙车相遇时,它们共行驶了(x/2)千米。
根据题意,甲车和乙车共用了6个小时,因此它们共行驶了2x千米。
五年级数学奥数题及答案题目一:数字谜题问题:有一个五位数,它的每一位数字都不相同,且这个数能被4整除。
如果将这个数的每一位数字都颠倒过来,得到的新数比原数大45,求这个五位数是多少?解答:首先,我们知道一个数能被4整除的规则是:这个数的最后两位数能被4整除。
设这个五位数为abcde,其中a、b、c、d、e分别代表不同的数字。
根据题意,我们有abcde + 45 = edcba。
由于e不能为0,所以e至少为1。
同时,因为abcde是五位数,所以a至少为1。
接下来,我们考虑最后两位数。
设cde能被4整除,且cde + 5 = bca。
由于cde + 5的个位数为a,而a至少为1,所以cde的个位数e必须为3或7。
但是,e为7时,cde + 5的十位数不可能是b,因为b至少为1,所以e只能是3。
现在我们知道e = 3,且cde能被4整除,所以cde = 34。
由于d + 1 = b,且d和b都是不同的数字,我们可以推断出d = 2,b = 3。
最后,我们考虑a。
由于abcde + 45 = 34a + 3,且a至少为1,我们可以推断出a = 7。
综上所述,这个五位数是72343。
题目二:几何问题问题:在一个长方形的草地上,有一条宽为1米的人行道。
如果人行道的总面积是10平方米,求长方形草地的长和宽。
解答:设长方形草地的长为L米,宽为W米。
人行道的面积是10平方米,且人行道的宽度为1米。
我们可以假设人行道沿着草地的一边铺设,那么人行道的面积可以表示为L * 1 = 10平方米,即L = 10米。
现在我们知道了草地的一边长度是10米,人行道的总面积是10平方米,这意味着人行道沿着草地的另一边铺设时,其面积也是10平方米。
因此,W * 1 = 10平方米,即W = 10米。
所以,长方形草地的长和宽都是10米。
题目三:逻辑推理问题:有五位同学参加了数学竞赛,他们的成绩各不相同。
已知第一名不是A,A的成绩高于B,B的成绩高于C,C的成绩高于D,D的成绩是第三名。
奥数题及答案(9篇)篇1:奥数题及答案1、烧水沏茶时,洗水壶要用1分钟,烧开水要用10分钟,洗茶壶要用2分钟,洗茶杯用2分钟,拿茶叶要用1分钟,如何安排才能尽早喝上茶。
2、有137吨货物要从甲地运往乙地,大卡车的载重量是5吨,小卡车的载重量是2吨,大卡车与小卡车每车次的耗油量分别是10公升和5公升,问如何选派车辆才能使运输耗油量最少?这时共需耗油多少升?3、用一只平底锅烙饼,锅上只能放两个饼,烙熟饼的一面需要2分钟,两面共需4分钟,现在需要烙熟三个饼,最少需要几分钟?4、甲、乙、丙、丁四人同时到一个小水龙头处用水,甲洗拖布需要3分钟,乙洗抹布需要2分钟,丙用桶接水需要1分钟,丁洗衣服需要10分钟,怎样安排四人的用水顺序,才能使他们所花的总时间最少,并求出这个总时间。
5、甲、乙、丙、丁四个人过桥,分别需要1分钟,2分钟,5分钟,10分钟。
因为天黑,必须借助于手电筒过桥,可是他们总共只有一个手电筒,并且桥的载重能力有限,最多只能承受两个人的重量,也就是说,每次最多过两个人。
现在希望可以用最短的时间过桥,怎样才能做到最短呢?你来帮他们安排一下吧。
最短时间是多少分钟呢?6、小明骑在牛背上赶牛过河,共有甲乙丙丁四头牛,甲牛过河需1分钟,乙牛需2分钟,丙牛需5分钟,丁牛需6分钟,每次只能骑一头牛,赶一头牛过河。
要过河时间最少?是多少?四年级奥数题:速算与巧算(一)1.【试题】计算9+99+999+9999+999992【试题】计算99+19999+1999+199+193【试题】计算(2+4+6+…+996+998+1000)--(1+3+5+…+995+997+999)4【试题】计算9999×2222+3333×33345【试题】56×3+56×27+56×96-56×57+566【试题】计算98766×98768-98765×98769四年级奥数题:年龄问题1、父亲45岁,儿子23岁。
小学五年级奥数题及答案参考
小学五年级奥数题及答案参考
孩子进入小学二年级阶段就已经具备了一定的数学基础,例如计算能力、分析问题的能力、审题能力、简单的逻辑思维能力,都已经逐步形成,所以这一阶段让孩子多接触和了解奥数题例,以下是店铺整理的小学五年级奥数题及答案参考,欢迎大家借鉴与参考,希望对大家有所帮助。
年龄问题:(中等难度)
今年,祖父的年龄是小明的年龄的6倍,几年后,祖父的年龄将是小明年龄的5倍,又过几年以后,祖父的年龄将是小明的年龄的4倍,求:祖父今年是多少岁?
年龄问题答案:
【分析】祖父的年龄比小明的年龄大,两人的年龄差是不变的.因为今年祖父的年龄是小明的年龄的6倍,所以年龄差是小明年龄的5倍,从而是年龄差是5的'倍数,同理,由"几年后,祖父的年龄是小明的年龄的5倍","又过几年以后,祖父的年龄是小明的年龄的4倍",知道年龄差是4、3的倍数,所以,年龄差是5×4×3=60的倍数.而60的倍数是:60,120,…,合理的选择是60,今年小明的年龄是60÷5=12(岁),祖父的年龄是12×6=72(岁).。
答案:1.(135595) 2.(27) 3.(38766) 4.(略) 5.(45) 6.(324) 7.(24) 8.(39) 9.(6.6) 10.(22) 11.(95) 12.(300)1计算:193+203+…+283=( )。
2. a 、b 、c 、d 、e 为五个人的年龄,已知a 是b 的2倍,c 的3倍,d 的4倍,e 的6倍,则a+b+c+d+e 的最小值是( )。
3.右面除法算式中,只有四个4是已知的, 则被除数为( )。
4.将下图分成两块,然后拼成一个正方形。
5.有一类自然数,从第三个数开始,每个数字都恰好是它前面两个数字之和,直到不能写为止,如:257,1459等等,这类数共有( )个。
6.两数相除,商4余8,被除数、除数、商、余数四数之和为415,则被除数是( )。
7.某同学把他最喜欢的书按顺序编写为1、2、3……,所编的号码之和是100的倍数,且小于1000,则他编号的最大数是( )。
8.右图是一个正方形木板,在它的右侧锯下宽为3厘米的一个木条,剩余面积为130平方米,锯掉的木条面积是( )平方厘米。
9.用甲乙两种糖配成什锦糖,如果用3份甲种糖和2份乙种糖配成什锦糖,比用2份甲种糖和3份乙种糖配成的什锦糖每千克贵1.32元,那么,每千克甲种糖比每千克乙种糖贵( )元。
10.有一群小孩,任意5个孩子的年龄之和比50少,所有孩子的年龄之和是202,这群孩子至少有( )人。
11.六位同学考试的平均成绩是92.5分,他们的成绩是互不相同的整数,最高分是99分,最低分是76分,则按从高到低排列,居第三位的同学至少得( )分。
12.小明跑步的速度是他步行速度的3倍,他每天从家到学校都是步行,有一天由于他晚出发10分钟,他不得不跑步一半路程,余下的一半路程步行,这样与平时步行到校的时间一样,小明每天步行上学需( )分钟。
五年级奥数能力训练13 × × × × × × × × × 4 × × × 4 × × × × × × 4 4 × × × × × 0。
五年级奥数训练第13讲数字谜综合一内容概述涉及小数、分数、循环小数酌数字谜问题;需要利用数论知识解决的数字谜问题.典型问题兴趣篇1.有一个四位数,在它的某位数字后加上一个小数点,得到一个小数,再把这个小数和原来的四位数相加,得数是4003.64求这个四位数.2.试将1、2、3、4、5、6、7分别填人下面的方框中,每个数字只用一次:口口口(这是一个三位数),口口口(这是一个三位数),口(这是一个一位数),使得这三个数中任意两个都互质.已知其中一个三位数已填好,它是714,求另外两个数.3.用1至9这9个数字各一次组成若干个数,这些数中最多有多少个合数?4.如图13-!,4个小三角形的顶点处有6个圆圈,在这些圆圈中分别填上6个质数(可以重复),使得它们的和是20,而且每个小三角形3个顶点上的数之和相等,请问:这6个质数的乘积是多少?5.在一个带有余数的除法算式中,商比除数大2,在被除数、除数、商和余数中,最大数与最小数之差是1023.请问:此算式中的4个数之和最大可能是多少?6.在乘法算式“好好好迎杯=⨯”中,不同的汉字表示不同的数春杯字,相同的汉字表示相同的数字.请问:“迎+春+杯+好”等于多少?7.将1至9这9个数填入下面算式中的9个方框内(每个数字只能用一次),使等式成立.口口口×口口=口口×口口=55688.循环小数B A.0化成最简分数后,分子与分母之和为40,那么A 和B 分别是多少?9.在算式“7=+金杯竞赛华罗庚数学”中,华、罗、庚、金、杯、数、学、竞、赛九个字,分别代表数字1、2、3、4、5、6、7、8、9.已知“竞 = 8,赛 = 6”,请把这个算式写出来.10.已知“GOOD BAD BAD =+”是一个正确的加法算式,其中相同的字母代表相同的数字,不同的字母代表不同的数字,已知GOOD 不是8的倍数.请问:ABGD 代表的四位数是什么?拓展篇1.[4.2×5 - (1+2.5 + 9.1 + 0.7)] + 0.04=100.改动上面算式中一个数的小数点的位置,使其成为一个正确的等式,那么被改动的数变为多少?2.用0至9这10个数字恰好组成一位数、两位数、三位数、四位数各一个(每个数字只能用一次),且这四个数两两互质.其中的四位数是2940,另外三个数可能是多少?3.学数学数数=⨯.在上面的算式中,每一个汉字代表一个数字,科学不同的汉字代表不同的数字.请问:“数学”所代表的两位数是多少?4.在等式“口△×△口×口O×◇△=口△口△口△”中,口、△、O、◇分别代表不同的数字.四位数◇O口△是多少?5.将1、2、3、4、5、6、7、8、9这9个数字分别填人下式的各个方框中,使等式成立:口口×口口=口口×口口口=3634.6.已知a 是一个自然数,A 、B 是1至9中的数字,最简分数差B A a 33.0222.请问:a 是多少?7.把质数373按数位拆开(不改变各数之间的顺序),只能得到3、7、37、73这四个数,它们仍然都是质数,请找出所有具有这种性质的质数.8.在下面各题中,请你用给出的四个数,适当进行加、减、乘、除运算,每个数恰好用一次,使得计算结果等于24. (1)1,4,5,6;(2)1,5,5,5; (3)3,3,7,7; (4)3,3,8,8.9.把1至6填人下面的方框中,每个数字恰好使用一次,使得等式成立,请写出所有的答案. 口.口×口.口=口.口10.如图13-2所示,三角形纸片盖住的都是质数数字,正方形纸片盖住的都是合数数字,要使得两个加数的差尽可能小,较大的加数是多少?11.在下面两个算式中,相同的汉字表示相同的数字,不同的汉字表示不同的数字.花相似人不同代表的六位数是多少? 花相似岁岁年年=⨯ 不同人年年年年÷=÷12.在图13-3所示的算式中,每个字母代表一个数字,不同的字母代表不同的数字.如果CHINA 代表的五位数能被24整除,那么这个五位数是多少?超越篇1.两个学生计算同一个乘法算式,两个乘数都是两位数,他们各抄错了一个数字,但计算结果都是1360.实际上正确结果的个位不是0,那么正确结果应该是多少?2.用0至9这10个数字组成一些质数(每个数字恰好用一次),这些质数的和最小是多少?3.已知b 13a.0A 是纯循环小数,将它写成最简分数后,使得分母最小.那么这个分数是多少?4.数学家维纳在博士毕业典礼上说:“我现在年龄的三次方是一个四位数,现在年龄的四次方是一个六位数,并且这两个数刚好包含数字0至9各一次,所以所有数字都得朝拜我,我将在数学领域干出一番大事业.”请问:他是几岁毕业的?5.一个四位数的每一位数字都是非零的偶数,它又恰好是某个偶数数字组成的数的平方,请问:这个四位数是多少?6.在图134所示算式的每个方框内填人一个数字,要求所填的数字都是质数,并使竖式成立.7.a、b、c是三个互不相同的自然数,且满足cba×bcaabc,求×7bc=三位数abc8.已知算式234235286×abc,其中a > b > c.后来发现右边bcacab×=的乘积的数字顺序出现错误,但是知道个位的6是正确的,那么原式中的abc是多少?。
五年级奥数优选(试题及答案)1.求余数求437×319×2010+2010被7除的余数。
解答:437≡3(mod7),319≡4(mod7),2010≡1(mod7)由"同余性质"可知:437×319×2010≡3(×mod74×1)=12(mod7)≡5(mod7)因此:437×319×2010+2010≡(5+1mod7)=6(mod7)即:437×319×2010+2010被7除的余数是6.这道题主要观察了同余性质。
一定注意的是同余性质只好用在加、减、乘。
2.相向而行甲、乙两人同时从A、B两地相向而行,1小时候两人共走全程的;假如两人各走半小时,乙停下,甲持续走10分钟,则两人共走全程的,求甲乙两人独自走完AB全程各需多少小时?解答:1个小时两人共走全程的,假定两人走半小时后都停下,则两人共走全程的。
可知甲10分钟走的行程是,可知甲独自走完整程的时间是10×16=160(分钟)(小时);乙半小时走全程的,因此乙独自走完整程是30×4=120(分钟)=2(小时)这是一道相遇问题,条件比较特别,速度与行程都未知,因此这里我们必须先剔除时间的特别状况,一致两次的时间基本量,再依据等量关系式计算。
3.整除求1~1000能被2,3,5中起码一个整除的数的个数。
解答:1~1000中能被2整除的数有[1000÷2]=500个;能被3整除的数有[1000÷3]=333个;能被5整除的数有[1000÷5]=200个。
若得500+333+200=1033>1000,原由是计算有重复,比方12在被2整除与被3整除的数中都计算了,也就是被2×3=6整除的数计重复了,同理2×5=10,3×5=15也1/2被重复计数了,应该减去。
小学五年级奥数练习题及答案篇一 1、环形跑道周长是500米,甲、乙两人从起点按顺时针方向同时出发。甲每分钟跑120米,乙每分钟跑100米,两人都是每跑200米停下来休息1分钟,那么甲第一次追上乙需要多少分钟?
参考答案: 解法一:因为行完之后,甲比乙多行500米,就说明多休息500÷200=2……100,即2次。甲追乙的路程是500+100×2=700米,要追700米,甲需要走700÷(120-100)=35分,甲行35分钟需要休息35×120÷200-1=20分,所以共需35+20=55分。
解法二:跑停一次时间比:甲是200:120=5:3=15:9,乙是200:100=2:1=16:8,在24分钟里甲跑15分钟,乙跑16分钟,甲比乙多跑120×15-100×16=200米,500-200×2=100米,100÷(120-20)=5分钟,甲跑5分钟只需要休息两分钟,共用时间24×2+5+2=55分钟
2、B地在A,C两地之间。甲从B地到A地去,出发后1小时,乙从B地出发到C地,乙出发后1小时,丙突然想起要通知甲、乙一件重要的事情,于是从B地出发骑车去追赶甲和乙。已知甲和乙的速度相等,丙的速度是甲、乙速度的3倍,为使丙从B地出发到最终赶回B地所用的时间最少,丙应当先追甲再返回追乙,还是先追乙再返回追甲?
参考答案: 如果先追乙然后返回,时间是1÷(3-1)×2=1小时,再追甲后返回,时间是3÷(3-1)×2=3小时,共用去3+1=4小时,如果先追甲返回,时间是2÷(3-1)×2=2小时,再追乙后返回,时间是3÷(3-1)×2=3小时,共用去2+3=5小时,先追乙时间最少。故先追更后出发的。
小学五年级奥数练习题及答案篇二 1、有一块牧场长满了牧草,牧草每天匀速生长。这块牧场的草可供17头牛吃30天,也可供19头牛吃24天。开始,有一些牛在牧场上吃草,6天后,有4头牛被卖掉了,余下的牛用2天时间将牧场上的草吃完,则开始有_______头牛在吃草。
小学奥数-五年级-奥数题及答案word百度文库一、拓展提优试题1.如果2头牛可以换42只羊,3只羊可以换26只兔,2只兔可以换3只鸡,则3头牛可以换多少只鸡?2.若2副网球拍和7个网球一共220元,且1副网球拍比1个网球贵83元.求网球的单价.3.解放军战士在洪水不断冲毁大坝的过程中要修好大坝,若10人需45分钟,20人需要20分钟,则14人修好大坝需分钟.4.对于自然数N,如果1﹣9这九个自然数中至少有六个数可以整除N,则称N是一个“六合数”,则在大于2000的自然数中,最小的“六合数”是.5.(8分)如果两个质数的差恰好是2,称这两个质数为一对孪生质数.例如3和5是一对孪生质数,29和31也是一对孪生质数.在数论研究中,孪生质数是最热门的研究课题之一.华裔数学家张益唐在该课题的研究中取得了令人瞩目的成就,他的事迹激励着更多的青年学子投身数学研究.在不超过100的整数中,一共可以找到对孪生质数.6.(8分)6个同学约好周六上午8:00﹣11:30去体育馆打乒乓球,他们租了两个球桌进行单打比赛每段时间都有4 个人打球,另外两人当裁判,如此轮换到最后,发现每人都打了相同的时间,请问:每人打了分钟.7.(8分)图中所示的图形是迎春小学数学兴趣小组的标志,其中,ABCDEF 是正六边形,面积为360,那么四边形AGDH的面积是.8.用1、2、3、5、6、7、8、9这8个数字最多可以组成个质数(每个数字只能使用一次,且必须使用).9.如图,若长方形S长方形ABCD=60平方米,S长方形XYZR=4平方米,则四边形S四边=平方米.形EFGH10.大于0的自然数n是3的倍数,3n是5的倍数,则n的最小值是.11.某数学竞赛有10道题,规定每答对一题得5分,答错或不答扣2分.A、B 两人各自答题,得分之和是58分,A比B多得14分,则A答对道题.12.用一根34米长的绳子围成一个矩形,且矩形边长都是整数米,共有种不同的围法(边长相同的矩形算同一种围法).13.(8分)彤彤和林林分别有若干张卡片:如果彤彤拿6张给林林,林林变为彤彤的3倍;如果林林给彤彤2张,则林林变为彤彤的2倍.那么,林林原有张.14.如图,魔术师在一个转盘上的16个位置写下来了1﹣16共16个数,四名观众甲、乙、丙、丁参与魔术表演.魔术师闭上眼,然后甲从转盘中选一个数,乙、丙、丁按照顺时针方向依次选取下一个数,图示是一种可能的选取方式,魔术师睁开眼,说:“选到偶数的观众请举手.”,这时候,只有甲和丁举手,这时候魔术师就大喝一声:“我知道你们选的数了!”.你认为甲和丁选的数的乘积是.15.定义新运算:θa=,则(θ3)+(θ5)+(θ7)(+θ9)+(θ11)的计算结果化成最简真分数后,分子与分母的和是.16.如图六角星的6个顶点恰好是一个正六边形的6个顶点,那么阴影部分面积是空白部分面积的倍.17.A、B两桶水同样重,若从A桶中倒2.5千克水到B桶中,则B桶中水的重量是A桶中水的重量的6倍,那么B桶中原来有水千克.18.如图是一个正方体的平面展开图,若该正方体相对的两个面上的数值相等,则a﹣b×c的值是.19.(7分)对于a、b,定义运算“@”为:a@b=(a+5)×b,若x@1.3=11.05,则x=.20.一次数学竞赛中,某小组10个人的平均分是84分,其中小明得93分,则其他9个人的平均分是分.21.已知一个五位回文数等于45与一个四位回文数的乘积(即=45×),那么这个五位回文数最大的可能值是59895.22.由120个棱长为1的正方体,拼成一个长方体,表面全部涂色,只有一面染色的小正方体,最多有块23.(7分)爱尔兰作家刘易斯曾写过一篇反讽寓言,文中描述了一个名为尼亚特泊的野蛮国家.在这个国家里使用西巴巴数字.西巴巴数字的形状与通用的阿拉伯数字相同,但含义相反.如“0”表示“9”,“1”表示“8”,以次类推.他们写数字是从左到右,使用的运算符号也与我们使用的一样.例如,他们用62代表我们所写的37.按照尼亚特泊人的习惯,应怎样写837+742的和是419.【分析】“0”表示“9”,0+9=9,“1”表示“8”,1+8=9,由此可知西巴巴数字,表示的数字与正常数字的和都是9;由此找出837、742表示的数字,然后相加即可.24.有一行数:1,1,2,3,5,8,13,21,…,从第三个数开始,每个数都是前两个数的和,问在前2007个数中,有是偶数.25.用1,2,3,4,5,6,7,8这八个数字组成两个不同的四位数(每个数字只用一次)使他们的差最小,那么这个差是.26.(7分)将偶数按下图进行排列,问:2008排在第列.2 4681614121018 20 22 2432 30 28 26…27.如果一个自然数的约数的个数是奇数,我们称这个自然数为“希望数”,那么,1000以内最大的“希望数”是.28.星期天早晨,哥哥和弟弟去练习跑步,哥哥每分钟跑110米,弟弟每分钟跑80米,弟弟比哥哥多跑了半小时,结果比哥哥多跑了900米,那么,哥哥跑了米.29.如图,将一个等腰三角形ABC沿EF对折,顶点A与底边的中点D重合,若△ABC的周长是16厘米,四边形BCEF的周长是10厘米,则BC=厘米.30.鸡与兔共100只,鸡的脚比兔的脚多26只.那么,鸡有只.31.如图所示,P为平行四边形ABDC外一点。
小学五年级奥数题及答案解析(五篇)篇一油库里有6桶油,分别装着汽油、柴油和机油。
油桶上只标明15公升、16公升、18公升、19公升、20公升和31公升,却没有注明是哪一种油。
只知道柴油是机油的2倍,汽油只有一桶。
请你分析一下,各个油桶里装的是什么油?【答案解析】根据“柴油是机油的2倍”这一条件可知,这两种油之和一定是3的倍数。
而六桶油的和为15+16+18+19+20+31=119(公升),119除以3得到的余数为2,说明汽油量是3的倍数还多2公升。
又知“汽油只有一桶”,在油桶上标明的六个数中,只有20是3的倍数多2的数,所以标明20公升这一桶装的是汽油。
从而可求出机油量为(15+16+18+19+31)÷3=33(公升),柴油量为33×2=66(公升)通过观察可知,标明15公升与18公升的两桶装的是机油,标明16公升、19公升与31公升的三桶装的是柴油。
篇二甲、乙、丙三个桶内各装了一些油,先将甲桶内三分之一的油倒入乙桶,再将乙桶内五分之一的油倒入丙桶,这时三个桶内的油一样多,如果最初丙桶内有油48千克,那么最初甲桶内有油_____千克。
乙桶内有油_____千克。
【答案解析】甲桶里面应该有96千克,乙桶里有48千克。
假设甲桶往乙桶倒过油之后乙桶的油是5份,那么它将五分之一给了丙桶,结果两桶一样多,说明丙桶原来有3份,那么三桶都一样的时候都是4份,可以知道,甲桶倒出去三分之一之后还有4份,那么原来就有6份,甲桶往乙桶倒过2份油之后乙桶的油是5份,说明原来乙桶也是3份,那么丙桶的3份相当于48千克,一份就是16千克,最初的甲桶里面应该有96千克,乙桶里有48千克。
篇三学校参加体操表演的学生人数在60~100之间。
把这些同学按人数平均分成8人一组,或平均分成12人一组都正好分完。
参加这次表演的同学至少有()人。
【答案解析】考点:公因数和公倍数应用题。
分析:按人数平均分成8人一组,或平均分成12人一组都正好分完,那么总人数就是8和12的公倍数,再根据总人数在60~100之间进行求解。
五年级奥数题及答案通用13篇五年级小学生奥数题篇一1、某厂有一批煤,原计划每天烧5吨,可以烧45天。
实际每天少烧0.5吨,这批煤可以烧多少天?2、学校买来150米长的塑料绳,先剪下7.5米,做3根同样长的跳绳。
照这样计算,剩下的塑料绳还可以做多少根?3、修一条水渠,原计划每天修0.48千米,30天修完。
实际每天多修0.02千米,实际修了多少天?4、王老师看一本书,如果每天看32页,15天看完。
现在每天看40页,可以提前几天看完?5、一辆汽车4小时行驶了260千米,照这样的速度,又行了2.4小时,前后一共行驶了多少千米?(用两种方法解答)五年级小学生奥数题篇二1、快车和慢车同时从两个城市相对开出,2.5小时后相遇。
快车每小时行42千米,慢车每小时行35千米。
两个城市相距多少千米?2、甲、乙二位同学合打一份资料,甲每分打18个字,乙每分打22个字,两人用了30分打完这份资料,这份资料一共有多少个字?3、甲乙两车分别从两地同时出发,相对开来,甲车每小时行40千米,乙车每小时行50千米,3小时后两车还相距25千米,两地相距多少千米?4、两地相距628千米,甲车每小时行60千米,乙车每小时行80千米。
两车同时从两地相向而行,4小时后两车相遇了吗?两车相距多少千米?5、甲乙两人合做一批零件。
甲每小时做124个,乙每小时做136个。
他们合做了8小时,超额完成120个。
他们原来打算合做多少个零件?6、上午10时一只货船从甲港开往乙港,下午1小时一只客船从乙港开往甲港。
客船开出4小时与货船相遇。
货船每小时行18千米,客船每小时行27千米。
两港相距多远?参考答案1、(42+35)×2.5=192.5(千米)2、(18+22)×30=12003、(50+40)×3+25=295(千米)4、没相遇。
(60+80)×4=560(千米)628-560=68(千米)5、(124+136)×8-120=1960(个)6、18×3+(18+27)×4=234(千米)五年级小学生奥数题篇三1、甲、乙、丙三人赛跑,同时从A地出发向B地跑,当甲跑到终点时,乙离B还有30米,丙离B还有70米;当乙跑到终点时,丙离B还有45米。
问:A、B相距多少米?解答:乙跑最后30米时,丙跑了(70-45)=25米,所以乙、丙的速度比是30:25=6:5.因为乙到终点时比丙多跑了45米,所以A、B相距45÷(1-5/6)=270米。
2、商店进了一批钢笔,用零售价10元卖出20支与用零售价11元卖出15支的利润相同。
那么每支钢笔的进货价是多少元?解答:10×20-11×15=35(元),这正好是20-15=5支钢笔的进货价,所以每支钢笔的进货价为35÷5=7(元)。
3、五年级有47名学生参加一次数学竞赛,成绩都是整数,满分是100分。
已知3名学生的成绩在60分以下,其余学生的成绩均在75~95分之间。
问:至少有几名学生的成绩相同?答案与解析:120÷2=60,90÷2=45,每两棵树之间的距离是它们的公约数。
(120,60,90,45)=15,一共要:(120+90)×2÷15=28(棵)。
4、最小公倍数爷爷对小明说:"我现在的年龄是你的7倍,过几年是你的6倍,再过若干年就分别是你的5倍、4倍、3倍、2倍。
"你知道爷爷和小明现在的年龄吗?解答:爷爷70岁,小明10岁。
提示:爷爷和小明的年龄差是6,5,4,3,2的公倍数,又考虑到年龄的实际情况,取公倍数中最小的:60,因此年龄差为60岁。
5、质数合数在放暑假的8月份,小明有五天是在姥姥家过的。
这五天的日期除一天是合数外,其它四天的日期都是质数。
这四个质数分别是这个合数减去1,这个合数加上1,这个合数乘上2减去1,这个合数乘上2加上1.问:小明是哪几天在姥姥家住的?解答:设这个合数为a,则四个质数分别为(a-1),(a+1),(2a-1),(2a+1)。
因为(a-1)与(a+1)是相差2的质数,在1~31中有五组:3,5;5,7;11,13;17,19;21,31.经试算,只有当a=6时,满足题意,所以这五天是8月5,6,7,11,13日。
五年级小学生奥数题篇四1、六位数568□□□能同时被3、4、5整除。
这样的六位数中最小的一个是()。
2、43□8□,能同时被5、9整除,这个数是()。
3、45□□这个四位数,同时能被2、3、4、5、9整除,这四位数是()。
4、有一个六位数,能被11整除,首位是7,其余个位数字各不相同,这个六位数最小是()。
5、一个五位数4□7□5同时是11与25的倍数,这个五位数是()。
6、在□内填上适当的数,使六位数35267□能被4(或25)整除。
这个六位数是()。
7、有一个四位数3□□1,它能被9整除,□代表的数字是()。
8、五位数4□97□能被3整除,它的最末两位数字组成的7□又能被6整除。
这个五位数是()。
9、已知多位数,1□2□3□4□5□6□7□能被11整除,满足该条件的整数是()。
10、一个四位数9□2□既有约数2,又是3的倍数,同时又能被5整除。
这个四位数是()。
五年级小学生奥数题篇五1、号码分别为101,126,173,193的4个运动员进行乒乓球比赛,规定每两人比赛的盘数是他们号码的和被3除所得的余数。
那么打球盘数最多的运动员打了多少盘?2、1990…1990除以9的余数是多少?3、将1,2,3,…,30从左往右依次排列成一个51位数,这个数被11除的余数是多少?4、一个1994位的整数,各个数位上的数字都是3.它除以13,商的第200位(从左往右数)数字是多少?商的个位数字是多少?余数是多少?5、有一个数,除以3余数是2,除以4余数是1.问这个数除以12余数是几?6、某个自然数被247除余63,被248除也余63.那么这个自然数被26除余数是多少?7、一个自然数除以19余9,除以23余7.那么这个自然数最小是多少?8、某住宅区有12家住户,他们的门牌号分别是1,2,3,…,12.他们的电话号码依次是12个连续的六位自然数,并且每家的电话号码都能被这家的门牌号码整除。
已知这些电话的首位数字都小于6,并且门牌号码是9的这一家的电话号码也能被13整除,问这一家的电话号码是什么数?9、有5000多根牙签,可按6种规格分成小包。
如果10根一包,那么最后还剩9根。
如果9根一包,那么最后还剩8根。
第三、四、五、六种的规格是,分别以8,7,6,5根为一包,那么最后也分别剩7,6,5,4根。
原来一共有牙签多少根?10、有一个自然数,用它分别去除63,90,130都有余数,3个余数的和是25.这3个余数中的一个是多少?四年级奥数题及答案篇六【试题】1、烧水沏茶时,洗水壶要用1分钟,烧开水要用10分钟,洗茶壶要用2分钟,洗茶杯用2分钟,拿茶叶要用1分钟,如何安排才能尽早喝上茶。
【分析】:先洗水壶然后烧开水,在烧水的时候去洗茶壶、洗茶杯、拿茶叶。
共需要1+10=11分钟。
【试题】2、有137吨货物要从甲地运往乙地,大卡车的载重量是5吨,小卡车的载重量是2吨,大卡车与小卡车每车次的耗油量分别是10公升和5公升,问如何选派车辆才能使运输耗油量最少?这时共需耗油多少升?【分析】:依题意,大卡车每吨耗油量为10÷5=2(公升);小卡车每吨耗油量为5÷2=2.5(公升)。
为了节省汽油应尽量选派大卡车运货,又由于137=5×27+2,因此,最优调运方案是:选派27车次大卡车及1车次小卡车即可将货物全部运完,且这时耗油量最少,只需用油10×27+5×1=275(公升)【试题】3、用一只平底锅烙饼,锅上只能放两个饼,烙熟饼的一面需要2分钟,两面共需4分钟,现在需要烙熟三个饼,最少需要几分钟?【分析】:一般的做法是先同时烙两张饼,需要4分钟,之后再烙第三张饼,还要用4分钟,共需8分钟,但我们注意到,在单独烙第三张饼的时候,另外一个烙饼的位置是空的,这说明可能浪费了时间,怎么解决这个问题呢?我们可以先烙第一、二两张饼的第一面,2分钟后,拿下第一张饼,放上第三张饼,并给第二张饼翻面,再过两分钟,第二张饼烙好了,这时取下第二张饼,并将第三张饼翻过来,同时把第一张饼未烙的一面放上。
两分钟后,第一张和第三张饼也烙好了,整个过程用了6分钟。
四年级奥数题:统筹规划问题(二)【试题】4、甲、乙、丙、丁四人同时到一个小水龙头处用水,甲洗拖布需要3分钟,乙洗抹布需要2分钟,丙用桶接水需要1分钟,丁洗衣服需要10分钟,怎样安排四人的用水顺序,才能使他们所花的总时间最少,并求出这个总时间。
【分析】:所花的总时间是指这四人各自所用时间与等待时间的总和,由于各自用水时间是固定的,所以只能想办法减少等待的时间,即应该安排用水时间少的人先用。
解:应按丙,乙,甲,丁顺序用水。
丙等待时间为0,用水时间1分钟,总计1分钟乙等待时间为丙用水时间1分钟,乙用水时间2分钟,总计3分钟甲等待时间为丙和乙用水时间3分钟,甲用水时间3分钟,总计6分钟丁等待时间为丙、乙和甲用水时间共6分钟,丁用水时间10分钟,总计16分钟,总时间为1+3+6+16=26分钟。
四年级奥数题:统筹规划问题(三)【试题】5、甲、乙、丙、丁四个人过桥,分别需要1分钟,2分钟,5分钟,10分钟。
因为天黑,必须借助于手电筒过桥,可是他们总共只有一个手电筒,并且桥的载重能力有限,最多只能承受两个人的重量,也就是说,每次最多过两个人。
现在希望可以用最短的时间过桥,怎样才能做到最短呢?你来帮他们安排一下吧。
最短时间是多少分钟呢?【分析】:大家都很容易想到,让甲、乙搭配,丙、丁搭配应该比较节省时间。
而他们只有一个手电筒,每次又只能过两个人,所以每次过桥后,还得有一个人返回送手电筒。
为了节省时间,肯定是尽可能让速度快的人承担往返送手电筒的任务。
那么就应该让甲和乙先过桥,用时2分钟,再由甲返回送手电筒,需要1分钟,然后丙、丁搭配过桥,用时10分钟。
接下来乙返回,送手电筒,用时2分钟,再和甲一起过桥,又用时2分钟。
所以花费的总时间为:2+1+10+2+2=17分钟。
解:2+1+10+2+2=17分钟【试题】6、小明骑在牛背上赶牛过河,共有甲乙丙丁四头牛,甲牛过河需1分钟,乙牛需2分钟,丙牛需5分钟,丁牛需6分钟,每次只能骑一头牛,赶一头牛过河。
【分析】:要使过河时间最少,应抓住以下两点:(1)同时过河的两头牛过河时间差要尽可能小(2)过河后应骑用时最少的牛回来。
解:小明骑在甲牛背上赶乙牛过河后,再骑甲牛返回,用时2+1=3分钟然后骑在丙牛背上赶丁牛过河后,再骑乙牛返回,用时6+2=8分钟最后骑在甲牛背上赶乙牛过河,不用返回,用时2分钟。