高考物理速度选择器和回旋加速器解题技巧及练习题含解析
- 格式:doc
- 大小:1.10 MB
- 文档页数:21
速度选择器和回旋加速器压轴题知识归纳总结及答案一、高中物理解题方法:速度选择器和回旋加速器1.如图所示,有一对水平放置的平行金属板,两板之间有相互垂直的匀强电场和匀强磁场,电场强度为E =200V/m ,方向竖直向下;磁感应强度大小为B 0=0.1T ,方向垂直于纸面向里。
图中右边有一半径R 为0.1m 、圆心为O 的圆形区域内也存在匀强磁场,磁感应强度大小为B =3T ,方向垂直于纸面向里。
一正离子沿平行于金属板面,从A 点垂直于磁场的方向射入平行金属板之间,沿直线射出平行金属板之间的区域,并沿直径CD 方向射入圆形磁场区域,最后从圆形区域边界上的F 点射出已知速度的偏向角θ=π3,不计离子重力。
求:(1)离子速度v 的大小; (2)离子的比荷q m; (3)离子在圆形磁场区域中运动时间t 。
(结果可含有根号和分式)【答案】(1)2000m/s ;(2)2×104C/kg ;(34310s 6π- 【解析】 【详解】(1)离子在平行金属板之间做匀速直线运动,洛仑兹力与电场力相等,即:B 0qv =qE解得:2000m/s Ev B == (2)在圆形磁场区域,离子做匀速圆周运动,轨迹如图所示由洛仑兹力公式和牛顿第二定律有:2v Bqv m r=由几何关系有:2R tanrθ=离子的比荷为:4 210C/kg qm=⨯ (3)弧CF 对应圆心角为θ,离子在圆形磁场区域中运动时间t ,2t T θπ=2mT qBπ=解得:43106t s π-=2.如图,正方形ABCD 区域内存在着竖直向下的匀强电场和垂直纸面向里的匀强磁场,已知该区域的边长为L 。
一个带电粒子(不计重力)从AD 中点以速度v 水平飞入,恰能匀速通过该场区;若仅撤去该区域内的磁场,使该粒子以同样的速度v 从AD 中点飞入场区,最后恰能从C 点飞出;若仅撤去该区域内的电场,该带电粒子仍从AD 中点以相同的速度v 进入场区,求: (1)该粒子最后飞出场区的位置;(2)仅存电场与仅存磁场的两种情况下,带电粒子飞出场区时速度偏向角之比是多少?【答案】(1)AB 连线上距离A 点32L 处,(2)34。
高考物理高考物理速度选择器和回旋加速器解题技巧和训练方法及练习题一、速度选择器和回旋加速器1.如图,空间存在匀强电场和匀强磁场,电场方向为y 轴正方向,磁场方向垂直于xy 平面(纸面)向外,电场E 和磁场B 都可以随意加上或撤除,重新加上的电场或磁场与撤除前的一样。
一带正电的粒子质量为m 、电荷量为q 从P (x =0,y =h )点以一定的速度平行于x 轴正向入射。
这时若只有磁场,粒子将做半径为R 0的圆周运动;若同时存在电场和磁场,粒子恰好做直线运动.求:(1)若只有磁场,粒子做圆周运动的半径R 0大小; (2)若同时存在电场和磁场,粒子的速度0v 大小;(3)现在,只加电场,当粒子从P 点运动到x =R 0平面(图中虚线所示)时,立即撤除电场同时加上磁场,粒子继续运动,其轨迹与x 轴交于M 点。
(不计重力)。
粒子到达x =R 0平面时速度v 大小以及粒子到x 轴的距离; (4)M 点的横坐标x M 。
【答案】(1)0mv qB (2)E B (302v ,02R h +(4)22000724M x R R R h h =++-【解析】 【详解】(1)若只有磁场,粒子做圆周运动有:200qB m R =v v解得粒子做圆周运动的半径00m R qBν=(2)若同时存在电场和磁场,粒子恰好做直线运动,则有:0qE qB =v 解得粒子的速度0E v B=(3)只有电场时,粒子做类平抛,有:00y qE ma R v a t v t=== 解得:0y v v =所以粒子速度大小为:22002y v v v v =+=粒子与x 轴的距离为:20122R H h at h =+=+ (4)撤电场加上磁场后,有:2v qBv m R=解得:02R R = 粒子运动轨迹如图所示:圆心C 位于与速度v 方向垂直的直线上,该直线与x 轴和y 轴的夹角均为4π,由几何关系得C 点坐标为:02C x R =,02C R y H R h =-=-过C 作x 轴的垂线,在ΔCDM 中:02CM R R ==2C R CD y h ==-解得:22220074DM CM CD R R h h =-=+-M 点横坐标为:22000724M x R R R h h =+-2.如图所示,两平行金属板水平放置,间距为d ,两极板接在电压可调的电源上。
高中物理速度选择器和回旋加速器技巧和方法完整版及练习题及解析一、速度选择器和回旋加速器1.如图所示,虚线O 1O 2是速度选择器的中线,其间匀强磁场的磁感应强度为B 1,匀强电场的场强为E (电场线没有画出)。
照相底片与虚线O 1O 2垂直,其右侧偏转磁场的磁感应强度为B 2。
现有一个离子沿着虚线O 1O 2向右做匀速运动,穿过照相底片的小孔后在偏转磁场中做半径为R 的匀速圆周运动,最后垂直打在照相底片上(不计离子所受重力)。
(1)求该离子沿虚线运动的速度大小v ; (2)求该离子的比荷q m; (3)如果带电量都为q 的两种同位素离子,沿着虚线O 1O 2射入速度选择器,它们在照相底片的落点间距大小为d ,求这两种同位素离子的质量差△m 。
【答案】(1)1E v B =;(2)12q E m RB B =;(3)122B B qd m E∆=【解析】 【分析】 【详解】(1)离子沿虚线做匀速直线运动,合力为0Eq =B 1qv解得1Ev B =(2)在偏转磁场中做半径为R 的匀速圆周运动,所以22mv B qv R= 解得12q E m RB B = (3)设质量较小的离子质量为m 1,半径R 1;质量较大的离子质量为m 2,半径为R 2 根据题意R 2=R 1+2d 它们带电量相同,进入底片时速度都为v ,得2121m v B qv R =2222m v B qv R =联立得22121()B qm m m R R v∆=-=- 化简得122B B qdm E∆=2.某粒子源向周围空间辐射带电粒子,工作人员欲通过质谱仪测量粒子的比荷,如图所示,其中S 为粒子源,A 为速度选择器,当磁感应强度为B 1,两板间电压为U ,板间距离为d 时,仅有沿轴线方向射出的粒子通过挡板P 上的狭缝进入偏转磁场,磁场的方向垂直于纸面向外,磁感应强度大小为B 2,磁场右边界MN 平行于挡板,挡板与竖直方向夹角为α,最终打在胶片上离狭缝距离为L 的D 点,不计粒子重力。
高考物理速度选择器和回旋加速器压轴题知识归纳总结及答案一、高中物理解题方法:速度选择器和回旋加速器1.如图所示,水平放置的两平行金属板间存在着相互垂直的匀强电场和匀强磁场。
已知两板间的电势差为U ,距离为d ;匀强磁场的磁感应强度为B ,方向垂直纸面向里。
一质量为m 、电荷量为q 的带电粒子从A 点沿水平方向射入到两板之间,恰好沿直线从M 点射出;如果撤去磁场,粒子从N 点射出。
M 、N 两点间的距离为h 。
不计粒子的重力。
求: (1)匀强电场场强的大小E ; (2)粒子从A 点射入时的速度大小v 0; (3)粒子从N 点射出时的动能E k 。
【答案】(1)电场强度U E d =;(2)0U v Bd =;(3)2222k qUh mU E d B d=+【解析】 【详解】 (1)电场强度U E d=(2)粒子做匀速直线运动,电场力与洛伦兹力大小相等,方向相反,有:0qE qv B = 解得0E U v B Bd== (3)粒子从N 点射出,由动能定理得:2012k qE h E mv ⋅=-解得2222k qUh mU E d B d=+2.质谱仪最初由汤姆孙的学生阿斯顿设计的,他用质谱仪发现了氖20和氖22,证实了同位素的存在.现在质谱仪已经是一种十分精密的仪器,是测量带电粒子的质量和分析同位素的重要工具.如右图所示是一简化了的质谱仪原理图.边长为L 的正方形区域abcd 内有相互正交的匀强电场和匀强磁场,电场强度大小为E ,方向竖直向下,磁感应强度大小为B ,方向垂直纸面向里.有一束带电粒子从ad 边的中点O 以某一速度沿水平方向向右射入,恰好沿直线运动从bc 边的中点e 射出(不计粒子间的相互作用力及粒子的重力),撤去磁场后带电粒子束以相同的速度重做实验,发现带电粒子从b 点射出,问: (1)带电粒子带何种电性的电荷?(2)带电粒子的比荷(即电荷量的数值和质量的比值qm)多大? (3)撤去电场后带电粒子束以相同的速度重做实验,则带电粒子将从哪一位置离开磁场,在磁场中运动的时间多少?【答案】(1)负电(2)2q E mB L =(3)从dc 边距离d 3L 处射出磁场;3BLEπ 【解析】 【详解】(1)正电荷所受电场力与电场强度方向相同,负电荷所受电场力与电场强度方向相反,粒子向上偏转,可知粒子带负电; (2)根据平衡条件:qE =qv 0B得:0E v B=撤去磁场后,粒子做类平抛运动,则有:x =v 0t =L2 212qE Ly t m == 得:2 q E m B L= (3)撤去电场后带电粒子束在磁场中做匀速圆周运动,则:200v qv B m r= 得:mv r L qB== 粒子从dc 边射出磁场,设粒子射出磁场距离d 点的距离为x ,根据几何关系:2222L x r r +-=()r=L得:32x L =所以13θπ=23BL t T Eθππ== 答:(1)带电粒子带负电; (2)带电粒子的比荷2 qEm B L=; (3)撤去电场后带电粒子束以相同的速度重做实验,则带电粒子将从dc 边距离d 点32x L=处离开磁场,在磁场中运动的时间3BL t E =π.3.如图所示的装置,左半部为速度选择器,右半部为匀强的偏转磁场.一束同位素离子(质量为m ,电荷量为+q )流从狭缝S 1射入速度选择器,速度大小为v 0的离子能够沿直线通过速度选择器并从狭缝S 2射出,立即沿水平方向进入偏转磁场,最后打在照相底片D 上的A 点处.已知A 点与狭缝S 2的水平间距为3L ,照相底片D 与狭缝S 1、S 2的连线平行且距离为L ,忽略重力的影响.则(1)设速度选择器内部存在的匀强电场场强大小为E 0,匀强磁场磁感应强度大小为B 0,求E 0∶B 0;(2)求偏转磁场的磁感应强度B 的大小和方向;(3)若将右半部的偏转磁场换成方向竖直向下的匀强电场,要求同位素离子仍然打到A 点处,求离子分别在磁场中和在电场中从狭缝S 2运动到A 点处所用时间之比t 1∶t 2.【答案】(1)v 0(2)02mv B qL =,磁场方向垂直纸面向外(3)1223=∶t t π【解析】 【详解】(1)能从速度选择器射出的离子满足qE 0=qv 0B 0所以E 0∶B 0=v 0(2)离子进入匀强偏转磁场后做匀速圆周运动,由几何关系得:222()(3)R R L L =-+则2R L =由200v Bqv m R= 则2mv B qL=磁场方向垂直纸面向外 (3)磁场中,离子运动周期2RT v π=运动时间101263L t T v π==电场中,离子运动时间203=Lt v 则磁场中和在电场中时间之比12239=∶t t π4.如图为质谱仪的原理图。
高中物理速度选择器和回旋加速器练习题及答案及解析一、速度选择器和回旋加速器l. 如图所示,水平放置的两平行金属板间存在着相互垂直的匀强电场和匀强磁场。
已知两 板间的电势差为U,距离为〃:匀强磁场的磁感应强度为B,方向垂直纸面向里。
一质量为 m. 电荷量为q 的带电粒子从A 点沿水平方向射入到两板之间,恰好沿直线从M 点射出: 如果撤去磁场,粒子从N 点射出。
M 、N 两点间的距离为九不计粒子的重力。
求:(1) 匀强电场场强的犬小F :(2) 粒子从A 点射入时的速度人小Vo :(3) 粒子从N 点射出时的动能Ek 。
【答案】(1)电场强度E = M ; (2)岭=二;(3)瓦=犁+上其 d Bd d 2B-d-【解析】【详解】(1) 电场强度£ = ^- a(2) 粒子做匀速直线运动,电场力与洛伦兹力人小相等,方向相反,有:qE = qv.B(3) 粒子从N 点射出,由动能定理得:qE ・h = Ek-如\必2. 如图所示,有一对水平放置的平行金属板,两板之间有相互垂直的匀强电场和匀强磁 场,电场强度为E=200V/m,方向竖直向下;磁感应强度人小为Bo=O.lT,方向垂直于纸面 向里。
图中右边有一半径R 为0.1m.圆心为O 的圆形区域内也存在匀强磁场,磁感应强度 人小为B=邑,方向垂直于纸面向里。
一正离子沿平行于金属板面,从&点垂直于磁场3的方向射入平行金属板之间,沿直线射出平行金属板之间的区域,并沿直径CD 方向射入 圆形磁场区域,最后从圆形区域边界上的F 点射出己知速度的偏向角不计离子重 3力。
求:(1)离子速度V 的人小;(2) 离子的比荷—;m解得爆=qUh mU 2 ~d~+ 2B 2d 2(3)离子在圆形磁场区域中运动时间仁(结果可含有根号和分式)【答案】(1)2000m/s;(2) 2xlO4C/kg;(3)6【解析】【详解】(1)离子在平行金属板之间做匀速直线运动,洛仑兹力与电场力相等,即:Boqv=qE解得:Ev =——=2000ni/s(2)在圆形磁场区域,离子做匀速圆周运动,轨迹如图所示由洛仑兹力公式和牛顿第二定律有:V" Bqv = m一由几何关系有:0 R tan —=—2 r离子的比荷为:-^ = 2xlO4C/kgm(3)弧CF对应圆心角为6离子在圆形磁场区域中运动时间匚解得:3. 如图所示,M 、N 为水平放置的两块平行金属板,板间距为L,两板间存在相互垂直的 匀强电场和匀强磁场,电势差为= -U o ,磁感应强度人小为—个带正电的粒子从 两板中点垂直于正交的电、磁场水平射入,沿直线通过金属板,并沿与必垂直的方向由d 点进入如图所示的区域(忽略电磁场的边缘效应).直线边界ab 及ac 在同一竖直平面 内,且沿ab 、ac 向下区域足够大,不计粒子重力,厶= 30。
高考物理速度选择器和回旋加速器解题技巧(超强)及练习题一、速度选择器和回旋加速器1.某一具有速度选择器的质谱仪原理如图所示,A 为粒子加速器,加速电压为U 1;B 为速度选择器,磁场与电场正交,电场方向向左,两板间的电势差为U 2,距离为d ;C 为偏转分离器,磁感应强度为B 2,方向垂直纸面向里。
今有一质量为m 、电荷量为e 的正粒子(初速度忽略,不计重力),经加速后,该粒子恰能通过速度选择器,粒子进入分离器后做匀速圆周运动,打在照相底片D 上。
求: (1)磁场B 1的大小和方向(2)现有大量的上述粒子进入加速器A ,但加速电压不稳定,在11U U -∆到11U U +∆范围内变化,可以通过调节速度选择器两板的电势差在一定范围内变化,使得加速后的不同速度的粒子都有机会进入C ,则打在照相底片D 上的宽度和速度选择器两板的电势差的变化范围。
【答案】(1)2112U mB dU e=2)()()11112222m U U m U U D B e e +∆-∆=,()11min 1U U U U U -∆=()11max 1U U U U U +∆=【解析】 【分析】 【详解】(1)在加速电场中2112U e mv =12U ev m=在速度选择器B 中21U eB v e d=得1B =根据左手定则可知方向垂直纸面向里;(2)由可得加速电压不稳后获得的速度在一个范围内变化,最小值为1v =112mv R eB =最大值为2v =222mv R eB =打在D 上的宽度为2122D R R =-22D B = 若要使不同速度的粒子都有机会通过速度选择器,则对速度为v 的粒子有1UeB v e d=得U=B 1vd代入B 1得2U U = 再代入v 的值可得电压的最小值min U U =最大值max U U =2.有一个正方体形的匀强磁场和匀强电场区域,它的截面为边长L =0.20m 的正方形,其电场强度为54.010E =⨯V/m ,磁感应强度22.010B -=⨯T ,磁场方向水平且垂直纸面向里,当一束质荷比为104.010mq-=⨯kg/C 的正离子流(其重力不计)以一定的速度从电磁场的正方体区域的左侧边界中点射入,如图所示。
高考物理高考物理速度选择器和回旋加速器解题技巧及经典题型及练习题一、速度选择器和回旋加速器1.某一具有速度选择器的质谱仪原理如图所示,A 为粒子加速器,加速电压为U 1;B 为速度选择器,磁场与电场正交,电场方向向左,两板间的电势差为U 2,距离为d ;C 为偏转分离器,磁感应强度为B 2,方向垂直纸面向里。
今有一质量为m 、电荷量为e 的正粒子(初速度忽略,不计重力),经加速后,该粒子恰能通过速度选择器,粒子进入分离器后做匀速圆周运动,打在照相底片D 上。
求: (1)磁场B 1的大小和方向(2)现有大量的上述粒子进入加速器A ,但加速电压不稳定,在11U U -∆到11U U +∆范围内变化,可以通过调节速度选择器两板的电势差在一定范围内变化,使得加速后的不同速度的粒子都有机会进入C ,则打在照相底片D 上的宽度和速度选择器两板的电势差的变化范围。
【答案】(1)2112U mB dU e=2)()()11112222m U U m U U D B e e +∆-∆=,()11min 1U U U U U -∆=()11max 1U U U U U +∆=【解析】 【分析】 【详解】(1)在加速电场中2112U e mv =12U ev m=在速度选择器B 中21U eB v e d=得1B =根据左手定则可知方向垂直纸面向里;(2)由可得加速电压不稳后获得的速度在一个范围内变化,最小值为1v =112mv R eB =最大值为2v =222mv R eB =打在D 上的宽度为2122D R R =-22D B = 若要使不同速度的粒子都有机会通过速度选择器,则对速度为v 的粒子有1UeB v e d=得U=B 1vd代入B 1得2U U = 再代入v 的值可得电压的最小值min U U =最大值max U U =2.如图所示,虚线O 1O 2是速度选择器的中线,其间匀强磁场的磁感应强度为B 1,匀强电场的场强为E (电场线没有画出)。
高考物理速度选择器和回旋加速器解题技巧及练习题含解析一、速度选择器和回旋加速器1.如图所示的直角坐标系xOy ,在其第二象限内有垂直纸面向里的匀强磁场和沿y 轴负方向的匀强电场。
虚线OA 位于第一象限,与y 轴正半轴的夹角θ=60°,在此角范围内有垂直纸面向外的匀强磁场;OA 与y 轴负半轴所夹空间里存在与OA 平行的匀强电场,电场强度大小E =10N/C 。
一比荷q =1×106C/kg 的带电粒子从第二象限内M 点以速度v =2.0×103m/s 沿x 轴正方向射出,M 点到x 轴距离d =1.0m ,粒子在第二象限内做直线运动;粒子进入第一象限后从直线OA 上的P 点(P 点图中未画出)离开磁场,且OP =d 。
不计粒子重力。
(1)求第二象限中电场强度和磁感应强度的比值0E B ;(2)求第一象限内磁场的磁感应强度大小B ;(3)粒子离开磁场后在电场中运动是否通过x 轴?如果通过x 轴,求其坐标;如果不通过x 轴,求粒子到x 轴的最小距离。
【答案】(1)32.010m/s ⨯;(2)3210T -⨯;(3)不会通过,0.2m 【解析】 【详解】(1)由题意可知,粒子在第二象限内做匀速直线运动,根据力的平衡有00qvB qE =解得302.010m/s E B =⨯ (2)粒子在第二象限的磁场中做匀速圆周运动,由题意可知圆周运动半径1.0m R d ==根据洛伦兹力提供向心力有2v qvB m R=解得磁感应强度大小3210T B -=⨯(3)粒子离开磁场时速度方向与直线OA 垂直,粒子在匀强电场中做曲线运动,粒子沿y 轴负方向做匀减速直线运动,粒子在P 点沿y 轴负方向的速度大小sin y v v θ=粒子在电场中沿y 轴方向的加速度大小cos yqE a mθ=设经过t ∆时间,粒子沿y 轴方向的速度大小为零,根据运动学公式有y yv t a ∆=t ∆时间内,粒子沿y 轴方向通过的位移大小2y v y t ∆=⋅∆联立解得0.3m y ∆=由于cos y d θ∆<故带电粒子离开磁场后不会通过x 轴,带电粒子到x 轴的最小距离cos 0.2m d d y θ'=-∆=2.如图所示,M 、N 为水平放置的两块平行金属板,板间距为L ,两板间存在相互垂直的匀强电场和匀强磁场,电势差为MN 0U U =-,磁感应强度大小为0B .一个带正电的粒子从两板中点垂直于正交的电、磁场水平射入,沿直线通过金属板,并沿与ab 垂直的方向由d 点进入如图所示的区域(忽略电磁场的边缘效应).直线边界ab 及ac 在同一竖直平面内,且沿ab 、ac 向下区域足够大,不计粒子重力,30a ∠=︒,求:(1)粒子射入金属板的速度大小;(2)若bac 区域仅存在垂直纸面向内的匀强磁场罗要使粒子不从ac 边界射出,设最小磁感应强度为B 1;若bac 区域内仅存在平行纸面且平行ab 方向向下的匀强电场,要使粒子不从ac 边射出,设最小电场强度为E 1.求B 1与E 1的比值为多少?【答案】(1)v =00U B L (2)01102B LB E U = 【解析】 【详解】(1)设带电粒子电荷量为q 、质量为m 、射入金属板速度为v ,粒子做直线运动时电场力与洛伦兹力平衡,根据平衡条件有:qvB 0= qE 0 ①E 0 =U L ② 解得:v =00U B L③(2)仅存在匀强磁场时,若带电粒子刚好不从ac 边射出,则其轨迹圆与ac 边相切,则11sin 30ad R s R =+︒④ qvB 1 =2v m R ⑤得:B 1=3admvqS ⑥ 仅存在匀强电场时,若粒子不从ac 边射出,则粒子到达边界线ac 且末速度也是与ac 边相切,即: x =vt ⑦ y =12at 2⑧ qE 1=ma ⑨tan30º=ad xS y + ⑩y v at = ⑾tan30º =yvv ⑿得:E 1=232admv qS ⒀ 所以:01102B L B E U = ⒁3.如图所示,两平行金属板相距为d ,板间电压为U .两板之间还存在匀强磁场,磁感应强度大小为B,方向垂直纸面向里.平行金属板的右侧存在有界匀强磁场区域Ⅰ和Ⅱ,其磁感应强度的大小分别为B和2B.三条磁场边界彼此平行且MN与PQ间的距离为L.一群质量不同、电荷量均为+q的粒子以一速度恰沿图中虚线OO'穿过平行金属板,然后垂直边界MN进入区域Ⅰ和Ⅱ,最后所有粒子均从A点上方(含A点)垂直于PQ穿出磁场.已知A点到OO'的距离为34L,不计粒子重力.求:(1)粒子在平行金属板中运动的速度大小;(2)从PQ穿出的粒子的最大质量和最小质量.【答案】(1)UvBd=(2)2max2536B qLdmU= ;2min23B qLdmU=【解析】【分析】(1)抓住带电粒子在平行金属板间做匀速直线运动,根据电场力和洛伦兹力相等求出粒子在平行金属板中运动的速度大小;(2)根据几何关系求出粒子在磁场中的最大半径和最小半径,结合半径公式求出粒子的最大质量和最小质量.【详解】(1) 带电粒子在平行金属板间做匀速直线运动,有:Uq qvBd=解得粒子在平行板中的运动速度v=U dB;(2) 由题意可知,根据mvrqB=知,质量越大,轨道半径越大,则质量最大的粒子从A点射出,如图由于左边磁场磁感应强度是右边磁感应强度的一半,则粒子在左边磁场中的半径是右边磁场半径的2倍,根据几何关系知,右边磁场的宽度是左边磁场宽度的2倍,有:123(1cos )(1cos )4r r L θθ-+-=r 1sinθ+r 2sinθ=L ,2112r r =联立解得cosθ=725,12536L r = 根据max 1m v r qB =得最大质量为:m max =22536B LdqU粒子在左边磁场中的最小半径为:r min =23L 根据min minm v r qB =得最小质量为:m min =223B Ldq U. 【点睛】本题考查了带电粒子在磁场中的运动,关键作出运动的轨迹,通过几何关系求出临界半径是解决本题的关键,该题有一定的难度,对学生数学几何能力要求较高.4.如图所示,两平行金属板水平放置,板间存在垂直纸面的匀强磁场和电场强度为E 的匀强电场。
高中物理速度选择器和回旋加速器技巧(很有用)及练习题一、速度选择器和回旋加速器1.某一具有速度选择器的质谱仪原理如图所示,A为粒子加速器,加速电压为U1;B为速度选择器,磁场与电场正交,电场方向向左,两板间的电势差为U2,距离为d;C为偏转分离器,磁感应强度为B2,方向垂直纸面向里。
今有一质量为m、电荷量为e的正粒子(初速度忽略,不计重力),经加速后,该粒子恰能通过速度选择器,粒子进入分离器后做匀速圆周运动,打在照相底片D上。
求:(1)磁场B1的大小和方向(2)现有大量的上述粒子进入加速器A,但加速电压不稳定,在11U U-∆到11U U+∆范围内变化,可以通过调节速度选择器两板的电势差在一定范围内变化,使得加速后的不同速度的粒子都有机会进入C,则打在照相底片D上的宽度和速度选择器两板的电势差的变化范围。
【答案】(1)2112U mBd U e=2)()()11112222m U U m U UDB e e+∆-∆=,()11min1U UU UU-∆=()11max1U UU UU+∆=]【解析】【分析】【详解】(1)在加速电场中2112U e mv=12U evm=在速度选择器B中21U eB v e d=\得1B =根据左手定则可知方向垂直纸面向里;(2)由可得加速电压不稳后获得的速度在一个范围内变化,最小值为1v =112mv R eB =最大值为2v =\ 222mv R eB =打在D 上的宽度为2122D R R =-22D B = 若要使不同速度的粒子都有机会通过速度选择器,则对速度为v 的粒子有1UeB v e d=得U=B 1vd【代入B1得2U U = 再代入v 的值可得电压的最小值min U U =最大值max U U =2.如图所示,虚线O1O2是速度选择器的中线,其间匀强磁场的磁感应强度为B1,匀强电场的场强为E(电场线没有画出)。
照相底片与虚线O1O2垂直,其右侧偏转磁场的磁感应强度为B2。
高中物理速度选择器和回旋加速器解题技巧及练习题及解析一、速度选择器和回旋加速器1.如图所示,虚线O 1O 2是速度选择器的中线,其间匀强磁场的磁感应强度为B 1,匀强电场的场强为E (电场线没有画出)。
照相底片与虚线O 1O 2垂直,其右侧偏转磁场的磁感应强度为B 2。
现有一个离子沿着虚线O 1O 2向右做匀速运动,穿过照相底片的小孔后在偏转磁场中做半径为R 的匀速圆周运动,最后垂直打在照相底片上(不计离子所受重力)。
(1)求该离子沿虚线运动的速度大小v ; (2)求该离子的比荷q m; (3)如果带电量都为q 的两种同位素离子,沿着虚线O 1O 2射入速度选择器,它们在照相底片的落点间距大小为d ,求这两种同位素离子的质量差△m 。
【答案】(1)1E v B =;(2)12q E m RB B =;(3)122B B qd m E∆=【解析】 【分析】 【详解】(1)离子沿虚线做匀速直线运动,合力为0Eq =B 1qv解得1Ev B =(2)在偏转磁场中做半径为R 的匀速圆周运动,所以22mv B qv R= 解得12q E m RB B = (3)设质量较小的离子质量为m 1,半径R 1;质量较大的离子质量为m 2,半径为R 2 根据题意R 2=R 1+2d 它们带电量相同,进入底片时速度都为v ,得2121mv B qv R =2222m v B qv R =联立得22121()B qm m m R R v∆=-=- 化简得122B B qdm E∆=2.边长L =0.20m的正方形区域内存在匀强磁场和匀强电场,其电场强度为E =1×104V/m ,磁感强度B =0.05T ,磁场方向垂直纸面向里,当一束质荷比为mq=5×10-8kg/C的正离子流,以一定的速度从电磁场的正方形区域的边界中点射入,离子流穿过电磁场区域而不发生偏转,如右图所示,不计正离子的重力,求: (1)电场强度的方向和离子流的速度大小(2)在离电磁场区域右边界D=0.4m 处有与边界平行的平直荧光屏.若撤去电场,离子流击中屏上a 点;若撤去磁场,离子流击中屏上b 点,则ab 间的距离是多少?.【答案】(1)竖直向下;52s 10m /⨯(2)1.34m 【解析】 【详解】(1)正离子经过正交场时竖直方向平衡,因洛伦兹力向上,可知电场力向下,则电场方向竖直向下; 由受力平衡得qE qvB =离子流的速度5210m /s Ev B==⨯ (2)撤去电场,离子在磁场中做匀速圆周运动,所需向心力由洛伦兹力提供,则有2v qvB m r=故0.2m mvr qB== 离子离开磁场后做匀速直线运动,作出离子的运动轨迹如图一所示图一由几何关系可得,圆心角60θ=︒1sin (0.60.13)m x L D R θ=+-=- 11tan (0.630.3)m=0.74m y x θ==-若撤去磁场,离子在电场中做类平抛运动,离开电场后做匀速直线运动,运动轨迹如图二所示图二通过电场的时间6110Lt s v-==⨯ 加速度11210m /s qEa m==⨯在电场中的偏移量210.1m2y at == 粒子恰好从电场右下角穿出电场,则tan 1y xv v α==由几何关系得20.4m y =a 和b 的距离()120.63-0.30.40.2m ab y y y L =++=++=1.34m3.如图所示为质谱仪的原理图,A 为粒子加速器,电压为1U ,B 为速度选择器,其内部匀强磁场与电场正交,磁感应强度为1B ,左右两板间距离为d ,C 为偏转分离器,内部匀强磁场的磁感应强度为2B ,今有一质量为m ,电量为q 且初速为0的带电粒子经加速器A 加速后,沿图示路径通过速度选择器B ,再进入分离器C 中的匀强磁场做匀速圆周运动,不计带电粒子的重力,试分析: (1)粒子带何种电荷;(2)粒子经加速器A 加速后所获得的速度v ; (3)速度选择器的电压2U ;(4)粒子在C 区域中做匀速圆周运动的半径R 。
高考物理速度选择器和回旋加速器解题技巧及练习题含解析一、速度选择器和回旋加速器1.如图所示,两平行金属板AB 中间有互相垂直的匀强电场和匀强磁场。
A 板带正电荷,B 板带等量负电荷,电场强度为E ;磁场方向垂直纸面向里,磁感应强度为B 1。
平行金属板右侧有一挡板M ,中间有小孔O ′,OO ′是平行于两金属板的中心线。
挡板右侧有垂直纸面向外的匀强磁场,磁感应强度为B 2,CD 为磁场B 2边界上的一绝缘板,它与M 板的夹角θ=45°,现有大量质量均为m ,电荷量为q 的带正电的粒子(不计重力),自O 点沿OO ′方向水平向右进入电磁场区域,其中有些粒子沿直线OO ′方向运动,通过小孔O ′进入匀强磁场B 2,如果这些粒子恰好以竖直向下的速度打在CD 板上的E 点(E 点未画出),求:(1)能进入匀强磁场B 2的带电粒子的初速度v ; (2)CE 的长度L(3)粒子在磁场B 2中的运动时间.【答案】(1)1 E B (2) 122mE qB B (3) 2m qB π 【解析】 【详解】(1)沿直线OO ′运动的带电粒子,设进入匀强磁场B 2的带电粒子的速度为v , 根据B 1qv =qE解得:v =1EB (2)粒子在磁感应强度为B 2磁场中做匀速圆周运动,故:22v qvB m r=解得:r =2mv qB =12mE qB B 该粒子恰好以竖直向下的速度打在CD 板上的E 点,CE 的长度为:L =45r sin o2r 122mE(3) 粒子做匀速圆周运动的周期2mT qBπ= 2t m qBπ=2.如图所示,竖直挡板MN 右侧空间存在相互垂直的匀强电场和匀强磁场,电场方向竖直向上,电场强度E =100N/C ,磁场方向垂直纸面向里,磁感应强度B =0.2T ,场中A 点与挡板的距离L =0.5m 。
某带电量q =+2.0×10-6C 的粒子从A 点以速度v 垂直射向挡板,恰能做匀速直线运动,打在挡板上的P 1点;如果仅撤去电场,保持磁场不变,该粒子仍从A 点以相同速度垂直射向挡板,粒子的运动轨迹与挡板MN 相切于P 2点,不计粒子所受重力。
求: (1)带电粒子的速度大小v ; (2)带电粒子的质量m 。
【答案】(1)500m/s v =;(2)104.010kg m -=⨯【解析】 【分析】 【详解】(1)正粒子在正交的电场和磁场中做匀速直线运动,则向上的电场力和向下的洛伦兹力平衡,有qE qvB =解得带电粒子的速度大小100m/s 500m/s 0.2E v B === (2)仅撤去电场保持磁场不变,带电粒子在磁场中做匀速圆周运动,有2v qvB m R=而粒子偏转90°,由几何关系可知0.5m R L ==联立可得带电粒子的质量6102100.20.5kg 4.010kg 500qBL m v --⨯⨯⨯===⨯3.如图所示:在两个水平平行金属极板间存在着向下的匀强电场和垂直纸面向里的匀强磁场,电场强度和磁感应强度的大小分别为E =1×103N/C 和B 1=0.02T ,极板长度L =0.4m ,间距足够大。
在极板的右侧还存在着另一圆形匀强磁场区域,磁场的方向垂直纸面向外,圆形磁场的圆心O 位于平行金属板的中线上,圆形磁场的半径R =0.6m 。
有一带正电的粒子以一定初速度v 0沿极板中线水平向右飞入极板间恰好做匀速直线运动,然后进入圆形匀强磁场区域,飞出后速度方向偏转了74°,不计粒子重力,粒子的比荷qm=3.125×106C/kg ,sin37°=0.6,cos37°=0.8,5≈2.24。
求: (1)粒子初速度v 0的大小;(2)圆形匀强磁场区域的磁感应强度B 2的大小;(3)在其他条件都不变的情况下,将极板间的磁场撤去,为使粒子飞出极板后不能进入圆形磁场,则圆形磁场的圆心O 离极板右边缘的水平距离d 应该满足的条件。
【答案】(1)v 0=5×104m/s ;(2)B 2=0.02T ;(3) 1.144m d ≥。
【解析】 【详解】(1)粒子在电场和磁场中匀速运动,洛伦兹力与电场力平衡qv 0B 1=Eq带电粒子初速度v 0=5×104m/s(2)带电粒子进入磁场后做匀速圆周运动,洛伦兹力充当向心力2002v qv B m r=轨迹如图所示:由几何关系,带电粒子做圆周运动的半径为40.8mtan 373R r R ===︒联立解得:B 2=0.02T(3)带电粒子在电场中做类平抛运动 水平方向0L v t =⋅竖直方向212y at =由牛顿第二定律qE ma =粒子飞出极板后不能进入圆形磁场即轨迹刚好与圆形磁场相切,如图所示:由几何关系 ,利用三角形相似,有:22()22L y y Rd +=+解得1.144m d =,若想带电粒子不能飞入圆形磁场,应满足 1.144m d ≥。
4.如图所示,M 、N 为水平放置的两块平行金属板,板间距为L ,两板间存在相互垂直的匀强电场和匀强磁场,电势差为MN 0U U =-,磁感应强度大小为0B .一个带正电的粒子从两板中点垂直于正交的电、磁场水平射入,沿直线通过金属板,并沿与ab 垂直的方向由d 点进入如图所示的区域(忽略电磁场的边缘效应).直线边界ab 及ac 在同一竖直平面内,且沿ab 、ac 向下区域足够大,不计粒子重力,30a ∠=︒,求:(1)粒子射入金属板的速度大小;(2)若bac 区域仅存在垂直纸面向内的匀强磁场罗要使粒子不从ac 边界射出,设最小磁感应强度为B 1;若bac 区域内仅存在平行纸面且平行ab 方向向下的匀强电场,要使粒子不从ac 边射出,设最小电场强度为E 1.求B 1与E 1的比值为多少?【答案】(1)v =00U B L (2)01102B LB E U = 【解析】 【详解】(1)设带电粒子电荷量为q 、质量为m 、射入金属板速度为v ,粒子做直线运动时电场力与洛伦兹力平衡,根据平衡条件有:qvB 0= qE 0 ① E 0 =U L② 解得:v =0U B L③ (2)仅存在匀强磁场时,若带电粒子刚好不从ac 边射出,则其轨迹圆与ac 边相切,则11sin 30ad R s R =+︒④ qvB 1 =2v m R⑤得:B 1=3admvqS ⑥ 仅存在匀强电场时,若粒子不从ac 边射出,则粒子到达边界线ac 且末速度也是与ac 边相切,即: x =vt ⑦ y =12at 2⑧ qE 1=ma ⑨tan30º=ad xS y + ⑩y v at = ⑾tan30º =yvv ⑿得:E 1=232admv qS ⒀ 所以:01102B L B E U = ⒁5.如图,平行金属板的两极板之间的距离为d ,电压为U 。
两极板之间有一匀强磁场,磁感应强度大小为B 0,方向与金属板面平行且垂直于纸面向里。
两极板上方一半径为R 、圆心为O 的圆形区域内也存在匀强磁场,磁感应强度大小为B ,方向垂直于纸面向里。
一带正电的粒子从A 点以某一初速度沿平行于金属板面且垂直于磁场的方向射入两极板间,而后沿直径CD 方向射入圆形磁场区域,并从边界上的F 点射出。
已知粒子在圆形磁场区域运动过程中的速度偏转角23πθ=,不计粒子重力。
求:(1)粒子初速度v 的大小; (2)粒子的比荷。
【答案】(1)v = o U B d (2)3o q U m = 【解析】 【详解】(1)粒子在平行金属板之间做匀速直线运动 qvB 0 = qE ① U = Ed ② 由①②式得v =o UB d③ (2)在圆形磁场区域,粒子做匀速圆周运动,由牛顿第二定律有2v qvB m r= ④由几何关系有:tan2Rrθ=⑤ 由③④⑤式得:3o q Um =⑥6.在图所示的平行板器件中,电场强度和磁感应强度相互垂直.具有某一水平速度的带电粒子,将沿着图中所示的虚线穿过两板间的空间而不发生偏转,具有其他速度的带电粒子将发生偏转.这种器件能把具有某一特定速度的带电粒子选择出来,叫作速度选择器.已知粒子A (重力不计)的质量为m,带电量为+q ;两极板间距为d ;电场强度大小为E ,磁感应强度大小为B .求:(1)带电粒子A 从图中左端应以多大速度才能沿着图示虚线通过速度选择器?(2)若带电粒子A 的反粒子(-q, m)从图中左端以速度E/B 水平入射,还能沿直线从右端穿出吗?为什么?(3)若带电粒子A 从图中右端两极板中央以速度E/B 水平入射,判断粒子A 是否能沿虚线从左端穿出,并说明理由.若不能穿出而打在极板上.请求出粒子A 到达极板时的动能? 【答案】(1) E/B (2) 仍能直线从右端穿出,由(1)可知,选择器(B, E)给定时,与粒子的电性、电量无关.只与速度有关 (3) 不可能, 2122E Eqdm B ⎛⎫+ ⎪⎝⎭【解析】试题分析:,电场的方向与B 的方向垂直,带电粒子进入复合场,受电场力和安培力,且二力是平衡力,即Eq =qvB ,即可解得速度.仍能直线从右端穿出,由(1)可知,选择器(B, E)给定时,与粒子的电性、电量无关.只与速度有关.(1) 带电粒子在电磁场中受到电场力和洛伦兹力(不计重力),当沿虚线作匀速直线运动时,两个力平衡,即Eq =Bqv 解得:Ev B=(2)仍能直线从右端穿出,由(1)可知,选择器(B, E)给定时,与粒子的电性、电量无关.只与速度有关.(3)设粒子A 在选择器的右端入射是速度大小为v ,电场力与洛伦兹力同方向,因此不可能直线从左端穿出,一定偏向极板.设粒子打在极板上是的速度大小为v ′. 由动能定理得:22111222Eqd mv mv '=- 因为 E=Bv联立可得粒子A 到达极板时的动能为:2122k E EqdE m B ⎛⎫=+ ⎪⎝⎭点睛:本题主要考查了从速度选择器出来的粒子电场力和洛伦兹力相等,粒子的速度相同,速度选择器只选择速度,不选择电量与电性,同时要结合功能关系分析.7.如图所示,两平行金属板相距为d ,板间电压为U .两板之间还存在匀强磁场,磁感应强度大小为B ,方向垂直纸面向里.平行金属板的右侧存在有界匀强磁场区域Ⅰ和Ⅱ,其磁感应强度的大小分别为B 和2B .三条磁场边界彼此平行且MN 与PQ 间的距离为L .一群质量不同、电荷量均为+q 的粒子以一速度恰沿图中虚线OO '穿过平行金属板,然后垂直边界MN 进入区域Ⅰ和Ⅱ,最后所有粒子均从A 点上方(含A 点)垂直于PQ 穿出磁场.已知A 点到OO '的距离为34L,不计粒子重力.求:(1)粒子在平行金属板中运动的速度大小; (2)从PQ 穿出的粒子的最大质量和最小质量.【答案】(1)U v Bd= (2)2max 2536B qLd m U = ; 2min 23B qLdm U =【解析】 【分析】(1)抓住带电粒子在平行金属板间做匀速直线运动,根据电场力和洛伦兹力相等求出粒子在平行金属板中运动的速度大小;(2)根据几何关系求出粒子在磁场中的最大半径和最小半径,结合半径公式求出粒子的最大质量和最小质量. 【详解】(1) 带电粒子在平行金属板间做匀速直线运动,有:UqqvB d= 解得粒子在平行板中的运动速度v=U dB; (2) 由题意可知,根据mvr qB=知,质量越大,轨道半径越大,则质量最大的粒子从A 点射出,如图由于左边磁场磁感应强度是右边磁感应强度的一半,则粒子在左边磁场中的半径是右边磁场半径的2倍,根据几何关系知,右边磁场的宽度是左边磁场宽度的2倍,有:123(1cos )(1cos )4r r L θθ-+-=r 1sinθ+r 2sinθ=L ,2112r r =联立解得cosθ=725,12536L r = 根据max 1m v r qB =得最大质量为:m max =22536B LdqU粒子在左边磁场中的最小半径为:r min =23L根据min minm v r qB 得最小质量为:m min =223B Ldq U. 【点睛】本题考查了带电粒子在磁场中的运动,关键作出运动的轨迹,通过几何关系求出临界半径是解决本题的关键,该题有一定的难度,对学生数学几何能力要求较高.8.如图所示,在两个水平平行金属极板间存在着竖直向下的匀强电场和垂直于纸面向里的匀强磁场,电场强度和磁感应强度的大小分别为E=2×106N/C 和B 1=0.1T ,极板的长度,间距足够大.在板的右侧还存在着另一圆形区域的匀强磁场,磁场的方向为垂直于纸面向外,圆形区域的圆心O 位于平行金属极板的中线上,圆形区域的半径。