人教版2020版七年级下学期期末数学试题(I)卷(模拟)
- 格式:doc
- 大小:179.50 KB
- 文档页数:7
人教版七年级下数学期末模拟提优练试题一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)下列实数中,有理数是()A.B.0.1010010001C.D.2.(3分)下列调查适合抽样调查的是()A.审核书稿中的错别字B.对某社区的卫生死角进行调查C.对八名同学的身高情况进行调查D.对中学生目前的睡眠情况进行调查3.(3分)如图所示,能判定直线AB∥CD的条件是()A.∠1=∠2B.∠3=∠4C.∠1+∠4=180°D.∠3+∠4=90°4.(3分)如图,将北京市地铁部分线路图置于正方形网格中,若设定崇文门站的坐标为(0,﹣1),雍和宫站的坐标为(0,4),则西单站的坐标为()A.(0,5)B.(5,0)C.(0,﹣5)D.(﹣5,0)5.(3分)若m>n,下列不等式不一定成立的是()A.m+2>n+2B.2m>2n C.>D.m2>n26.(3分)观察市统计局公布的“十五”时期重庆市农村居民人均收入每年比上一年增长率的统计图,下列说法正确的是()A.2003年农村居民人均收入低于2002年B.农村居民人均收入比上年增长率低于9%的有2年C.农村居民人均收入最多时2004年D.农村居民人均收入每年比上一年的增长率有大有小,但农村居民人均收入在持续增加7.(3分)下列运算中,正确的是()A.=24B.=C.﹣=﹣D.=±28.(3分)一根直尺和一块含有30°角的直角三角板如图所示放置,已知直尺的两条长边互相平行,若∠1=25°,则∠2等于()A.25°B.35°C.45°D.65°9.(3分)若不等式组有解,则a的取值范围是()A.a≤3B.a<3C.a<2D.a≤210.(3分)在平面直角坐标系中,一动点从原点出发按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位,其移动的路线如图所示,则该动点移动到点A100时的坐标是()A.(49,0)B.(49,1)C.(50,0)D.(50,1)二、填空题(本小题共8小题,每小题3分,共24分)11.(3分)4的平方根是.12.(3分)用不等式表示“比x的5倍大1的数不小于4”:.13.(3分)已知是二元一次方程ax﹣2y=4的一个解,则a的值是.14.(3分)化简:||=.15.(3分)如图,将一个长方形条折成如图所示的形状,若已知∠1=100°,则∠2=°.16.(3分)有甲、乙两个牧童,甲对乙说:“把你的羊给我1只,我的羊数就是你的羊数的2倍”.乙回答说:“最好还是把你的羊给我1只,我们的羊数就一样了.”问:两个牧童各有多少只羊?设甲牧童有x只羊,乙牧童有y只羊,可列方程组为.17.(3分)已知AB∥y轴,点A的坐标为(﹣2,3),且AB=3,则点B的坐标为.18.(3分)已知实数x,y同时满足三个条件:①3x﹣2y=4+p;②3y﹣2x=2﹣p;③x>y,那么实数p的取值范围是.三、解答题(本题共46分)19.(6分)解方程组:.20.(7分)解不等式组:并把它的解集在所给数轴上表示出来.21.(8分)如图,在由边长为1的小正方形组成的网格图中建立平面直角坐标系.(1)直接写出点D的坐标(,);(2)平移△ABC,使得点A与点D重合,请在坐标系中画出平移后的三角形,记为△DB1C1(其中B、C的对应点分别是B1、C1);(3)若P1(a,b)在线段DB1上,则其平移前的对应点P的坐标为(,).22.(6分)完成下面填空.已知:如图,AE平分∠BAD,AB∥CD,CD与AE相交于点F,∠CFE=∠E,求证:AD∥BC证明:∵AB∥CD(已知)∴∠1=∠(两直线平行,同位角相等)∵AE平分∠BAD(已知)∴∠1=∠(角平分线定义)又∵∠CFE=∠E(已知)∴∠=∠E(等量代换)∴AD∥BC()23.(9分)今年央视举办的“经典咏流传”节目受到中学生的广泛关注,某中学为了了解学生对观看“经典咏流传”节目的喜爱程度,对该校部分学生进行了随机抽样调查,并绘制了如下所示的两幅统计图.在条形统计图中,从左往右依次为A类(非常喜欢),B 类(较喜欢),C类(一般),D类(不喜欢),已知A类和B类所占人数比是5:9,请结合两幅统计图,回答下列问题:(1)此次抽样调查的样本容量是:.(2)请补全两幅统计图:并计算扇形统计图“D类(不喜欢)”部分的圆心角度数;(3)该校有2000名学生,请你估计对观看“经典咏流传”节目较喜欢的学生人数.24.(10分)某水果商从批发市场用8000元购进了大樱桃和小樱桃各200千克,大樱桃的进价比小樱桃的进价每千克多20元.大樱桃售价为每千克40元,小樱桃售价为每千克16元.(1)大樱桃和小樱桃的进价分别是每千克多少元?销售完后,该水果商共赚了多少元钱?(2)该水果商第二次仍用8000元钱从批发市场购进了大樱桃和小樱桃各200千克,进价不变,但在运输过程中小樱桃损耗了20%.若小樱桃的售价不变,要想让第二次赚的钱不少于第一次所赚钱的90%,大樱桃的售价最少应为多少?参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.【分析】依据实数的分类进行判断即可.【解答】解:是开方开不尽的数,是无理数;0.1010010001是有限小数,是有理数;是开方开不尽的数,是无理数;是无理数.故选:B.【点评】本题主要考查的是实数的概念,熟练掌握实数的定义是解题的关键.2.【分析】一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.【解答】解:A、审核书稿中的错别字,必须准确,故必须普查;B、此种情况数量不是很大,故必须普查;C、人数不多,容易调查,适合普查;D、中学生的人数比较多,适合采取抽样调查;故选:D.【点评】本题考查了全面调查与抽样调查的应用,一般由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.3.【分析】依据平行线的三条判定定理,进行判断.【解答】解:A、B、∠1与∠2,∠3与∠4都不是直线AB与CD形成的同位角,所以不能判断直线AB∥CD,故错误;C、根据对顶角相等,可得∠1=∠5,∠4=∠6,又∠1+∠4=180°,∴∠5+∠6=180°,根据同旁内角互补,两直线平行可得AB∥CD,故正确;D、∠3+∠4=90°,不符合平行线的判断条件,所以不能判断直线AB∥CD,故错误;故选:C.【点评】正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,不能遇到相等或互补关系的角就误认为具有平行关系,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.4.【分析】首先利用已知点确定原点位置,进而得出答案.【解答】解:如图所示:西单站的坐标为:(﹣5,0).故选:D.【点评】此题主要考查了坐标确定位置,正确得出原点位置是解题关键.5.【分析】根据不等式的性质1,可判断A;根据不等式的性质2,可判断B、C;根据不等式的性质3,可判断D.【解答】解:A、不等式的两边都加2,不等号的方向不变,故A正确;B、不等式的两边都乘以2,不等号的方向不变,故B正确;C、不等式的两条边都除以2,不等号的方向不变,故C正确;D、当0>m>n时,不等式的两边都乘以负数,不等号的方向改变,故D错误;故选:D.【点评】本题考查了不等式的性质,.“0”是很特殊的一个数,因此,解答不等式的问题时,应密切关注“0”存在与否,以防掉进“0”的陷阱.不等式的基本性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变6.【分析】解决本题需要从统计图获取信息,由此关键是明确图表中数据的来源及所表示的意义,对选项一一分析,选择正确答案.【解答】解:A、2003年农村居民人均收入每年比上一年增长率低于2002年,但是,人均收入仍是增长,所以A错误;B、农村居民人均收入比上年增长率低于9%的有3年,所以B错误;C、农村居民人均收入比上年增长率最多时2004年,所以C错误;D、农村居民人均收入每年比上一年的增长率有大有小,但都在增长,故D正确.故选:D.【点评】本题考查的是折线统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.注意读图获取信息、分析问题解决问题的能力.7.【分析】依据算术平方根的性质、立方根的性质求解即可.【解答】解:==4,故A错误;=,3==,故B错误;﹣=﹣,故C正确;=2,故D错误.故选:C.【点评】本题主要考查的是立方根、平方根、算术平方根的概念,熟练掌握相关概念是解题的关键.8.【分析】根据平行线性质得出∠1=∠NFE=25°,∠2=∠NFG,求出∠EFG,即可求出答案.【解答】解:过F作FN∥AD,∵BC∥AD,∴BC∥AD∥FN,∴∠1=∠NFE=35°,∠2=∠NFG,∵∠G=90°,∠E=30°,∴∠EFG=60°,∴∠2=60°﹣25°=35°,故选:B.【点评】本题考查了平行线性质,三角形内角和定理的应用,关键是根据平行线性质得出∠1=∠NFE=25°,∠2=∠NFG.9.【分析】先求出不等式的解集,再根据不等式组有解即可得到关于a的不等式,求出a 的取值范围即可.【解答】解:,由①得,x>a﹣1;由②得,x≤2,∵此不等式组有解,∴a﹣1<2,解得a<3.故选:B.【点评】本题考查的是解一元一次不等式组,熟知同大取大;同小取小;大小小大中间找;大大小小找不到的原则是解答此题的关键.10.【分析】根据点A1、A2、A3、A4、A5、A6、A7、A8、…的坐标的变化,可找出A4n(2n,0)(n为正整数),再结合100=4×25,即可得出A100的坐标.【解答】解:∵A1(0,1),A2(1,1),A3(1,0),A4(2,0),A5(2,1),A6(3,1),A7(3,0),A8(4,0),…,∴A4n(2n,0)(n为正整数).∵100=4×25,∴A100的坐标为(50,0).故选:C.【点评】本题考查了规律型中点的坐标,根据点的坐标的变化找出变化规律“A4n(2n,0)(n为正整数)”是解题的关键.二、填空题(本小题共8小题,每小题3分,共24分)11.【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【解答】解:∵(±2)2=4,∴4的平方根是±2.故答案为:±2.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.12.【分析】理解:不小于4就是大于等于4.【解答】解:由题意可知5x+1≥4.故答案是:5x+1≥4.【点评】考查了由实际问题抽象出一元一次不等式.要抓住关键词语,弄清不等关系,把文字语言的不等关系转化为用数学符号表示的不等式.13.【分析】将x与y的值代入方程即可求出a的值.【解答】解:将x=2,y=2代入方程得:2a﹣4=4,解得:a=4.故答案为:4【点评】此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.14.【分析】要先判断出<0,再根据绝对值的定义即可求解.【解答】解:∵<0∴||=2﹣.故答案为:2﹣.【点评】此题主要考查了绝对值的性质.要注意负数的绝对值是它的相反数.15.【分析】根据平行线的性质,即可得到∠3的度数,再根据平角的定义以及折叠的性质,即可得到∠2的度数.【解答】解:根据长方形的对边平行,可得∠1+∠3=180°,∵∠1=100°,∴∠3=80°,由折叠可得,∠2=∠4=(180°﹣80°)=50°,故答案为:50【点评】本题主要考查了平行线的性质以及折叠的性质,解题时注意:两直线平行,同旁内角互补.16.【分析】设甲牧童有x只羊,乙牧童有y只羊,根据题意列出方程组解答即可.【解答】解:设甲牧童有x只羊,乙牧童有y只羊,可得:,故答案为:,【点评】此题考查二元一次方程组的应用,解答此题的关键是弄清题意,设出未知数,再根据数量关系列出方程组解决问题.17.【分析】根据平行于y轴的点的横坐标相同可得点B的横坐标,再分点B在点A的上方与下方两种情况讨论求解.【解答】解:∵AB∥y轴,点A的坐标为(﹣2,3),∴点B的横坐标为﹣2,∵AB=3,∴点B在点A的上方时,点B的纵坐标为6,点B的坐标为(﹣2,6),点B在点A的下方时,点B的纵坐标为0,点B的坐标为(﹣2,0),综上所述,点B的坐标为(﹣2,6)或(﹣2,0)故答案为:(﹣2,6)或(﹣2,0)【点评】本题考查了坐标与图形性质,主要利用了平行于y轴的点的横坐标相同的性质,要注意分情况讨论,作出图形更形象直观.18.【分析】首先根据:①3x﹣2y=4+p,②3y﹣2x=2﹣p,用p表示出x、y;然后根据x >y,求出实数p的取值范围是多少即可.【解答】解:①×2+②×3,可得:5y=14﹣p,解得y=2.8﹣0.2p③,把③代入①,解得x=3.2+0.2p,∵x>y,∴3.2+0.2p>2.8﹣0.2p,解得p>﹣1.故答案为:p>﹣1.【点评】此题主要考查了不等式的基本性质:(1)不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;(2)不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变;(3)不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变.三、解答题(本题共46分)19.【分析】利用加减消元法求解可得.【解答】解:①+②×5,得:44y=660,解得:y=15,将y=15代入①,得:5x﹣15=110,解得:x=25,所以方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.20.【分析】分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.【解答】解:解不等式①,得:x≥1,解不等式②,得:x<4,所以不等式组的解集为1≤x<4,将解集表示在数轴上如下:【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的法则是解答此题的关键.21.【分析】(1)直接利用平面直角坐标系得出D点坐标;(2)利用D点平移规律得出各对应点位置进而得出答案;(3)利用平移规律得出P点坐标.【解答】解:(1)点D的坐标为:(﹣2,3);故答案为:﹣2,3;(2)如图所示:△DB1C1即为所求;(3)P1(a,b)在线段DB1上,则其平移前的对应点P的坐标为:(a+3,b﹣2).故答案为:a+3,b﹣2.【点评】此题主要考查了平移变换,正确得出点的平移规律是解题关键.22.【分析】由AB与CD平行,利用两直线平行内错角相等得到一对角相等,再由AE为角平分线得到一对角相等,等量代换得到一对内错角相等,利用内错角相等两直线平行即可得证.【解答】证明:∵AB∥DC(已知),∴∠1=∠CFE(两直线平行,同位角相等).∵AE平分∠BAD(已知),∴∠1=∠2(角平分线的定义),∴∠CFE=∠2(等量代换).∵∠CFE=∠E(已知),∴∠2=∠E(等量代换),∴AD∥BC(内错角相等,两直线平行).故答案为:∠CFE;∠2;∠2;内错角相等,两直线平行.【点评】此题考查了平行线的判定与性质,熟练掌握平行线的判定与性质是解本题的关键.23.【分析】(1)根据统计图中的数据可以求得此次抽样调查的样本容量;(2)根据统计图中的数据可以求得选择C和D的人数,B和D所占的百分比从而可以将统计图补充完整,并求得扇形统计图“D类(不喜欢)”部分的圆心角度数;(3)根据统计图的数据可以求得对观看“经典咏流传”节目较喜欢的学生有多少人.【解答】解:(1)此次抽样调查的样本容量是:20÷20%=100,故答案为:100;(2)选择C的有:100×19%=19人,选择D的有:100﹣20﹣36﹣19=25人,B所占的百分比是:36÷100×100%=36%,D所占的百分比是:25÷100×100%=25%,补全的统计图如右图所示,扇形统计图“D类(不喜欢)”部分的圆心角度数是:360°×25%=90°;(4)2000×36%=720(人),答:对观看“经典咏流传”节目较喜欢的学生有720人.【点评】本题考查条形统计图、扇形统计图、用样本估计总体、样本容量,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.24.【分析】(1)根据用8000元购进了大樱桃和小樱桃各200千克,以及大樱桃的进价比小樱桃的进价每千克多20元,分别得出等式求出答案;(2)根据要想让第二次赚的钱不少于第一次所赚钱的90%,得出不等式求出答案.【解答】解:(1)设小樱桃的进价为每千克x元,大樱桃的进价为每千克y元,根据题意可得:,解得:,小樱桃的进价为每千克10元,大樱桃的进价为每千克30元,200×[(40﹣30)+(16﹣10)]=3200(元),∴销售完后,该水果商共赚了3200元;(2)设大樱桃的售价为a元/千克,(1﹣20%)×200×16+200a﹣8000≥3200×90%,解得:a≥41.6,答:大樱桃的售价最少应为41.6元/千克.【点评】此题主要考查了二元一次方程组的应用以及一元一次不等式的应用,正确表示出总费用是解题关键.一、七年级数学易错题1.如图,在直角坐标系中,已知点()()3,0,0,4A B -,对OAB ∆连续作旋转变换,,依次得到1,2,3,4?·····∆∆∆∆则2013∆的直角顶点的坐标为( )A .()8052,0B .()8040,0C .()8049,0D .()8048,0【答案】A 【解析】 【分析】根据勾股定理列式求出AB 的长,再根据第四个三角形与第一个三角形的位置相同可知每三个三角形为一个循环组依次循环,然后求出一个循环组旋转前进的长度,再用2013除以3,根据商为671可知第2013个三角形的直角顶点为循环组的最后一个三角形的顶点,求出即可. 【详解】解:∵点A (-3,0)、B (0,4), ∴22345AB +=,由图可知,每三个三角形为一个循环组依次循环,一个循环组前进的长度为:4+5+3=12, ∵2013÷3=671,∴△2013的直角顶点是第671个循环组的最后一个三角形的直角顶点, ∵671×12=8052,∴△2013的直角顶点的坐标为(8052,0). 故选:A .【点睛】本题考查点的坐标变化规律,注意观察图形,得到每三个三角形为一个循环组依次循环是解题的关键.2.如图,直线AB、CD相交于点E,DF∥AB.若∠AEC=100°,则∠D等于()A.70°B.80°C.90°D.100°【答案】B【解析】因为AB∥DF,所以∠D+∠DEB=180°,因为∠DEB与∠AEC是对顶角,所以∠DEB=100°,所以∠D=180°﹣∠DEB=80°.故选B.3.如图,在平面直角坐标系中,已知点A(1,0),B(1﹣a,0),C(1+a,0)(a>0),点P在以D(4,4)为圆心,1为半径的圆上运动,且始终满足∠BPC=90°,则a的最大值是()A.3B.4C.5D.6【答案】D【解析】【分析】首先证明AB=AC=a,根据条件可知PA=AB=AC=a,求出⊙D上到点A的最大距离即可解决问题.【详解】∵A(1,0),B(1-a,0),C(1+a,0)(a>0),∴AB=1-(1-a)=a,CA=a+1-1=a,∴AB=AC,∵∠BPC=90°,∴PA=AB=AC=a,如图延长AD 交⊙D 于P′,此时AP′最大,∵A (1,0),D (4,4), ∴AD=5, ∴AP′=5+1=6, ∴a 的最大值为6. 故选D . 【点睛】本题考查圆、最值问题、直角三角形性质等知识,解题的关键是发现PA=AB=AC=a ,求出点P 到点A 的最大距离即可解决问题,属于中考常考题型.4.已知关于x 、y 的方程组22331x y kx y k +=⎧⎨+=-⎩以下结论:①当0k =时,方程组的解也是方程24-=-x y 的解;②存在实数k ,使得0x y +=;③当1y x ->-时,1k >;④不论k 取什么实数,3x y +的值始终不变,其中正确的是( ) A .①②③ B .①②④C .①③④D .②③④【答案】B 【解析】 【分析】①把k=0代入方程组求出解,代入方程检验即可;②方程组消元k 得到x 与y 的方程,检验即可;③表示出y-x ,代入已知不等式求出k 的范围,判断即可;④方程组整理后表示出x+3y ,检验即可. 【详解】解:①把k=0代入方程组得:20231x y x y +=⎧⎨+=-⎩,解得:21x y =-⎧⎨=⎩, 代入方程得:左边=-2-2=-4,右边=-4,左边=右边,此选项正确; ②由x+y=0,得到y=-x ,代入方程组得:31x kx k -=⎧⎨-=-⎩,即k=3k-1,解得:12k =, 则存在实数12k =,使x+y=0,本选项正确;③22331x y k x y k +=⎧⎨+=-⎩,解不等式组得:321x k y k=-⎧⎨=-⎩,∵1y x ->-, ∴1(32)1k k --->-, 解得:1k <,此选项错误; ④x+3y=3k-2+3-3k=1,本选项正确; ∴正确的选项是①②④; 故选:B. 【点睛】此题考查了二元一次方程组的解以及解二元一次方程组熟练掌握运算法则是解本题的关键.5.如下图,下列条件中:①∠B+∠BCD=180°;②∠1=∠2;③∠3=∠4;④∠B=∠5,能判定AB ∥CD 的条件为( )A .①②③④B .①②④C .①③④D .①②③【答案】C 【解析】 【分析】 【详解】解:①∵∠B+∠BCD=180°, ∴AB ∥CD ; ②∵∠1=∠2, ∴AD ∥BC ; ③∵∠3=∠4, ∴AB ∥CD ; ④∵∠B=∠5, ∴AB ∥CD ;∴能得到AB ∥CD 的条件是①③④. 故选C . 【点睛】此题主要考查了平行线的判定,解题关键是合理利用平行线的判定,确定同位角、内错角、同旁内角. 平行线的判定:同旁内角互补,两直线平行;内错角相等,两直线平行; 同位角相等,两直线平行.6.已知方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是34x y =⎧⎨=⎩,则方程组111222325325a x b y c a x b y c +=⎧⎨+=⎩的解是( ) A .12x y =⎧⎨=⎩ B .34x y =⎧⎨=⎩C .10103x y =⎧⎪⎨=⎪⎩D .510x y =⎧⎨=⎩【答案】D 【解析】 【分析】 将方程组变形,设32,55x y m n ==,结合题意得出m=3,n=4,即可求出x ,y 的值. 【详解】 解:方程组111222325325a x b y c a x b y c +=⎧⎨+=⎩可以变形为:方程组11122232··5532··55xy a b c x y a b c ⎧+=⎪⎪⎨⎪+=⎪⎩ 设32,55x ym n ==, 则方程组可变为111222····a m b n c a m b n c +=⎧⎨+=⎩, ∵方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是34x y =⎧⎨=⎩, ∴方程组111222····a m b n c a m b n c +=⎧⎨+=⎩的解是34m n =⎧⎨=⎩, ∴323,455x y ==,解得:x=5,y=10, 故选:D . 【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.弄清题意是解本题的关键.7.如图所示,在平面直角坐标系中,有若干个点按如下规律排列:(1,1),(2,1),(2,2),(3,1),(3,2),(3,3),…,则第100个点的横坐标为()A.12 B.13 C.14 D.15【答案】C【解析】【分析】设横坐标为n的点的个数为a n,横坐标≤n的点的个数为S n(n为正整数),结合图形找出部分a n的值,根据数值的变化找出变化规律“a n=n”,再罗列出部分S n的值,根据数值的变化找出变化规律()12nn nS+=,依次变化规律解不等式()11002n n+≥即可得出结论.【详解】设横坐标为n的点的个数为a n,横坐标≤n的点的个数为S n(n为正整数),观察,发现规律:a1=1,a2=2,a3=3,…,∴a n=n.S1=a1=1,S2=a1+a2=3,S3=a1+a2+a3=6,…,∴S n=1+2+…+n=()12n n+.当100≤S n,即100≤()12n n+,解得:12201n+≤﹣(舍去),或2201n≥﹣1.∵220114﹣113<,故选:C.【点睛】本题考查了规律型中得点的坐标的变化,解题的关键是根据点的坐标的找出变化规律“()12nn nS+=”.8.已知点A(3a,2b)在x轴上方,在y轴左侧,则点A到x轴、y的距离分别为() A.3a,-2b B.-3a,2b C.2b,-3a D.-2b,3a【答案】C【解析】【分析】应先判断出点A的横纵坐标的符号,进而判断点A到x轴、y轴的距离.【详解】∵点A(3a,2b)在x轴上方,∴点A的纵坐标大于0,得到2b>0,∴点A到x轴的距离是2b;∵点A(3a,2b)在y轴的左边,∴点A的横坐标小于0,即3a<0,∴点A到y轴的距离是-3a;故答案为C.【点睛】本题主要考查点的坐标的几何意义,到x轴的距离就是纵坐标的绝对值,到y轴的距离就是横坐标的绝对值.9.某瓶中装有1分,2分,5分三种硬币,15枚硬币共3角5分,则有多少种装法( ) A.1. B.2. C.3. D.4.【答案】C【解析】【分析】【详解】解:设1分的硬币有x枚,2分的硬币有y枚,则5分的硬币有(15-x-y)枚,可得方程x+2y+5(15-x-y)=35,整理得4x+3y=40,即x=10-34 y,因为x ,y 都是正整数,所以y=4或8或12,所以有3种装法,故选C.10.现有如图(1)的小长方形纸片若干块,已知小长方形的长为a ,宽为b .用3个如图(2)的全等图形和8个如图(1)的小长方形,拼成如图(3)的大长方形,若大长方形的宽为30cm ,则图(3)中阴影部分面积与整个图形的面积之比为( )A .15B .16C .17D .18【答案】B【解析】【分析】观察图③可知3个小长方形的宽与1个小长方形的长的和等于大长方形的宽,小长方形的4个长等于小长方形的3个长与3个宽的和,可列出关于a ,b 的方程组,解方程组得出a ,b 的值;利用a ,b 的值分别求得阴影部分面积与整个图形的面积,即可求得影部分面积与整个图形的面积之比.【详解】解:根据题意、结合图形可得:330433a b a a b +=⎧⎨=+⎩, 解得:155a b =⎧⎨=⎩, ∴阴影部分面积223()310300=-=⨯=a b ,整个图形的面积304304151800=⨯=⨯⨯=a , ∴阴影部分面积与整个图形的面积之比300118006==, 故选B .【点睛】本题考查了二元一次方程组的应用,理解题意并利用大长方形的长与宽和小长方形的关系建立二元一次方程组是解题的关键.11.如果关于x 的不等式组02443x m x x -⎧>⎪⎪⎨-⎪-<-⎪⎩的解集为4x >,且整数m 使得关于x y 、的二元一次方程组831mx y x y +=⎧⎨+=⎩的解为整数(x y 、均为整数),则符合条件的所有整数m 的和是( )A .2-B .2C .6D .10【答案】B【解析】【分析】 根据不等式组求得m ≤4,再解方程组求出732113x m y m ⎧=⎪⎪-⎨⎪=-⎪-⎩,根据x y 、均为整数得到整数m=4、2、-4,即可得到答案.【详解】 解不等式02x m ->得x m >, 解不等式443x x --<-得4x >, ∴m ≤4, 解方程组831mx y x y +=⎧⎨+=⎩得732113x m y m ⎧=⎪⎪-⎨⎪=-⎪-⎩, ∵x y 、均为整数,m-3是7的因数,∴m-3=1、-1、-7,7,即m=4、2、-4,10(舍去)符合条件的所有整数m 的和是4+2-4=2,故选:B.【点睛】此题考查解不等式组,解方程组,因式分解,解题中求出方程组的解,确定m-3是7的因数是解题的关键,由此根据m 的取值范围求出符合条件的所有整数m 的值.12.定义新运算,*(1)a b a b =-,若a 、b 是方程2104x x m -+=(0m <)的两根,则**b b a a -的值为() A .0B .1C .2D .与m 有关 【答案】A【解析】 根据题意可得()()22**11b b a a b b a a b b a a -=---=--+,又因为a ,b 是方程2104x x m -+=的两根,所以2104a a m -+=,化简得214a a m -=-,同理2104b b m -+=,214b b m -=-,代入上式可得()()222211044b b a a b b a a m m ⎛⎫⎛⎫--+=--+-=--+-= ⎪ ⎪⎝⎭⎝⎭,故选A .13.甲是乙现在的年龄时,乙10岁,乙是甲现在的年龄时,甲25岁,那么( ) A .甲比乙大5岁B .甲比乙大10岁C .乙比甲大10岁D .乙比甲大5岁【答案】A【解析】【分析】设甲现在的年龄是x 岁,乙现在的年龄是y 岁,根据已知甲是乙现在的年龄时,乙10岁.乙是甲现在的年龄时,甲25岁,可列方程求解.【详解】解:甲现在的年龄是x 岁,乙现在的年龄是y 岁,由题意可得: 1025x y y x y x-=-⎧⎨-=-⎩ 即210225x y x y -=-⎧⎨-=⎩由此可得,3()15x y -=,∴5x y -=,即甲比乙大5岁.【点睛】本题考查了二元一次方程组的应用,重点考查理解题意的能力,甲、乙年龄无论怎么变,年龄差是不变的.14.如图所示,A1(1,3),A2(32,3),A3(2,3),A4(3,0).作折线A1A2A3A4关于点A4的中心对称图形,再做出新的折线关于与x轴的下一个交点的中心对称图形……以此类推,得到一个大的折线.现有一动点P从原点O出发,沿着折线一每秒1个单位的速度移动,设运动时间为t.当t=2020时,点P的坐标为()A.(10103B.(20203C.(2016,0)D.(10103【答案】A【解析】【分析】把点P从O运动到A8作为一个循环,寻找规律解决问题即可.【详解】由题意OA1=A3A4=A4A5=A7A8=2,A1A2=A2A3=A5A6=A6A7=1,∴点P从O运动到A8的路程=2+1+1+2+2+1+1+2=12,∴t=12,把点P从O运动到A8作为一个循环,∵2020÷12=168余数为4,∴把点A3向右平移168×3个单位,可得t=2020时,点P的坐标,∵A3(23,168×6=1008,1008+2=1010,∴t=2020时,点P的坐标(10103,【点睛】本题考查坐标与图形变化,规律型问题等知识,解题的关键是学会探究规律的方法.15.将一箱苹果分给若干个小朋友,若每位小朋友分5个苹果,则还剩12个苹果;若每位小朋友分8个苹果,则有﹣个小朋友分到苹果但不到8个苹果.求这一箱苹果的个数与小朋友的人数.若设有x人,则可列不等式为()A.8(x﹣1)<5x+12<8B.0<5x+12<8xC.0<5x+12﹣8(x﹣1)<8D.8x<5x+12<8【答案】C【解析】设有x人,则苹果有(5x+12)个,由题意得:0<5x+12﹣8(x﹣1)<8,故选C.16.设边长为3的正方形的对角线长为a,下列关于a的四种说法:① a是无理数;② a 可以用数轴上的一个点来表示;③ 3<a<4;④ a是18的算术平方根.其中,所有正确说法的序号是A.①④B.②③C.①②④D.①③④【答案】C【解析】根据勾股定理,边长为3的正方形的对角线长为a=①正确.根据实数与数轴上的一点一一对应的关系,a可以用数轴上的一个点来表示,故说法②正确.∵216<a18<25=,∴4<a=,故说法③错误.∵2a18=,∴根据算术平方根的定义,a是18的算术平方根,故说法④正确.综上所述,正确说法的序号是①②④.故选C.17.如图,已知直线AB、CD被直线AC所截,AB∥CD,E是平面内任意一点(点E不在直线AB、CD、AC上),设∠BAE=α,∠DCE=β.下列各式:①α+β,②α﹣β,③β﹣α,④360°﹣α﹣β,∠AEC的度数可能是()。
人教版七年级数学期末模拟试题(带解析)(考试时间:90分钟,满分:100分)一、选择题(每题2分,共30分)1. 下列哪个数是负数?A. 5B. 0C. 3D. 82. 下列哪个数是偶数?A. 11B. 14C. 17D. 203. 下列哪个数是质数?A. 4B. 7C. 9D. 124. 下列哪个数是合数?A. 2B. 3C. 5D. 85. 下列哪个数是平方数?A. 16B. 18C. 20D. 226. 下列哪个数是立方数?A. 8B. 27C. 64D. 1257. 下列哪个数既是偶数又是合数?A. 15B. 21C. 24D. 28二、判断题(每题1分,共20分)8. 0是最小的自然数。
()9. 2是最小的质数。
()10. 9是最小的合数。
()11. 10是最小的两位数。
()12. 100是最小的三位数。
()13. 1是既不是质数也不是合数。
()14. 2是既是偶数又是质数。
()15. 4是既是偶数又是合数。
()三、填空题(每空1分,共10分)16. 5的相反数是______。
17. 7的倒数是______。
18. 9的平方是______。
19. 3的立方是______。
20. 16的平方根是______。
四、简答题(每题10分,共10分)21. 请简述质数和合数的区别。
22. 请简述偶数和奇数的区别。
五、综合题(1和2两题7分,3和4两题8分,共30分)23. 已知一个数是12的倍数,且这个数是偶数,请找出这个数的所有可能。
24. 已知一个数是5的倍数,且这个数是奇数,请找出这个数的所有可能。
25. 请计算下列各题的值:a) 3 + 5 × 2b) (4 + 6) ÷ 2c) 7 × (8 3)d) 15 ÷ 3 + 426. 请解下列方程:a) 3x + 5 = 14b) 7 2x = 3c) 4x 6 = 10d) 9 + 3x = 24答案及解析:一、选择题1. A. 52. B. 143. B. 74. D. 85. A. 166. B. 277. C. 24二、判断题8. √9. √10. ×11. √12. √13. √14. √15. √三、填空题16. 517. 1/718. 8119. 2720. ±4四、简答题21. 质数是只能被1和它本身整除的大于1的自然数,合数是除了1和它本身以外还有其他因数的大于1的自然数。
福建省莆田市2023-2024学年七年级下学期人教版数学期末模拟试卷一.选择题(共10小题,满分40分,每小题4分)1.(4分)下列四个图形中,不能通过基本图形平移得到的是( )A.B.C.D.2.(4分)下列数中,3.14159,,0.121121112…,﹣π,,,无理数的个数有( )A.1个B.2个C.3个D.4个3.(4分)为了完成下列任务,最适合采用全面调查的是( )A.了解问天实验舱各零部件的情况B.了解中央电视台春节联欢晚会的收视率C.了解全国中学生的节水意识D.了解一批电视机的使用寿命4.(4分)在平面直角坐标系中,点P(﹣2,3)在( )A.第一象限B.第二象限C.第三象限D.第四象限5.(4分)已知a<b,下列式子不一定成立的是( )A.a﹣1<b﹣1B.﹣2a>﹣2b C.2a+1<2b+1D.m2a>m2b6.(4分)在中国传统数学著作《九章算术》中有这样一个问题:“今有二马、一牛价过一万,如半马之价.一马、二牛价不满一万,如半牛之价,问牛、马价各几何?”译文:“今有2匹马、1头牛的总价超过10000钱,其超出的钱数相当于匹马的价格.1匹马、2头牛的总价不足10000钱,所差的钱数相当于头牛的价格.问每头牛、每匹马的价格各是多少?”设每匹马的价格为x钱,每头牛的价格为y钱,则依据条件可列方程组为( )A.B.C.D.7.(4分)将一副直角三角板如图放置,已知∠E=60°,∠C=45°,EF∥BC,则∠BND的大小为( )A.100°B.105°C.110°D.115°8.(4分)在平面直角坐标系xOy中,点A的坐标为(2,3),AB∥x轴,且AB=4,则点B的坐标为( )A.(2,﹣1)B.(﹣2,3)C.(2,﹣1)或(2,7)D.(﹣2,3)或(6,3)9.(4分)如果不等式组无解,则a的取值范围是( )A.a>1B.a≥1C.a<1D.a≤110.(4分)将图1中周长为32的长方形纸片剪成1号、2号、3号、4号正方形和5号长方形,并将它们按图2的方式放入周长为48的长方形中,则没有覆盖的阴影部分的周长为( )A.16B.24C.30D.40二.填空题(共6小题,满分24分,每小题4分)11.(4分)由3x﹣y=1,可以得到用x表示y的式子是 .12.(4分)在平面直角坐标系中,将点A(﹣2,3)先向右平移1个单位长度,再向下平移4个单位长度得到点B ,则点B的坐标是 .13.(4分)如图,AC⊥BC,垂足为C,若BC=3cm,AC=4cm,AB=5cm,则点A到BC的距离为 cm.14.(4分)不等式x﹣2≤2的最大整数解是 .15.(4分)某校宣传小组就“空矿泉水瓶应投放到哪种颜色的垃圾收集桶内”进行统计活动,他们随机采访50名学生并作好记录.以下是排乱的统计步骤:①从扇形统计图中分析出本校学生对空矿泉水瓶投放的正确率;②整理采访记录并绘制空矿泉水瓶投放频数分布表;③绘制扇形统计图来表示空矿泉水瓶投放各收集桶所占的百分比.正确统计步骤的顺序应该是 .16.(4分)如图.已知点C为两条相互平行的直线AB,ED之间一动点,∠ABC和∠CDE的角平分线相交于F,若,则∠BCD的度数为 .三.解答题(共9小题,满分86分)17.(6分)计算:||﹣||+||.18.(6分)解方程组:,19.(8分)解不等式组,并在数轴上表示此不等式组的解集.20.(8分)如图,三角形ABC上一点A(﹣3,2)经平移后对应点为D(﹣4,4),将三角形ABC作同样的平移得到三角形.(1)画出三角形DEF;(2)点P在三角形ABC内部,请写出点P(m,n)随三角形平移后的对应点P′的坐标 (用含有m,n的式子表示).21.(10分)如图,点E,F分别在AB和CD上,AF⊥CE于点G,∠AFC=∠D.求证:∠BED+∠AEC=90°.22.(10分)“学习金字塔”用数字的形式显示了采用不同的学习方式,学习者在两周以后还能记住的内容的多少.它告诉我们,把学会的知识讲给别人听是学习效果最好的一种方式.为此,某学校举办了一次主题为“我是小讲师”的讲题活动,组织全校学生参加.活动结束后,学校抽取部分学生的讲题成绩进行统计,将成绩x分为A ,B,C,D四个等级(A等级:90⩽x⩽100;B等级:80⩽x<90;C等级:60⩽x<80;D等级:0⩽x<60),并根据结果绘制成如图所示的两幅不完整的统计图.根据图中所给信息,解答下列问题.(1)这次抽样调查共抽取 人;条形统计图中的a= .(2)将条形统计图补充完整;在扇形统计图中,求C等级所在扇形的圆心角的度数.(3)若80分及以上成绩为“优秀”,现该校共有3600名学生,估计该校学生讲题成绩为“优秀”的共有多少人.23.(12分)我国数学家华罗庚在一次出国访问途中,看到飞机上邻座的乘客阅读的杂志上有一道智力题:求54872的立方根.华罗庚脱口说出答案,众人十分惊奇,忙问计算的奥妙,你知道他是怎样迅速准确地计算出结果的吗下面是小龙的探究过程,请补充完整:(1)口算并填空:753个位数字为 ;(2)求.①由103=1000,1003=1000000,可以确定是 位数;②由54872的个位上的数是2,可以确定的个位上的数是 ;③如果划去54872后面的三位872得到数54,而33=27,43=64,可以确定的十位上的数是 ,由此求得 .(3)已知:205379也是一个整数的立方,请用类似的方法求出和.24.(12分)请同学们根据以下表格中的素材一和素材二,自主探索完成任务一、任务二、任务三.如何合理搭配消费券?素材一为促进消费,某市人民政府决定,发放“双促双旺•你消费我助力”消费券,一人可领取的消费券有:A型消费券(满35减15元)2张,B型消费券(满68减25元)2张,c型消费券(满158减60元)1张.素材二在此次活动中,小明一家5人每人都领到了所有的消费券.某日小明一家在超市使用消费券,消费金额减了390元,请完成以下任务.任务一若小明一家用了5张A型消费券,3张B型的消费券,则用了 张C型的消费券,此时的实际消费最少为 元.任务二若小明一家用13张A、B、C型的消费券消费,已知A型比C型的消费券多1张,求A、B、C型的消费券各多少张?任务三若小明一家仅用两种不同类型的消费券消费,请问如何搭配使用消费券,使得使用付款最少,并求出此时消费券的搭配方案.25.(14分)如图,在平面直角坐标系中,点A、B分别是x轴、y轴上的点,且OA=a,OB=b,其中a、b满足+|b﹣a+16|=0,将B向左平移18个单位得到点C.(1)求点A、B、C的坐标;(2)点M、N分别为线段BC、OA上的两个动点,点M从点B以1个单位/秒的速度向左运动,同时点N从点A 以2个单位/秒的速度向右运动,设运动时间为t秒(0≤t≤12).①当BM=ON时,求t的值;②是否存在一段时间,使得S四边形NACM<S四边形BOAC?若存在,求出t的取值范围;若不存在,说明理由.福建省莆田市2023-2024学年七年级下学期人教版数学期末模拟试卷(答案)一.选择题(共10小题,满分40分,每小题4分)1.(4分)下列四个图形中,不能通过基本图形平移得到的是( )A.B.C.D.【答案】C2.(4分)下列数中,3.14159,,0.121121112…,﹣π,,,无理数的个数有( )A.1个B.2个C.3个D.4个【答案】B3.(4分)为了完成下列任务,最适合采用全面调查的是( )A.了解问天实验舱各零部件的情况B.了解中央电视台春节联欢晚会的收视率C.了解全国中学生的节水意识D.了解一批电视机的使用寿命【答案】A4.(4分)在平面直角坐标系中,点P(﹣2,3)在( )A.第一象限B.第二象限C.第三象限D.第四象限【答案】B5.(4分)已知a<b,下列式子不一定成立的是( )A.a﹣1<b﹣1B.﹣2a>﹣2b C.2a+1<2b+1D.m2a>m2b【答案】D6.(4分)在中国传统数学著作《九章算术》中有这样一个问题:“今有二马、一牛价过一万,如半马之价.一马、二牛价不满一万,如半牛之价,问牛、马价各几何?”译文:“今有2匹马、1头牛的总价超过10000钱,其超出的钱数相当于匹马的价格.1匹马、2头牛的总价不足10000钱,所差的钱数相当于头牛的价格.问每头牛、每匹马的价格各是多少?”设每匹马的价格为x钱,每头牛的价格为y钱,则依据条件可列方程组为( )A.B.C.D.【答案】B7.(4分)将一副直角三角板如图放置,已知∠E=60°,∠C=45°,EF∥BC,则∠BND的大小为( )A.100°B.105°C.110°D.115°【答案】B8.(4分)在平面直角坐标系xOy中,点A的坐标为(2,3),AB∥x轴,且AB=4,则点B的坐标为( )A.(2,﹣1)B.(﹣2,3)C.(2,﹣1)或(2,7)D.(﹣2,3)或(6,3)【答案】D9.(4分)如果不等式组无解,则a的取值范围是( )A.a>1B.a≥1C.a<1D.a≤1【答案】C10.(4分)将图1中周长为32的长方形纸片剪成1号、2号、3号、4号正方形和5号长方形,并将它们按图2的方式放入周长为48的长方形中,则没有覆盖的阴影部分的周长为( )A.16B.24C.30D.40【答案】见试题解答内容二.填空题(共6小题,满分24分,每小题4分)11.(4分)由3x﹣y=1,可以得到用x表示y的式子是 y=3x﹣1 .【答案】y=3x﹣1.12.(4分)在平面直角坐标系中,将点A(﹣2,3)先向右平移1个单位长度,再向下平移4个单位长度得到点B ,则点B的坐标是 (﹣1,﹣1) .【答案】(﹣1,﹣1).13.(4分)如图,AC⊥BC,垂足为C,若BC=3cm,AC=4cm,AB=5cm,则点A到BC的距离为 4 cm.【答案】4.14.(4分)不等式x﹣2≤2的最大整数解是 4 .【答案】4.15.(4分)某校宣传小组就“空矿泉水瓶应投放到哪种颜色的垃圾收集桶内”进行统计活动,他们随机采访50名学生并作好记录.以下是排乱的统计步骤:①从扇形统计图中分析出本校学生对空矿泉水瓶投放的正确率;②整理采访记录并绘制空矿泉水瓶投放频数分布表;③绘制扇形统计图来表示空矿泉水瓶投放各收集桶所占的百分比.正确统计步骤的顺序应该是 ②③① .【答案】②③①.16.(4分)如图.已知点C为两条相互平行的直线AB,ED之间一动点,∠ABC和∠CDE的角平分线相交于F,若,则∠BCD的度数为 120° .【答案】120°.三.解答题(共9小题,满分86分)17.(6分)计算:||﹣||+||.【答案】2﹣3.18.(6分)解方程组:,【答案】.19.(8分)解不等式组,并在数轴上表示此不等式组的解集.【答案】2<x≤3,数轴表示见解答.20.(8分)如图,三角形ABC上一点A(﹣3,2)经平移后对应点为D(﹣4,4),将三角形ABC作同样的平移得到三角形.(1)画出三角形DEF;(2)点P在三角形ABC内部,请写出点P(m,n)随三角形平移后的对应点P′的坐标 (m﹣1,n+2) (用含有m,n的式子表示).【答案】(1)见解答.(2)(m﹣1,n+2).21.(10分)如图,点E,F分别在AB和CD上,AF⊥CE于点G,∠AFC=∠D.求证:∠BED+∠AEC=90°.【答案】见解析.22.(10分)“学习金字塔”用数字的形式显示了采用不同的学习方式,学习者在两周以后还能记住的内容的多少.它告诉我们,把学会的知识讲给别人听是学习效果最好的一种方式.为此,某学校举办了一次主题为“我是小讲师”的讲题活动,组织全校学生参加.活动结束后,学校抽取部分学生的讲题成绩进行统计,将成绩x分为A ,B,C,D四个等级(A等级:90⩽x⩽100;B等级:80⩽x<90;C等级:60⩽x<80;D等级:0⩽x<60),并根据结果绘制成如图所示的两幅不完整的统计图.根据图中所给信息,解答下列问题.(1)这次抽样调查共抽取 200 人;条形统计图中的a= 40 .(2)将条形统计图补充完整;在扇形统计图中,求C等级所在扇形的圆心角的度数.(3)若80分及以上成绩为“优秀”,现该校共有3600名学生,估计该校学生讲题成绩为“优秀”的共有多少人.【答案】(1)200,40;(2)补全条形统计图详见解答,C等级所在扇形的圆心角的度数为72°;(3)2340人.23.(12分)我国数学家华罗庚在一次出国访问途中,看到飞机上邻座的乘客阅读的杂志上有一道智力题:求54872的立方根.华罗庚脱口说出答案,众人十分惊奇,忙问计算的奥妙,你知道他是怎样迅速准确地计算出结果的吗下面是小龙的探究过程,请补充完整:(1)口算并填空:753个位数字为 5 ;(2)求.①由103=1000,1003=1000000,可以确定是 两 位数;②由54872的个位上的数是2,可以确定的个位上的数是 8 ;③如果划去54872后面的三位872得到数54,而33=27,43=64,可以确定的十位上的数是 3 ,由此求得 38 .(3)已知:205379也是一个整数的立方,请用类似的方法求出和.【答案】(1)5;(2)①两,②8;③3,38;(3)=59,=26.24.(12分)请同学们根据以下表格中的素材一和素材二,自主探索完成任务一、任务二、任务三.如何合理搭配消费券?素材一为促进消费,某市人民政府决定,发放“双促双旺•你消费我助力”消费券,一人可领取的消费券有:A型消费券(满35减15元)2张,B型消费券(满68减25元)2张,c型消费券(满158减60元)1张.素材二在此次活动中,小明一家5人每人都领到了所有的消费券.某日小明一家在超市使用消费券,消费金额减了390元,请完成以下任务.任务一若小明一家用了5张A型消费券,3张B型的消费券,则用了 4 张C型的消费券,此时的实际消费最少为 621 元.任务二若小明一家用13张A、B、C型的消费券消费,已知A型比C型的消费券多1张,求A、B、C型的消费券各多少张?任务三若小明一家仅用两种不同类型的消费券消费,请问如何搭配使用消费券,使得使用付款最少,并求出此时消费券的搭配方案.【答案】任务一:4,621;任务二:A型的消费券4张,B型的消费券6张,则C型的消费券3张;任务三:使用10张A型券,4张C型券.25.(14分)如图,在平面直角坐标系中,点A、B分别是x轴、y轴上的点,且OA=a,OB=b,其中a、b满足+|b﹣a+16|=0,将B向左平移18个单位得到点C.(1)求点A、B、C的坐标;(2)点M、N分别为线段BC、OA上的两个动点,点M从点B以1个单位/秒的速度向左运动,同时点N从点A 以2个单位/秒的速度向右运动,设运动时间为t秒(0≤t≤12).①当BM=ON时,求t的值;②是否存在一段时间,使得S四边形NACM<S四边形BOAC?若存在,求出t的取值范围;若不存在,说明理由.【答案】(1)C(-18,8);(2)t=8秒,0<t<3.。
2023-2024学年七年级下学期人教版期末数学试卷(一)一、单选题1227-、1 )A B .227- C .1 D 2.下列不等式变形正确的是( )A .由a b >,得22a b -<-B .由a b >,得22a b -<-C .由a b >,得a b >D .由a b >,得22a b > 3.下列运算正确的是( )A .4=B 4=C .2=D .239-= 4.要了解全区中学生课外作业负担情况,以下抽样方式中比较合理的是( ) A .调查全区中学女生作业情况B .调查全区七年级学生作业情况C .调查全区九年级学生作业情况D .调查各中学七、八、九年级各100名学生作业情况5.已知a 、b 满足方程组324236a b a b +=⎧⎨+=⎩,则a+b 的值为( ) A .2 B .4 C .—2 D .—46.点()31P m m ++,在y 轴上,则P 点坐标为( )A .()02-,B .()04-,C .()40,D .()20,7.已知直线m n ∥,将一块含30°角的直角三角板ABC 按图方式放置,其中A 、B 两点分别落在直线m 、n 上,若140∠=︒,则2∠的度数为( )A .30°B .40︒C .20︒D .10︒8.若关于 x 的不等式组2034x x a x-<⎧⎨+>-⎩恰好只有 2 个整数解,则所有满足条件的整数 a 的值之和是( )A .3B .4C .6D .19.实数a 、b 、c 在数轴上对应的点的位置如图,则2c a b b c b +-++-化简的结果是( )A .2b a +B .2a c -C .c -D .3b a -10.如图,已知坐标1(1,0)A ,2(1,1)A ,3(1,1)A -,4(1,1)A --,5(2,1)A -,6(2,2)A ,L ,则2024A 的坐标是( )A .(505,505)-B .(505,505)-C .(506,506)-D .(506,506)--二、填空题1112.如图将一张宽度相等的纸条沿AB 折叠一下,如果1130∠=︒,那么2∠=.13.一个正数a 的两个不相等的平方根是21b -和4b +,则b a -=.14.点(23x +,43x -)在第四象限,则的取值范围是.15.已知关于x 、y 的方程组2431x y k x y +=⎧⎨+=⎩的解互为相反数,则k =.16.如图,将一副三角板重叠放置,其中30°和45°的两个角顶点重合在一起.若将三角板AOB V 绕点O 旋转,在旋转过程中,当//AB OC 时,BOC ∠=.三、解答题17.(1)解方程组27233x y x y +=⎧⎨-+=-⎩ (2218.解不等式组2111213x x x -≥-⎧⎪+⎨>+⎪⎩,并将解集在数轴上表示出来. 19.“校园诗词大赛”结束后,老师将所有参赛选手的比赛成绩(得分均为整数)进行整理,并分别制成扇形统计图和频数直方图,部分信息如下:(1)本次比赛的选手共______人,扇形统计图中“69.579.5-”这一组人数占总参赛人数的百分比为______.(2)将频数直方图补充完整.(3)规定:成绩由高到低前60%的选手可获奖,小明比赛成绩为78分,判断他能否获奖,并说明理由.20.已知A B C '''V是由ABC V 经过平移得到的,它们的顶点在平面直角坐标系中,坐标如下表所示:(1)观察表中对应点坐标的变化,并填空:a =______,b =______,c =______.(2)在平面直角坐标系中描出点B 、点C ,连接O 、B 、C ,并将OBC △向上平移1个单位,再向左平移3个单位,得111O B C V,画出平移后的111O B C V . (3)111O B C S =△______.21.如图,点D 、F 在线段BC 上,点E 在线段AB 上,点G 在线段AC 上,EF 与GD 的延长线交于点H ,1B ∠=∠,23180∠+∠=︒.(1)求证:EH AD ∥;(2)若60DGC ∠=︒,且44H ∠-∠=︒,求H ∠的度数.22.吉祥物“滨滨”和“妮妮”两个东北虎卡通形象是由清华大学美术学院团队为2025年第九届亚冬会创作的.“滨滨”是代表冰上运动的吉祥物,身穿冬季运动服,戴着红圈巾、蓝手套,脚穿冰刀在快乐地滑冰.滑单板的“妮妮”是代表冒上运动的吉祥物,身身中国民同传统毛领节庆红袄.某超市看好“滨滨”和“妮妮”两种吉祥物造型的钥匙扣挂件的市场价值,经调查“滨滨”造型钥匙扣挂件进价每个m元,售价每个16元“妮妮”造型钥匙扣挂件进价每个n元,售价每个18元.(1)该超市在进货时发现:若购进“滨滨”造型钥匙扣挂件10个和“妮妮”造型钥匙扣挂件5个需要共170元;若购进“滨滨”造型钥匙扣挂件6个和“妮妮”造型钥匙扣挂件10个共需要200元,求m,n的值.(2)该超市决定每天购进“滨滨”和“妮妮”两种吉祥物钥匙扣挂件共100个,且投入资金不少于1160元又不多于1168元,设购买“滨滨”造型钥匙扣挂件x个,求有哪几种购买方案?。
学习质量检测卷(一)(期末)一.选择题(每小题3分,满分42分)1.下列各数中,属于无理数的是()A.3.14159 B.C.D.2π2.在平面直角坐标系xOy中,点A(﹣1,﹣2)关于x轴对称的点的坐标是()A.(1,2)B.(1,﹣2)C.(﹣1,2)D.(﹣1,﹣2)3.下列所示的四个图形中,∠1和∠2是同位角的是()A.②③B.①②③C.①②④D.①④4.解方程组的最佳方法是()A.代入法消去a,由②得a=b+2B.代入法消去b,由①得b=7﹣2aC.加减法消去a,①﹣②×2得3b=3D.加减法消去b,①+②得3a=95.如图,P是∠ABC内一点,点Q在BC上,过点P画直线a∥BC,过点Q画直线b∥AB,若∠ABC=115°,则直线a与b相交所成的锐角的度数为()A.25°B.45°C.65°D.85°6.下列调查方式中最适合的是()A.要了解一批节能灯的使用寿命,采用普查的方式B.为保证“神舟9号”的成功发射,对其零部件进行检查采用抽样调查方式C.对乘坐某班次客车的乘客进行安检,采用抽查的方式D.调查本班同学的视力,采用普查的方式7.在平面直角坐标系中,平行于坐标轴的线段PQ=5,若点P坐标是(﹣2,1),则点Q 不在第()象限.A.一B.二C.三D.四8.一元一次不等式﹣3x﹣1>2的解集在数轴上表示为()A.B.C.D.9.下列图形中,已知∠1=∠2,则可得到AB∥CD的是()A.B.C.D.10.为了说明“若a≤b,则ac≤bc”是假命题,c的值可以取()A.﹣1 B.0 C.1 D.11.解不等式组,该不等式组的最大整数解是()A.3 B.4 C.2 D.﹣312.已知实数a、m满足a>m恒成立,当方程组的解x、y满足x>y时,则m的取值范围是()A.m>﹣3 B.m≥﹣3 C.m≤﹣3 D.m<﹣313.某家具生产厂生产某种配套桌椅(一张桌子,两把椅子),已知每块板材可制作桌子1张或椅子4把,现计划用120块这种板材生产一批桌椅(不考虑板材的损耗),设用x 块板材做桌子,用y块板材做椅子,则下列方程组正确的是()A.B.C.D.14.关于x的不等式组有解,那么m的取值范围为()A.m≤﹣1 B.m<﹣1 C.m≥﹣1 D.m>﹣1二.填空题(每小题3分,满分15分)15.命题“全等三角形的对应边都相等”的逆命题是命题.(填“真”或“假”)16.已知,大正方形的边长为5厘米,小正方形的边长为2厘米,起始状态如图所示.大正方形固定不动,把小正方形以1厘米/秒的速度向右沿直线平移,设平移的时间为t秒,两个正方形重叠部分的面积为S平方厘米.当S=2时,小正方形平移的时间为秒.17.小东在拼图时,发现8个一样大小的长方形,恰好可以拼成一个大的长方形如图1所示.小林看见了说:“我也来试一试.”结果小林七拼八凑,拼成了如图2那样的正方形,中间还留下了一个恰好是边长为2cm的小正方形,则这个小长方形的面积为cm2.18.不等式3x﹣6>0的解集为.19.如图,在平面直角坐标系中,一巡查机器人接到指令,从原点O出发,沿O→A1→A2→A 3→A4→A5→A6→A7→A8…的路线移动,每次移动1个单位长度,依次得到点A1(0,1),A 2(1,1),A3(1,0),A4(2,0),A5(2,﹣1),A6(3,﹣1),A7(3,0),A8(4,0),…若机器人巡查到某一位置的横坐标为23时,即停止,则其纵坐标为.三.解答题20.(10分)已知方程组中x为负数,y为非正数.(1)求a的取值范围;(2)在a的取值范围中,当a为何整数时,不等式2ax+3x>2a+3的解集为x<1.21.(8分)随着生活水平的日益提高,人们越来越喜欢过节,节日的仪式感日渐浓烈,某校举行了“母亲节暖心特别行动”,从中随机调查了部分同学的暖心行动,并将其分为A,B,C,D四种类型(分别对应送服务、送鲜花、送红包、送话语).现根据调查的数据绘制成如下的条形统计图和扇形统计图.请根据以上不完整的统计图提供的信息,解答下列问题:(1)该校共抽查了多少名同学的暖心行动?(2)求出扇形统计图中扇形B的圆心角度数?(3)若该校共有2400名同学,请估计该校进行送鲜花行动的同学约有多少名?22.(7分)感知与填空:如图①,直线AB∥CD.求证:∠B+∠D=∠BED.阅读下面的解答过程,井填上适当的理由.解:过点E作直线EF∥CD∴∠2=∠D()∵AB∥CD(已知),EF∥CD,∴AB∥EF()∴∠B=∠1()∵∠1+∠2=∠BED,∴∠B+∠D=∠BED()应用与拓展:如图②,直线AB∥CD.若∠B=22°,∠G=35°,∠D=25°,则∠E+∠F =度.方法与实践:如图③,直线AB∥CD.若∠E=∠B=60°,∠F=80°,则∠D=度.23.已知实数x、y、z满足,试求的值.24.(8分)如图,在10×10的正方形网格中,每个小正方形的边长为1个单位长度.△ABC的顶点都在正方形网格的格点上,且通过两次平移(沿网格线方向作上下或左右平移)后得到△A'B'C',点C的对应点是直线上的格点C'.(1)画出△A'B'C';(2)在BC上找一点P,使AP平分△ABC的面积;(3)试在直线l上画出所有的格点Q,使得由点A'、B'、C'、Q四点围成的四边形的面积为9.25.(10分)一方有难,八方支援.“新冠肺炎”疫情来袭,除了医务人员主动请缨逆行走向战场外,众多企业也伸出援助之手,某公司用甲,乙两种货车向武汉运送爱心物资.两次满载的运输情况如表:甲种货车辆数乙种货车辆数合计运物资吨数第一次 3 4 29第二次 2 6 31 (1)求甲、乙两种货车每次满载分别能运输多少吨物资;(2)目前有46.4吨物资要运输到武汉,该公司拟安排甲乙货车共10辆,全部物资一次运完,其中每辆甲车一次运送花费500元,每辆乙车一次运送花费300元,请问该公司应如何安排车辆最节省费用?参考答案一.选择题1. D.2. C.3. C.4. D.5. C.6. D.7. D.8. B.9. B.10.A.11. A.12. C.13. D.14. D.二.填空15.略16. 1或6.17.60.18.x>2.19.﹣1或0.三.解答题20.解:(1)解方程组得,,∵x为负数,y为非正数,∴,解得﹣2≤a<3;(2)2ax+3x>2a+3,(2a+3)x>2a+3,∵要使不等式2ax+3x>2a+3的解集为x<1,必须2a+3<0,解得:a<﹣,∵﹣2≤a<3,a为整数,∴a=﹣2,所以当a为﹣2时,不等式2ax+3x>2a+3的解集为x<1.21.解:(1)20÷25%=80(人),答:该校共抽查了80名同学的暖心行动.(2)360°×=144°,答:扇形统计图中扇形B的圆心角度数为144°.(3)2400×=960(人),答:该校2400名同学中进行送鲜花行动的约有960名.22.解:感知与填空:过点E作直线EF∥CD,∴∠2=∠D(两直线平行,内错角相等),∵AB∥CD(已知),EF∥CD,∴AB∥EF(两直线都和第三条直线平行,那么这两条直线也互相平行),∴∠B=∠1(两直线平行,内错角相等),∵∠1+∠2=∠BED,∴∠B+∠D=∠BED(等量代换),故答案为:两直线平行,内错角相等;两直线都和第三条直线平行,那么这两条直线也互相平行;两直线平行,内错角相等;等量代换.应用与拓展:过点G作GN∥AB,则GN∥CD,如图②所示:由感知与填空得:∠E=∠B+∠EGN,∠F=∠D+∠FGN,∴∠E+∠F=∠B+∠EGN+∠D+∠FGN=∠B+∠D+∠EGF=22°+25°+35°=82°,故答案为:82.方法与实践:设AB交EF于M,如图③所示:∠AME=∠FMB=180°﹣∠F﹣∠B=180°﹣80°﹣60°=40°,由感知与填空得:∠E=∠D+∠AME,∴∠D=∠E﹣∠AME=60°﹣40°=20°,故答案为:20.23.解:∵实数x、y、z满足,∴x=y,z=y,将x=y,z=y代入可得:==.24.解:(1)如图所示:△A'B'C'即为所求;(2)如图所示:点P即为所求;(3)如图所示:点Q即为所求.25.解:(1)设甲、乙两种货车每次满载分别能运输x吨和y吨物资,根据题意得,,解得,,答:甲、乙两种货车每次满载分别能运输5吨和3.5吨物资;(2)设安排甲货车z辆,乙货车(10﹣z)辆,根据题意得,5z+3.5(10﹣z)≥46.4,解得,z≥7.6,∵x为整数,∴x=8或9或10,设总运费为w元,根据题意得,w=500z+300(10﹣z)=200z+3000,∵200>0,∴w随z的增大而增大,∴当z=8时,w的值最小为w=200×8+3000=4600,答:该公司应如何甲货车8辆,乙货车2辆最节省费用.。
一、解答题1.如图1,在平面直角坐标系中,(,0),(,2)A a C b ,且满足2(2)|2|0a b ++-=,过C 作CB x ⊥轴于B .(1)求ABC ∆的面积.(2)若过B 作//BD AC 交y 轴于D ,且,AE DE 分别平分,CAB ODB ∠∠,如图2,求AED ∠的度数.(3)在y 轴上存在点P 使得ABC ∆和ACP ∆的面积相等,请直接写出P 点坐标.2.如图1,已知直线CD ∥EF ,点A ,B 分别在直线CD 与EF 上.P 为两平行线间一点.(1)若∠DAP =40°,∠FBP =70°,则∠APB =(2)猜想∠DAP ,∠FBP ,∠APB 之间有什么关系?并说明理由;(3)利用(2)的结论解答:①如图2,AP 1,BP 1分别平分∠DAP ,∠FBP ,请你写出∠P 与∠P 1的数量关系,并说明理由;②如图3,AP 2,BP 2分别平分∠CAP ,∠EBP ,若∠APB =β,求∠AP 2B .(用含β的代数式表示)3.已知AB ∥CD ,线段EF 分别与AB ,CD 相交于点E ,F .(1)请在横线上填上合适的内容,完成下面的解答:如图1,当点P 在线段EF 上时,已知∠A =35°,∠C =62°,求∠APC 的度数;解:过点P 作直线PH ∥AB ,所以∠A =∠APH ,依据是 ; 因为AB ∥CD ,PH ∥AB ,所以PH ∥CD ,依据是 ;所以∠C =( ),所以∠APC =( )+( )=∠A +∠C =97°.(2)当点P ,Q 在线段EF 上移动时(不包括E ,F 两点):①如图2,∠APQ +∠PQC =∠A +∠C +180°成立吗?请说明理由;②如图3,∠APM =2∠MPQ ,∠CQM =2∠MQP ,∠M +∠MPQ +∠PQM =180°,请直接写出∠M ,∠A 与∠C 的数量关系.4.如图1,把一块含30°的直角三角板ABC 的BC 边放置于长方形直尺DEFG 的EF 边上. (1)根据图1填空:∠1= °,∠2= °;(2)现把三角板绕B 点逆时针旋转n °.①如图2,当n =25°,且点C 恰好落在DG 边上时,求∠1、∠2的度数;②当0°<n <180°时,是否会存在三角板某一边所在的直线与直尺(有四条边)某一边所在的直线垂直?如果存在,请直接写出所有n 的值和对应的那两条垂线;如果不存在,请说明理由.5.已知//AM CN ,点B 为平面内一点,AB BC ⊥于B .(1)如图1,求证:90A C ∠+∠=︒;(2)如图2,过点B 作BD MA ⊥的延长线于点D ,求证:ABD C ∠=∠;(3)如图3,在(2)问的条件下,点E 、F 在DM 上,连接BE 、BF 、CF ,且BF 平分DBC ∠,BE 平分ABD ∠,若AFC BCF ∠=∠,3BFC DBE ∠=∠,求EBC ∠的度数. 6.已知,如图1,射线PE 分别与直线AB ,CD 相交于E 、F 两点,∠PFD 的平分线与直线AB 相交于点M ,射线PM 交CD 于点N ,设∠PFM =α°,∠EMF =β°,且(40﹣2α)2+|β﹣20|=0(1)α= ,β= ;直线AB 与CD 的位置关系是 ;(2)如图2,若点G 、H 分别在射线MA 和线段MF 上,且∠MGH =∠PNF ,试找出∠FMN 与∠GHF 之间存在的数量关系,并证明你的结论;(3)若将图中的射线PM 绕着端点P 逆时针方向旋转(如图3),分别与AB 、CD 相交于点M 1和点N 1时,作∠PM 1B 的角平分线M 1Q 与射线FM 相交于点Q ,问在旋转的过程中1FPN Q∠∠的值是否改变?若不变,请求出其值;若变化,请说明理由. 7.定义:对任意一个两位数a ,如果a 满足个位数字与十位数字互不相同,且都不为零,那么称这个两位数为“奇异数”.将一个“奇异数”的个位数字与十位数字对调后得到一个新的两位数,把这个新两位数与原两位数的和与11的商记为()f a例如:19=a ,对调个位数字与十位数字后得到新两位数是91,新两位数与原两位数的和为9119110+=,和与11的商为1101110÷=,所以()1910f =根据以上定义,完成下列问题:(1)填空:①下列两位数:10,21,33中,“奇异数”有 .②计算:()15f = .()10f m n += .(2)如果一个“奇异数”b 的十位数字是k ,个位数字是21k -,且()8f b =请求出这个“奇异数”b(3)如果一个“奇异数”a 的十位数字是x ,个位数字是y ,且满足()510a f a -=,请直接写出满足条件的a 的值.8.据说,我国著名数学家华罗庚在一次访问途中,看到飞机邻座的乘客阅读的杂志上有一道智力题:一个数32768,它是一个正数的立方,希望求它的立方根,华罗庚不假思索给出了答案,邻座乘客非常惊奇,很想得知其中的奥秘,你知道华罗庚是怎样准确计算出的吗?请按照下面的问题试一试:(1)由33101000,1001000000==,因为1000327681000000<<332768______位数;(2)由32768的个位上的数是8332768________,划去32768后面的三位数768得到32,因为333=27,4=64332768_____________;(3)已知13824和110592-3138249.阅读下面的文字,解答问题.对于实数a ,我们规定:用符号[a ]表示不大于a 的最大整数;用{a }表示a 减去[a ]所得的差.例如:=1,[2.2]=2,1,{2.2}=2.2﹣2=0.2.(1)仿照以上方法计算:]= {5= ;(2)若]=1,写出所有满足题意的整数x 的值: .(3)已知y 0是一个不大于280的非负数,且满足}=0.我们规定:y 1=],y 2=,y 3=],…,以此类推,直到y n 第一次等于1时停止计算.当y 0是符合条件的所有数中的最大数时,此时y 0= ,n = .10.据说,我国著名数学家华罗庚在一次访问途中,看到飞机邻座的乘客阅读的杂志上有一道智力题:一个数32768,它是一个正数的立方,希望求它的立方根,华罗庚不假思索给出了答案,邻座乘客非常惊奇,很想得知其中的奥秘,你知道华罗庚是怎样准确计算出的吗?请按照下面的问题试一试:(1)由33101000,1001000000==,因为1000327681000000<<______位数;(2)由32768的个位上的数是8________,划去32768后面的三位数768得到32,因为333=27,4=64_____________;(3)已知13824和110592-11.先阅读材料,再解答问题:我国数学家华罗庚在一次出国访问途中,看到飞机上邻座的乘客阅读的杂志上有一道智力题:求59319的立方根,华罗庚脱口而出,给出了答案,众人十分惊讶,忙问计算的奥妙,你知道华罗庚怎样迅速而准确地计算出结果吗?请你按下面的步骤也试一试:(110100,那么,请你猜想:59319的立方根是_______位数(2)在自然数1到9这九个数字中,33311,327,5===________,37=________,39=________.猜想:59319的个位数字是9,则59319的立方根的个位数字是________.(3)如果划去59319后面的三位“319”得到数59,而3327=,3464=,由此可确定59319的立方根的十位数字是________,因此59319的立方根是________.(4)现在换一个数103823,你能按这种方法得出它的立方根吗?12.阅读材料:求2320192020122222++++++的值. 解:设2320192020122222S =++++++①,将等式①的两边同乘以2, 得234202020212222222S =++++++②,用②-①得,2021221S S -=-即202121S =-.即2320192020202112222221++++++=-. 请仿照此法计算:(1)请直接填写231222+++的值为______;(2)求231015555+++++值;(3)请直接写出20212345201920201011010101010101011-+-+-+-+-的值. 13.如图,在平面直角坐标系中,已知(),0A a ,(),0B b ,()0,4C ,a ,b 满足()2240a b ++-=.平移线段AB 得到线段CD ,使点A 与点C 对应,点B 与点D 对应,连接AC ,BD .(1)求a ,b 的值,并直接写出点D 的坐标;(2)点P 在射线AB (不与点A ,B 重合)上,连接PC ,PD .①若三角形PCD 的面积是三角形PBD 的面积的2倍,求点P 的坐标;②设PCA α∠=,PDB β∠=,DPC θ∠=.求α,β,θ满足的关系式.14.问题情境:(1)如图1,//AB CD ,128PAB ∠=︒,119PCD ∠=︒.求APC ∠度数.小颖同学的解题思路是:如图2,过点P 作//PE AB ,请你接着完成解答.问题迁移:(2)如图3,//AD BC ,点P 在射线OM 上运动,当点P 在A 、B 两点之间运动时,ADP α∠=∠,PCE β∠=∠.试判断CPD ∠、α∠、β∠之间有何数量关系?(提示:过点P 作//PF AD ),请说明理由;(3)在(2)的条件下,如果点P 在A 、B 两点外侧运动时(点P 与点A 、B 、O 三点不重合),请你猜想CPD ∠、α∠、β∠之间的数量关系并证明.15.如图1,在平面直角坐标系中,点A 为x 轴负半轴上一点,点B 为x 轴正半轴上一点,()0,C a ,(),D b a ,其中a 、b 满足关系式:24(1)0a b a ++--=.()1a =______,b =______,BCD 的面积为______;()2如图2,石AC BC ⊥于点C ,点P 是线段OC 上一点,连接BP ,延长BP 交AC 于点.Q 当CPQ CQP ∠=∠时,求证:BP 平分ABC ∠;(提示:三角形三个内角和等于180) ()3如图3,若AC BC ⊥,点E 是点A 与点B 之间上一点连接CE ,且CB 平分.ECF ∠问BEC ∠与BCO ∠有什么数量关系?请写出它们之间的数量关系并请说明理由.16.如图,数轴上两点A 、B 对应的数分别是﹣1,1,点P 是线段AB 上一动点,给出如下定义:如果在数轴上存在动点Q ,满足|PQ |=2,那么我们把这样的点Q 表示的数称为连动数,特别地,当点Q 表示的数是整数时我们称为连动整数.(1)﹣3,0,2.5是连动数的是 ;(2)关于x 的方程2x ﹣m =x +1的解满足是连动数,求m 的取值范围 ;(3)当不等式组11212()3x x a +⎧>-⎪⎨⎪+-⎩的解集中恰好有4个解是连动整数时,求a 的取值范围. 17.在平面直角坐标系中,点(,1)A a ,(,3)B b 满足关系式2(1)|2|0++-=a b .(1)求a ,b 的值;(2)若点(3,)P n 满足ABP △的面积等于6,求n 的值;(3)线段AB 与y 轴交于点C ,动点E 从点C 出发,在y 轴上以每秒1个单位长度的速度向下运动,动点F 从点(8,0)-M 出发,以每秒2个单位长度的速度向右运动,问t 为何值时有2ABE ABF S S =,请直接写出t 的值.18.如图,在平面直角坐标系xOy 中,对于任意两点A (x 1,y 1)与B (x 2,y 2)的“非常距离”,给出如下定义:若|x 1﹣x 2|≥|y 1﹣y 2|,则点A 与点B 的“非常距离”为|x 1﹣x 2|;若|x 1﹣x 2|<|y 1﹣y 2|,则点A 与点B 的“非常距离”为|y 1﹣y 2|.(1)填空:已知点A (3,6)与点B (5,2),则点A 与点B 的“非常距离”为 ; (2)已知点C (﹣1,2),点D 为y 轴上的一个动点.①若点C 与点D 的“非常距离”为2,求点D 的坐标;②直接写出点C 与点D 的“非常距离”的最小值.19.某工厂接受了20天内生产1200台GH 型电子产品的总任务.已知每台GH 型产品由4个G 型装置和3个H 型装置配套组成.工厂现有80名工人,每个工人每天能加工6个G 型装置或3个H 型装置.工厂将所有工人分成两组同时开始加工,每组分别加工一种装置,并要求每天加工的G 、H 型装置数量正好全部配套组成GH 型产品.(1)按照这样的生产方式,工厂每天能配套组成多少套GH 型电子产品?请列出二元一次方程组解答此问题.(2)为了在规定期限内完成总任务,工厂决定补充一些新工人,这些新工人只能独立进行G 型装置的加工,且每人每天只能加工4个G 型装置.设原来每天安排x 名工人生产G 型装置,后来补充m 名新工人,求x 的值(用含m 的代数式表示)20.在平面直角坐标系中,点A 、B 在坐标轴上,其中()0,A a 、(),0B b 满足|21|280a b a b --+-.(1)求A 、B 两点的坐标;(2)将线段AB 平移到CD ,点A 的对应点为()2,C t -,如图1所示,若三角形ABC 的面积为9,求点D 的坐标;(3)平移线段AB 到CD ,若点C 、D 也在坐标轴上,如图2所示.P 为线段AB 上的一动点(不与A 、B 重合),连接OP 、PE 平分OPB ∠,2BCE ECD ∠=∠.求证:3()BCD CEP OPE ∠=∠-∠.21.新定义,若关于x ,y 的二元一次方程组①111222a x b y c a x b y c +=⎧⎨+=⎩的解是00x x y y =⎧⎨=⎩,关于x ,y 的二元一次方程组②111222e x f y d e x f y d +=⎧⎨+=⎩的解是11x x y y =⎧⎨=⎩,且满足1000.1x x x -≤,1000.1y y y -≤,则称方程组②的解是方程组①的模糊解.关于x ,y 的二元一次方程组222104x y m x y m +=+⎧⎨-=+⎩的解是方程组10310x y x y +=⎧⎨+=-⎩的模糊解,则m 的取值范围是________. 22.小明为班级购买信息学编程竞赛的奖品后,回学校向班主任李老师汇报说:“我买了两种书,共30本,单价分别为20元和24元,买书前我领了700元,现在还余38元.”李老师算了一下,说:“你肯定搞错了.”(1)李老师为什么说他搞错了?试用方程的知识给予解释;(2)小明连忙拿出购物发票,发现的确弄错了,因为他还买了一个笔记本.但笔记本的单价已模糊不清,只能辨认出应为小于10元的整数,如果单价为20元的书多于24元的书,请问:笔记本的单价为多少元?23.如图,在平面直角坐标系中,点O 为坐标原点,A 点的坐标为()1A m n -,,B 点的坐标为()0n -,,其中,m n 是二元一次方程组2202m n m n +=⎧⎨-=-⎩的解,过点A 作x 轴的平行线交y 轴于点C .(1)求点,A B 的坐标;(2)动点P 从点B 出发,以每秒4个单位长度的速度沿射线BO 的方向运动,连接PC ,设点P 的运动时间为t 秒,三角形OPC 的面积为()0S S ≠,请用含t 的式子表示S (不用写出相应的t 的取值范围);(3)在(2)的条件下,在动点P 从点B 出发的同时,动点Q 从点C 出发以每秒1个单位长度的速度沿线段CA 的方向运动.过点O 作直线PC 的垂线,点G 为垂足;过点Q 作直线PC 的垂线,点H 为垂足.当2OG QH =时,求t 的值.24.某数码专营店销售A ,B 两种品牌智能手机,这两种手机的进价和售价如表所示:(1)该店销售记录显示,三月份销售A 、B 两种手机共34部,且销售A 种手机的利润恰好是销售B 种手机利润的2倍,求该店三月份售出A 种手机和B 种手机各多少部?(2)根据市场调研,该店四月份计划购进这两种手机共40部,要求购进B 种手机数不低于A 种手机数的35,用于购买这两种手机的资金低于140000元,请通过计算设计所有可能的进货方案.25.某体育拓展中心的门票每张10元,一次性使用考虑到人们的不同需求,也为了吸引更多的顾客,该拓展中心除保留原来的售票方法外,还推出了一种“购买个人年票”(个人年票从购买日起,可供持票者使用一年)的售票方法.年票分A 、B 两类:A 类年票每张120元,持票者可不限次进入中心,且无需再购买门票;B 类年票每张60元,持票者进入中心时,需再购买门票,每次2元.(1)小丽计划在一年中花费80元在该中心的门票上,如果只能选择一种购买门票的方式,她怎样购票比较合算?(2)小亮每年进入该中心的次数约20次,他采取哪种购票方式比较合算?(3)小明根据自己进入拓展中心的次数,购买了A 类年票,请问他一年中进入该中心不低于多少次?26.对x 、y 定义了一种新运算T ,规定(),2ax by T x y x y +=+(其中a ,b 均为非零常数),这里等式右边是通常的四则运算,例如:()010,1201a b T ⨯+⨯=⨯+, 已知()1,12T -=-,()4,21T =.(1)求a ,b 的值;(2)求()2,2T -.(3)若关于m 的不等式组()()2,544,32T m m T m m p⎧-≤⎪⎨->⎪⎩恰好有4个整数解,求p 的取值范围. 27.请阅读求绝对值不等式3x <和3x >的解的过程. 对于绝对值不等式3x <,从图1的数轴上看:大于3-而小于3的数的绝对值小于3,所以3x <的解为33x -<<;对于绝对值不等式3x >,从图2的数轴上看:小于3-或大于3的数的绝对值大于3,所以3x >的解为3x <-或3x >.(1)求绝对值不等式32x ->的解(2)已知绝对值不等式21x a -<的解为3b x <<,求2a b -的值(3)已知关于x ,y 的二元一次方程组234461x y m x y m -=-⎧⎨+=-+⎩的解满足2x y +≤,其中m 是负整数,求m 的值.28.在平面直角坐标系xOy 中,对于任意两点()111,P x y ,()222,P x y ,如果1212x x y y d -+-=,则称1P 与2P 互为“d -距点”.例如:点1(3,6)P ,点2(1,7)P ,由|31||67|3d =-+-=,可得点1P 与2P 互为“3-距点”.(1)在点()2,2D --,(5,1)E -,(0,4)F 中,原点O 的“4-距点”是_____(填字母); (2)已知点(2,1)A ,点(0,)B b ,过点B 作平行于x 轴的直线l .①当3b =时,直线l 上点A 的“2-距点”的坐标为_____;②若直线l 上存在点A 的“2-点”,求b 的取值范围.(3)已知点(1,2)M ,(3,2)N ,(,0)C m ,C 2MN 上存在点P ,在C 上存在点Q ,使得点P 与点Q 互为“5-距点”,直接写出m 的取值范围.29.已知A (0,a )、B (b ,05a -(b ﹣4)2=0.(1)直接写出点A 、B 的坐标;(2)点C 为x 轴负半轴上一点满足S △ABC =15.①如图1,平移直线AB 经过点C ,交y 轴于点E ,求点E 的坐标;②如图2,若点F (m ,10)满足S △ACF =10,求m .(3)如图3,D 为x 轴上B 点右侧的点,把点A 沿y 轴负半轴方向平移,过点A 作x 轴的平行线l ,在直线l 上取两点G 、H (点H 在点G 右侧),满足HB =8,GD =6.当点A 平移到某一位置时,四边形BDHG 的面积有最大值,直接写出面积的最大值.30.对x ,y 定义一种新的运算A ,规定:()()(),ax by x y A x y ay bx x y ⎧+≥⎪=⎨+<⎪⎩(其中0ab ≠).(1)若已知1a =,2b =-,则()4,3A =_________. (2)已知()1,13A =,()1,20A -=.求a ,b 的值; (3)在(2)问的基础上,若关于正数p 的不等式组()()3,21413,2A p p A p p m⎧->⎪⎨---≥⎪⎩恰好有2个整数解,求m 的取值范围.【参考答案】***试卷处理标记,请不要删除一、解答题1.(1)4;(2)45︒;(2)(0,3)P 或(0,1)-. 【分析】(1)根据非负数的性质易得2a =-,2b =,然后根据三角形面积公式计算; (2)过E 作//EF AC ,根据平行线性质得////BD AC EF ,且1312CAB ∠=∠=∠,1422ODB ∠=∠=∠,所以112()2AED CAB ODB ∠=∠+∠=∠+∠;然后把90CAB ODB ∠+∠=︒ 代入计算即可;(3)分类讨论:设(0,)P t ,当P 在y 轴正半轴上时,过P 作//MN x 轴,//AN y 轴,//BM y 轴,利用4APC ANP CMP MNAC S S S S ∆∆∆=--=梯形可得到关于t 的方程,再解方程求出t ;当P 在y 轴负半轴上时,运用同样方法可计算出t . 【详解】解:(1)2(2)20a b ++-=,20a ∴+=,20b -=, 2a ∴=-,2b =,CB AB ⊥(2,0)A ∴-,(2,0)B ,(2,2)C ,ABC ∆∴的面积12442=⨯⨯=;(2)解://CB y 轴,//BD AC ,5CAB ∴∠=∠,又∵590ODB ∠+∠=︒, ∴90CAB ODB ∠+∠=︒, 过E 作//EF AC ,如图①,//BD AC ,////BD AC EF ∴,31∴∠=∠,42∠=∠AE ∵,DE 分别平分CAB ∠,ODB ∠,即:132CAB ∠=∠,142ODB ∠=∠,112()452AED CAB ODB ∴∠=∠+∠=∠+∠=︒;(3)(0,1)P -或(0,3).解:①当P 在y 轴正半轴上时,如图②,设(0,)P t ,过P 作//MN x 轴,//AN y 轴,//BM y 轴,4APC ANP CMP MNAC S S S S ∆∆∆=--=梯形,∴4(2)(2)42t t t t -+---=,解得3t =, ②当P 在y 轴负半轴上时,如图③4APC ANP CMP MNAC S S S S ∆∆∆=--=梯形∴4(2)(2)42t t t t -+-+--=,解得1t =-, 综上所述:(0,3)P 或(0,1)-. 【点睛】本题考查了平行线的判定与性质:两直线平行,内错角相等.也考查了非负数的性质、坐标与图形性质以及三角形面积公式.构造矩形求三角形面积是解题关键.2.(1)110°;(2)猜想:∠APB=∠DAP +∠FBP ,理由见解析;(3)①∠P =2∠P 1,理由见解析;②∠AP 2B=11802β︒-.【分析】(1)过P 作PM ∥CD ,根据两直线平行,内错角相等可得∠APM =∠DAP ,再根据平行公理求出CD ∥EF 然后根据两直线平行,内错角相等可得∠MPB =∠FBP ,最后根据∠APM +∠MPB =∠DAP +∠FBP 等量代换即可得证; (2)结论:∠APB =∠DAP +∠FBP .(3)①根据(2)的规律和角平分线定义解答; ②根据①的规律可得∠APB =∠DAP +∠FBP ,∠AP 2B =∠CAP 2+∠EBP 2,然后根据角平分线的定义和平角等于180°列式整理即可得解. 【详解】(1)证明:过P 作PM ∥CD ,∴∠APM=∠DAP.(两直线平行,内错角相等),∵CD∥EF(已知),∴PM∥CD(平行于同一条直线的两条直线互相平行),∴∠MPB=∠FBP.(两直线平行,内错角相等),∴∠APM+∠MPB=∠DAP+∠FBP.(等式性质)即∠APB=∠DAP+∠FBP=40°+70°=110°.(2)结论:∠APB=∠DAP+∠FBP.理由:见(1)中证明.(3)①结论:∠P=2∠P1;理由:由(2)可知:∠P=∠DAP+∠FBP,∠P1=∠DAP1+∠FBP1,∵∠DAP=2∠DAP1,∠FBP=2∠FBP1,∴∠P=2∠P1.②由①得∠APB=∠DAP+∠FBP,∠AP2B=∠CAP2+∠EBP2,∵AP2、BP2分别平分∠CAP、∠EBP,∴∠CAP2=12∠CAP,∠EBP2=12∠EBP,∴∠AP2B=12∠CAP+12∠EBP,= 12(180°-∠DAP)+ 12(180°-∠FBP),=180°- 12(∠DAP+∠FBP),=180°- 12∠APB,=180°- 12β.【点睛】本题考查了平行线的性质,角平分线的定义,熟记性质与概念是解题的关键,此类题目,难点在于过拐点作平行线.3.(1)两直线平行,内错角相等;平行于同一条直线的两条直线平行;∠CPH;∠APH,∠CPH;(2)①∠APQ+∠PQC=∠A+∠C+180°成立,理由见解答过程;②3∠PMQ+∠A+∠C=360°.【分析】(1)根据平行线的判定与性质即可完成填空;(2)结合(1)的辅助线方法即可完成证明;(3)结合(1)(2)的方法,根据∠APM=2∠MPQ,∠CQM=2∠MQP,∠PMQ+∠MPQ+∠PQM=180°,即可证明∠PMQ,∠A与∠C的数量关系.【详解】解:过点P作直线PH∥AB,所以∠A=∠APH,依据是两直线平行,内错角相等;因为AB∥CD,PH∥AB,所以PH∥CD,依据是平行于同一条直线的两条直线平行;所以∠C=(∠CPH),所以∠APC=(∠APH)+(∠CPH)=∠A+∠C=97°.故答案为:两直线平行,内错角相等;平行于同一条直线的两条直线平行;∠CPH;∠APH,∠CPH;(2)①如图2,∠APQ+∠PQC=∠A+∠C+180°成立,理由如下:过点P作直线PH∥AB,QG∥AB,∵AB∥CD,∴AB∥CD∥PH∥QG,∴∠A=∠APH,∠C=∠CQG,∠HPQ+∠GQP=180°,∴∠APQ+∠PQC=∠APH+∠HPQ+∠GQP+∠CQG=∠A+∠C+180°.∴∠APQ+∠PQC=∠A+∠C+180°成立;②如图3,过点P作直线PH∥AB,QG∥AB,MN∥AB,∵AB∥CD,∴AB∥CD∥PH∥QG∥MN,∴∠A=∠APH,∠C=∠CQG,∠HPQ+∠GQP=180°,∠HPM=∠PMN,∠GQM=∠QMN,∴∠PMQ=∠HPM+∠GQM,∵∠APM=2∠MPQ,∠CQM=2∠MQP,∠PMQ+∠MPQ+∠PQM=180°,∴∠APM+∠CQM=∠A+∠C+∠PMQ=2∠MPQ+2∠MQP=2(180°﹣∠PMQ),∴3∠PMQ+∠A+∠C=360°.【点睛】考核知识点:平行线的判定和性质.熟练运用平行线性质和判定,添加适当辅助线是关键.4.(1)120,90;(2)①∠1=120°-n°,∠2=90°+n°;②见解析【分析】(1)根据邻补角的定义和平行线的性质解答;(2)①根据邻补角的定义求出∠ABE,再根据两直线平行,同位角相等可得∠1=∠ABE,根据两直线平行,同旁内角互补求出∠BCG,然后根据周角等于360°计算即可得到∠2;②结合图形,分A B、B C、AC三条边与直尺垂直讨论求解.【详解】解:(1)∠1=180°-60°=120°,∠2=90°;故答案为:120,90;(2)①如图2,∵∠ABC=60°,∴∠ABE=180°-60°-n°=120°-n°,∵DG∥EF,∴∠1=∠ABE=120°-n°,∠BCG=180°-∠CBF=180°-n°,∵∠ACB+∠BCG+∠2=360°,∴∠2=360°-∠ACB-∠BCG=360°-90°-(180°-n°)=90°+n°;②当n=30°时,∵∠ABC=60°,∴∠ABF=30°+60°=90°,AB⊥DG(EF);当n=90°时,∠C=∠CBF=90°,∴BC⊥DG(EF),AC⊥DE(GF);当n =120°时, ∴AB ⊥DE (GF ).【点睛】本题考查了平行线角的计算,垂线的定义,主要利用了平行线的性质,直角三角形的性质,读懂题目信息并准确识图是解题的关键. 5.(1)见解析;(2)见解析;(3)︒=∠105EBC . 【分析】(1)先根据平行线的性质得到C BDA ∠=∠,然后结合AB BC ⊥即可证明;(2)过B 作//BH DM ,先说明ABD CBH ∠=∠,然后再说明//BH NC 得到CBH C ∠=∠,最后运用等量代换解答即可;(3)设∠DBE =a ,则∠BFC =3a ,根据角平分线的定义可得∠ABD =∠C =2a ,∠FBC =12∠DBC =a +45°,根据三角形内角和可得∠BFC +∠FBC +∠BCF =180°,可得∠AFC =∠BCF 的度数表达式,再根据平行的性质可得∠AFC +∠NCF =180°,代入即可算出a 的度数,进而完成解答. 【详解】(1)证明:∵//AM CN , ∴C BDA ∠=∠, ∵AB BC ⊥于B , ∴90B ∠=︒, ∴90A BDA ∠+∠=︒, ∴90A C ∠+∠=︒;(2)证明:过B 作//BH DM , ∵BD MA ⊥,∴90ABD ABH ∠+∠=︒, 又∵AB BC ⊥, ∴90ABH CBH ∠+∠=︒, ∴ABD CBH ∠=∠, ∵//BH DM ,//AM CN∴//BH NC , ∴CBH C ∠=∠, ∴ABD C ∠=∠;(3)设∠DBE =a ,则∠BFC =3a , ∵BE 平分∠ABD , ∴∠ABD =∠C =2a ,又∵AB ⊥BC ,BF 平分∠DBC ,∴∠DBC =∠ABD +∠ABC =2a +90,即:∠FBC =12∠DBC =a +45° 又∵∠BFC +∠FBC +∠BCF =180°,即:3a +a +45°+∠BCF =180° ∴∠BCF =135°-4a , ∴∠AFC =∠BCF =135°-4a , 又∵AM //CN ,∴∠AFC +∠ NCF =180°,即:∠AFC +∠BCN +∠BCF =180°, ∴135°-4a +135°-4a +2a =180,解得a =15°, ∴∠ABE =15°,∴∠EBC =∠ABE +∠ABC =15°+90°=105°. 【点睛】本题主要考查了平行线的性质、角平分线的性质及角的计算,熟练应用平行线的性质、角平分线的性质是解答本题的关键.6.(1)20,20,//AB CD ;(2)180FMN GHF ∠+∠=︒;(3)1FPN Q∠∠的值不变,12FPN Q=∠∠ 【分析】(1)根据2(402)|20|0αβ-+-=,即可计算α和β的值,再根据内错角相等可证//AB CD ; (2)先根据内错角相等证//GH PN ,再根据同旁内角互补和等量代换得出180FMN GHF ∠+∠=︒;(3)作1PEM ∠的平分线交1M Q 的延长线于R ,先根据同位角相等证//ER FQ ,得1FQM R =∠∠,设PER REB x ==∠∠,11PM R RM B y ==∠∠,得出12EPM R ∠=∠,即可得12FPN Q=∠∠. 【详解】解:(1)2(402)|20|0αβ-+-=,4020α∴-=,200β-=,20αβ∴==,20PFM MFN ∴∠=∠=︒,20EMF ∠=︒,EMF MFN ∴∠=∠,//AB CD ∴;故答案为:20、20,//AB CD ; (2)180FMN GHF ∠+∠=︒; 理由:由(1)得//AB CD ,MNF PME ∴∠=∠,MGH MNF ∠=∠, PME MGH ∴∠=∠,//GH PN ∴, GHM FMN ∴∠=∠,180GHF GHM ∠+∠=︒,180FMN GHF ∴∠+∠=︒;(3)1FPN Q ∠∠的值不变,12FPN Q=∠∠; 理由:如图3中,作1PEM ∠的平分线交1M Q 的延长线于R ,//AB CD ,1PEM PFN ∴∠=∠,112PER PEM ∠=∠,12PFQ PFN =∠∠,PER PFQ ∴∠=∠, //ER FQ ∴,1FQM R ∴∠=∠,设PER REB x ==∠∠,11PM R RM B y ==∠∠,则有:122y x Ry x EPM =+∠⎧⎨=+∠⎩,可得12EPM R ∠=∠,112EPM FQM ∴∠=∠,∴112EPM FQM ∠=∠. 【点睛】本题主要考查平行线的判定与性质,熟练掌握内错角相等证平行,平行线同旁内角互补等知识是解题的关键.7.(1)①21,②6,m n +;(2)35b =;(3)65a = 【分析】(1)①由“奇异数”的定义可得;②根据定义计算可得; (2)由f (10m+n )=m+n ,可求k 的值,即可求b ;(3)根据题意可列出等式,可求出x 、y 的值,即可求a 的值. 【详解】解:(1)①∵对任意一个两位数a ,如果a 满足个位数字与十位数字互不相同,且都不为零,那么称这个两位数为“奇异数”. ∴“奇异数”为21;②f (15)=(15+51)÷11=6,f (10m+n )=(10m+n+10n+m )÷11=m+n ; (2)∵f (10m+n )=m+n ,且f (b )=8 ∴k+2k-1=8 ∴k=3∴b=10×3+2×3-1=35; (3)根据题意有()f a x y =+ ∵()510a f a -= ∴()10510x y x y +-+= ∴5410x y -= ∵x 、y 为正数,且x≠y ∴x=6,y=5 ∴a=6×10+5=65故答案为:(1)①21,②6,m n +;(2)35b =;(3)65a = 【点睛】本题考查了新定义下的实数运算,能理解“奇异数”定义是本题的关键. 8.(1)两;(2)2,3;(3)24,﹣48; 【分析】(1)由题意可得10100<,进而可得答案;(2)由只有个位数是2的数的立方的个位数是8333=27,4=64可得27<32<64,进而可确定3040<上的数,进而可得答案;(3)仿照(1)(2)两小题中的方法解答即可.【详解】解:(1)因为1000327681000000<<,所以10100<,故答案为:两;(2)因为只有个位数是2的数的立方的个位数是8,2,划去32768后面的三位数768得到32,因为333=27,4=64,27<32<64,所以3040<,3;故答案为:2,3;(3)由103=1000,1003=1000000,1000<13824<1000000,∴10100, ∴∵只有个位数是4的数的立方的个位数是4, ∴4, 划去13824后面的三位数824得到13,∵8<13<27,∴2030. ∴;由103=1000,1003=1000000,1000<110592<1000000,∴10100, ∴∵只有个位数是8的数的立方的个位数是2, ∴8, 划去110592后面的三位数592得到110,∵64<110<125,∴4050, ∴48=; ∴﹣48.【点睛】本题考查了立方根和立方数的规律探求,具有一定的难度,正确理解题意、确定所求的数的个位数字和十位数字是解题的关键.9.(1)2;32)1、2、3;(3)256,4【分析】(1)依照定义进行计算即可;(2)由题可知,04x <<,则可得满足题意的整数的x 的值为1、2、3;(3)由0=,可知,0y 是某个整数的平方,又0y 是符合条件的所有数中最大的数,则0256y =,再依次进行计算.【详解】解:(1)由定义可得,2=,[52=,{53∴=故答案为:2;3.(2)[]1x =,2∴<,即04x <<,∴整数x 的值为1、2、3.故答案为:1、2、3.(3)0{}0y =,即0==,∴2t =,且t 是自然数,0y 是符合条件的所有数中的最大数,0256y ∴=,1[16]16y ∴===,2[4]4y ===,3[2]2y ===,41y ===,即4n =.故答案为:256,4.【点睛】本题属于新定义类问题,主要考查估算无理数大小,无理数的整数部分和小数部分,理解定义内容是解题关键.10.(1)两;(2)2,3;(3)24,﹣48;【分析】(1)由题意可得10100<,进而可得答案;(2)由只有个位数是2的数的立方的个位数是8333=27,4=64可得27<32<64,进而可确定3040<上的数,进而可得答案;(3)仿照(1)(2)两小题中的方法解答即可.【详解】解:(1)因为1000327681000000<<,所以10100<,故答案为:两;(2)因为只有个位数是2的数的立方的个位数是8,2,划去32768后面的三位数768得到32,因为333=27,4=64,27<32<64,所以3040<,3;故答案为:2,3;(3)由103=1000,1003=1000000,1000<13824<1000000,∴10100, ∴∵只有个位数是4的数的立方的个位数是4, ∴4, 划去13824后面的三位数824得到13,∵8<13<27,∴2030. ∴;由103=1000,1003=1000000,1000<110592<1000000,∴10100, ∴∵只有个位数是8的数的立方的个位数是2, ∴8, 划去110592后面的三位数592得到110,∵64<110<125,∴4050, ∴48=; ∴﹣48.【点睛】本题考查了立方根和立方数的规律探求,具有一定的难度,正确理解题意、确定所求的数的个位数字和十位数字是解题的关键.11.(1)两;(2)125,343,729,9;(3)3,39;(4)47【分析】(1)根据夹逼法和立方根的定义进行解答;(2)先分别求得1至9中奇数的立方,然后根据末位数字是几进行判断即可;(3)先利用(2)中的方法判断出个数数字,然后再利用夹逼法判断出十位数字即可; (4)利用(3)中的方法确定出个位数字和十位数字即可.【详解】(1)∵1000<59319<1000000,∴59319的立方根是两位数;(2)∵3311,327,==35=125,37=343,39=729,∴59319的个位数字是9,则59319的立方根的个位数字是9;(3)∵3327=59<<3464=,且59319的立方根是两位数,∴59319的立方根的十位数字是3,又∵59319的立方根的个位数字是9,∴59319的立方根是39;(4)∵1000<103823<1000000,∴103823的立方根是两位数;∵3311,327,==35=125,37=343,39=729,∴103823的个位数字是3,则103823的立方根的个位数字是7;∵3464=3195552<<=,且103823的立方根是两位数,∴103823的立方根的十位数字是4,又∵103823的立方根的个位数字是7,∴103823的立方根是47.【点睛】考查了立方根的概念和求法,解题关键是理解一个数的立方的个位数就是这个数的个位数的立方的个位数.12.(1)15;(2)11514-;(3)111. 【分析】(1)先计算乘方,即可求出答案;(2)根据题目中的运算法则进行计算,即可求出答案;(3)根据题目中的运算法则进行计算,即可求出答案;【详解】解:(1)231248125122=++++=++;故答案为:15;(2)设231015555T =+++++①,把等式①两边同时乘以5,得 112310555555T =+++++②,由②-①,得:11451T =-, ∴11514T -=, ∴31121015551455++=+++-; (3)设234520192020110101010101010M =-+-+-+-+①, 把等式①乘以10,得:3456222019020202110101010101010101010M =-+-+-+-++②,把①+②,得:202111110M =+, ∴202110111M +=, ∴232452019200022111010101010110010111-+-+-+-++=, ∴20212345201920201011010101010101011-+-+-+-+-20212021101101111+=- 111=. 【点睛】本题考查了数字的变化规律,熟练掌握运算法则,熟练运用有理数乘法,以及运用消项的思想是解题的关键.13.(1)(6,4)D ;(2)①(1,0)P 或(7,0);②点P 在B 点左侧时,αβθ+=;点P 在B 点右侧时,αβθ-=.【分析】(1)根据非负数的性质分别求出a 、b ,根据平移规律得到平移方式,再由平移的坐标变化规律求出点D 的坐标;(2)①设PB m =,根据三角形的面积公式列出方程,解方程求出m ,得到点P 的坐标; ②分点P 点P 在B 点左侧、点P 在B 点右侧时,过点P 作//PE AC ,根据平行线的性质解答.【详解】解:(1)()220a ++, 20a ∴+=,40b -=,,解得,2a =-,4b =.(2,0)A ∴-,(4,0)B ,平移线段AB 得到线段CD ,使点(2,0)A -与点(0,4)C 对应,∴平移线段AB 向上平移4个单位,再向右平移2个单位得到线段CD ,∴(42,04)D ++,即(6,4)D ;(2)①设PB m =,∵线段AB 平移得到线段CD ,∴//AB CD ,∵6AB CD ==,4OC =∵2PCD PBD SS =, ∴11222CD OC PB OC =, ∵6AB CD ==,4OC =∴11642422m ⨯=⨯⨯ 解得3m =,当P 在B 点左侧时,坐标为(1,0),当P 在B 点右侧时,坐标为(7,0),(1,0)P ∴或(7,0);②I 、点P 在射线AB (不与点A ,B 重合)上,点P 在B 点左侧时,α,β,θ满足的关系式是αβθ+=.理由如下:如图1,过点P 作//PE AC ,,∴CPE PCA ∠=∠=α, CD 由AB 平移得到,点A 与点C 对应,点B 与点D 对应,//AC BD ∴,∴//PE BD∴DPE PDB ∠=∠=β,CPD CPE DPE αβ∴∠=∠+∠=+;即αβθ+=,II 、如图2,点P 在射线AB (不与点A ,B 重合)上,点P 在B 点右侧时,α,β,θ满足的关系式是αβθ-=.同①的方法得,CPE PCA ∠=∠=α,DPE PDB ∠=∠=β,CPD CPE DPE αβ∠=∠-∠=-;即:αβθ-=综上所述:点P 在B 点左侧时,αβθ+=.点P 在B 点右侧时,αβθ-=.【点睛】本题考查了坐标与图形平移的关系,坐标与平行四边形性质的关系,平行线的性质及三角形、平行四边形的面积公式.关键是理解平移规律,作平行线将相关角进行转化. 14.(1)见解析;(2)180CPD αβ∠=∠+︒-∠,理由见解析;(3)①当P 在BA 延长线时(点P 不与点A 重合),180CPD βα∠=︒-∠-∠;②当P 在BO 之间时(点P 不与点B ,O 重合),180CPD αβ∠=∠-︒+∠.理由见解析【分析】(1)过P 作PE ∥AB ,构造同旁内角,利用平行线性质,可得∠APC =113°;(2)过过P 作//PF AD 交CD 于F ,,推出////AD PF BC ,根据平行线的性质得出180BCP ,即可得出答案;(3)画出图形(分两种情况:①点P 在BA 的延长线上,②当P 在BO 之间时(点P 不与点B ,O 重合)),根据平行线的性质即可得出答案.【详解】解:(1)过P 作//PE AB ,。
2022-2023学年人教版七年级下学期数学期末模拟卷班级姓名一、选择题(本题共36分,每小题3分)1若式子在实数范围内有意义,则a的取值范围是()A.a>3B.a≥3C.a<3D.a≤32.下列调查中,最适合采用全面调查(普查)方式的是()A.对绵阳市辖区内涪江流域水质情况的调查B.对乘坐飞机的旅客是否携带违禁物品的调查C.对一个社区每天丢弃塑料袋数量的调查D.对绵阳电视台“天天800”栏目收视率的调查3、如图天平右盘中的每个砝码的质量都是1g,则物体A的质量m(g)的取值范围在数轴上可表示为()A.B.C.D.第3题第4题第8题4、如图,下列条件中,不能判断直线a∥b的是()A.∠1=∠3B.∠2=∠3C.∠4=∠5D.∠2+∠4=180°5.若a>b,则下列不等式正确的是()1A.3a<3b B.ma>mb C.﹣a﹣1>﹣b﹣1D.6.已知点P(2﹣4m,m﹣4)在第三象限,且满足横、纵坐标均为整数的点P有()A.1个B.2个C.3个D.4个7、已知有理数a,b满足5﹣a=2b+﹣a,则a+b=()A.2B.C.D.11 68、如图,已知AD∥EF ∥BC,BD∥GF,且BD平分∠ADC,则图中与∠1相等的角(∠1除外)共有()A.4个B.5个C.6个D.7个9.现用甲、乙两种运输车将46吨抗旱物资运往灾区,甲种运输车载重5吨,乙种运输车载重4吨,安排车辆不超过10辆,则甲种运输车至少应安排()A.4辆B.5辆C.6辆D.7辆10、已知x和y的方程组的解是,则x和y的方程组的解是()A.B.C.D.11、关于x的不等式组的解集中所有整数之和最大,则a的取值范围是()A.﹣3≤a≤0B.﹣1≤a<1C.﹣3<a≤1D.﹣3≤a<112.已知AB∥CD,点E为直线AB、CD所确定的平面内一点.点F在BA的延长线上,连接BE、EF,若CE⊥CD,EF平分∠AEC,∠B=∠AEB,过点F作∠BFG=∠BFE交EC的延长线于点G,连接DF,作∠DFG的平分线交CD于点H,当FD∥BE时,求∠CHF的度数是().23A .76°B .67°C .67.5°D .76.5°第12题 第14题 第15题二、填空题(本题共18分,每小题3分)13、关于x ,y 的二元一次方程ax +by =c (a ,b ,c 是常数),b =a +1,c =b +1. 当时,则c 的值= .14、如图所示,l 1∥l 2,点A ,E ,D 在直线l 1上,点B ,C 在直线l 2上,满足BD 平分∠ABC ,BD ⊥CD ,CE 平分∠DCB ,若∠BAD =136°,那么∠AEC = .15、为纪念辛亥革命100周年,某校八年级(1)班全体学生举行了“首义精神耀千秋”的知识竞赛.根据竞赛成绩(得分为整数,满分为100分)绘制了频数分布直方图(如图所示),若成绩不少于80分为优秀,且该班有3名学成绩为80分,则学生成绩的优秀率是________.16、某工厂计划m 天生产2160元个零件,若安排15名工人每人每天加工a 个零件(a 为整数)恰好完成.实际开工x 天后,其中3人外出培训,剩下的工人每人每天多加工2个零件,不能按期完成这次任务, a 的值至少为__________17、在平面直角坐标系中,A(a,5),B(1,4-2a),C(1,b),且2a+b=10,并且13316≤+≤a b .则ABC ∆的面积的最大值为________.18、若不等式>﹣x ﹣的解都能使不等式(m ﹣6)x <2m +1成立,则实数m 的取值范围是三、解答题(本题共46分,)19、(7分)计算:.20、(7分)解不等式组,并把解集在数轴上表示出来.21.(8分)如图,三角形A′B′C′是由三角形ABC经过某种平移得到的,点A与点A′,点B与点B′,点C与点C′分别对应,且这六个点都在格点上,观察各点以及各点坐标之间的关系,解答下列问题:(1)分别写出点B和点B′的坐标,并说明三角形A′B′C′是由三角形ABC经过怎样的平移得到的;(2)连接BC′,直接写出∠CBC′与∠B′C′O 之间的数量关系;(3)若点M(a﹣1,2b﹣5)是三角形ABC内一点,它随三角形ABC按(1)中方式平移后得到的对应点为点N(2a﹣7,4﹣b),求a和b的值.22、(8分)我市为加强学生的安全意识,组织了全市学生参加安全知识竞赛,为了解此次知识竞赛成绩的情况,随机抽取了部分参赛学生的成绩,整理并制作出如下的不完整的统计表和统计图,如图所示,请根据图表信息解答以下问题.组别成绩x/分频数4A组60≤x<70aB组70≤x<808C组80≤x<9012D组90≤x<10014(1)一共抽取了个参赛学生的成绩;表中a=;(2)补全频数分布直方图;(3)计算扇形统计图中“B”对应的圆心角度数;(4)若成绩在80分以上(包括80分)的为“优”等,该市共有学生120万人,那么该市学生中能获得“优秀”的有多少人?23、(8分)某包装生产企业承接了一批上海世博会的礼品盒制作业务,为了确保质量,该企业进行试生产.他们购得规格是170cm×40cm的标准板材作为原材料,每张标准板材再按照裁法一或裁法二裁下A型与B型两种板材.如图所示,(单位:cm)(1)列出方程(组),求出图甲中a与b的值.(2)在试生产阶段,若将m张标准板材用裁法一裁剪,n张标准板材用裁法二裁剪,再将得到的A型与B型板材做侧面和底面,做成图乙横式无盖礼品盒.①两种裁法共产生A型板材张,B型板材张(用m、n的代数式表示);②当30≤m≤40时,所裁得的A型板材和B型板材恰好用完,做成的横式无盖礼品盒的个数可能有几种情况.524.(8分)如图AB∥CD,点E在AB上,点M在CD上,点F在直线AB,CD之间,连接EF,FM.EF⊥FM,∠CMF=140°.(1)直接写出∠AEF的度数为;(2)如图2,延长FM到G,点H在FG的下方,连接GH,CH,若∠FGH=∠H+90°,求∠MCH的度数;(3)如图3,作直线AC,延长EF交CD于点Q,P为直线AC上一动点,探究∠PEQ,∠PQC和∠EPQ的数量关系,请直接给出结论.(题中所有角都是大于0°小于180°的角)6。
七下期期末(共六套)一、选择题:(本大题共10个小题,每小题3分,共30分) 1.若m >-1,则下列各式中错误的...是( ) A .6m >-6 B .-5m <-5 C .m+1>0 D .1-m <2 2.下列各式中,正确的是( )±4 B.3.已知a >b >0,那么下列不等式组中无解..的是( ) A .⎩⎨⎧-><b x a x B .⎩⎨⎧-<->b x a x C .⎩⎨⎧-<>b x a x D .⎩⎨⎧<->bx ax4.一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上平行行驶,那么两个拐弯的角度可能为 ( )(A) 先右转50°,后右转40° (B) 先右转50°,后左转40° (C) 先右转50°,后左转130° (D) 先右转50°,后左转50° 5.解为12x y =⎧⎨=⎩的方程组是( ) A.135x y x y -=⎧⎨+=⎩ B.135x y x y -=-⎧⎨+=-⎩ C.331x y x y -=⎧⎨-=⎩ D.2335x y x y -=-⎧⎨+=⎩6.如图,在△ABC 中,∠ABC=500,∠ACB=800,BP 平分∠ABC ,CP 平分∠ACB ,则∠BPC 的大小是( )A .1000B .1100C .1150D .120PCBA(1) (2) (3)7.四条线段的长分别为3,4,5,7,则它们首尾相连可以组成不同的三角形的个数是( ) A .4 B .3 C .2 D .1 8.在各个内角都相等的多边形中,一个外角等于一个内角的12,则这个多边形的边数是( ) A .5 B .6 C .7 D .89.如图,△A 1B 1C 1是由△ABC 沿BC 方向平移了BC 长度的一半得到的,若△ABC 的面积为20 cm 2,则四边形A 1DCC 1的面积为( )A .10 cm 2B .12 c m 2C .15 cm 2D .17 cm 210.课间操时,小华、小军、小刚的位置如图1,小华对小刚说,如果我的位置用(•0,0)表示,小军的位置用(2,1)表示,那么你的位置可以表示成( )A.(5,4)B.(4,5)C.(3,4)D.(4,3)二、填空题:本大题共8个小题,每小题3分,共24分,把答案直接填在答题卷的横线上. 11.49的平方根是________,算术平方根是______,-8的立方根是_____. 12.不等式5x-9≤3(x+1)的解集是________.13.如果点P(a,2)在第二象限,那么点Q(-3,a)在_______.14.如图3所示,在铁路旁边有一李庄,现要建一火车站,•为了使李庄人乘火车最方便(即距离最近),请你在铁路旁选一点来建火车站(位置已选好),说明理由:____________.15.从A 沿北偏东60°的方向行驶到B,再从B 沿南偏西20°的方向行驶到C,•则∠ABC=_______度.16.如图,AD ∥BC,∠D=100°,CA 平分∠BCD,则∠DAC=_______.17.给出下列正多边形:① 正三角形;② 正方形;③ 正六边形;④ 正八边形.用上述正多边形中的一种能够辅满地面的是_____________.(将所有答案的序号都填上) 18.若│x 2-25│则x=_______,y=_______.三、解答题:本大题共7个小题,共46分,解答题应写出文字说明、证明过程或演算步骤.19.解不等式组:⎪⎩⎪⎨⎧+<-≥--.21512,4)2(3x x x x ,并把解集在数轴上表示出来.20.解方程组:2313424()3(2)17x y x y x y ⎧-=⎪⎨⎪--+=⎩21.如图, AD ∥BC , AD 平分∠EAC,你能确定∠B 与∠C 的数量关系吗?请说明理由。
人教版数学七年级下册期末测试卷学校________ 班级________ 姓名________ 成绩________ 一、选择题(每小题3分,共24分)1.如果21xy=-⎧⎨=⎩是二元一次方程mx+y=3的一个解,则m的值是()A. -2B. 2C. -1D. 12.9的平方根是()A. ﹣3B. ±3C. 3D. ±1 33. 在平面直角坐标系中,点A(3,﹣5)所在象限为()A. 第一象限B. 第二象限C. 第三象限D. 第四象限4.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=15°,那么∠2 的度数是()A. 15°B. 25°C. 30°D. 35°5.不等式101103xx+>⎧⎪⎨->⎪⎩的解集在数轴上表示正确的是( )A.(A)B. (B)C. (C)D. (D)6.下列调查中,适宜采用全面调查方式的是()A. 调查市场上矿泉水的质量情况B. 了解全国中学生的身高情况C. 调查某批次电视机的使用寿命D. 调查乘坐动车的旅客是否携带了违禁物品7.如图,下列条件中不能使a∥b是()A. ∠1=∠3B. ∠2=∠3C. ∠4=∠5D. ∠2+∠4=180°8.已知点P 的坐标为(a,b)(a>0),点Q的坐标为(c,3),且|a﹣c|+7b-=0,将线段PQ向右平移a个单位长度,其扫过的面积为20,那么a+b+c的值为()A. 12B. 15C. 17D. 20二、填空题(每小题3分,共24分)9.在实数﹣7,5,π,﹣327中,无理数的个数是_____.10.在平面直角坐标系中,若点P在x轴的下方,y轴的右方,到y轴的距离都是3,到x轴的距离都是5,则点P的坐标为_____.11.如图,某校根据学生上学方式的一次抽样调查结果,绘制出一个未完成的扇形统计图,若该校共有学生700人,则据此估计步行的有人.12.不等式﹣3≤5﹣2x≤3的正整数解是_____.13.如图,AB∥CD∥EF,若∠ABC=50°,∠CEF=150°,则∠BCE=_______.14.若54413273193218x y zx y zx y z-+=⎧⎪+-=⎨⎪+-=⎩则5x﹣y﹣z﹣1的立方根是_____.15.实数a、b在数轴上对应点的位置如图所示,化简:22()aa b a b++--=_____.16.如图,动点P在平面直角坐标系中按图中箭头所示的方向运动,第1次从原点运动到(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过2017次运动后,动点P 的坐标为_____.三、解答题(共72分)17.(10.00分)解下列二元一次方程组或不等式组:(1)131222 x yx y⎧-=⎪⎨⎪+=⎩(2)43(2) 2113x xxx-<-⎧⎪+⎨+>⎪⎩18.如图,这是某市部分简图,请建立适当的平面直角坐标系,分别写出各地的坐标.19.某兴趣小组进行活动,每个男生都头戴蓝色帽子,每个女生都头戴红色帽子.帽子戴好后,每个男生都看见戴红色帽子人数比戴蓝色帽子的人数的2倍少1,而每个女生都看见戴蓝色帽子的人数是戴红色帽子的人数的35.问该兴趣小组男生、女生各有多少人?20.某城市出租车的收费标准是:起步价7元(即行驶距离不超过3千米都需付7元车费),超过3千米,每增加1千米,加收2元(不足1千米按1千米).某人乘这种出租车从甲地到乙地共付车费19元,那么他乘此出租车从甲地到乙地行驶的距离不超过多少千米?21.2013年6月,某中学结合广西中小学阅读素养评估活动,以“我最喜爱的书籍”为主题,对学生最喜爱的一种书籍类型进行随机抽样调查,收集整理数据后,绘制出以下两幅未完成的统计图,请根据图1和图2提供的信息,解答下列问题:(1)在这次抽样调查中,一共调查了多少名学生?(2)请把折线统计图(图1)补充完整;(3)求出扇形统计图(图2)中,体育部分所对应的圆心角的度数;(4)如果这所中学共有学生1800名,那么请你估计最喜爱科普类书籍的学生人数.22.如图,已知∠A=∠AGE,∠D=∠DGC(1)求证:AB∥CD;(2)若∠2+∠1=180°,且∠BEC=2∠B+30°,求∠C的度数.23.在“五•一”期间,某公司组织318名员工到雷山西江千户苗寨旅游,旅行社承诺每辆车安排有一名随团导游,并为此次旅行安排8名导游,现打算同时租甲、乙两种客车,其中甲种客车每辆载客45人,乙种客车每辆载客30人.(1)请帮助旅行社设计租车方案.(2)若甲种客车租金为800元/辆,乙种客车租金为600元/辆,旅行社按哪种方案租车最省钱?此时租金是多少?(3)旅行前,旅行社的一名导游由于有特殊情况,旅行社只能安排7名导游随团导游,为保证所租的每辆车安排有一名导游,租车方案调整为:同时租65座、45座和30座的大小三种客车,出发时,所租的三种客车的座位恰好坐满,请问旅行社的租车方案如何安排?24.已知,平面直角坐标系内,点A(a,0),B(b,2),C(0,2),且a、b是方程组213211a ba b+=⎧⎨+=⎩的解,求:(1)a、b的值.(2)过点E(6,0)作PE∥y轴,点Q(6,m)是直线PE上一动点,连QA、QB,试用含有m的式子表示△ABQ 的面积.(3)在(2)的条件下.当△ABQ的面积是梯形OABC面积一半时,求Q点坐标答案与解析一、选择题(每小题3分,共24分)1.如果21xy=-⎧⎨=⎩是二元一次方程mx+y=3的一个解,则m的值是()A. -2B. 2C. -1D. 1 【答案】C【解析】根据方程的解的定义,易得C.2.9的平方根是()A. ﹣3B. ±3C. 3D. ±1 3【答案】B【解析】【分析】根据平方根的含义和求法,求出9的平方根是多少即可.【详解】9的平方根是:9±=±3.故选B.【点睛】此题主要考查了平方根的性质和应用,要熟练掌握,解答此题的关键是要明确:一个正数有两个平方根,这两个平方根互为相反数,零的平方根是零,负数没有平方根.3. 在平面直角坐标系中,点A(3,﹣5)所在象限为()A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】D【解析】根据各象限的坐标特征,易得D.4.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=15°,那么∠2 的度数是()A. 15°B. 25°C. 30°D. 35°【答案】C【解析】【分析】直接利用平行线的性质结合等腰直角三角形的性质得出答案.【详解】解:如图所示:由题意可得:∠1=∠3=15°,则∠2=45°-∠3=30°.故选:C .【点睛】本题主要考查了两直线平行,内错角相等的性质,需要注意隐含条件,直尺的对边平行,等腰直角三角板的锐角是45°的利用.5.不等式101103x x +>⎧⎪⎨->⎪⎩的解集在数轴上表示正确的是( )A. (A )B. (B )C. (C )D. (D )【答案】A【解析】 101103x x +>⎧⎪⎨->⎪⎩①② 解①得1x >-;解②得3x <;∴不等式组的解集是13x -<<.故选A.点睛:本题考查了不等式组的解法及解集的数轴表示法,先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分.不等式组解集的确定方法是:同大取大,同小取小,大小小大取中间,大大小小无解. 在数轴上,空心圈表示不包含该点,实心点表示包含该点.6.下列调查中,适宜采用全面调查方式的是()A. 调查市场上矿泉水的质量情况B. 了解全国中学生的身高情况C. 调查某批次电视机的使用寿命D. 调查乘坐动车的旅客是否携带了违禁物品【答案】D【解析】【分析】根据普查和全面调查的意义分析即可.【详解】A. 调查市场上矿泉水的质量情况具有破坏性,宜采用抽样调查;B. 了解全国中学生的身高情况工作量比较大,,宜采用抽样调查;C. 调查某批次电视机的使用寿命具有破坏性,宜采用抽样调查;D. 调查乘坐动车的旅客是否携带了违禁物品这一事件比较重要,宜采用全面调查.故选D.【点睛】本题考查了抽样调查和全面调查的选择,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.7.如图,下列条件中不能使a∥b的是()A. ∠1=∠3B. ∠2=∠3C. ∠4=∠5D. ∠2+∠4=180°【答案】C【解析】根据平行线的判定方法即可判断.【详解】A. ∠1=∠3,同位角相等,可判定a∥b;B. ∠2=∠3,内错角相等,可判定a∥b;C. ∠4=∠5,互为邻补角,不能判定a∥b;D. ∠2+∠4=180°,同旁内角互补,可判定a∥b;故选C.【点睛】此题主要考查平行线的判定方法,解题的关键是熟知平行线的判定定理.8.已知点P的坐标为(a,b)(a>0),点Q的坐标为(c,3),且|a﹣=0,将线段PQ向右平移a 个单位长度,其扫过的面积为20,那么a+b+c的值为()A. 12B. 15C. 17D. 20【答案】C【解析】【分析】由非负数的性质得到a=c,b=7,P(a,7),故有PQ∥y轴,PQ=7-3=4,由于其扫过的图形是矩形可求得a,代入即可求得结论.【详解】∵且|a-c|+,∴a=c,b=7,∴P(a,7),PQ∥y轴,∴PQ=7-3=4,∴将线段PQ向右平移a个单位长度,其扫过的图形是边长为a和4的矩形,∴4a=20,∴a=5,∴c=5,∴a+b+c=5+7+5=17,故选C.【点睛】本题主要考查了非负数的性质,坐标的平移,矩形的性质,能根据点的坐标判断出PQ∥y轴,进而求得PQ是解题的关键.二、填空题(每小题3分,共24分)9.在实数﹣7_____.【解析】【分析】根据无理数的定义解答即可,无限不循环小数叫无理数,无理数通常有以下三种形式,①开方开不尽的数,如3,35等;②圆周率π;③构造的无限不循环小数,如2.01001000100001 (0的个数一次多一个).【详解】5,π是无理数;﹣7,﹣327=-3是有理数.故答案为2.【点睛】本题考查了无理数的识别,熟练掌握无理数的定义是解答本题的关键.10.在平面直角坐标系中,若点P在x轴的下方,y轴的右方,到y轴的距离都是3,到x轴的距离都是5,则点P的坐标为_____.【答案】(3,-5)【解析】【分析】由题可知点P在x轴的下方且在y轴的右侧,于是可以确定M点在第四象限;由于第四象限内点的横坐标为正数、纵坐标为负数,结合P点到两坐标轴的距离可得点P的坐标.【详解】∵点P在x轴的下方且在y轴的右侧,∴点P在第四象限.∵点P到到y轴的距离都是3,到x轴的距离都是5,∴点P的坐标是(3,-5).【点睛】本题考查了象限内点的坐标的确定,需明确各象限内点的横纵坐标的符号特点.11.如图,某校根据学生上学方式的一次抽样调查结果,绘制出一个未完成的扇形统计图,若该校共有学生700人,则据此估计步行的有人.【答案】280【解析】试题分析:根据扇形统计图可得:该校学生骑车上学的人数占总人数的百分比是12635%360=,所以估计该校学生上学步行的人数=700×(1-10%-15%-35%)=280人. 考点:1.扇形统计图;2.样本估计总体.12.不等式﹣3≤5﹣2x≤3的正整数解是_____.【答案】1、2、3、4【解析】【分析】先把﹣3≤5﹣2x≤3转化为523523xx-≥-⎧⎨-≤⎩,然后解这个不等式组求出它的解集,再从解集中找出所有的正整数即可.【详解】∵﹣3≤5﹣2x≤3,∴523 523xx-≥-⎧⎨-≤⎩①②,解①得,x≤4,解②得,x≥1,∴不等式组的解集是1≤x≤4,∴不等式﹣3≤5﹣2x≤3的正整数解是1、2、3、4.故答案为1、2、3、4.【点睛】本题考查了不等式组的解法,先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分.不等式组解集的确定方法是:同大取大,同小取小,大小小大取中间,大大小小无解.13.如图,AB∥CD∥EF,若∠ABC=50°,∠CEF=150°,则∠BCE=_______.【答案】20 °【解析】∵AB∥CD∥EF,∴∠ABC=∠BCD=50°,∠CEF+∠ECD=180°;∴∠ECD=180°−∠CEF=30°,∴∠BCE=∠BCD−∠ECD=20°. 故填20°.14.若54413273193218x y zx y zx y z-+=⎧⎪+-=⎨⎪+-=⎩则5x﹣y﹣z﹣1的立方根是_____.【答案】3【解析】【分析】先③×3-②得7x-y=35④,再①×3+②×4得:23x+16y=115⑤,然后④×16+⑤求出x的值,再把x的值代入④求出y 的值,最后把x、y的值代入③求出z的值即可.【详解】54413 27319 3218x y zx y zx y z-+=⎧⎪+-=⎨⎪+-=⎩①②③,③×3-②得: 7x-y=35④,①×3+②×4得:23x+16y=115⑤, ④×16+⑤得:x=5,把x=5代入④得:y=0,把x=5,y=0代入③得:z=-3;则原方程组的解为:53 xyz=⎧⎪=⎨⎪=-⎩.∴5x﹣y﹣z﹣1=25-0+3-1=24,∴5x﹣y﹣z﹣1的立方根是327=3.故答案为3.【点睛】本题考查了三元一次方程组的解法,关键把“三元”转化为“二元”、把“二元”转化为“一元”的消元的思想,从而进一步理解把“未知”转化为“已知”和把复杂问题转化为简单问题的思想方法.解三元一次方程组的关键是消元.15.实数a、b在数轴上对应点的位置如图所示,化简:22()a ab a b++--=_____.【答案】a【解析】先根据实数a 、b 在数轴上对应点的位置判断出a ,a +b ,a -b 的正负,然后根据二次根式的性质和绝对值的意义化简即可.【详解】由数轴知,a <0,b >0,a b <,∴a +b >0,a -b <0,∴()22a a b a b ++--=-a +a +b +a -b=a .故答案为a .【点睛】本题考查了利用数轴比较大小,二次根式的性质,绝对值的意义,根据实数a 、b 在数轴上对应点的位置判断出a ,a +b ,a -b 的正负是解答本题的关键.16.如图,动点P 在平面直角坐标系中按图中箭头所示的方向运动,第1次从原点运动到(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过2017次运动后,动点P 的坐标为_____.【答案】(2017,1)【解析】试题分析:根据动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),∴第4次运动到点(4,0),第5次接着运动到点(5,1),…,∴横坐标为运动次数,经过第2017次运动后,动点P 的横坐标为2017,纵坐标为1,0,2,0,每4次一轮,∴经过第2017次运动后,动点P 纵坐标为:2017÷4=504余1,故纵坐标为四个数中第一个,即为1,∴经过第2017次运动后,动点P 的坐标是:(2017,1)点睛:本题主要考查的就是点的坐标的规律的发现,根据图形观察出点的横坐标与纵坐标的变化规律是解题的关键.同学们在解答这种坐标系中的点的规律问题时,我们需要通过前面的几个点的坐标得出横纵坐标变化的规律,从而求出所求点的坐标,一般对于规律性的题目难度都不会很大,关键就是要明白规律是三、解答题(共72分)17.(10.00分)解下列二元一次方程组或不等式组:(1)131222 x yx y⎧-=⎪⎨⎪+=⎩(2)43(2) 2113x xxx-<-⎧⎪+⎨+>⎪⎩【答案】(1)121xy⎧=⎪⎨⎪=⎩;(2)1<x<4.【解析】【分析】(1)把①×2+②,消去y,求出x的值,再把求得的x的值代入②求出y的值即可;(2)先分别解两个不等式,求出它们的解集,然后求出这两个不等式解集的公共部分即可.【详解】(1)解:①×2+②得到x=,把x=代入②得到y=1,∴.(2)由①得到x>1,由②得到x<4,∴1<x<4.【点睛】本题考查了二元一次方程组和一元一次不等式组的解法,熟练掌握二元一次方程组和一元一次不等式组的解题步骤是解答本题的关键.18.如图,这是某市部分简图,请建立适当的平面直角坐标系,分别写出各地的坐标.【答案】见解析【解析】确定原点位置,建立直角坐标系,如图所示.根据坐标系表示各地的坐标.解:以火车站为原点建立直角坐标系.各点的坐标为:火车站(0,0);医院(-2,-2);文化宫(-3,1);体育场(-4,3);宾馆(2,2);市场(4,3);超市(2,-3).19.某兴趣小组进行活动,每个男生都头戴蓝色帽子,每个女生都头戴红色帽子.帽子戴好后,每个男生都看见戴红色帽子的人数比戴蓝色帽子的人数的2倍少1,而每个女生都看见戴蓝色帽子的人数是戴红色帽子的人数的35.问该兴趣小组男生、女生各有多少人?【答案】男生有12人,女生有21人【解析】【分析】设该兴趣小组男生有x人,女生有y人,然后再根据:(男生的人数-1)×2-1=女生的人数,(女生的人数-1) ×35=男生的人数,列出方程组,再进行求解即可.【详解】设该兴趣小组男生有x人,女生有y人,依题意得:2(1)13(1)5y xx y=--⎧⎪⎨=-⎪⎩,解得:1221 xy=⎧⎨=⎩.答:该兴趣小组男生有12人,女生有21人.【点睛】本题主要考查了二元一次方程组的应用,解题的关键是明确题中各个量之间的关系,并找出等量关系列出方程组.20.某城市出租车的收费标准是:起步价7元(即行驶距离不超过3千米都需付7元车费),超过3千米,每增加1千米,加收2元(不足1千米按1千米).某人乘这种出租车从甲地到乙地共付车费19元,那么他乘此出租车从甲地到乙地行驶的距离不超过多少千米?【答案】不超过8千米.【解析】【分析】已知从甲地到乙地共需支付车费19元,从甲地到乙地经过的路程为x千米,首先去掉前3千米的费用,根据题意列出不等式,从而得出答案.【详解】设他乘此出租车从甲地到乙地行驶的路程是x千米,依题意:7+2.4(x﹣3)≤19,解得:x≤8.答:他乘此出租车从甲地到乙地行驶路程不超过8千米.【点睛】本题考查的是一元一次不等式的应用,关键是根据:不足1千米按1千米计算,从而列出不等式7+2.4(x-3)≤19解题.21.2013年6月,某中学结合广西中小学阅读素养评估活动,以“我最喜爱的书籍”为主题,对学生最喜爱的一种书籍类型进行随机抽样调查,收集整理数据后,绘制出以下两幅未完成的统计图,请根据图1和图2提供的信息,解答下列问题:(1)在这次抽样调查中,一共调查了多少名学生?(2)请把折线统计图(图1)补充完整;(3)求出扇形统计图(图2)中,体育部分所对应的圆心角的度数;(4)如果这所中学共有学生1800名,那么请你估计最喜爱科普类书籍的学生人数.【答案】(1)一共调查了300名学生.(2)(3)体育部分所对应的圆心角的度数为48°.(4)1800名学生中估计最喜爱科普类书籍的学生人数为480.【解析】分析】(1)用文学的人数除以所占的百分比计算即可得解.(2)根据所占的百分比求出艺术和其它的人数,然后补全折线图即可.(3)用体育所占的百分比乘以360°,计算即可得解.(4)用总人数乘以科普所占的百分比,计算即可得解.【详解】解:(1)∵90÷30%=300(名),∴一共调查了300名学生.(2)艺术的人数:300×20%=60名,其它的人数:300×10%=30名.补全折线图如下:(3)体育部分所对应的圆心角的度数为:40300×360°=48°.(4)∵1800×80300=480(名),∴1800名学生中估计最喜爱科普类书籍的学生人数为480.22.如图,已知∠A=∠AGE,∠D=∠DGC(1)求证:AB∥CD;(2)若∠2+∠1=180°,且∠BEC=2∠B+30°,求∠C的度数.【答案】(1)证明见解析;(2)50°.【解析】证明:(1)∵∠A =∠AGE,∠D =∠DGC又∵∠AGE =∠DGC∴∠A=∠D∴AB∥CD(2) ∵∠1+∠2 =180°又∵∠CGD+∠2=180°∴∠CGD=∠1∴CE∥FB∴∠C=∠BFD,∠CEB +∠B=180°又∵∠BEC=2∠B+30°∴2∠B+30°+∠B=180°∴∠B=50°又∵AB∥CD∴∠B=∠BFD∴∠C=∠BFD=∠B=50°.23.在“五•一”期间,某公司组织318名员工到雷山西江千户苗寨旅游,旅行社承诺每辆车安排有一名随团导游,并为此次旅行安排8名导游,现打算同时租甲、乙两种客车,其中甲种客车每辆载客45人,乙种客车每辆载客30人.(1)请帮助旅行社设计租车方案.(2)若甲种客车租金为800元/辆,乙种客车租金为600元/辆,旅行社按哪种方案租车最省钱?此时租金是多少?(3)旅行前,旅行社的一名导游由于有特殊情况,旅行社只能安排7名导游随团导游,为保证所租的每辆车安排有一名导游,租车方案调整为:同时租65座、45座和30座的大小三种客车,出发时,所租的三种客车的座位恰好坐满,请问旅行社的租车方案如何安排?【答案】(1)见解析;(2)租甲种客车6辆;租乙种客车2辆,所需付费最少为6000元;(3)见解析.【解析】【分析】(1)设租甲种客车x辆,则租乙种客车(8-x)辆,依题意关系式为:45x+30(8-x)≥318+8,(2)分别算出各个方案的租金,比较即可;(3)根据设同时租65座、45座和30座的大小三种客车各x辆,y辆,(7-x-y)辆,列出二元一次方程求解即可.【详解】(1)设租甲种客车x辆,则租乙种客车(8﹣x)辆,依题意,得45x+30(8﹣x)≥318+8,解得x≥511 15,∵打算同时租甲、乙两种客车,∴x<8,即51115≤x<8,x=6,7,有两种租车方案:租甲种客车6辆,则租乙种客车2辆,租甲种客车7辆,则租乙种客车1辆;(2)∵6×800+2×600=6000元,7×800+1×600=6200元,∴租甲种客车6辆;租乙种客车2辆,所需付费最少为6000(元);(3)设同时租65座、45座和30座的大小三种客车各x辆,y辆,(7﹣x﹣y)辆,根据题意得出:65x+45y+30(7﹣x﹣y)=318+7,整理得出:7x+3y=23,1≤x<7,1≤y<7,1≤7﹣x﹣y<7,故符合题意的有:x=2,y=3,7﹣x﹣y=2,租车方案为:租65座的客车2辆,45座的客车3辆,30座的2辆.【点睛】此题主要考查了一元一次不等式的应用以及二元一次方程的应用等知识,找到相应的关系式,列出不等式和方程是解决问题的关键.24.已知,平面直角坐标系内,点A(a,0),B(b,2),C(0,2),且a、b是方程组213211a ba b+=⎧⎨+=⎩的解,求:(1)a、b的值.(2)过点E(6,0)作PE∥y轴,点Q(6,m)是直线PE上一动点,连QA、QB,试用含有m的式子表示△ABQ 的面积.(3)在(2)的条件下.当△ABQ的面积是梯形OABC面积一半时,求Q点坐标.【答案】(1)a=5,b=3;(2) △ABQ的面积为|m+1|;(3) Q(6,3)或(6,﹣5).【解析】【分析】(1)解方程组可直接求出a、b的值;(2)先求出直线AB的解析式为y=﹣x+5,当点Q在AB上时,m=﹣1,然后分当m>﹣1时和m<﹣1时两种情况求解;(3)计算S梯形OABC,根据△ABQ的面积是梯形OABC面积一半列出方程求m的值即可.【详解】(1)由方程组两式相加,得a+b=8,再与方程组中两式分别相减,得;(2)由(1)可知,A(5,0),B(3,2),∴直线AB的解析式为y=﹣x+5,当点Q在AB上时,m=﹣1,如图1,当m>﹣1时,过B点作BD⊥x轴,垂足为D,则S△ABQ=S梯形BDEQ﹣S△ABD﹣S△AQE=(2+m)×(6﹣3)﹣×2×(5﹣3)﹣×(6﹣5)×m=m+1;当m<﹣1时,如图2所示,过点B作BM⊥EQ于点M,则S△ABQ=S△BMQ﹣S△AEQ﹣S梯形AEMB=×(2﹣m)×(6﹣3)﹣×(6﹣5)×(﹣m)﹣×(6﹣3+6﹣5)×2=3﹣m+m﹣4=﹣m﹣1.综上所述,△ABQ的面积为|m+1|;(3)∵S梯形OABC=×(3+5)×2=8,依题意,得|m+1|=×8,解得m=3或m=﹣5;∴Q(6,3)或(6,﹣5).【点睛】本题考查了解二元一次方程组,待定系数法求一次函数解析式,坐标与图形的性质,三角形、梯形的面积计算及分类讨论的数学思想.关键是根据题意画出图形,结合图形上点的坐标表示相应的线段长。
人教版2020版七年级下学期期末数学试题(I)卷
姓名:________ 班级:________ 成绩:________
一、单选题
1 . 若关于x的不等式组的解集为x>a,则a的取值范围是()
A.a<2B.a≤2C.a>2D.a≥2
2 . 《九章算术》是中国古代数学专著在数学上有其独到的成就,不仅最早提到了分数问题,首先记录了“盈不足”等问题.如有一道阐述“盈不足”的问题,原文如下:今有共买鸡,人出九,盈十一;人出六,不足十六.问人数、鸡价各几何?译文为:现有若干人合伙出钱买鸡,如果每人出9文钱,就会多11文钱;如果每人出6文钱又会缺16文钱,问买鸡的人数、鸡的价格各是多少?通过计算可得买鸡的人数是()
A.6B.7C.8D.9
3 . 从﹣4,﹣3,﹣2,﹣1,0,1,3,4,5这九个数中,随机抽取一个数,记为a,则数a使关于x的不等式组至少有四个整数解,且关于x的分式方程=1有非负整数解的概率是()
A.B.C.D.
4 . 下列四个命题中,真命题有()
①内错角一定相等;②如果∠1和∠2是对顶角,那么∠1=∠2;③三角形的一个外角大于任何一个与它不相邻的内角;④若a2=b2,则a=b.
A.1个B.2个C.3个D.4个
5 . 下列命题中真命题的是()
A.同旁内角互补B.三角形的一个外角等于两个内角的和
C.若,则D.同角的余角相等
6 . 以下列长度为边的三根木棒能首尾相接构成一个三角形的是()
A.2cm、3cm、6cm B.2cm、3cm、5cm
C.2cm、3cm、4cm D.8cm、3cm、4cm
7 . 如图,直线,直角三角板的直角顶点在直线上,一锐角顶点在直线上,若,则的度数是()
A.B.C.D.
8 . ,,则的值是()
A.B.C.D.
9 . 将下图所示的图案通过平移后可以得到的图案是()
A.B.C.D.
10 . 下列说法不正确的是()
A.1的算术平方根是1B.0的平方根是0C.﹣1的立方根是±1D.4的平方根是±2二、填空题
11 . 若不等式组的解集是x>1,则m的取值范围是___________
12 . 已知正数a、b、c满足a2+c2=16,b2+c2=25,则k=a2+b2的取值范围为.
13 . 通过平移将点移到点,若按同样的方法移动点到点,则点的坐标是______.
14 . 如图,完成下列填空:
(1)直线a经过点____,点____,但不经过点____,点____;
(2)点B在直线____上,在直线____外;
(3)点A既在直线____上,又在直线____上.
15 . 在中,,则________,________,________.
16 . 某教育网站正在就“中小学生对老师上课拖堂现象的态度”进行在线调查,你认为调查结果________代表性(填“具有”或“不具有”).
17 . 已知实数在数轴上的位置如图所示,化简
________
18 . 白玉兰商店把某种服装成本价提高50%后标价,又以7折卖出,结果每一件仍然获利20元,这种服装每件的成本是______元.
三、解答题
19 . 一个等腰三角形的周长为10,且三角形的边长为正整数,求满足条件的三角形的个数.
20 . 被历代数学家尊为“算经之首”的《九章算术》是中国古代算法的扛鼎之作。
《九章算术》中记载:“今有五省、六燕,集称之衡,雀俱重,燕俱轻,一雀一燕交而处,衡适平。
并燕、雀重一斤。
问燕,雀一枚各重几何?”译文:“今有只雀、只燕,分别聚集而且用衡器称之,聚在一起的雀重,燕轻.将一只雀、一只燕交换位置而放,重量相等.只雀、只燕重量为斤。
问雀、燕每只各重多少斤?”(每只雀的重量相同、每只燕的重量相同)
21 . 哈尔滨市某校成立了“航模”、“古诗词欣赏”、“音乐”、“书法”四个兴趣小组,为了解兴趣小组报名的情况,对本校参加报名的部分学生进行了抽查(参加报名的学生,每名学生必报且限报一个兴趣小组),学校根据调查的数据绘制了以下两幅不完整的统计图.请根据图中提供的信息,解答下面的问题:(1)此次共调查了______名学生,扇形统计图中“航模”部分的圆心角是______度;
(2)补全条形统计图;
(3)现该校共有800名学生报名参加了这四个兴趣小组,请你估计其中有多少名学生选修“古诗词欣赏”.
22 . 如图,在三角形ABC中,CD平分∠ACB,DE∥BC,∠AED=80°,求∠EDC的度数.
23 . 如图,AB∥CD,△EFG的顶点F,G分别落在直线AB,CD上,GE交AB于点H,GE平分∠F GD,若∠EFG=90°,
∠E=35°,求∠EFB的度数.
24 . 解方程组:
(1)
(2)
(3)
25 . 已知,的平方根为,的算术平方根为.(1)求,的值;
(2)求的平方根.
26 . (6分)解不等式组.
参考答案一、单选题
1、
2、
3、
4、
5、
6、
7、
8、
9、
10、
二、填空题
1、
2、
3、
4、
5、
6、
7、
8、
三、解答题1、
2、
3、
4、
5、
6、
7、
8、。