桂林市名校2019-2020学年数学高二下期末达标检测试题含解析
- 格式:doc
- 大小:1.06 MB
- 文档页数:15
2019-2020学年广西省南宁三中重点班高二第二学期期末数学试卷(文科)一、选择题(共12小题).1.已知集合A={x|x2﹣2x﹣3<0},集合B={x|2x+1>1},则∁B A=()A.[3,+∞)B.(3,+∞)C.(﹣∞,﹣1]∪[3,+∞)D.(﹣∞,﹣1)∪(3,+∞)2.设i为虚数单位,复数z满足z(i﹣2)=5,则在复平面内,对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限3.某珠宝店丢了一件珍贵珠宝,以下四人中只有一人说真话,只有一人偷了珠宝.甲:我没有偷;乙:丙是小偷;丙:丁是小偷;丁:我没有偷.根据以上条件,可以判断偷珠宝的人是()A.甲B.乙C.丙D.丁4.已知函数f(x)=x3﹣2x2,x∈[﹣1,3],则下列说法不正确的是()A.最大值为9B.最小值为﹣3C.函数f(x)在区间[1,3]上单调递增D.x=0是它的极大值点5.函数f(x)=+x的值域是()A.[,+∞)B.(﹣∞,]C.(0,+∞)D.[1,+∞)6.以下四个命题:①若p∧q为假命题,则p,q均为假命题;②对于命题p:∃x0∈R,x02+x0+1<0,则¬p为:∀x∉R,x2+x+1≥0;③“a=2”是“函数f(x)=log a x在区间(0,+∞)上为增函数”的充分不必要条件;④f(x)=sin(ωx+φ)为偶函数的充要条件是φ=.其中真命题的个数是()A.1B.2C.3D.47.已知函数f(x)=x5+ax3+bx﹣8,且f(﹣2)=10,那么f(2)等于()A.﹣10B.﹣18C.﹣26D.108.已知f(x)=alnx+x2(a>0),若对任意两个不等的正实数x1,x2,都有>2恒成立,则a的取值范围是()A.(0,1]B.(1,+∞)C.(0,1)D.[1,+∞)9.已知函数f(x)=2x3﹣3x,若过点P(1,t)存在3条直线与曲线y=f(x)相切,则t 的取值范围为()A.(﹣∞,﹣3)B.(﹣3,﹣1)C.(﹣1,+∞)D.(0,1)10.定义在R上的奇函数f(x)满足f()=f(),当时,f(x)=16x﹣1,则f(100)=()A.﹣B.﹣1C.﹣D.﹣211.已知函数y=f(x)(x∈R)满足f(x+2)=2f(x),且x∈[﹣1,1]时,f(x)=﹣|x|+1,则当x∈[﹣10,10]时,y=f(x)与g(x)=log4|x|的图象的交点个数为()A.13B.12C.11D.1012.已知函数f(x)=﹣x3+1+a(≤x≤e,e是自然对数的底)与g(x)=3lnx的图象上存在关于x轴对称的点,则实数a的取值范围是()A.[0,e3﹣4]B.[0,+2]C.[+2,e3﹣4]D.[e3﹣4,+∞)二、填空题(本大题共4小题,每小题5分)13.计算:2+2log31﹣3log77+3ln1=.14.函数f(x)=x2﹣9lnx的单调减区间为.15.若曲线y=ax2﹣lnx在点(1,a)处的切线平行于x轴,则a=.16.已知函数f(x)=﹣2klnx+kx,若x=2是函数f(x)的唯一极值点,则实数k的取值集合是.三、解答题(解答应写出文字说明.证明过程或演算步骤.第17-21题每题12分,选做题10分,共70分.)17.如图,△ABC中,AC=2,,D是边BC上一点.(1)若,BD=2,求∠C;(2)若BD=3CD,求△ACD面积的最大值.18.如图,三棱柱ABC﹣A1B1C1中,D是AB的中点.(Ⅰ)证明:BC1∥平面A1CD;(Ⅱ)若△ABC是边长为2的正三角形,且BC=BB1,∠CBB1=60°,平面ABC⊥平面BB1C1C,求三棱锥A﹣DCA1的体积.19.近年来,国资委、党委高度重视扶贫开发工作,坚决贯彻落实中央扶贫工作重大决策部署,在各个贫困县全力推进定点扶贫各项工作,取得了积极成效,某贫困县为了响应国家精准扶贫的号召,特地承包了一块土地,已知土地的使用面积以及相应的管理时间的关系如表所示:土地使用面积12345 x(单位:亩)管理时间y(单810132524位:月)并调查了某村300名村民参与管理的意愿,得到的部分数据如表所示:愿意参与管理不愿意参与管理男性村民15050女性村民50(1)求出相关系数r的大小,并判断管理时间y与土地使用面积x是否线性相关?(2)是否有99.9%的把握认为村民的性别与参与管理的意愿具有相关性?(3)若以该村的村民的性别与参与管理意愿的情况估计贫困县的情况,则从该贫困县中任取3人,记取到不愿意参与管理的男性村民的人数为x,求x的分布列及数学期望.参考公式:,其中n=a+b+c+d.临界值表:P(K2≥k0)0.1000.0500.0250.0100.001 k0 2.706 3.841 5.024 6.63510.828参考数据:≈25.220.已知椭圆的右焦点为F,上顶点为M,直线FM 的斜率为,且原点到直线FM 的距离为.(1)求椭圆C的标准方程;(2)若不经过点F的直线l:y=kx+m(k<0,m>0)与椭圆C交于A,B两点,且与圆x2+y2=1相切.试探究△ABF的周长是否为定值,若是,求出定值;若不是,请说明理由.21.已知函数f(x)=xlnx﹣2ax2+x,a∈R.(Ⅰ)若f(x)在(0,+∞)内单调递减,求实数a的取值范围;(Ⅱ)若函数f(x)有两个极值点分别为x1,x2,证明:x1+x2>.选做题:考生需从第22题和第23题中选一道作答.[选修4-4:坐标系与参数方程]22.在平面直角坐标系xOy中,曲线C1的参数方程为(α为参数),以坐标原点O为极点,x轴非负半轴为极轴建立极坐标系,点A为曲线C1上的动点,点B在线段OA的延长线上,且满足|OA|•|OB|=8,点B的轨迹为C2.(Ⅰ)求曲线C1,C2的极坐标方程;(Ⅱ)设点M的极坐标为,求△ABM面积的最小值.[选修4-5:不等式选讲]23.设函数f(x)=|2x﹣1|+|2x﹣a|,x∈R.(1)当a=4时,求不等式f(x)>9的解集;(2)对任意x∈R,恒有f(x)≥5﹣a,求实数a的取值范围.参考答案一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有-项是符合题目要求的)1.已知集合A={x|x2﹣2x﹣3<0},集合B={x|2x+1>1},则∁B A=()A.[3,+∞)B.(3,+∞)C.(﹣∞,﹣1]∪[3,+∞)D.(﹣∞,﹣1)∪(3,+∞)【分析】根据集合A是二次不等式的解集,集合B是指数不等式的解集,因此可求出集合A,B,根据补集的求法求得∁B A.解:A={x|x2﹣2x﹣3<0}={x|﹣1<x<3},B={x|2x+1>1}={x|x>﹣1},∁B A=[3,+∞).故选:A.2.设i为虚数单位,复数z满足z(i﹣2)=5,则在复平面内,对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【分析】利用复数的运算法则、共轭复数的定义、几何意义即可得出.解:z(i﹣2)=5,则z=﹣=﹣=﹣2﹣i.则在复平面内,=﹣2+i对应的点(﹣2,1)位于第二象限.故选:B.3.某珠宝店丢了一件珍贵珠宝,以下四人中只有一人说真话,只有一人偷了珠宝.甲:我没有偷;乙:丙是小偷;丙:丁是小偷;丁:我没有偷.根据以上条件,可以判断偷珠宝的人是()A.甲B.乙C.丙D.丁【分析】此题可以采用假设法进行讨论推理,即可得出结论.解:假如甲:我没有偷是真的,乙:丙是小偷、丙:丁是小偷是假的,丁:我没有偷就是真的,与他们四人中只有一人说真话矛盾,假如甲:我没有偷是假的,那么丁:我没有偷就是真的,乙:丙是小偷、丙:丁是小偷是假的,成立,故选:A.4.已知函数f(x)=x3﹣2x2,x∈[﹣1,3],则下列说法不正确的是()A.最大值为9B.最小值为﹣3C.函数f(x)在区间[1,3]上单调递增D.x=0是它的极大值点【分析】对f(x)求导,分析f′(x)的正负,进而得f(x)的单调区间,极值可判断C错误,D正确,再计算出极值,端点处函数值f(1),f(3),可得函数f(x)的最大值,最小值,进而可判断A正确,B正确.解:f′(x)=3x2﹣4x,令f′(x)=3x2﹣4x>0,解得x<0或x>,所以当x∈[﹣1,0),(,3]时,f′(x)>0,函数f(x)单调递增,当x∈(0,)时,f′(x)<0,函数f(x)单调递减,C错误,所以x=0是它的极大值点,D正确,因为f(0)=0,f(3)=27﹣2×9=9,所以函数f(x)的最大值为9,A正确,因为f(﹣1)=﹣1﹣2=﹣3,f()=﹣2×=﹣,所以函数f(x)的最小值为﹣3,B正确,故选:C.5.函数f(x)=+x的值域是()A.[,+∞)B.(﹣∞,]C.(0,+∞)D.[1,+∞)【分析】由y=[,+∞)和y=x在[,+∞)上均为增函数,可得故f(x)=+x 在[,+∞)上为增函数,求出函数的定义域后,结合单调性,求出函数的最值,可得函数的值域解:函数f(x)=+x的定义域为[,+∞)∵y=[,+∞)和y=x在[,+∞)上均为增函数故f(x)=+x在[,+∞)上为增函数∴当x=时,函数取最小值,无最大值,故函数f(x)=+x的值域是[,+∞)故选:A.6.以下四个命题:①若p∧q为假命题,则p,q均为假命题;②对于命题p:∃x0∈R,x02+x0+1<0,则¬p为:∀x∉R,x2+x+1≥0;③“a=2”是“函数f(x)=log a x在区间(0,+∞)上为增函数”的充分不必要条件;④f(x)=sin(ωx+φ)为偶函数的充要条件是φ=.其中真命题的个数是()A.1B.2C.3D.4【分析】直接利用命题的否定的应用,真值表的应用,三角函数关系式的恒等变换,指数函数的性质的应用求出结果.解:①若p∧q为假命题,则命题p和q为一真一假和全部为假,故p,q均为假命题错误;②对于命题p:∃x0∈R,x02+x0+1<0,则¬p为:∀x∈R,x2+x+1≥0;故错误.③“a=2”是“函数f(x)=log a x在区间(0,+∞)上为增函数;当函数f(x)=log a x在区间(0,+∞)上为增函数,则a>1.故③“a=2”是“函数f(x)=log a x在区间(0,+∞)上为增函数”的充分不必要条件;正确.④f(x)=sin(ωx+φ)为偶函数则φ=kπ+(k∈Z),故错误.故选:A.7.已知函数f(x)=x5+ax3+bx﹣8,且f(﹣2)=10,那么f(2)等于()A.﹣10B.﹣18C.﹣26D.10【分析】令g(x)=x5+ax3+bx,由函数奇偶性的定义得其为奇函数,根据题意和奇函数的性质求出f(2)的值.解:令g(x)=x5+ax3+bx,易得其为奇函数,则f(x)=g(x)﹣8,所以f(﹣2)=g(﹣2)﹣8=10,得g(﹣2)=18,因为g(x)是奇函数,即g(2)=﹣g(﹣2),所以g(2)=﹣18,则f(2)=g(2)﹣8=﹣18﹣8=﹣26,故选:C.8.已知f(x)=alnx+x2(a>0),若对任意两个不等的正实数x1,x2,都有>2恒成立,则a的取值范围是()A.(0,1]B.(1,+∞)C.(0,1)D.[1,+∞)【分析】先将条件“对任意两个不等的正实数x1,x2,都有>2恒成立”转换成f(x1)﹣2x1>f(x2)﹣2x2,构造函数h(x)=f(x)﹣2x,根据增减性求出导函数,即可求出a的范围.解:对任意两个不等的正实数x1,x2,都有>2恒成立,假设x1>x2,f(x1)﹣f(x2)>2x1﹣2x2,即f(x1)﹣2x1>f(x2)﹣2x2对于任意x1>x2>0成立,令h(x)=f(x)﹣2x,h(x)在(0,+∞)为增函数,∴h'(x)=+x﹣2≥0在(0,+∞)上恒成立,+x﹣2≥0,则a≥(2x﹣x2)max=1故选:D.9.已知函数f(x)=2x3﹣3x,若过点P(1,t)存在3条直线与曲线y=f(x)相切,则t 的取值范围为()A.(﹣∞,﹣3)B.(﹣3,﹣1)C.(﹣1,+∞)D.(0,1)【分析】设出切点,由斜率的两种表示得到等式,化简得三次函数,将题目条件化为函数有三个零点,得解.解:设过点P(1,t)的直线与曲线y=f(x)相切于点(x,2x3﹣3x),则=6x2﹣3,化简得,4x3﹣6x2+3+t=0,令g(x)=4x3﹣6x2+3+t,则令g′(x)=12x(x﹣1)=0,则x=0,x=1.g(0)=3+t,g(1)=t+1,又∵过点P(1,t)存在3条直线与曲线y=f(x)相切,则(t+3)(t+1)<0,解得,﹣3<t<﹣1.故选:B.10.定义在R上的奇函数f(x)满足f()=f(),当时,f(x)=16x﹣1,则f(100)=()A.﹣B.﹣1C.﹣D.﹣2【分析】根据题意,分析可得f(x+)=﹣f(x),变形可得f(x+)=﹣f(x+)=f(x),即函数f(x)是周期为的周期函数,据此可得f(100)=﹣f(),结合函数的解析式分析可得答案.解:根据题意,函数f(x)满足f()=f(),则有f(﹣x)=f(+x),又由f(x)为定义在R上的奇函数,即f(﹣x)=﹣f(x),则f(x+)=﹣f(x),变形可得f(x+)=﹣f(x+)=f(x),即函数f(x)是周期为的周期函数;则f(100)=f(﹣+67×)=f(﹣)=﹣f(),又由f()=f(+)=f(﹣)=f()=﹣1=1;故f(100)=﹣f()=﹣1;故选:B.11.已知函数y=f(x)(x∈R)满足f(x+2)=2f(x),且x∈[﹣1,1]时,f(x)=﹣|x|+1,则当x∈[﹣10,10]时,y=f(x)与g(x)=log4|x|的图象的交点个数为()A.13B.12C.11D.10【分析】在同一坐标系中画出函数f(x)与函数y=log4|x|的图象,结合图象容易解答本题.解:由题意,函数f(x)满足:定义域为R,且f(x+2)=2f(x),当x∈[﹣1,1]时,f(x)=﹣|x|+1;在同一坐标系中画出满足条件的函数f(x)与函数y=log4|x|的图象,如图:由图象知,两个函数的图象在区间[﹣10,10]内共有11个交点;故选:C.12.已知函数f(x)=﹣x3+1+a(≤x≤e,e是自然对数的底)与g(x)=3lnx的图象上存在关于x轴对称的点,则实数a的取值范围是()A.[0,e3﹣4]B.[0,+2]C.[+2,e3﹣4]D.[e3﹣4,+∞)【分析】根据题意,可以将原问题转化为方程a+1=x3﹣3lnx在区间[,e]上有解,构造函数g(x)=x3﹣3lnx,利用导数分析g(x)的最大最小值,可得g(x)的值域,进而分析可得方程a+1=x3﹣3lnx在区间[,e]上有解,必有1≤a+1≤e3﹣3,解可得a的取值范围,即可得答案.解:根据题意,若函数f(x)=﹣x3+1+a(≤x≤e,e是自然对数的底)与g(x)=3lnx的图象上存在关于x轴对称的点,则方程﹣x3+1+a=﹣3lnx在区间[,e]上有解,﹣x3+1+a=﹣3lnx⇔a+1=x3﹣3lnx,即方程a+1=x3﹣3lnx在区间[,e]上有解,设函数g(x)=x3﹣3lnx,其导数g′(x)=3x2﹣=,又由x∈[,e],g′(x)=0在x=1有唯一的极值点,分析可得:当≤x≤1时,g′(x)<0,g(x)为减函数,当1≤x≤e时,g′(x)>0,g(x)为增函数,故函数g(x)=x3﹣3lnx有最小值g(1)=1,又由g()=+3,g(e)=e3﹣3;比较可得:g()<g(e),故函数g(x)=x3﹣3lnx有最大值g(e)=e3﹣3,故函数g(x)=x3﹣3lnx在区间[,e]上的值域为[1,e3﹣3];若方程a+1=x3﹣3lnx在区间[,e]上有解,必有1≤a+1≤e3﹣3,则有0≤a≤e3﹣4,即a的取值范围是[0,e3﹣4];故选:A.二、填空题(本大题共4小题,每小题5分)13.计算:2+2log31﹣3log77+3ln1=0.【分析】进行对数的运算即可.解:原式=3+2×0﹣3×1+3×0=0.故答案为:0.14.函数f(x)=x2﹣9lnx的单调减区间为(0,3].【分析】先对函数求导,然后结合导数与单调性的关系即可求解.解:定义域(0,+∞),=,易得当0<x≤3时,f′(x)≤0,函数单调递减,故函数的单调递减区间(0,3],故答案为:(0,3]15.若曲线y=ax2﹣lnx在点(1,a)处的切线平行于x轴,则a=.【分析】求出原函数的导函数,得到函数在x=1时的导数值,由导数值等于0求得a 的值.解:由y=ax2﹣lnx,得:,∴y′|x=1=2a﹣1.∵曲线y=ax2﹣lnx在点(1,a)处的切线平行于x轴,∴2a﹣1=0,即a=.故答案为:.16.已知函数f(x)=﹣2klnx+kx,若x=2是函数f(x)的唯一极值点,则实数k的取值集合是[﹣,+∞).【分析】由已知可知x=2是f′(x)=0唯一的根,进而可转化为﹣k=在x>0时没有变号零点,构造函数g(x)=,x>0,结合导数及函数的性质可求.解:函数定义域(0,+∞),=,由题意可得,x=2是f′(x)=0唯一的根,故e x+kx2=0在(0,+∞)上没有变号零点,即﹣k=在x>0时没有变号零点,令g(x)=,x>0,则,当x>2时,g′(x)>0,函数单调递增,当0<x<2时,g′(x)<0,函数单调递减,故当x=2时,g(x)取得最小值g(2)=,故﹣k即k.故答案为:[﹣).三、解答题(解答应写出文字说明.证明过程或演算步骤.第17-21题每题12分,选做题10分,共70分.)17.如图,△ABC中,AC=2,,D是边BC上一点.(1)若,BD=2,求∠C;(2)若BD=3CD,求△ACD面积的最大值.【分析】(1)在△ADC中,应用正弦定理即可得出答案;(2)从面积公式入手,将面积的最大值问题转移到边的上面,然后通过已知条件,应用余弦定理找出边的关系.解:(1)∵∠B=,,BD=2,∴△ABD是等腰直角三角形,AD=在△ADC中,由正弦定理得:又,∴∠C=(2)在△ABC中,由余弦定理得:AC2=AB2+BC2﹣2AB•BC cos B,即∴,∵BD=3CD.∴,当且仅当时,取“=”.所以△AC面积的最大值为.18.如图,三棱柱ABC﹣A1B1C1中,D是AB的中点.(Ⅰ)证明:BC1∥平面A1CD;(Ⅱ)若△ABC是边长为2的正三角形,且BC=BB1,∠CBB1=60°,平面ABC⊥平面BB1C1C,求三棱锥A﹣DCA1的体积.【分析】(Ⅰ)在三棱柱ABC﹣A1B1C1中,连接AC1交CA1于E,由三角形中位线定理可得DE∥BC1,再由直线与平面平行的判定,可得BC1∥平面A1CD;(Ⅱ)取BC的中点H,连接B1H,证明B1H⊥平面ABC,得B1H 是三棱柱的高,且,再求出三角形ABC的面积,然后利用等体积法求三棱锥A﹣DCA1的体积.解:(Ⅰ)证明:在三棱柱ABC﹣A1B1C1中,连接AC1交CA1于E,∵D是AB的中点,E是AC1的中点,∴DE∥BC1.又DE⊂平面A1CD,BC1⊄平面A1CD,∴BC1∥平面A1CD;(Ⅱ)取BC的中点H,连接B1H,∵BC=BB1,∠CBB1=60°,∴△CBB1是等边三角形,得B1H⊥BC.∵平面ABC⊥平面BB1C1C,平面ABC∩平面BB1C1C=BC,∴B1H⊥平面ABC,∴B1H 是三棱柱的高,且.∵△ABC是边长为2的正三角形,∴.则.19.近年来,国资委、党委高度重视扶贫开发工作,坚决贯彻落实中央扶贫工作重大决策部署,在各个贫困县全力推进定点扶贫各项工作,取得了积极成效,某贫困县为了响应国家精准扶贫的号召,特地承包了一块土地,已知土地的使用面积以及相应的管理时间的关系如表所示:土地使用面积12345 x(单位:亩)管理时间y(单810132524位:月)并调查了某村300名村民参与管理的意愿,得到的部分数据如表所示:愿意参与管理不愿意参与管理男性村民15050女性村民50(1)求出相关系数r的大小,并判断管理时间y与土地使用面积x是否线性相关?(2)是否有99.9%的把握认为村民的性别与参与管理的意愿具有相关性?(3)若以该村的村民的性别与参与管理意愿的情况估计贫困县的情况,则从该贫困县中任取3人,记取到不愿意参与管理的男性村民的人数为x,求x的分布列及数学期望.参考公式:,其中n=a+b+c+d.临界值表:P(K2≥k0)0.1000.0500.0250.0100.001 k0 2.706 3.841 5.024 6.63510.828参考数据:≈25.2【分析】(1)分别求出=3,=16,从而=10,=254,=47,求出=≈0.933,从而得到管理时间y与土地使用面积x线性相关.(2)完善列联表,求出K2=18.75>10.828,从而有99.9%的把握认为村民的性别与参与管理的意愿具有相关性.(3)x的可能取值为0,1,2,3,从该贫困县中随机抽取一名,取到不愿意参与管理的男性村民的概率为,由此能求出X的分布列和数学期望.解:(1)依题意==3,==16,故=4+1+1+4=10,=64+36+9+81+64=254,=(﹣2)×(﹣8)+(﹣1)×(﹣6)+1×9+2×8=47,则=≈0.933,故管理时间y与土地使用面积x线性相关.(2)依题意,完善表格如下:愿意参与管理不愿意参与管理总计男性村民15050200女性村民5050100总计200100300计算得K2的观测值为:===18.75>10.828,故有99.9%的把握认为村民的性别与参与管理的意愿具有相关性.(3)依题意,x的可能取值为0,1,2,3,从该贫困县中随机抽取一名,则取到不愿意参与管理的男性村民的概率为,故P(X=0)=()3=,P(X=1)==,P(X=2)==,P(X=3)==,故X的分布列为:X0123P则数学期望为:E(X)=+3×=.20.已知椭圆的右焦点为F,上顶点为M,直线FM的斜率为,且原点到直线FM的距离为.(1)求椭圆C的标准方程;(2)若不经过点F的直线l:y=kx+m(k<0,m>0)与椭圆C交于A,B两点,且与圆x2+y2=1相切.试探究△ABF的周长是否为定值,若是,求出定值;若不是,请说明理由.【分析】(1)可设F(c,0),M(0,b),由直线的斜率公式和点到直线的距离公式,解方程可得b,c,进而得到a,可得椭圆方程;(2)设A(x1,y1),B(x2,y2).(x1>0,x2>0),运用勾股定理和点满足椭圆方程,求得|AQ|=x1,同理可得|BQ|=x2,再由焦半径公式,即可得到周长为定值.解:(1)可设F(c,0),M(0,b),可得﹣=﹣,直线FM的方程为bx+cy=bc,即有=,解得b=1,c=,a=,则椭圆方程为+y2=1;(2)设A(x1,y1),B(x2,y2).(x1>0,x2>0),连接OA,OQ,在△OAQ中,|AQ|2=x12+y12﹣1=x12+1﹣﹣1=x12,即|AQ|=x1,同理可得|BQ|=x2,∴|AB|=|AQ|+|BQ|=(x1+x2),∴|AB|+|AF|+|BF|=(x1+x2)+﹣x1+﹣x2=2,∴△ABF的周长是定值2.21.已知函数f(x)=xlnx﹣2ax2+x,a∈R.(Ⅰ)若f(x)在(0,+∞)内单调递减,求实数a的取值范围;(Ⅱ)若函数f(x)有两个极值点分别为x1,x2,证明:x1+x2>.【分析】(I)令f′(x)≤0恒成立,分离参数得出4a≥,利用函数单调性求出函数g(x)=的最大值即可得出a的范围;(II)令=t,根据分析法构造关于t的不等式,再利用函数单调性证明不等式恒成立即可.解:(I)f′(x)=lnx﹣4ax+2,若f(x)在(0,+∞)内单调递减,则f′(x)≤0恒成立,即4a≥在(0,+∞)上恒成立.令g(x)=,则g′(x)=,∴当0<x<时,g′(x)>0,当x>时,g′(x)<0,∴g(x)在(0,)上单调递增,在(,+∞)上单调递减,∴g(x)的最大值为g()=e,∴4a≥e,即a≥.∴a的取值范围是[,+∞).(II)∵f(x)有两个极值点,∴f′(x)=0在(0,+∞)上有两解,即4a=有两解,由(1)可知0<a<.由lnx1﹣4ax1+2=0,lnx2﹣4ax2+2=0,可得lnx1﹣lnx2=4a(x1﹣x2),不妨设0<x1<x2,要证明x1+x2>,只需证明<,即证明>lnx1﹣lnx2,只需证明>ln,令h(x)=﹣lnx(0<x<1),则h′(x)=<0,故h(x)在(0,1)上单调递减,∴h(x)>h(1)=0,即>lnx在(0,1)上恒成立,∴不等式>ln恒成立,综上,x1+x2>.选做题:考生需从第22题和第23题中选一道作答.[选修4-4:坐标系与参数方程]22.在平面直角坐标系xOy中,曲线C1的参数方程为(α为参数),以坐标原点O为极点,x轴非负半轴为极轴建立极坐标系,点A为曲线C1上的动点,点B在线段OA的延长线上,且满足|OA|•|OB|=8,点B的轨迹为C2.(Ⅰ)求曲线C1,C2的极坐标方程;(Ⅱ)设点M的极坐标为,求△ABM面积的最小值.【分析】(Ⅰ)利用参数方程,普通方程,极坐标方程之间的转化关系直接求解可;(Ⅱ)先表示出△ABM的面积,再利用余弦函数的有界性求解即可.解:(Ⅰ)将曲线C1化为普通方程为(x﹣1)2+y2=1,即x2+y2﹣2x=0,又,则曲线C1的极坐标方程为ρ1=2cosθ;又根据题意有ρ1ρ2=8,可知,即为曲线C2的极坐标方程;(Ⅱ)由=,而cos2θ≤1,故△ABM面积的最小值为2.[选修4-5:不等式选讲]23.设函数f(x)=|2x﹣1|+|2x﹣a|,x∈R.(1)当a=4时,求不等式f(x)>9的解集;(2)对任意x∈R,恒有f(x)≥5﹣a,求实数a的取值范围.【分析】(1)将a=4代入f(x)中,然后将f(x)写为分段函数的形式,再根据f(x)>9,分别解不等式可得解集;(2)利用绝对值三角不等式求出f(x)的最小值,然后根据对任意x∈R,恒有f(x)≥5﹣a,可得f(x)min≥5﹣a,再解关于a的不等式可得a的范围.解:(1)当a=4时,f(x)=|2x﹣1|+|2x﹣4|=.∵f(x)>9,∴或,∴x<﹣1或,∴不等式的解集为;(2)∵f(x)=|2x﹣1|+|2x﹣a|≥|(2x﹣1)﹣(2x﹣a)|=|a﹣1|,∴f(x)min=|a﹣1|.∵对任意x∈一、选择题,恒有f(x)≥5﹣a,∴f(x)min≥5﹣a,即|a﹣1|≥5﹣a,∴a≥3,∴a的取值范围为[3,+∞).。
桂林市2019~2020学年度下学期期末质量检测高二年级 数学(理科)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,有且只有一个选项是符合题目要求的.1. 23A =( )A. 3B. 6C. 9D. 12【答案】B 【解析】 【分析】直接根据排列数公式计算即可得答案.【详解】解:根据排列数公式()()()121mn A n n n n m =---+得:23326A =⨯=.故选:B.【点睛】本题考查排列数公式的计算,是基础题. 2. i (1+i )=( ) A. 1i -+ B. 1i -- C. 1i + D. 1i -【答案】A 【解析】 【分析】根据复数的乘法运算得到结果.【详解】根据复数的乘法运算得到:原式i (1+i )=i-1. 故选A .【点睛】这个题目考查了复数的乘法运算,题目简单基础. 3. 函数()ln f x x =的导数是( ) A. x B.1xC. ln xD. x e【答案】B 【解析】 【分析】根据导数公式直接计算即可得答案. 【详解】解:因为()1ln 'x x=, 所以()1'f x x=. 故选:B.【点睛】本题考查导数的公式,是基础题. 4.212xdx =⎰( )A. 3B. 2C. 1D.32【答案】A 【解析】 【分析】直接利用微积分基本定理求解即可.【详解】222112|413xdx x ==-=⎰. 故选:A .【点睛】本题考查微积分基本定理的应用,考查计算能力,属于基础题. 5. 5(12)x +的展开式中的常数项为( ) A. -1 B. 1C. 92D. 93【答案】B 【解析】 【分析】利用二项展开式的通项公式求出展开式的通项,令x 的指数为0,求出r ,可得展开式的常数项.【详解】5(12)x +的展开式的通项为155(2)2r r r r rr T C x C x +==, 当0r =时,可得5(12)x +的展开式中的常数项为00521C =.故选:B .【点睛】本题主要考查了二项展开式的通项的应用,解题的关键是熟练掌握二项式定理,正确写出其通项,属于基础试题6. 用反证法证明命题“在ABC 中,若A B ∠>∠,则a b >”时,应假设( )A. a b <B. a b ≤C. a b >D. a b ≥【答案】B 【解析】 【分析】直接利用命题的否定,写出假设即可.【详解】用反证法证明命题“在ABC 中,若A B ∠>∠,则a b >”时, 假设就是命题“ABC 中,若A B ∠>∠,则a b >”的结论的否定, 命题“ABC 中,若A B ∠>∠,则a b >”的结论的否定是:a b . 故选:B .【点睛】本题考查反证法的定义以及命题的否定,基本知识的考查. 7. 关于函数3()f x x x =+,下列说法正确的是( ) A. 没有最小值,有最大值 B. 有最小值,没有最大值 C. 有最小值,有最大值 D. 没有最小值,也没有最大值【答案】D 【解析】 【分析】 利用()'fx 研究函数()f x 的最值.【详解】依题意()'2310f x x =+>,所以()f x 在R 上递增,没有最小值,也没有最大值.故选:D【点睛】本小题主要考查利用导数研究函数的最值,属于基础题. 8. 已知随机变量X 的分布列是则a b +=( ) A.23B.32C. 1D.34【解析】 【分析】直接根据离散型随机变量的分布列的性质求解即可得答案.【详解】解:根据离散型随机变量的分布列的概率和为1得:113a b ++=, 所以23a b +=. 故选:A.【点睛】本题考查分布列的性质,是基础题. 9. 已知随机变量ξ服从正态分布()23,N σ,且(4)0.68P ξ≤=,则(2)P ξ≤=( )A. 0.84B. 0.68C. 0.32D. 0.16【答案】C 【解析】 【分析】直接利用正态分布的应用和密度曲线的对称性的应用求出结果. 【详解】解:根据随机变量ξ服从正态分布()23,N σ,所以密度曲线关于直线3x =对称, 由于()40.68P ξ≤=,所以()410.680.32P ξ≥=-=, 所以()20.32P ξ≤=. 故选:C.【点睛】本题考查正态分布的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题.10. 在正方体ABCD -A 1B 1C 1D 1中,E 是C 1C 的中点,则直线BE 与平面B 1BD 所成角的正弦值为( )A 5-B.5C. 5- D.5【解析】 【分析】以D 为坐标原点,以DA 为x 轴,以DC 为y 轴,以1DD 为z 轴,建立空间直角坐标系,利用向量法能求出直线BE 与平面1B BD 所成角的正弦值.【详解】以D 为坐标原点,以DA 为x 轴,以DC 为y 轴,以1DD 为z 轴,建立如图空间直角坐标系,设正方体的棱长为2,则()000D ,,,()220B ,,,()1222B ,,,()021E ,,,∴() 220BD =--,,,()1 002BB =,,,() 201BE =-,,,设平面1B BD 的法向量为(),,x n y z =, ∵ n BD ⊥,1 n BB ⊥, ∴22020x y z --=⎧⎨=⎩,令y 1=,则()110n =-,,, ∴10cos ,5n BE n BE n BE⋅==⋅, 设直线BE 与平面1B BD 所成角为θ, 则10sin cos ,5n BE θ==,故选B . 【点睛】本题考查直线与平面所成角的正弦值的求法,解题时要注意向量法的合理运用,准确得到面的法向量是解题的关键,是中档题.11. 根据上级扶贫工作要求,某单位计划从5名男干部和6名女干部中选出1名男干部和2名女干部组成一个扶贫小组,派到某村开展“精准扶贫”工作,那么不同的选法有( )A. 60种B. 70种C. 75种D. 150种【答案】C 【解析】 【分析】根据题意,先在5名男干部中任选1人,再从6名女干部中选出2人,由分步计数原理计算可得答案.【详解】根据题意,先在5名男干部中任选1人,有155C =种选法, 再从6名女干部中选出2人,有2615C =种选法,则有51575⨯=种不同的选法; 故选:C .【点睛】本题考查排列组合的应用,涉及分步计数原理的应用,属于基础题.12. 定义域为R 的可导函数()y f x =的导函数为()f x ',满足()()f x f x '>,且()02f =,则不等式()2xf x e <的解集为( )A. (),0-∞B. (),2-∞C. ()0,∞+D. ()2,+∞【答案】C 【解析】【详解】构造函数()()x f x g x e=,根据()()f x f x '>可知()0g x '<,得到()g x 在R 上单调递减;根据()()002f g e==,可将所求不等式转化为()()0g x g <,根据函数单调性可得到解集.【解答】令()()x f x g x e =,则()()()()()20x x x xf x e f x e f x f xg x e e ''--'==< ()g x ∴在R 上单调递减 ()02f = ()()002f g e∴== 则不等式()2xf x e >可化为()2xf x e<等价于()2g x <,即()()0g x g < 0x ∴> 即所求不等式的解集为:()0,∞+ 本题正确选项:C【点睛】本题考查利用导数研究函数的单调性求解不等式,关键是能够构造函数()()xf xg x e =,将所求不等式转变为函数值的比较,从而利用其单调性得到自变量的关系. 二、填空题:本大题共4小题,每小题5分,共20分.13. 已知i 是虚数单位,复数2z i =+,则z =__________.【解析】 【分析】直接根据复数的模的计算公式计算即可得答案.【详解】解:根据复数模的计算公式得:z =【点睛】本题考查复数模的计算,是基础题. 14. 已知()12P B A =,3()10P AB =,则()P A =__________. 【答案】35【解析】 【分析】直接根据条件概率公式计算即可得答案. 【详解】解:根据条件概率公式()()()P AB P B A P A =和已知条件()12P B A =,3()10P AB =, 所以()()()3310152P AB P A P B A ===. 故答案为:35【点睛】本题考查条件概率公式的应用,是基础题.15. 经过圆221x y +=上一点()00,x y 的切线方程为001x x y y +=,则由此类比可知:经过椭圆22221x y a b+=上一点()00,x y 的切线方程为______. 【答案】00221x x y ya b+= 【解析】 【分析】根据圆的切线方程形式,类比推理出椭圆的切线方程.【详解】解:圆的性质中,经过圆上一点()00,M x y 的切线方程就是将圆的方程中的一个x 和y 分别用()00,M x y 的横坐标与纵坐标替换,故可得椭圆22221x y a b +=类似的性质为:过椭圆22221x y a b +=上一点()00,x y 的切线方程为00221x x y ya b+=. 故答案为:00221x x y ya b+=.【点睛】考查了类比推理的数学思想,是基础题.16. 函数()cos f x x x =-在区间[0,]π上的最大值为__________. 【答案】1π+ 【解析】 【分析】求出导函数()f x ',[0x ∈,]π,利用导数研究函数()f x 的单调性,根据单调性可得结果. 【详解】数()cos f x x x =-, ()1sin f x x '=+, [0x ∈,]π,()0f x ∴'>,当[0x ∈,]π时,函数()f x 单调递增;∴函数()f x 在区间[0,]π上的最大值为:()1f ππ=+.故答案为:1π+.【点睛】本题考查了利用导数研究函数的单调性与最值,考查了推理能力与计算能力,属于中档题.三、解答题:本大题共6小题,共70分解答应给出文字说眀、证明过程及演算步骤.17. 在91x x ⎛⎫- ⎪⎝⎭展开式中,求: (1)含x 的项; (2)含3x 的项的系数.【答案】(1)126x ;(2)84-. 【解析】 【分析】(1)写出二项展开式的通项,令x 的指数为1,求得参数的值,代入通项可求得结果;(2)写出二项展开式的通项,令x 的指数为3,求得参数的值,进而可求得展开式中含3x 的项的系数.【详解】(1)91x x ⎛⎫- ⎪⎝⎭展开式的通项为()99219911rr r rr r r T C xC x x --+⎛⎫=-=- ⎝⋅⋅⋅⋅⎪⎭, 令921r -=,得4r =,所以含x 的项为()4491126C x x -=⋅;(2)由(1),令923r -=,得3r =,所以含3x 的项的系数为()339184C ⋅-=-.【点睛】本题考查利用二项式定理求指定项或指定项的系数,考查计算能力,属于基础题. 18. 已知函数1()ln 2f x x x ax =++在(1, (1))f 处的切线方程为2210x y --=. (1)求实数a 的值;(2)求()f x 的单调区间.【答案】(1)0a =;(2)减区间为10,e ⎛⎫ ⎪⎝⎭,增区间为1,e ⎛⎫+∞ ⎪⎝⎭. 【解析】 【分析】(1)求导得()1f x lnx a '=++,利用f '(1)1=,列出关于a 的方程,解之即可. (2)由(1)可知,()1(0)f x lnx x '=+>,令()0f x '=,则1=x e,然后根据原函数的单调性与导函数的正负性之间的联系判断即可得解.【详解】(1)1()2f x xlnx ax =++,()1f x lnx a '∴=++, ()f x 在点(1,f (1))处的切线方程为2210x y --=,f '∴(1)1=,即011a ++=,解得0a =.(2)由(1)可知,1()2f x xlnx =+,()1(0)f x lnx x '∴=+>, 当1(0,)∈x e时,()0f x '<,()f x 单调递减;当1(x e ∈,)+∞时,()0f x '>,()f x 单调递增,故()f x 的单调递减区间为1(0,)e,单调递增区间为1(e ,)+∞.【点睛】本题考查利用导数研究函数的切线方程、单调性,理解原函数的单调性与导函数的正负性之间的联系是解题的关键,考查学生的逻辑推理能力和运算能力,属于基础题. 19. 在数列{}n a 中,已知11a =,112nn na a a +=+.(1)计算2a ,3 a ,4a ;(2)根据计算结果猜想出{}n a 的通项公式n a ,并用数学归纳法证明你的结论. 【答案】(1)213a =,315a =,417a =;(2)121n a n =-,证明见解析.【解析】 【分析】(1)利用()*11112nn na a a n N a +==∈+,,n 分别取234,,可求出234,,a a a ,并由此猜想数列{}n a 的通项公式n a 的表达式;(2)根据计算结果猜想数列{}n a 的通项公式n a 的表达式,用数学归纳法证明①当1n =时,111211a ==⨯-,猜想成立;②假设n k =成立,利用()*112n n n a a n N a +=∈+,可证得当1n k =+时猜想也成立,故可得结论.【详解】(1)∵111,(1,2,3,)12nn a a a n a+===⋅⋅⋅+, ∴1211123a a a ==+,同理可得:315a =,417a =. (2)由(1)计算结果猜想121n a n =-, 下面用数学归纳法证明: ①当1n =时,111211a ==⨯-,猜想成立,②假设当()*1n k k N=+∈时,猜想成立,即:121kak =-. 则当()*1n k k N =+∈时,111121212212(1)1121k k k a k a a k k k +-====+++-+-,所以,当1n k =+时,猜想成立. 根据①②可知猜想对任何*n N ∈都成立.【点睛】本题主要考查了以数列递推式为载体,考查了数列的通项的猜想与证明,解题的关键是利用数学归纳法证明,尤其第二步的证明.属于中档题. 20. 在四棱锥P ABCD -中,已知底面ABCD正方形,PA ⊥底面ABCD ,且2PA AD ==,E 为PD 中点.(1)求证://PB 平面ACE ; (2)求二面角A BE C --的余弦值. 【答案】(1)证明见解析;(2)105- 【解析】 【分析】(1)由中位线可知//OE BP ,结合线面平行判定即可证明//PB 平面ACE ;(2)以A 为原点构建空间直角坐标系,写出对应点的坐标并求出面ABE 、面BCE 的法向量,根据法向量夹角与二面角的关系求它们的夹角的余弦值【详解】(1)证明:连接AC 、BD ,AC BD O = ,连接EO∵在BPD △中,BO OD =,PE ED = ∴//OE BP又∵BP ⊄平面ACE ,OE ⊂平面ACE ∴//BP 平面ACE(2)由题,易知PA ,AD ,AB 两两互相垂直,2PA AD == 故可建立如图的空间直角坐标系A xyz -,则(0,0,0)A ,(2,2,0)C ,(0,1,1)E ,(2,0,0)B ,有(0,1,1)AE =,(2,0,0)AB =,(0,2,0)CB =-,(2,1,1)CE =--设(,,)m x y z =为平面ABE 的一个法向量,有020y z x +=⎧⎨=⎩令1y =-,1z =,得(0,1,1)m =-同理若(,,)n x y z =是平面BCE 的一个法向量,有2020y x y z -=⎧⎨--+=⎩令1x =,2z =,得(1,0,2)n = 则10cos ,||5|,|25m n m n m n ⋅〈〉===⨯∴由图知,二面角A BE C --(钝角)的余弦值为10-【点睛】本题考查了线面平行的判定证明平行,利用空间向量求二面角的余弦值,由题意构建空间坐标系并根据二面角所在的两个面确定各点坐标,可得面的法向量,进而求二面角的余弦值21. 东方商店欲购进某种食品(保质期两天),此商店每两天购进该食品一次(购进时,该食品为刚生产的).根据市场调查,该食品每份进价8元,售价12元,如果两天内无法售出,则食品过期作废,且两天内的销售情况互不影响,为了了解市场的需求情况,现统计该产品在本地区100天的销售量如下表:(视样本频率为概率)(1)根据该产品100天的销售量统计表,记两天中一共销售该食品份数为ξ,求ξ的分布列与期望(2)以两天内该产品所获得的利润期望为决策依据,东方商店一次性购进32或33份,哪一种得到的利润更大?【答案】(1)见解析(2)见解析 【解析】 【分析】(1)根据题意可得ξ的取值为30,31,32,33,34,35,36,计算相应的概率值即可确定分布列和数学期望;(2)分别求解当购进32份时的利润和购进33份时的利润即可确定利润更高的决策. 【详解】(1)根据题意可得()111305525P ξ==⨯=,()13331251025P ξ==⨯⨯=,()123313225510104P ξ==⨯⨯+⨯=,()11327332251010525P ξ==⨯⨯+⨯⨯=,()31221134210105550P ξ==⨯⨯+⨯=, ()21235251025P ξ==⨯⨯=,()111361010100P ξ==⨯=,ξ的分布列如下:()131711213031323334353632.825254255025100E ξ=⨯+⨯+⨯+⨯+⨯+⨯+⨯= (2)当购进32份时,利润()()2131324314830416252525⨯⨯+⨯-⨯+⨯-⨯ 107.5213.92 4.16125.6=++=, 当购进33份时,利润为()()()591313343248314163042410042525⨯⨯+⨯-⨯+⨯-⨯+⨯-⨯ 77.883012.96 3.84124.68=+++=, 125.6124.68>可见,当购进32份时,利润更高.【点睛】本题主要考查离散型随机变量的分布列与数学期望的计算,概率统计的预测作用等知识,意在考查学生的转化能力和计算求解能力. 22. 已知函数()ln 2()f x m x x m =-∈R . (1)当6m =时,试确定()f x 的零点的个数;(2)若不等式(1)2xf x mx e +>-对任意(0,)x ∈+∞恒成立,求证:2m ≤. 【答案】(1)2;(2)证明见解析. 【解析】 【分析】(1)根据条件,利用导函数的符号得到()f x 的单调性和极大值、计算1()f e,2()f e 的符号,由零点存在定理,即可判断零点个数;(2)由题意可得[(1)]2(1)x m ln x x x e +->+-对任意(0,)x ∈+∞恒成立,设(1)y ln x x =+-,求得导数和单调性,得到2(1)(1)x x e m ln x x+-<+-对任意的0x >恒成立,再由此不等式的右边与2作差比较,再求出m 的范围.【详解】(1)当6m =时,知()6ln 2(0)f x x x x =->,则62(3)()2x f x x x-'=-=, ∵当03x <<时,()0f x '>;当3x >,则62(3)()2x f x x x-'=-=, ∴()f x 在区间()0,3是单调递增,在区间(3,)+∞单调递减. ∴max ()(3)6ln 360f x f ==->. 又∵1260f e e⎛⎫=--< ⎪⎝⎭,()221220f e e =-<. ∵()f x 在区间1,3e ⎛⎫ ⎪⎝⎭,在区间()23,e 各有1个零点.综上,函数()f x 零点的个数为2.(2)函数()ln 2f x m x x =-,若不等式(1)2xf x mx e +>-对任意(0,)x ∈+∞恒成立,即为ln(1)2(1)2xm x x mx e +-+>-对任意(0,)x ∈+∞恒成立 即有()(ln(1))21xm x x x e +->+-对任意(0,)x ∈+∞恒成立,设ln(1)y x x =+-,1111x y x x -'=-=++,0x >时,0y '<,函数y 递减, 可得ln(1)0y x x =+-<,则()21ln(1)x x e m x x+-<+-对任意(0,)x ∈+∞恒成立.由()211ln(1)22ln(1)ln(1)x x x e x e x xx x x x+-+--++-=⋅+-+-, 设()1ln(1)(0)xg x x e x x x =+--++>,1()21xg x e x '=--+,21()(1)x g x e x ''=-+,由()y g x ''=在0x >递减,即有()0g x ''<,可得()y g x '=在0x >递减,即有()0g x '<,可得()g x 在0x >递减,可得()0g x <,而ln(1)0x x +-<,可得1ln(1)20ln(1)x x e x xx x+--++⋅>+-. 则由()212ln(1)x x e x x+->+-,所以2m ≤.【点睛】本题考查函数的零点个数和函数恒成立问题解法,零点存在定理和分离参数法、以及构造函数法,考查化简运算能力、推理能力,属于难题.。
在点P (1, 1)处的切线相互垂直,所以r (1) »g' (1) =-1,即—1,所以a=-l.故选A. 考点:利用导数研究曲线上某点切线方程.3. 用反证法证明命题“若。
>2,则方程必+心+ 1 = o 至少有一个实根,,时,应假设() A.方程J+破+ 1 = 0没有实根湖南省永州市重点名校2019-2020学年高二下学期期末统考数学试题 一、选择题:本题共12小题,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.下列等式不正确的是( ) 777 + 1 A. C —C1 c. A';*: 【答案】A【解析】 【分析】 根据排列组合数公式依次对选项,整理变形,分析可得答案. 【详解】 n\ A,根据组合数公式,a,;" = - ., = ^x (^+1)!= n + 1 (m + l)!(n-m)! n + 1 tn + 1 八 m+l . 一 . —x" A不正确; B, - A^1 = (〃 +1)〃(〃-1)(〃 - 2)— m + 1) —〃—1)(〃 —2)(〃_所 + 1) = 〃2(〃_])(〃_2){n — m + \),W = w (” T)3-1) 3 - m +1)故 Cl 1 - 4':'=必4'目 B 正确;c, »Cf=n(n-1)(» - 2) (” - /« + !) = 故 C 正确; D, nC ; - kC : = (n - k)C : = (n - k)n(n - § (〃一上 + 1) = 〃(〃一1) (〃_上 + 1)("_上)=Cf*】故 D 正确; 【点睛】 本题考查排列组合数公式的计算,要牢记公式,并进行区别,属于基础题. 2.若曲线f(x) = $ , g ⑴=芝在点尸(1,1)处的切线分别为1撰2,且«上,2,则a 的值为() B. 2 1 D.—— 2 【答案】A 【解析】 试题分析:因为「3* 衣)妇,则 f' (1)=-2,g ,(l) =a,又曲线f(x) = Mg(x) = x"B.方程x2 +ov + l = 0至多有一个实根C. ^x- +ax + l = o至多有两个实根D. 方程x2+ax + \ = 0恰好有两个实根【答案】A【解析】分析:直接利用命题的否定写出假设即可,至少的反面是一个都没有。
阶段质量检测(二)(A卷学业水平达标)(时间120分钟,满分150分)一、选择题(共10小题,每小题6分,共60分)1.下列说法不正确的是( )A.空间中,一组对边平行且相等的四边形一定是平行四边形B.同一平面的两条垂线一定共面C.过直线上一点可以作无数条直线与这条直线垂直,且这些直线都在同一平面内D.过一条直线有且只有一个平面与已知平面垂直答案:D2.(浙江高考)设m,n是两条不同的直线,α,β是两个不同的平面( )A.若m⊥n,n∥α,则m⊥αB.若m∥β,β⊥α则m⊥αC.若m⊥β,n⊥β,n⊥α则m⊥αD.若m⊥n,n⊥β,β⊥α,则m⊥α答案:C3.如图在四面体中,若直线EF和GH相交,则它们的交点一定( )A.在直线DB上B.在直线AB上C.在直线CB上D.都不对答案:A4.如图所示,在正方体ABCDA1B1C1D1中,若E是A1C1的中点,则直线CE垂直于( )A.AC B.BDC.A1D D.A1D1答案:B5.给定下列四个命题:①若两个平面有无数个公共点,则这两个平面重合;②若一个平面经过另一个平面的垂线,那么这两个平面相互垂直;③垂直于同一直线的两条直线相互平行;④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直.其中为正确的命题的是( )A.①和②B.②和③C.③和④D.②和④6.正方体AC1中,E,F分别是DD1,BD的中点,则直线AD1与EF所成角的余弦值是( )A.12B.32C.63D.62答案:C7.在四面体ABCD中,已知棱AC的长为2,其余各棱长都为1,则二面角ACDB的余弦值为( )A.12B.13C.33D.23答案:C8.设α,β,γ为两两不重合的平面,l,m,n为两两不重合的直线,给出下列三个说法:①若α⊥γ,β⊥γ,则α∥β;②若α∥β,l⊂α,则l∥β;③若α∩β=l,β∩γ=m,γ∩α=n,l∥γ,则m∥n.其中正确的说法个数是( )A.3 B.2C.1 D.0答案:B9.如图,四边形ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°,将△ABD沿BD折起,使平面ABD⊥平面BCD,构成四面体ABCD,则在四面体ABCD中,下列结论正确的是( )A.平面ABD⊥平面ABCB.平面ADC⊥平面BDCC.平面ABC⊥平面BDCD.平面ADC⊥平面ABC答案:D10.已知平面α⊥平面β,α∩β=l,在l上取线段AB=4,AC,BD分别在平面α和平面β内,且AC⊥AB,DB⊥AB,AC=3,BD=12,则CD的长度为( )A.13 B.151 C.12 3 D.15答案:A二、填空题(共4小题,每小题5分,共20分)11.如图所示,在四棱锥PABCD中,PA⊥底面ABCD,且底面各边都相等,M是PC上的一动点,当点M满足________时,平面MBD⊥平面PCD.(只要填写一个你认为答案:BM⊥PC(其他合理即可)12.设a,b是两条不同的直线,α,β是两个不同的平面,则下列四个说法:①若a⊥b,a⊥α,b⊄α,则b∥α;②若a∥α,α⊥β,则a⊥β;③若a⊥β,α⊥β,则a∥α或a⊂α;④若a⊥b,a⊥α,b⊥β,则α⊥β.其中正确的个数为________.答案:313.在空间四边形ABCD中,AD=BC=2,E,F分别是AB,CD的中点,EF=3,则异面直线AD与BC所成角的大小为________.答案:60°14.将正方形ABCD沿对角线BD折成直二面角ABDC,有如下三个结论.①AC⊥BD;②△ACD是等边三角形;③AB与平面BCD成60°的角;说法正确的命题序号是________.答案:①②三、解答题(共6小题,共70分,解答时应写出文字说明、证明过程或演算步骤)15.(本小题满分10分)如图,在梯形ABCD中,AD∥BC,AB⊥BC,AB=BC=1,PA⊥平面ABCD,CD⊥PC,(1)证明:CD⊥平面PAC;(2)若E为AD的中点,求证:CE∥平面PAB.证明:(1)∵PA⊥平面ABCD,CD⊂平面ABCD,∴PA⊥CD.又CD⊥PC,PA∩PC=P,∴CD⊥平面PAC.(2)∵AD∥BC,AB⊥BC,AB=BC=1,∴∠BAC=45°,∠CAD=45°,AC= 2.∵CD⊥平面PAC,∴CD⊥CA,∴AD=2.又∵E为AD的中点,∴AE=BC=1,∴AE綊BC,∴四边形ABCE是平行四边形,又∵AB⊂平面PAB,CE⊄平面PAB,∴CE∥平面PAB.16.(本小题满分12分)(山东高考)如图,几何体EABCD是四棱锥,△ABD为正三角形,CB=CD,EC⊥BD.(1)求证:BE=DE;(2)若∠BCD=120°,M为线段AE的中点,求证:DM∥平面BEC.证明:(1)取BD的中点O,连接CO,EO.由于CB=CD,所以CO⊥BD,又EC⊥BD,EC∩CO=C,CO,EC⊂平面EOC,所以BD⊥平面EOC,因此BD⊥EO,又O为BD的中点,所以BE=DE.(2)法一:取AB的中点N,连接DM,DN,MN,因为M是AE的中点,所以MN∥BE.又MN⊄平面BEC,BE⊂平面BEC,所以MN∥平面BEC.又因为△ABD为正三角形.所以∠BDN=30°,又CB=CD,∠BCD=120°,因此∠CBD=30°,又DN⊄平面BEC,BC⊂平面BEC,所以DN∥平面BEC.又MN∩DN=N,故平面DMN∥平面BEC.又DM⊂平面DMN,所以DM∥平面BEC.法二:延长AD,BC交于点F,连接EF. 因为CB=CD,∠BCD=120°,所以∠CBD=30°.因为△ABD为正三角形,所以∠BAD=60°,∠ABC=90°,因此∠AFB=30°,所以AB=12 AF.又AB=AD,所以D为线段AF的中点.连接DM,由于点M是线段AE的中点,因此DM∥EF.又DM⊄平面BEC,EF⊂平面BEC,所以DM∥平面BEC.17.(本小题满分12分)如图,在三棱柱ABCA1B1C1中,AB⊥平面BB1C1C,BB1=2BC,D,E,F分别是CC1,A1C1,B1C1的中点,G在BB1上,且BG=3GB1.求证:(1)B1D⊥平面ABD;(2)平面GEF∥平面ABD.证明:(1)取BB1的中点为M,连接MD,如图所示.因为BB1=2BC,且四边形BB1C1C为平行四边形,所以四边形CDMB和四边形DMB1C1均为菱形.故∠CDB=∠BDM,∠MDB1=∠B1DC1,所以∠BDM+∠MDB1=90°,即BD⊥B1D.又AB⊥平面BB1C1C,B1D⊂平面BB1C1C,所以AB⊥B1D.又AB∩BD=B,所以B1D⊥平面ABD.又F为B1C1的中点,所以GF∥MC1.又MB綊C1D,所以四边形BMC1D为平行四边形,所以MC1∥BD,故GF∥BD.又BD⊂平面ABD,所以GF∥平面ABD.又EF∥A1B1,A1B1∥AB,AB⊂平面ABD,所以EF∥平面ABD.又EF∩GF=F,故平面GEF∥平面ABD.18.(本小题满分12分)如图,正方形ABCD和四边形ACEF所在的平面互相垂直,EF∥AC,AB=2,CE =EF=1.(1)求证:AF∥平面BDE;(2)求证:CF⊥平面BDE.证明:(1)设AC与BD交于点G.∵EF∥AG,且EF=1,AG=12AC=1,∴四边形AGEF为平行四边形.所以AF∥EG. ∵EG⊂平面BDE,AF⊄平面BDE,∴AF∥平面BDE.(2)连接FG.∵EF∥CG,EF=CG=1,且CE=1,∴四边形CEFG为菱形.∴CF⊥EG.∵四边形ABCD为正方形,∴BD⊥AC.又∵平面ACEF⊥平面ABCD,且平面ACEF∩平面ABCD=AC,∴BD⊥平面ACEF.∴CF⊥BD.又BD∩EG=G,∴CF⊥平面BDE.(1)AO 与A ′C ′所成角的度数; (2)AO 与平面ABCD 所成角的正切值; (3)平面AOB 与平面AOC 所成角的度数. 解:(1)∵A ′C ′∥AC ,∴AO 与A ′C ′所成的角就是∠OAC . ∵OC ⊥OB ,AB ⊥平面BC ′,∴OC ⊥AB .又AB ∩BO =B ,∴OC ⊥平面ABO . 又OA ⊂平面ABO ,∴OC ⊥OA . 在Rt △AOC 中,OC =22,AC =2, sin ∠OAC =OC AC =12,∴∠OAC =30°. 即AO 与A ′C ′所成角的度数为30°. (2)如图所示,作OE ⊥BC 于E ,连接AE . ∵平面BC ′⊥平面ABCD ,∴OE ⊥平面ABCD ,∠OAE 为OA 与平面ABCD 所成的角. 在Rt △OAE 中,OE =12,AE =12+⎝ ⎛⎭⎪⎫122=52, ∴tan ∠OAE =OE AE =55.(3)∵OC ⊥OA ,OC ⊥OB ,OA ∩OB =O , ∴OC ⊥平面AOB .又∵OC ⊂平面AOC ,∴平面AOB ⊥平面AOC . 即平面AOB 与平面AOC 所成角的度数为90°.M ,N 分别是边AD ,CD 上的点,且2AM =MD ,2CN =ND ,如图①,将△ABD 沿对角线BD 折叠,使得平面ABD ⊥平面BCD ,并连接AC ,MN (如图②).(1)证明:MN ∥平面ABC ; (2)证明:AD ⊥BC ;(3)若BC =1,求三棱锥A BCD 的体积. 解:(1)证明:在△ACD 中, ∵2AM =MD,2CN =ND , ∴MN ∥AC ,又∵MN ⊄平面ABC ,AC ⊂平面ABC , ∴MN ∥平面ABC .(2)证明:在△ABD 中,AB =AD ,∠A =90°, ∴∠ABD =45°.∵在平面四边形ABCD 中,∠B =135°, ∴BC ⊥BD .又∵平面ABD ⊥平面BCD ,且BC ⊂平面BCD ,平面ABD ∩平面BCD =BD , ∴BC ⊥平面ABD ,又AD ⊂平面ABD , ∴AD ⊥BC . (3)在△BCD 中,∵BC =1,∠CBD =90°,∠BCD =60°, ∴BD = 3.在△ABD 中,∵∠A =90°,AB =AD , ∴AB =AD =62, ∴S △ABD =12AB ·AD =34,由(2)知BC ⊥平面ABD , ∴V A BCD =V C ABD =13×34×1=14.(B卷能力素养提升)(时间120分钟,满分150分)一、选择题(共10小题,每小题6分,共60分)1.空间两个角α,β的两边分别对应平行,且α=60°,则β为( )A.60°B.120°C.30°D.60°或120°解析:选D 由等角定理可知β=60°或120°.2.已知空间中有三条线段AB,BC和CD,且∠ABC=∠BCD,那么直线AB与CD的位置关系是( ) A.AB∥CDB.AB与CD异面C.AB与CD相交D.AB∥CD或AB与CD异面或AB与CD相交解析:选D 若三条线段共面,如果AB,BC,CD构成等腰三角形,则直线AB与CD相交,否则直线AB 与CD平行;若不共面,则直线AB与CD是异面直线.3.如图,正方体ABCDA1B1C1D1中,①DA1与BC1平行;②DD1与BC1垂直;③BC1与AC所成角为60°.以上三个结论中,正确结论的序号是( )A.①B.②C.③D.②③解析:选C ①错,应为DA1⊥BC1;②错,两直线所成角为45°;③正确,将BC1平移至AD1,由于三角形AD1C为等边三角形,故两异面直线所成角为60°,即正确命题序号为③,故选C.4.已知l是直线,α、β是两个不同的平面,下列命题中的真命题( )A.若l∥α,l∥β,则α∥βB.若α⊥β,l∥α,则l⊥βC.若l∥α,α∥β,则l∥βD.若l⊥α,l∥β,则α⊥β解析:选D 对于A,若l∥α,l∥β,则α∥β或α与β相交,所以A错;对于B,若α⊥β,l∥α,则l∥β或l⊥β或l⊂β或l与β相交,所以B错;对于C,若l∥α,α∥β,则l∥β或l⊂β,所以C错;对于D,若l⊥α,l∥β,则α⊥β,由面面垂直的判定可知选项D正确.5.如图,在四面体ABCD中,若截面PQMN是正方形,则在下列命题中,错误的为( )A.AC⊥BDB.AC∥截面PQMNC.AC=BD解析:选C ∵MN∥PQ,由线面平行的性质定理可得MN∥AC,从而AC∥截面PQMN,B正确;同理可得MQ∥BD,故AC⊥BD,A正确;又∠PMQ=45°,故D正确.6.α,β,γ是三个平面,a、b是两条直线,有下列三个条件:①a∥γ,b⊂β;②a∥γ,b∥β;③b∥β,a⊂γ.如果命题“α∩β=a,b⊂γ,且________,则a∥b”为真命题,则可以在横线处填入的条件是( )A.①或②B.②或③C.①或③D.只有②解析:选C 若填入①,则由a∥γ,b⊂β,b⊂γ,b=β∩γ,又a⊂β,则a∥b;若填入③,则由a⊂γ,a=α∩β,则a是三个平面α、β、γ的交线,又b∥β,b⊂γ,则b∥a;若填入②,不能推出a∥b,可以举出反例,例如使β∥γ,b⊂γ,画一草图可知,此时能有a∥γ,b∥β,但不一定a∥b,有可能异面.从而A、B、D都不正确,只有C正确.7.平面α∩平面β=a,平面β∩平面γ=b,平面γ∩平面α=c,若a∥b,则c与a,b的位置关系是( )A.c与a,b都异面B.c与a,b都相交C.c至少与a,b中的一条相交D.c与a,b都平行解析:选D 如图,以三棱柱为模型.∵a∥b,a⊄γ,b⊂γ,∴a∥γ.又∵a⊂β,β∩γ=c,∴a∥c.∴a∥b∥c.8.如下图,将无盖正方体纸盒展开,直线AB,CD在原正方体中的位置关系是( )A.平行B.相交且垂直C.异面D.相交成60°解析:选D 还原几何体,如图.可知D点与B点重合,△ABC是正三角形,所以选D.成的角为( )A .30°B .45°C .60°D .90°解析:选A 如图,二面角αl β为45°,AB ⊂β,且与棱l 成45°角,过A 作AO ⊥α于O ,作AH ⊥l 于H .连接OH 、OB ,则∠AHO 为二面角αl β的平面角,∠ABO 为AB 与平面α所成角.不妨设AH =2,在Rt △AOH 中,易得AO =1;在Rt △ABH 中,易得AB =2.故在Rt △ABO 中,sin ∠ABO =AO AB =12, ∴∠ABO =30°,为所求线面角.10.如图(1)所示,在正方形ABCD 中,E 、F 分别是BC 、CD 的中点,G 是EF 的中点,现在沿AE 、AF 及EF 把这个正方形折成一个四面体,使B 、C 、D 三点重合,重合后的点记为H ,如图(2)所示,那么,在四面体A EFH 中必有( )A .AH ⊥△EFH 所在平面B .AG ⊥△EFH 所在平面C .HF ⊥△AEF 所在平面D .HG ⊥△EFH 所在平面解析:选A 折成的四面体中有AH ⊥EH ,AH ⊥FH ,∴AH ⊥平面HEF .故选A. 二、填空题(共4小题,每小题5分,共20分)11.如图,直四棱柱ABCD A 1B 1C 1D 1的底面是边长为1的正方形,侧棱长AA 1=2,则异面直线A 1B 1与BD 1的夹角大小等于________.解析:∵A 1B 1∥AB ,∴AB 与BD 1所成的角即是A 1B 1与BD 1所成的角.连接AD 1, 可知AB ⊥AD 1,在Rt △BAD 1中,AB =1,AD 1=3,∴tan ∠ABD 1=AD1AB=3, ∴∠ABD 1=60°,故A 1B 1与BD 1的夹角为60°. 答案:60°12.如图,在正三棱柱ABC A 1B 1C 1中,已知AB =1,D 在棱BB 1上,且BD =1,则AD 与平面AA 1C 1C 所成角的正弦值为________.解析:取AC ,A 1C 1的中点E ,E 1,连接BE ,B 1E 1,EE 1,由题意知平面BEE 1B 1⊥平面AC 1,过D 作DF ⊥EE 1于F ,连接AF ,则DF ⊥平面AC 1.∴∠DAF 即为AD 与平面AC 1所成的角.可求得AD =2,DF =32,∴sin ∠DAF =DF AD =64. 答案:6413.设a ,b ,c 是空间中的三条直线,下面给出五个命题: ①若a ∥b ,b ∥c ,则a ∥c ; ②若a ⊥b ,b ⊥c ,则a ∥c ;③若a 与b 相交,b 与c 相交,则a 与c 相交;④若a ⊂平面α,b ⊂平面β,则a ,b 一定是异面直线; ⑤若a ,b 与c 成等角,则a ∥b .上述命题中正确的命题是________(只填序号). 解析:由公理4知①正确;当a ⊥b ,b ⊥c 时,a 与c 可以相交、平行,也可以异面,故②不正确;当a 与b 相交,b 与c 相交时,a 与c 可以相交、平行,也可以异面,故③不正确;a ⊂α,b ⊂β,并不能说明a 与b “不同在任何一个平面内”,故④不正确;当a ,b 与c 成等角时,a 与b 可以相交、平行,也可以异面,故⑤不正确. 答案:①14.给出下列命题:①若平面α上的直线a 与平面β上的直线b 为异面直线,直线c 是α与β的交线,那么c 至多与a ,b 中一条相交;②若直线a 与b 异面,直线b 与c 异面,则直线a 与c 异面; ③一定存在平面α同时和异面直线a ,b 都平行. 其中正确的命题为________.(写出所有正确命题的序号)解析:①中,异面直线a ,b 可以都与c 相交,故不正确;②中,直线异面不具有传递性,故不正确;③中,过直线b 上一点P 作a ′∥a ,则a ′、b 确定一平面,则与该平面平行的任一平面(平面内不包含直线a 、b )都与异面直线a 、b 平行,故正确.答案:③三、解答题(共6小题,共70分,解答时应写出文字说明,证明过程或演算过程) 15.(本小题满分10分)如图所示,在正方体ABCD A 1B 1C 1D 1中,E ,F 分别为CC 1,AA 1的中点,画出平面BED 1F 与平面ABCD 的交线.解:在平面AA 1D 1D 内,延长D 1F ,∵D 1F 与DA 不平行,∴D 1F 与DA 必相交于一点,设为P ,则P ∈D 1F ,P ∈DA .又∵D 1F ⊂平面BED 1F ,AD ⊂平面ABCD ,∴P ∈平面BED 1F ,P ∈平面ABCD .又B 为平面ABCD 与平面BED 1F 的公共点,连接PB ,∴PB 即为平面BED 1F 与平面ABCD 的交线.如图所示.16.(本小题满分12分)在右图的几何体中,面ABC ∥面DEFG, ∠BAC =∠EDG=120°,四边形ABED 是矩形,四边形ADGC 是直角梯形,∠ADG =90°,四边形DEFG是梯形, EF ∥DG ,AB =AC =AD =EF =1,DG =2.(1)求证:FG ⊥面ADF ; (2)求四面体 CDFG 的体积.解:(1)连接DF 、AF ,作DG 的中点H , 连接FH ,EH ,∵EF ∥DH ,EF =DH =ED =1, ∴四边形DEFH 是菱形,∴EH ⊥DF , 又∵EF ∥HG, EF =HG , ∴四边形EFGH 是平行四边形, ∴FG ∥EH ,∴FG ⊥DF ,由已知条件可知AD ⊥DG ,AD ⊥ED , 所以AD ⊥面EDGF ,所以AD ⊥FG .又∵⎩⎪⎨⎪⎧FG⊥AD,FG⊥DF,AD ⊂面ADF ,DF ⊂面ADF ,AD∩DF=D ,∴FG ⊥面ADF .(2)因为DH ∥AC 且DH =AC , 所以四边形ADHC 为平行四边形, 所以CH ∥AD ,CH =AD =1,由(1)知AD ⊥面EDGF , 所以CH ⊥面DEFG .由已知,可知在三角形DEF 中,ED =EF =1,∠DEF =60°,所以,△DEF 为正三角形,DF =1,∠FDG =60°, S △DEG =12·DF ·DG ·sin∠FDG =32. 四面体CDFG =13·S △DFG ·CH=13×32×1=36. 17.(本小题满分12分)如图所示,在四棱锥P ABCD 中,PA ⊥平面ABCD ,AD ⊥AB ,△ABC 是正三角形,AC 与BD 的交点M 恰好是AC 的中点,N 为线段PB 的中点,G在线段BM 上,且BGGM=2.(1)求证:AB ⊥PD ; (2)求证:GN ∥平面PCD . 证明:(1)因为PA ⊥平面ABCD , 所以PA ⊥AB .又因为AD ⊥AB ,AD ∩PA =A ,所以AB ⊥平面PAD .又PD ⊂平面PAD ,所以AB ⊥PD .(2)因为△ABC 是正三角形,且M 是AC 的中点,所以BM ⊥AC . 在直角三角形AMD 中,∠MAD =30°, 所以MD =12AD .在直角三角形ABD 中,∠ABD =30°, 所以AD =12BD ,所以MD =14BD .又因为BGGM=2,所以BG =GD .又N 为线段PB 的中点,所以GN ∥PD . 又GN ⊄平面PCD ,PD ⊂平面PCD , 所以GN ∥平面PCD .18.(本小题满分12分)(浙江高考)如图,在三棱柱ABCA1B1C1中,∠BAC=90°,AB=AC=2,A1A=4,A1在底面ABC的射影为BC的中点,D是B1C1的中点.(1)证明:A1D⊥平面A1BC;(2)求直线A1B和平面BB1C1C所成的角的正弦值.解:(1)证明:设E为BC的中点,连接AE,A1E,DE,由题意得A1E⊥平面ABC,所以A1E⊥AE.因为AB=AC,所以AE⊥BC.又因为A1E,BC⊂平面A1BC,A1E∩BC=E,故AE⊥平面A1BC.由D,E分别为B1C1,BC的中点,得DE∥B1B且DE=B1B,从而DE∥A1A且DE=A1A,所以四边形AA1DE为平行四边形.于是A1D∥AE.又因为AE⊥平面A1BC,所以A1D⊥平面A1BC.(2)作A1F⊥DE,垂足为F,连接BF.因为A1E⊥平面ABC,所以BC⊥A1E.因为BC⊥AE,AE∩A1E=E,所以BC⊥平面AA1DE.所以BC⊥A1F.又因为DE∩BC=E,所以A1F⊥平面BB1C1C.所以∠A1BF为直线A1B和平面BB1C1C所成的角.由AB=AC=2,∠CAB=90°,得EA=EB= 2.由A1E⊥平面ABC,得A1A=A1B=4,A1E=14.由DE=BB1=4,DA1=EA=2,∠DA1E=90°,得A1F=72.所以sin∠A1BF=78.19.(本小题满分12分)如图,在三棱柱ABCA1B1C1中,侧棱垂直于底面,AB⊥BC,AA1=AC=2,BC=1,E,F分别是A1C1,BC的中点.(1)求证:平面ABE⊥平面B1BCC1;(2)求证:C1F∥平面ABE;(3)求三棱锥EABC的体积.解:(1)证明:在三棱柱ABCA1B1C1中,BB1⊥底面ABC,所以BB1⊥AB.又因为AB⊥BC,BB1∩BC=B,所以AB⊥平面B1BCC1.又AB⊂平面ABE,所以平面ABE⊥平面B1BCC1.(2)证明:取AB中点G,连接EG,FG.因为E,F,G分别是A1C1,BC,AB的中点,所以FG∥AC,且FG=12AC,EC1=12A1C1.因为AC∥A1C1,且AC=A1C1,所以FG∥EC1,且FG=EC1,所以四边形FGEC1为平行四边形,所以C1F∥EG.又因为EG⊂平面ABE,C1F⊄平面ABE,所以C1F∥平面ABE.(3)因为AA1=AC=2,BC=1,AB⊥BC,所以AB=AC2-BC2= 3.所以三棱锥EABC的体积V=13S△ABC·AA1=13×12×3×1×2=33.20.(本小题满分12分)如图所示,在棱长为2的正方体ABCDA1B1C1D1中,E,F分别为DD1、DB的中点.(1)求证:EF∥平面ABC1D1;(2)求三棱锥VB1EFC的体积;(3)求二面角ECFB1的大小.解:(1)证明:连接BD1,在△DD1B中,E、F分别为D1D,DB的中点,则EF为中位线,∴EF∥D1B,而D1B⊂面ABC1D1,EF⊄面ABC1D1,∴EF∥面ABC1D1.(2)等腰直角三角形BCD中,F为BD中点,∴CF⊥BD.①∵ABCDA1B1C1D1是正方体,∴DD1⊥面ABCD,又CF⊂面ABCD,∴DD1⊥CF.②综合①②,且DD1∩BD=D,DD1,BD⊂面BDD1B1,∴CF ⊥平面EFB 1即CF 为高,CF =BF = 2. ∵EF =12BD 1=3,B 1F =BF2+BB21=2+22=6, B 1E =B1D21+D1E2=12+2=3,∴EF 2+B 1F 2=B 1E 2,即∠EFB 1=90°, ∴S △B 1EF =12EF ·B 1F =322,∴VB 1EFC =VC B 1EF =13·S △B 1EF ·CF=13×322×2=1. (3)∵CF ⊥平面BDD 1B 1,∴二面角E CF B 1的平面角为∠EFB 1. 由(2)知∠EFB 1=90°∴二面角E CF B 1的大小为90°.。
2019-2020学年武汉市名校数学高二(下)期末统考试题一、单选题(本题包括12个小题,每小题35,共60分.每小题只有一个选项符合题意) 1.集合{0,2,}A a =,2{1,}B a =,若{0,1,2,4,16}A B =U ,则a 的值为( ). A .0 B .1C .2D .4【答案】D 【解析】因为{}0,1,2,4,16A B ⋃=,所以4a =,选D.2.已知函数y=f (x )的图象是下列四个图象之一,且其导函数y=f′(x )的图象如图所示,则该函数的图象是( )A .B .C .D .【答案】B 【解析】 【分析】 【详解】由y =f′(x)的图象知,y =f(x)的图象为增函数, 且在区间(-1,0)上增长速度越来越快, 而在区间(0,1)上增长速度越来越慢. 故选B.3.某研究型学习小组调查研究学生使用智能手机对学习的影响.部分统计数据如下表:使用智能手机 不使用智能手机 合计 学习成绩优秀 4 8 12 学习成绩不优秀 16 2 18 合计 201030附表:经计算210K =,则下列选项正确的是A .有99.5%的把握认为使用智能手机对学习有影响B .有99.5%的把握认为使用智能手机对学习无影响C .有99.9%的把握认为使用智能手机对学习有影响D .有99.9%的把握认为使用智能手机对学习无影响 【答案】A 【解析】 【分析】 【详解】根据附表可得2107.879K =>,所以有99.5%的把握认为使用智能手机对学习有影响,选A 4.若函数()ln f x ax x =-在区间(]0,e 上的最小值为3,则实数a 的值为( ) A .2e B .2e C .2e D .1e【答案】A 【解析】 【分析】求出()f x ',()0f x '≤(或()0f x '≥)是否恒成立对a 分类讨论,若恒成立求出最小值(或不存在最小值),若不恒成立,求出极值最小值,建立a 的关系式,求解即可. 【详解】()1f x a x'=-. (1)当0a ≤时,()0f x ¢<,所以()f x 在(]0,e 上单调递减,()()min 13f x f e ae ==-=,4a e=(舍去).(2)当0a >时,()1a x a f x x⎛⎫- ⎪⎝⎭'=.①当10a e <≤时,1e a≥,此时()0f x ¢<在(]0,e 上恒成立, 所以()f x 在(]0,e 上单调递减,()()min 13f x f e ae ==-=,解得4a e=(舍去);②当1a e >时,10e a <<.当10x a<<时,()0f x ¢<, 所以()f x 在10,a ⎛⎫⎪⎝⎭上单调递减, 当1x e a <<时,()0f x ¢>,所以()f x 在1,e a ⎛⎫ ⎪⎝⎭上单调递增, 于是()min 11ln 3f x f a a ⎛⎫==+= ⎪⎝⎭,解得2a e =. 综上,2a e =. 故选:A 【点睛】本题考查函数的最值,利用导数是解题的关键,考查分类讨论思想,如何合理确定分类标准是难点,属于中档题.5.为了测算如图所示的阴影部分的面积,作一个边长为3的正方形将其包含在内,并向正方形内随机投掷600个点.已知恰有200个点落在阴影部分内,据此,可估计阴影部分的面积是( )A .4B .3C .2D .1【答案】B 【解析】 【分析】根据几何概率的计算公式可求,向正方形内随机投掷点,落在阴影部分的概率()200P A 600=,即可得出结论. 【详解】本题中向正方形内随机投掷600个点,相当于600个点均匀分布在正方形内, 而有200个点落在阴影部分,可知阴影部分的面积220033600=⨯=. 故选:B . 【点睛】本题考查的是一个关于几何概型的创新题,属于基础题.解决此类问题的关键是读懂题目意思,然后与学过的知识相联系转化为熟悉的问题.在利用几何概型的概率公式来求其概率时,几何“测度”可以是长度、面积、体积、角度等,其中对于几何度量为长度,面积、体积时的等可能性主要体现在点落在区域Ω上任置都是等可能的,而对于角度而言,则是过角的顶点的一条射线落在Ω的区域(事实也是角)任一位置是等可能的.6.已知随机变量ξ服从正态分布2(2)N σ,,(4)0.84P ξ=≤,则(0)P ξ=≤( )A .0.16B .0.32C .0.68D .0.84【答案】A 【解析】由正态分布的特征得(0)P ξ≤=1(4)10.840.16P ξ-≤=-=,选A.7.复数2(1)1i z i+=-的共轭复数所对应的点位于复平面的( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】C 【解析】 【分析】通过化简2(1)1i z i+=-,于是可得共轭复数,判断在第几象限即得答案.【详解】根据题意得2(1)2111i iz i i i+===-+--,所以共轭复数为1i --,对应的点为()1,1--,故在第三象限,答案为C.【点睛】本题主要考查复数的四则运算,共轭复数的概念,难度不大.8.若对任意的x ∈R ,关于x 的不等式|||214|x x m +--≥恒成立,则实数m 的取值范围为( ) A .(,1]-∞- B .5(,]2-∞- C .9(,]2-∞- D .(,5]-∞-【答案】C 【解析】 【分析】令f (x )=|2x+1|﹣|x ﹣4|,然后将f (x )化成分段函数,则m 的最大值为f (x )的最小值. 【详解】设F(x)=|2x+1|-|x-4|=1 5,,2133,4,25, 4.x xx xx x⎧--<-⎪⎪⎪--≤≤⎨⎪+>⎪⎪⎩如图所示,F(x)min=-32-3=-92.故m≤F(x)min=-92.【点睛】本题考查了绝对值在分段函数中的应用,正确去掉绝对值符号是关键.9.“m n>”是“22m n>”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】D【解析】取2,3m n=-=-,则m n>,但22224,9,m n m n==<,故m n>⇒22m n>;取3,2m n=-=-,则()()2232->-,但是m n<,故22m n>⇒m n>,故“m n>”是“22m n>”的既不充分也不必要条件,选D.10.设0a>且1a≠,则“log1ab>”是“b a>”的( )A.必要不充分条件B.充要条件C.既不充分也不必要条件D.充分不必要条件【答案】C【解析】log1log1a ab a b a>=⇔>>或01b a<<<;而b a>时,b有可能为1.所以两者没有包含关系,故选C. 11.设ABC∆是边长为2的正三角形,E是BC的中点,F是AE的中点,则()AB FB FC⋅+u u u v u u u v u u u v的值为()A .1-B .0C .2D .3【答案】D 【解析】 【分析】将,AB AC u u u r u u u r作为基向量,其他向量用其表示,再计算得到答案.【详解】设ABC ∆是边长为2的正三角形,E 是BC 的中点,F 是AE 的中点,()()()AB FB FC AB FA AB FA AC AB AB AC AE ⋅+=⋅+++=⋅+-u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r1(())2AB AB AC AB AC =⋅+-+u u u r u u u r u u u r u u u r u u u r 21111()1232222AB AC AB AB AC AB =⋅+=⋅+=+=u u u r u u u r u u u r u u ur u u u r u u u r故答案选D【点睛】本题考查了向量的乘法,将,AB AC u u u r u u u r作为基向量是解题的关键.12.设i 是虚数单位,则复数22i i-的虚部是( ) A .2i B .2C .2i -D .2-【答案】B 【解析】 【分析】利用复数的四则运算法则将复数表示为一般形式,可得出复数的虚部. 【详解】2222112ii i i i-=--=-+Q ,因此,该复数的虚部为2,故选B. 【点睛】本题考查复数的概念,考查复数虚部的计算,解题的关键就是利用复数的四则运算法则将复数表示为一般形式,考查计算能力,属于基础题.二、填空题(本题包括4个小题,每小题5分,共20分)13.观察等式:0000sin 30sin 90cos30cos90+=+,0000sin15sin 751cos15cos 75+=+,0000sin 20sin 40cos 20cos 403+=+.照此规律,对于一般的角,αβ,有等式 .【答案】sin sin tan()cos cos 2αβαβαβ++=+ 【解析】试题分析:000000sin 30sin 903090tan()cos30cos902++==+,000000sin15sin 7515751tan cos15cos 752++==+,000000sin 20sin 402040tan cos 20cos 402++==+,所以sin sin tan()cos cos 2αβαβαβ++=+. 考点:归纳推理.14.7个人站成一排,其中甲一定站在最左边,乙和丙必须相邻,一共有______种不同排法 【答案】240. 【解析】分析:本题是一个排列组合及简单计数问题,甲要站在最左边,剩下6个位置,6个人排列,乙和丙必须相邻,把乙和丙看成一个元素,同另外4个人排列,乙和丙之间也有一个排列,相乘得到结果. 详解:由题意知本题是一个排列组合及简单计数问题, 甲要站在最左边,剩下6个位置,6个人排列, ∵乙和丙必须相邻,∴把乙和丙看成一个元素,同另外4个人排列,乙和丙之间也有一个排列, 根据乘法原理知共有A 55A 22=240种结果, 故答案为240点睛:站队问题是排列组合中的典型问题,解题时要先排限制条件多的元素,把限制条件比较多的元素排列后,再排没有限制条件的元素,最后要用计数原理得到结果,本题的甲不影响排列.15.已知非零向量a v ,b v ,c v 满足:(2)(2)0a c b c -⋅-=v v v v,且不等式a b a b c λ++-≥v v v v v 恒成立,则实数λ的最大值为__________. 【答案】4. 【解析】 【分析】法一:采用数形结合,可判断2c r的终点是在以AB 为直径的圆上,从而分离参数转化成恒成立问题即可得到答案.法二:(特殊值法)可先设()=1,0a r ,()=0,1b r ,()=,c x y r ,利用(2)(2)0a c b c -⋅-=r r r r 找出c r的轨迹,从而将不等式恒成立问题转化为函数问题求解. 【详解】法一:作出相关图形,设OA a →=r ,OB b →=r,由于(2)(2)0a c b c -⋅-=r r r r ,所以(2)(2)a c b c -⊥-r r r r ,且这两个向量共起点,所以2c r 的终点是在以AB 为直径的圆上,可设2OC c →=r ,所以由图可知a b OE →+=r r ,a b BA→-=r r ,所||||||a b a b c λ++-≥r r r r r ,等价于2OE AB OC λ+≤,44442OE AB OG GB OG GC OCOC OC OC OC+++==≥=,所以4λ≤,答案为4.法二:(特殊值法)不妨设()=1,0a r ,()=0,1b r,()=,c x y r ,则()212,2a c x y -=--r r ,()22,12b c x y -=--r r ,||||2a b a b +=-=r r r r ,由于(2)(2)0a c b c -⋅-=r r r r可得2(12)2(12)0x x y y ----=整理得22111448x y ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭,可得圆的参数方程为:1244{(1244x y θθθ=+=+为参数),则||||||a b a b c λ++-≥r r r r r 相当于22||c λ≤r 恒成立,即求得min 22[||c λ≤r ,即求||c r 的最大值即可, 22121211cos sin sin()4444444||+c πθθθ⎛⎫⎛⎫== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭++++r max 2||2c =r ,因此4λ≤.故答案为4. 【点睛】本题主要考查向量的相关运算,参数方程的运用,不等式恒成立问题,意在考查学生的综合转化能力,逻辑推理能力,计算能力,难度较大.16.已知椭圆22221(0)x y a b a b +=>>与双曲线22221(0,0)x y m n m n-=>>具有相同的焦点1F ,2F ,且在第一象限交于点P ,设椭圆和双曲线的离心率分别为1e ,2e ,若123F PF π∠=,则2212e e +的最小值为__________.【答案】22+. 【解析】分析:通过椭圆与双曲线的定义,用a 和m 表示出12PF PF 、的长度,根据余弦定理建立a m c 、、 的关系式22234a m c +=;根据离心率的定义c e a = 表示出两个离心率的平方和,利用基本不等式即可求得最小值。
广西省玉林市2019-2020学年数学高二下期末经典试题一、选择题:本题共12小题,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知随机变量8X ξ+=,若()~10,0.6X B ,则()E ξ,()D ξ分别为( ) A .6和2.4 B .6和5.6C .2和2.4D .2和5.6【答案】C 【解析】 【分析】利用二项分布的数学期望和方差公式求出()E X 和()D X ,然后利用期望和方差的性质可求出()E ξ和()D ξ的值.【详解】()~10,0.6X B ,()100.66E X ∴=⨯=,()100.60.4 2.4D X =⨯⨯=.8X ξ+=,8X ξ∴=-,由期望和方差的性质可得()()()882E E X E X ξ=-=-=,()()()8 2.4D D X D X ξ=-==.故选:C. 【点睛】本题考查均值和方差的求法,是基础题,解题时要认真审题,注意二项分布的性质的合理运用. 2.在三棱柱1111,ABC A B C AA -⊥面ABC ,23BAC π∠=,14AA =,AB AC ==,则三棱柱111ABC A B C -的外接球的表面积为( )A .32πB .48πC .64πD .72π【答案】C 【解析】 【分析】利用余弦定理可求得BC ,再根据正弦定理可求得ABC ∆外接圆半径r;由三棱柱特点可知外接球半径R =R 后代入球的表面积公式即可得到结果.【详解】AB AC ==23BAC π∠=22222cos363BC AB AC AB AC π∴=+-⋅= 6BC ∴=由正弦定理可得ABC ∆外接圆半径:622sin 2sin 3BC r BAC π===∠∴三棱柱111ABC A B C -的外接球半径:221112442R r AA ⎛⎫=+=+= ⎪⎝⎭ ∴外接球表面积:2464S R ππ==本题正确选项:C 【点睛】本题考查多面体外接球表面积的求解问题,关键是能够明确外接球球心的位置,从而利用底面三角形外接圆半径和三棱柱的高,通过勾股定理求得外接球半径.3.已知非空集合,A B ,全集U A B =⋃,集合M A B =⋂, 集合()()UU N B A =⋃则( )A .MN M = B .M N ⋂=∅ C .M ND .M N ⊆【答案】B 【解析】分析:根据题意画出图形,找出M 与 N 的并集,交集,判断M 与 N 的关系即可 详解:全集U A B =⋃,集合M A B =⋂, 集合()()UU N B A =⋃M N U ∴⋃=,M N ⋂=∅,M N ≠故选B点睛:本题主要考查的是交集,并集,补集的混合运算,根据题目画出图形是解题的关键,属于基础题。
学校2019-2020学年高二数学下学期期中试题文(含解析)第Ⅰ卷选择题(60分)一、选择题:本题共12小题,每小题5分,共60分.在每小题给的四个选项中,只有一项是符合题目要求的.1.已知复数(为虚数单位),则= ( )A. 3B. 2C.D.【答案】D【解析】【分析】化简复,利用复数模的公式求解即可.【详解】∵∴=故选D.【点睛】本题考查复数的模的定义,两个复数代数形式的乘除法,虚数单位的幂运算性质,两个复数相除,分子和分母同时除以分母的共轭复数.2.已知命题,则为A. B.C. D.【答案】C【解析】分析:把全称改为特称,大于改为小于等于.详解:,故选C点睛:带全称、特称量词的否定,命题“,则成立”的否定:,则成立命题“,则成立”的否定:,则成立3.设是函数的导函数,则的值为()A. B. C. D.【答案】C【解析】分析:求导,代值即可.详解:,则.故选:C.点睛:对于函数求导,一般要遵循先化简再求导的基本原则.求导时,不但要重视求导法则的应用,而且要特别注意求导法则对求导的制约作用,在实施化简时,首先必须注意变换的等价性,避免不必要的运算失误.4.在等比数列中,已知,则A. 12B. 18C. 24D. 36【答案】B【解析】由于,得,得或(舍去),则,故选B.5.设、是两条不同的直线,、是两个不同的平面,下列命题中正确的是()A. 若,且,则B. 若,则C. 若,,则D. 若,且,则【答案】C【解析】【详解】分析:对选项逐一分析即可.详解:对于A,,且,则与位置关系不确定,可能相交、平行或者异面,故A错误;对于B,,则有可能,有可能,故B错误;对于C,,,利用面面垂直的性质定理得到作垂直于交线的直线与垂直,又,得到,又,得到,,故C正确;对于D,,且,则与位置关系不确定,可能相交、平行或者异面,故D错误.故选C.点睛:本题考查线线平行、线面平行、线面垂直以及面面垂直的判断,主要考查空间立体的感知能力以及组织相关知识进行判断证明的能力,要求熟练相应的判定定理和性质定理.6.两位同学约定下午5:30-6:00在图书馆见面,且他们在:30-6:00之间到达的时刻是等可能的,先到的同学须等待,15分钟后还未见面便离开,则两位同学能够见面的概率是()A. B. C. D.【答案】D【解析】因为两人谁也没有讲好确切的时间,故样本点由两个数(甲、乙各自到达的时刻)组成;以作为时间的起点建立如图所示的平面直角坐标系:设甲、乙各在第分钟和第分钟到达,则样本空间为画成图为一正方形;会面的充要条件为,即事件A可以会面所对应的区域是图中的阴影部分,故由几何概型公式知所求概率为面积之比,即,故选D.点睛:本题主要考查了几何概型中的概率计算,相遇问题是高中数学中典型的几何概型之面积型,实验发生包含所有事件对应的集合是,做出集合对应的面积是边长为的正方形的面积,写出满足条件的事件对应的集合与面积,根据面积之比计算概率.7.某程序框图如图所示,该程序运行后输出的的值是()A. 4B. 5C. 6D. 7【答案】A【解析】【分析】根据框图,模拟计算即可得出结果.【详解】程序执行第一次,,,第二次,,第三次,,第四次,,跳出循环,输出,故选A.【点睛】本题主要考查了程序框图,循环结构,属于中档题.8.设抛物线的焦点与椭圆的右焦点重合,则该抛物线的准线方程为A. B. C. D.【答案】D【解析】分析:椭圆的右焦点为,抛物线的焦点坐标为,求解,再得出准线方程.详解:椭圆的右焦点为,抛物线的焦点坐标为,解得,得出准线方程点睛:抛物线的焦点坐标为,准线方程9.已知函数,则函数的大致图象是()A. B.C. D.【答案】A【解析】【分析】根据函数的奇偶性和特殊值进行排除可得结果.详解】由题意,所以函数为偶函数,其图象关于轴对称,排除D;又,所以排除B,C.故选A.【点睛】已知函数的解析式判断图象的大体形状时,可根据函数的奇偶性,判断图象的对称性:如奇函数在对称的区间上单调性一致,偶函数在对称的区间上单调性相反,这是判断图象时常用的方法之一.10.设双曲线()的左右顶点分别为,左右焦点分别为,以为直径的圆与双曲线左支的一个交点为,若以为直径的圆与相切,则双曲线的离心率为()A. B. C. 2 D.【答案】D【解析】如图所示:由题意可得,,,,∴,∴,∵点为双曲线左支上一点,∴,,∵以为直径的圆与双曲线左支的一个交点为,∴∴,∴,∴,故选D.11.已知函数,那么下列结论中错误的是()A. 若是的极小值点,则在区间上单调递减B. ,使C. 函数的图像可以是中心对称图形D. 若是的极值点,则【答案】A【解析】分析:对于选项A,先求导得,设其对应方程的两根为.根据一元二次不等式的解法可得函数的增区间为,减区间为,由此可得选项A说法错误;由选项A的解题过程可得选项B、D正确;对于选项C,取特殊值,得特殊函数,因为函数为奇函数,所以选项C正确.详解:对于选项A,,假设方程的两根为.根据一元二次不等式的解法可得:由得或,由得,所以函数的增区间为,减区间为,极小值点为,所以选项A错误;对于选项B,由选项A的解题过程可知在区间上,一定,使,所以选项B正确.对于选项C,当时,函数,此函数图像关于原点对称.所以选项C正确;对于选项D,由选项A的解题过程可知:若是的极值点,则.所以选项D正确.故选A.点睛:本题考查利用函数的导函数求函数的极值等知识,意在考查学生的转化能力.和函数极值有关的问题,应先求导函数,再解不等式和,可得单调区间.极大值点应是左增右减,极小值为左减右增.注意为极值点是的充分不必要条件.12.设函数在区间上有两个极值点,则的取值范围是A. B. C. D.【答案】D【解析】令,则在上有两个不等实根,有解,故,点晴:本题主要考查函数的单调性与极值问题,要注意转化,函数()在区间上有两个极值点,则在上有两个不等实根,所以有解,故,只需要满足解答此类问题,应该首先确定函数的定义域,注意分类讨论和数形结合思想的应用第Ⅱ卷非选择题(90分)二、填空题:本题共4小题,每小题5分,共20分.13.设抛物线的焦点为,若抛物线上点的横坐标为2,则__________.【答案】【解析】抛物线上横坐标为2的点到焦点的距离就是这点到抛物线准线的距离,抛物线的准线方程为:,所以,故答案为.14.在一个容量为5的样本中,数据均为整数,已测出其平均数为10,但墨水污损了两个数据,其中一个数据的十位数字1未被污损,即9,10,11,1,那么这组数据的方差可能的最大值是__________.【答案】32.8【解析】设这组数据的最后两个分别是:,,则,得:,故,故,显然最大取时,有最大值,故答案为.15.已知正三棱柱的所有棱长都相等,则与平面所成角的余弦值为_________.【答案】【解析】【分析】取BC的中点E,连接,AE,证明面,可得就是与平面所成的角,解直角三角形即可.【详解】如上图,取BC的中点E,连接,AE,则,∵正三棱柱中,面面,面面,∴面,∴就是与平面所成的角,不妨设正三棱柱的所有棱长都为2,则,,在中,.故答案为:.【点睛】本题考查直线与平面所成的角,考查空间想象能力和计算能力,属于常考题.16.已知函数的定义域是,关于函数给出下列命题:①对于任意,函数是上的减函数;②对于任意,函数存在最小值;③存在,使得对于任意的,都有成立;④存在,使得函数有两个零点.其中正确命题的序号是________.(写出所有正确命题的序号)【答案】②④【解析】函数的定义域是,且,当时,在恒成立,所以函数在上单调递增,故①错误;对于,存在,使,则在上单调递减,在上单调递增,所以对于任意,函数存在最小值,故②正确;函数的图象在有公共点,所以对于任意,有零点,故③错误;由②得函数存在最小值,且存在,使,当时,,当时,,故④正确;故填②④.点睛:本题的易错点在于正确理解“任意”和“存在”的含义,且正确区分两者的不同.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.已知函数.(1)若在区间[-2,2]上的最大值为20,求它在该区间上的最小值;(2)若函数有三个不同零点,求的取值范围.【答案】(1);(2)【解析】【分析】(1)求出函数的导数,解关于导函数的不等式,求出函数的单调区间,得到关于的方程,求出的值,从而求出函数的最小值即可;(2)求出,令,根据函数的单调性求出的范围,从而求出的范围.【详解】解:(1)因为所以,所以,令,解得或,所以函数的单调减区间为和又在上,,所以在上单调递增,所以在上单调递减,在上单调递增,所以最大值为,最小值为,由,所以,最小值为(2)令,得,设,,令解得或,所以在和上单调递增,在上单调递减,所以,,【点睛】本题考查了函数的单调性、最值、极值问题,考查导数的应用以及函数恒成立问题,考查转化思想,属于中档题.18.大型综艺节目《最强大脑》中,有一个游戏叫做盲拧魔方,就是玩家先观察魔方状态并进行记忆,记住后蒙住眼睛快速还原魔方,盲拧在外人看来很神奇,其实原理是十分简单的,要学会盲拧也是很容易的.根据调查显示,是否喜欢盲拧魔方与性别有关.为了验证这个结论,某兴趣小组随机抽取了50名魔方爱好者进行调查,得到的情况如下表所示:表1并邀请这30名男生参加盲拧三阶魔方比赛,其完成情况如下表所示:表2(1)将表1补充完整,并判断能否在犯错误的概率不超过0.025的前提下认为是否喜欢盲拧与性别有关?(2)根据表2中的数据,求这30名男生成功完成盲拧的平均时间(同一组中的数据用该组区间的中点值代替);附参考公式及数据:,其中.0.12.706【答案】(1)表1见解析,能;(2)分钟.【解析】【分析】(1)根据总计50人,男喜欢盲拧22人,女不喜欢盲拧12人,补充填表即可,由的计算公式计算数值与5.024比较即可;(2)根据平均数的定义计算即可.【详解】(1)依题意,补充完整的表1如下:由表中数据计算得的观测值为所以能在犯错误的概率不超过0.025的前提下认为是否喜欢盲拧与性别有关.(2)依题意,所求平均时间为(分钟).【点睛】本题考查独立性检验,考查平均数的计算,考查分析和计算能力,属于常考题.19.如图,已知梯形与所在平面垂直,,,,,,,连接.(1)若为边上一点,,求证:平面;(2)求多面体的体积.【答案】(1)详见解析(2)【解析】试题分析:(1)作,交于点,连接,作,交于,交于,接着证明,以及,可得四边形为平行四边形,可得证;(2)连接,利用割体法得即可.试题解析:(1)如图,作,交于点,连接,作,交于,交于.∵,∴,.∵,∴.∴.∴.∴.∴四边形为平行四边形,∴.又平面,平面四边形,∴平面.(2)如图,连接∵平面平面,,平面,∴平面,∵,∴四棱锥的高为.∴.Q20.已知以坐标原点为圆心的圆与抛物线:相交于不同的两点,与抛物线的准线相交于不同的两点,且.(1)求抛物线的方程;(2)若不经过坐标原点的直线与抛物线相交于不同的两点,且满足.证明直线过轴上一定点,并求出点的坐标.【答案】(1);(2)直线[Failed to download image : /QBM/2018/7/2/1979754557333504/1 980611297148928/ANSWER/35d3ec6e1a51409997123d3ee 918f8c7.png]过[Failed to download image : http://qbm-images.oss-cn-/QBM/2018/7/2/1979754557333504/1 980611297148928/ANSWER/e5787790f8ed43698e8443ab4a c174a2.png]轴上一定点.【解析】试题分析:(1)由,得两点所在的直线方程为,进而根据长度求得;(2)设直线的方程为,与抛物线联立得,由得,进而利用韦达定理求解即可.试题解析:(1)由已知,,则两点所在的直线方程为则,故∴抛物线的方程为.(2)由题意,直线不与轴垂直,设直线的方程为,.联立消去,得.∴,,,∵,∴又,∴∴解得或而,∴(此时)∴直线的方程为,故直线过轴上一定点.点睛:定点、定值问题通常是通过设参数或取特殊值来确定“定点”是什么、“定值”是多少,或者将该问题涉及的几何式转化为代数式或三角问题,证明该式是恒定的. 定点、定值问题同证明问题类似,在求定点、定值之前已知该值的结果,因此求解时应设参数,运用推理,到最后必定参数统消,定点、定值显现.21.已知函数.(1)讨论函数的单调性;(2)若不等式在时恒成立,求实数a的取值范围;(3)当时,证明:.【答案】(1)见解析;(2)[1,+∞);(3)证明见解析.【解析】【分析】(1)求导数可得,当时函数在上单调递增;当时易得函数在上单调递增,在上单调递减;(2)由(1)知当时,不等式在,时恒成立,当时,不等式不成立,综合可得的范围;(3)由(2)的单调性易得,进而可得,,,,将上述式子相加可得结论.【详解】解:(1)求导数可得,当时,,函数在上单调递增;当时,由可得,函数在上单调递增,在上单调递减;(2)由(1)知当时,函数在上单调递增,,即不等式在时恒成立,当时,函数在上单调递减,存在使得,即不等式不成立,综上可知实数取值范围为,;(3)由(2)得当时,不等式在时恒成立,即,,.即,,,,,将上述式子相加可得原不等式得证.【点睛】本题考查导数的综合应用,涉及函数的单调性和恒成立以及不等式的证明,属于中档题.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.选修4-4:坐标系与参数方程22.在直角坐标系xOy中,抛物线C的方程为,以点O为极点,x轴正半轴为极轴建立极坐标系,直线l的极坐标方程为,l与x轴交于点M.求l的直角坐标方程,点M的极坐标;设l与C相交于A,B两点,若、、成等比数列,求p的值.【答案】(1),;(2)【解析】【分析】直接利用转换关系,把参数方程,直角坐标方程和极坐标方程之间进行转换.写出直线l的参数方程并代入曲线C中,写出韦达定理利用参数t的几何意义进行求解.【详解】解:由得,,的直角坐标方程.令得点M的直角坐标为,点M的极坐标为.由知l的倾斜角为,参数方程为,为参数,代入,得,.,,.,.【点睛】本题考查参数方程直角坐标方程和极坐标方程之间的转换,考查直线参数方程中参数t的几何意义的应用,属于基础题.选修4-5:不等式选讲23.选修4-5:不等式选讲已知函数的最大值为3,其中.(1)求的值;(2)若,,,求证:【答案】(1)(2)见解析【解析】【分析】(1)分三种情况去绝对值,求出最大值与已知最大值相等列式可解得;(2)将所证不等式转化为2ab≥1,再构造函数利用导数判断单调性求出最小值可证.【详解】(1)∵,∴.∴当时,取得最大值. ∴.(2)由(Ⅰ),得,.∵,当且仅当时等号成立,∴.令,.则在上单调递减.∴.∴当时,.∴.【点睛】本题考查了绝对值不等式的解法,属中档题.本题主要考查了绝对值不等式的求解,以及不等式的恒成立问题,其中解答中根据绝对值的定义,合理去掉绝对值号,及合理转化恒成立问题是解答本题的关键,着重考查分析问题和解答问题的能力,以及转化思想的应用.学校2019-2020学年高二数学下学期期中试题文(含解析)第Ⅰ卷选择题(60分)一、选择题:本题共12小题,每小题5分,共60分.在每小题给的四个选项中,只有一项是符合题目要求的.1.已知复数(为虚数单位),则= ( )A. 3B. 2C.D.【答案】D【解析】【分析】化简复,利用复数模的公式求解即可.【详解】∵∴=故选D.【点睛】本题考查复数的模的定义,两个复数代数形式的乘除法,虚数单位的幂运算性质,两个复数相除,分子和分母同时除以分母的共轭复数.2.已知命题,则为A. B.C. D.【答案】C【解析】分析:把全称改为特称,大于改为小于等于.详解:,故选C点睛:带全称、特称量词的否定,命题“,则成立”的否定:,则成立命题“,则成立”的否定:,则成立3.设是函数的导函数,则的值为()A. B. C. D.【答案】C【解析】分析:求导,代值即可.详解:,则.故选:C.点睛:对于函数求导,一般要遵循先化简再求导的基本原则.求导时,不但要重视求导法则的应用,而且要特别注意求导法则对求导的制约作用,在实施化简时,首先必须注意变换的等价性,避免不必要的运算失误.4.在等比数列中,已知,则A. 12B. 18C. 24D. 36【答案】B【解析】由于,得,得或(舍去),则,故选B.5.设、是两条不同的直线,、是两个不同的平面,下列命题中正确的是()A. 若,且,则B. 若,则C. 若,,则D. 若,且,则【答案】C【解析】【详解】分析:对选项逐一分析即可.详解:对于A,,且,则与位置关系不确定,可能相交、平行或者异面,故A错误;对于B,,则有可能,有可能,故B错误;对于C,,,利用面面垂直的性质定理得到作垂直于交线的直线与垂直,又,得到,又,得到,,故C正确;对于D,,且,则与位置关系不确定,可能相交、平行或者异面,故D错误.故选C.点睛:本题考查线线平行、线面平行、线面垂直以及面面垂直的判断,主要考查空间立体的感知能力以及组织相关知识进行判断证明的能力,要求熟练相应的判定定理和性质定理.6.两位同学约定下午5:30-6:00在图书馆见面,且他们在:30-6:00之间到达的时刻是等可能的,先到的同学须等待,15分钟后还未见面便离开,则两位同学能够见面的概率是()A. B. C. D.【答案】D【解析】因为两人谁也没有讲好确切的时间,故样本点由两个数(甲、乙各自到达的时刻)组成;以作为时间的起点建立如图所示的平面直角坐标系:设甲、乙各在第分钟和第分钟到达,则样本空间为画成图为一正方形;会面的充要条件为,即事件A可以会面所对应的区域是图中的阴影部分,故由几何概型公式知所求概率为面积之比,即,故选D.点睛:本题主要考查了几何概型中的概率计算,相遇问题是高中数学中典型的几何概型之面积型,实验发生包含所有事件对应的集合是,做出集合对应的面积是边长为的正方形的面积,写出满足条件的事件对应的集合与面积,根据面积之比计算概率.7.某程序框图如图所示,该程序运行后输出的的值是()A. 4B. 5C. 6D. 7【答案】A【解析】【分析】根据框图,模拟计算即可得出结果.【详解】程序执行第一次,,,第二次,,第三次,,第四次,,跳出循环,输出,故选A.【点睛】本题主要考查了程序框图,循环结构,属于中档题.8.设抛物线的焦点与椭圆的右焦点重合,则该抛物线的准线方程为A. B. C. D.【答案】D【解析】分析:椭圆的右焦点为,抛物线的焦点坐标为,求解,再得出准线方程.详解:椭圆的右焦点为,抛物线的焦点坐标为,解得,得出准线方程点睛:抛物线的焦点坐标为,准线方程9.已知函数,则函数的大致图象是()A. B.C. D.【答案】A【解析】【分析】根据函数的奇偶性和特殊值进行排除可得结果.详解】由题意,所以函数为偶函数,其图象关于轴对称,排除D;又,所以排除B,C.故选A.【点睛】已知函数的解析式判断图象的大体形状时,可根据函数的奇偶性,判断图象的对称性:如奇函数在对称的区间上单调性一致,偶函数在对称的区间上单调性相反,这是判断图象时常用的方法之一.10.设双曲线()的左右顶点分别为,左右焦点分别为,以为直径的圆与双曲线左支的一个交点为,若以为直径的圆与相切,则双曲线的离心率为()A. B. C. 2 D.【答案】D【解析】如图所示:由题意可得,,,,∴,∴,∵点为双曲线左支上一点,∴,,∵以为直径的圆与双曲线左支的一个交点为,∴∴,∴,∴,故选D.11.已知函数,那么下列结论中错误的是()A. 若是的极小值点,则在区间上单调递减B. ,使C. 函数的图像可以是中心对称图形D. 若是的极值点,则【答案】A【解析】分析:对于选项A,先求导得,设其对应方程的两根为.根据一元二次不等式的解法可得函数的增区间为,减区间为,由此可得选项A说法错误;由选项A的解题过程可得选项B、D正确;对于选项C,取特殊值,得特殊函数,因为函数为奇函数,所以选项C 正确.详解:对于选项A,,假设方程的两根为.根据一元二次不等式的解法可得:由得或,由得,所以函数的增区间为,减区间为,极小值点为,所以选项A错误;对于选项B,由选项A的解题过程可知在区间上,一定,使,所以选项B正确.对于选项C,当时,函数,此函数图像关于原点对称.所以选项C正确;对于选项D,由选项A的解题过程可知:若是的极值点,则.所以选项D 正确.故选A.点睛:本题考查利用函数的导函数求函数的极值等知识,意在考查学生的转化能力.和函数极值有关的问题,应先求导函数,再解不等式和,可得单调区间.极大值点应是左增右减,极小值为左减右增.注意为极值点是的充分不必要条件.12.设函数在区间上有两个极值点,则的取值范围是A. B. C. D.【答案】D【解析】令,则在上有两个不等实根,有解,故,点晴:本题主要考查函数的单调性与极值问题,要注意转化,函数()在区间上有两个极值点,则在上有两个不等实根,所以有解,故,只需要满足解答此类问题,应该首先确定函数的定义域,注意分类讨论和数形结合思想的应用第Ⅱ卷非选择题(90分)二、填空题:本题共4小题,每小题5分,共20分.13.设抛物线的焦点为,若抛物线上点的横坐标为2,则__________.【答案】【解析】抛物线上横坐标为2的点到焦点的距离就是这点到抛物线准线的距离,抛物线的准线方程为:,所以,故答案为.14.在一个容量为5的样本中,数据均为整数,已测出其平均数为10,但墨水污损了两个数据,其中一个数据的十位数字1未被污损,即9,10,11,1,那么这组数据的方差可能的最大值是__________.【答案】32.8【解析】设这组数据的最后两个分别是:,,则,得:,故,故,显然最大取时,有最大值,故答案为.15.已知正三棱柱的所有棱长都相等,则与平面所成角的余弦值为_________.【答案】【解析】【分析】取BC的中点E,连接,AE,证明面,可得就是与平面所成的角,解直角三角形即可.【详解】如上图,取BC的中点E,连接,AE,则,∵正三棱柱中,面面,面面,∴面,∴就是与平面所成的角,不妨设正三棱柱的所有棱长都为2,则,,在中,.故答案为:.【点睛】本题考查直线与平面所成的角,考查空间想象能力和计算能力,属于常考题.16.已知函数的定义域是,关于函数给出下列命题:①对于任意,函数是上的减函数;②对于任意,函数存在最小值;③存在,使得对于任意的,都有成立;④存在,使得函数有两个零点.其中正确命题的序号是________.(写出所有正确命题的序号)【答案】②④【解析】函数的定义域是,且,当时,在恒成立,所以函数在上单调递增,故①错误;对于,存在,使,则在上单调递减,在上单调递增,所以对于任意,函数存在最小值,故②正确;函数的图象在有公共点,所以对于任意,有零点,故③错误;由②得函数存在最小值,且存在,使,当时,,当时,,故④正确;故填②④.点睛:本题的易错点在于正确理解“任意”和“存在”的含义,且正确区分两者的不同.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.已知函数.(1)若在区间[-2,2]上的最大值为20,求它在该区间上的最小值;(2)若函数有三个不同零点,求的取值范围.【答案】(1);(2)【解析】【分析】(1)求出函数的导数,解关于导函数的不等式,求出函数的单调区间,得到关于的方程,求出的值,从而求出函数的最小值即可;(2)求出,令,根据函数的单调性求出的范围,从而求出的范围.【详解】解:(1)因为所以,所以,令,解得或,所以函数的单调减区间为和又在上,,所以在上单调递增,所以在上单调递减,在上单调递增,所以最大值为,最小值为,由,所以,最小值为。
2018-2019学年广西桂林市高二(下)期末考试数学试卷(文科)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项项是符合最新试卷多少汗水曾洒下,多少期待曾播种,终是在高考交卷的一刹尘埃落地,多少记忆梦中惦记,多少青春付与流水,人生,总有一次这样的成败,才算长大。
题目要求的中,有且只有一个选项是符合题目要求的)1.已知f(x)=x2+2x,则f′(0)=()A.0 B.﹣4 C.﹣2 D.22.复数z=﹣3+2i的实部为()A.2i B.2 C.3 D.﹣33.“因为四边形ABCD是矩形,所以四边形ABCD的对角线相等”以上推理的大前提是()A.矩形都是四边形B.四边形的对角线都相等C.矩形都是对角线相等的四边形D.对角线都相等的四边形是矩形4.函数y=e x﹣x在x=0处的切线的斜率为()A.0 B.1 C.2 D.e5.把平面内两条直线的四种位置关系:①平行;②垂直;③相交;④斜交.分别填入图中的M,N,E,F中,顺序较为恰当的是()A.①②③④ B.①④②③ C.①③②④ D.②①④③6.已知变量x与y负相关,且由观测数据算得样本平均数=3,=2.7,则由该观测数据算得的线性回归方程可能是()A.y=﹣0.2x+3.3 B.y=0.4x+1.5 C.y=2x﹣3.2 D.y=﹣2x+8.67.观察下列等式,13+23=32,13+23+33=62,13+23+33+43=102根据上述规律,13+23+33+43+53+63=()A.192B.202C.212D.2228.用反证法证明“若x+y≤0则x≤0或y≤0”时,应假设()A.x>0或y>0 B.x>0且y>0 C.xy>0 D.x+y<09.如图程序框图输出的结果为()A.52 B.55 C.63 D.6510.已知i是虚数单位,则在复平面内对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限11.若函数y=x3﹣x2+a在[﹣1,1]上有最大值3,则该函数在[﹣1,1]上的最小值是()A.﹣ B.0 C.D.112.设函数f′(x)是偶函数f(x)的导函数,当x≠0时,恒有xf′(x)>0,记a=f(log0.53),b=f(log25),c=f(log32),则a,b,c的大小关系为()A.a<b<c B.a<c<b C.c<b<a D.c<a<b二、填空题(共4小题,每小题5分,满分20分)13.曲线y=x3﹣2x+1在点(1,0)处的切线方程为.14.已知复数z满足=2﹣i,则z= .15.若三角形的内切圆半径为r,三边的长分别为a,b,c,则三角形的面积S=r(a+b+c),根据类比思想,若四面体的内切球半径为R,四个面的面积分别为S1、S2、S3、S4,则此四面体的体积V= .16.已知函数f(x)=lnx+ax2﹣2x存在单调递减区间,则实数a的取值范围为.三、解答题(共6小题,满分70分.解答应给出文字说明、证明过程及演算步骤)17.(10分)用分析法证明:已知a>b>0,求证﹣<.18.(12分)医学上所说的“三高”通常是指血脂增高、血压增高、血糖增高等疾病.为了解“三高”疾病是否与性别有关,医院随机对入院的60人进行了问卷调查,得到了如下的列联表:(1)请将列联表补充完整;患三高疾病不患三高疾病合计男 6 30女合计 36②能否在犯错误的概率不超过0.005的前提下认为患“三高”疾病与性别有关?下列的临界值表供参考:0.15 0.10 0.05 0.025 0.010 0.005 0.001 P(K2≥k)k 2.072 2.706 3.841 5.024 6.635 7.879 10.828 (参考公式:K2=.19.(12分)已知函数处都取得极值.(1)求a,b的值;(2)求f(x)的单调区间.20.(12分)某市春节7家超市的广告费支出x(万元)和销售额y(万元)数据如下,超市 A B C D E F G1 2 4 6 11 13 19 广告费支出x销售额y 19 32 40 44 52 53 54(1)请根据上表提供的数据.用最小二乘法求出y关于x的线性回归方程;y=x+(2)用二次函数回归模型拟合y与x的关系,可得回归方程:y=﹣0.17x2+5x+20.经计算二次函数回归模型和线性回归模型的R2分别约为0.93和0.75,请用R2说明选择哪个回归模型更合适.并用此模型预测A超市广告费支出为3万元时的销售额,参考数据及公式:=8,=42.x i y i=2794,x=708,==,=﹣x.21.(12分)某商场销售某种商品的经验表明,该商品每日的销售量y(单位:千克)与销售价格x(单位:元/千克)满足关系式:y=+10(x﹣6)2,其中3<x<6,a为常数,已知销售的价格为5元/千克时,每日可以售出该商品11千克.(1)求a的值;(2)若该商品的成本为3元/千克,试确定销售价格x的值,使商场每日销售该商品所获得的利润最大,并求出最大值.22.(12分)已知函数f(x)=ax﹣lnx,F(x)=e x+ax,其中x>0.(1)若a<0,f(x)和F(x)在区间(0,ln3)上具有相同的单调性,求实数a的取值范围;(2)设函数h(x)=x2﹣f(x)有两个极值点x1、x2,且x1∈(0,),求证:h(x1)﹣h(x2)>﹣ln2.2016-2017学年广西桂林市高二(下)期末数学试卷(文科)参考答案与试题解析一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项项是符合题目要求的中,有且只有一个选项是符合题目要求的)1.)已知f(x)=x2+2x,则f′(0)=()A.0 B.﹣4 C.﹣2 D.2【考点】63:导数的运算.【专题】52 :导数的概念及应用.【分析】先计算函数f(x)的导数,再将x=0代入即可.【解答】解:∵f(x)=x2+2x,∴f′(x)=2x+2,∴f′(0)=2×0+2=2.故选D.【点评】本题考查导数求值,正确求导是计算的关键.2.)复数z=﹣3+2i的实部为()A.2i B.2 C.3 D.﹣3【考点】A2:复数的基本概念.【专题】35 :转化思想;4A :数学模型法;5N :数系的扩充和复数.【分析】直接由复数z求出实部得答案.【解答】解:复数z=﹣3+2i的实部为:﹣3.故选:D.【点评】本题考查了复数的基本概念,是基础题.3.)“因为四边形ABCD是矩形,所以四边形ABCD的对角线相等”以上推理的大前提是()A.矩形都是四边形B.四边形的对角线都相等C.矩形都是对角线相等的四边形D.对角线都相等的四边形是矩形【考点】F5:演绎推理的意义.【专题】11 :计算题;5M :推理和证明.【分析】用三段论形式推导一个结论成立,大前提应该是结论成立的依据,由四边形ABCD 为矩形,得到四边形ABCD的对角线互相相等的结论,得到大前提.【解答】解:用三段论形式推导一个结论成立,大前提应该是结论成立的依据,∵由四边形ABCD是矩形,所以四边形ABCD的对角线相等的结论,∴大前提一定是矩形都是对角线相等的四边形,故选C.【点评】本题考查用三段论形式推导一个命题成立,要求我们填写大前提,这是常见的一种考查形式,三段论中所包含的三部分,每一部分都可以作为考查的内容.4.)函数y=e x﹣x在x=0处的切线的斜率为()A.0 B.1 C.2 D.e【考点】6H:利用导数研究曲线上某点切线方程.【专题】35 :转化思想;48 :分析法;52 :导数的概念及应用.【分析】求出函数的导数,由导数的几何意义,将x=0代入计算即可得到所求值.【解答】解:函数y=e x﹣x的导数为y′=e x﹣1,由导数的几何意义,可得:在x=0处的切线的斜率为e0﹣1=1﹣1=0.故选:A.【点评】本题考查导数的运用:求切线的斜率,考查导数的几何意义,正确求导是解题的关键.5.)把平面内两条直线的四种位置关系:①平行;②垂直;③相交;④斜交.分别填入图中的M,N,E,F中,顺序较为恰当的是()A.①②③④ B.①④②③ C.①③②④ D.②①④③【考点】LO:空间中直线与直线之间的位置关系.【专题】11 :计算题;31 :数形结合;44 :数形结合法;5B :直线与圆.【分析】利用两直线的位置关系直接求解.【解答】解:如图,平面内两直线的位置关系可表示为:∴平面内两条直线的四种位置关系:①平行;②垂直;③相交;④斜交.分别填入图中的M,N,E,F中,顺序较为恰当的是①③②④.故选:C.【点评】本题考查命题真假的判断,考查推理论证能力、运算求解能力,考查化归与转化思想,是基础题.6.)已知变量x与y负相关,且由观测数据算得样本平均数=3,=2.7,则由该观测数据算得的线性回归方程可能是()A.=﹣0.2x+3.3 B.=0.4x+1.5 C.=2x﹣3.2 D.=﹣2x+8.6【考点】BK:线性回归方程.【专题】11 :计算题;34 :方程思想;49 :综合法;5I :概率与统计.【分析】利用变量x与y负相关,排除选项,然后利用回归直线方程经过样本中心验证即可.【解答】解:变量x与y负相关,排除选项B,C;回归直线方程经过样本中心,把=3,=2.7,代入A成立,代入D不成立.故选:A.【点评】本题考查回归直线方程的求法,回归直线方程的特征,基本知识的考查.7.(2013•青羊区校级模拟)观察下列等式,13+23=32,13+23+33=62,13+23+33+43=102根据上述规律,13+23+33+43+53+63=()A.192B.202C.212D.222【考点】F1:归纳推理;8M:等差数列与等比数列的综合.【专题】11 :计算题.【分析】解答此类的方法是从特殊的前几个式子进行分析找出规律.观察前几个式子的变化规律,发现每一个等式左边为立方和,右边为平方的形式,且左边的底数在增加,右边的底数也在增加.从中找规律性即可.【解答】解:∵所给等式左边的底数依次分别为1,2;1,2,3;1,2,3,4;右边的底数依次分别为3,6,10,(注意:这里3+3=6,6+4=10),∴由底数内在规律可知:第五个等式左边的底数为1,2,3,4,5,6,右边的底数为10+5+6=21.又左边为立方和,右边为平方的形式,故有13+23+33+43+53+63=212.故选C.【点评】本题考查了,所谓归纳推理,就是从个别性知识推出一般性结论的推理.它与演绎推理的思维进程不同.归纳推理的思维进程是从个别到一般,而演绎推理的思维进程不是从个别到一般,是一个必然地得出的思维进程.属于基础题.8.)用反证法证明“若x+y≤0则x≤0或y≤0”时,应假设()A.x>0或y>0 B.x>0且y>0 C.xy>0 D.x+y<0【考点】FC:反证法.【专题】14 :证明题;35 :转化思想;49 :综合法;5M :推理和证明.【分析】熟记反证法的步骤,直接填空即可.反面有多种情况,需一一否定.【解答】解:用反证法证明“若x+y≤0则x≤0或y≤0”时,应先假设x>0且y>0.故选:B.【点评】此题主要考查了反证法的第一步,解此题关键要懂得反证法的意义及步骤.反证法的步骤是:(1)假设结论不成立;(2)从假设出发推出矛盾;(3)假设不成立,则结论成立.在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.9.)如图程序框图输出的结果为()A.52 B.55 C.63 D.65【考点】EF:程序框图.【专题】11 :计算题;27 :图表型;4B :试验法;5K :算法和程序框图.【分析】根据已知的程序框图可得,该程序的功能是利用循环结构计算并输出变量S的值,模拟程序的运行过程,可得答案.【解答】解:模拟程序的运行,可得:s=0,i=3执行循环体,s=3,i=4不满足条件i>10,执行循环体,s=7,i=5不满足条件i>10,执行循环体,s=12,i=6不满足条件i>10,执行循环体,s=18,i=7不满足条件i>10,执行循环体,s=25,i=8不满足条件i>10,执行循环体,s=33,i=9不满足条件i>10,执行循环体,s=42,i=10不满足条件i>10,执行循环体,s=52,i=11满足条件i>10,退出循环,输出s的值为52.故选:A.【点评】本题考查的知识点是程序框图,当循环次数不多,或有规律可循时,可采用模拟程序法进行解答,属于基础题.10.(2013•新余二模)已知i是虚数单位,则在复平面内对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】A4:复数的代数表示法及其几何意义;A5:复数代数形式的乘除运算.【专题】11 :计算题.【分析】利用运算法则展开:(1+i)3=1+3i+3i2+i3=1+3i﹣3﹣i=﹣2+2i,进而得出此复数所对应的点.【解答】解:∵(1+i)3=1+3i+3i2+i3=1+3i﹣3﹣i=﹣2+2i,∴==,对应的点为,位于第二象限.故选B.【点评】本题考查了复数的运算法则和几何意义,属于基础题.11.)若函数y=x3﹣x2+a在[﹣1,1]上有最大值3,则该函数在[﹣1,1]上的最小值是()A.﹣ B.0 C.D.1【考点】6E:利用导数求闭区间上函数的最值.【专题】53 :导数的综合应用.【分析】求函数的导数,利用函数的最大值求出a的值即可得到结论.【解答】解:函数的导数f′(x)=3x2﹣3x=3x(x﹣1),由f′(x)>0得x>1或x<0,此时函数递增,由f′(x)<0得0<x<1,此时函数递减,故x=0时,函数f(x)取得极大值,同时也是在[﹣1,1]上的最大值,即f(0)=a=3,f(1)=1﹣+3=.f(﹣1)=﹣1﹣+3=,∴f(﹣1)<f(1),即函数在[﹣1,1]上的最小值是,故选:C.【点评】本题主要考查函数在闭区间上的最值问题,根据导数先求出a的值是解决本题的关键.12.)设函数f′(x)是偶函数f(x)的导函数,当x≠0时,恒有xf′(x)>0,记a=f (log0.53),b=f(log25),c=f(log32),则a,b,c的大小关系为()A.a<b<c B.a<c<b C.c<b<a D.c<a<b【考点】63:导数的运算.【专题】11 :计算题;33 :函数思想;4O:定义法;52 :导数的概念及应用.【分析】当x≠0时,有x f′(x)>0,可得x>0时,f′(x)>0,函数f(x)在(0,+∞)单调递增.又函数f(x)为R上的偶函数,可得a=f(log0.53)=f(log23),利用对数函数的单调性及其f(x)的单调性即可得出.【解答】解:∵当x≠0时,有xf′(x)>0,∴x>0时,f′(x)>0,函数f(x)在(0,+∞)单调递增.又函数f(x)为R上的偶函数,∴a=f(log0.53)=f(log23),∵0<log32<log23<log25,∴f(log32)<f(log23)<f(log25),∴c<a<b.故选:D.【点评】本题考查了利用导数研究函数的单调性、函数的奇偶性与单调性的应用,考查了推理能力与计算能力,属于中档题.二、填空题(共4小题,每小题5分,满分20分)13.)曲线y=x3﹣2x+1在点(1,0)处的切线方程为x﹣y﹣1=0 .【考点】6H:利用导数研究曲线上某点切线方程.【专题】52 :导数的概念及应用.【分析】求出函数的导函数,取x=1得到函数在x=1处的导数,直接代入直线方程的点斜式得答案.【解答】解:由y=x3﹣2x+1,得y′=3x2﹣2.∴y′|x=1=1.∴曲线y=x3﹣2x+1在点(1,0)处的切线方程为y﹣0=1×(x﹣1).即x﹣y﹣1=0.故答案为:x﹣y﹣1=0.【点评】本题考查了利用导数研究曲线上某点处的切线方程,关键是区分给出的点是不是切点,是中档题也是易错题.14.)已知复数z满足=2﹣i,则z= 3+i .【考点】A5:复数代数形式的乘除运算.【专题】11 :计算题;34 :方程思想;4O:定义法;5N :数系的扩充和复数.【分析】利用复数的代数形式的乘除运算法则直接求解.【解答】解:∵=2﹣i,∴z=(2﹣i)(1+i)=2﹣i+2i﹣i2=2+i+1=3+i.故答案为:3+i.【点评】本题考查复数的求法,是基础题,解题时要认真审题,注意复数的代数形式的乘除运算法则的合理运用.15.(2011•福建模拟)若三角形的内切圆半径为r,三边的长分别为a,b,c,则三角形的面积S=r(a+b+c),根据类比思想,若四面体的内切球半径为R,四个面的面积分别为S1、S2、S3、S4,则此四面体的体积V= R(S1+S2+S3+S4).【考点】F3:类比推理;LF:棱柱、棱锥、棱台的体积.【专题】16 :压轴题;29 :规律型.【分析】根据平面与空间之间的类比推理,由点类比点或直线,由直线类比直线或平面,由内切圆类比内切球,由平面图形面积类比立体图形的体积,结合求三角形的面积的方法类比求四面体的体积即可.【解答】解:设四面体的内切球的球心为O,则球心O到四个面的距离都是R,所以四面体的体积等于以O为顶点,分别以四个面为底面的4个三棱锥体积的和.故答案为:R(S1+S2+S3+S4).【点评】类比推理是指依据两类数学对象的相似性,将已知的一类数学对象的性质类比迁移到另一类数学对象上去.一般步骤:①找出两类事物之间的相似性或者一致性.②用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(或猜想).16.)已知函数f(x)=lnx+ax2﹣2x存在单调递减区间,则实数a的取值范围为(﹣∞,1).【考点】6B:利用导数研究函数的单调性.【专题】52 :导数的概念及应用.【分析】利用导数进行理解,即f'(x)<0在(0,+∞)上有解.可得ax2+2x﹣1>0在正数范围内至少有一个解,结合根的判别式列式,不难得到a的取值范围.【解答】解:对函数求导数,得f′(x)=,(x>0)依题意,得f′(x)<0在(0,+∞)上有解.即ax2﹣2x+1<0在x>0时有解.①显然a≤0时,不等式有解,②a>0时,只需a<在x>0有解,即只需a<,令g(x)=,g(x)在(0,1)递增,在(1,+∞)递减,∴g(x)最大值=g(1)=1,∴a<1,综合①②得a<1,故答案为:(﹣∞,1).【点评】本题主要考查函数与导数,以及函数与方程思想,体现了导数值为一种研究函数的工具,能完成单调性的判定和最值的求解方程,同时能结合常用数学思想,来考查同学们灵活运用知识解决问题的能力.三、解答题(共6小题,满分70分.解答应给出文字说明、证明过程及演算步骤)17.(10分))用分析法证明:已知a>b>0,求证﹣<.【考点】R9:反证法与放缩法.【专题】14 :证明题;48 :分析法.【分析】根据题意,将原不等式两边平方,整理,利用分析法即可得证.【解答】证明:∵a>b>0,∴>,∴要证﹣<,只需证()2,即a+b ﹣2<a﹣b,只需证b,即证b<a,显然b<a成立,因此﹣<成立.【点评】本题主要考查了用分析法证明不等式,属于基本知识的考查.18.(12分))医学上所说的“三高”通常是指血脂增高、血压增高、血糖增高等疾病.为了解“三高”疾病是否与性别有关,医院随机对入院的60人进行了问卷调查,得到了如下的列联表:(1)请将列联表补充完整;患三高疾病不患三高疾病合计6 30男24女12 18 30合计 3624 60②能否在犯错误的概率不超过0.005的前提下认为患“三高”疾病与性别有关?下列的临界值表供参考:0.15 0.10 0.05 0.025 0.010 0.005 0.001 P(K2≥k)k 2.072 2.706 3.841 5.024 6.635 7.879 10.828(参考公式:K2=.【考点】BO:独立性检验的应用.【专题】38 :对应思想;4A :数学模型法;5I :概率与统计.【分析】(1)根据题意,填写列联表即可;(2)根据表中数据,计算观测值K2,对照临界值即可得出结论.【解答】解:(1)根据题意,填写列联表如下;患三高疾病不患三高疾病合计男24 6 30女 1218 30合计 3624 60(2)根据表中数据,计算K2===10>7.879;∴在犯错误的概率不超过0.005的前提下认为患“三高”疾病与性别有关.【点评】本题考查了列联表与独立性检验的应用问题,是基础题.19.(12分))已知函数处都取得极值.(1)求a,b的值;(2)求f(x)的单调区间.【考点】6B:利用导数研究函数的单调性;6D:利用导数研究函数的极值.【专题】33 :函数思想;49 :综合法;52 :导数的概念及应用.【分析】(1)求出函数的导数,得到关于a,b的方程组,解出即可求出a,b的值;(2)解关于导函数的不等式,从而求出函数的单调区间.【解答】解:(1)由已知可得f'(x)=3x 2+2ax+b,由…(3分)可得;…(6分)(2)由(1)知f'(x)=3x2﹣x﹣2=(3x+2)(x﹣1),由.列表如下:x 1 (1,+∞)f'(x)+ 0 ﹣0 +f(x)增极大减极小增所以函数f (x)的递增区间为与(1,+∞),递减区间为;…(12分)【点评】本题考查了函数的单调性、极值问题,考查导数的应用,是一道基础题.20.(12分))某市春节7家超市的广告费支出x(万元)和销售额y(万元)数据如下,超市 A B C D E F G1 2 4 6 11 13 19 广告费支出x销售额y 19 32 40 44 52 53 54 (1)请根据上表提供的数据.用最小二乘法求出y 关于x 的线性回归方程;=x+(2)用二次函数回归模型拟合y 与x的关系,可得回归方程:=﹣0.17x2+5x+20.经计算二次函数回归模型和线性回归模型的R2分别约为0.93和0.75,请用R2说明选择哪个回归模型更合适.并用此模型预测A超市广告费支出为3万元时的销售额,参考数据及公式:=8,=42.x i y i =2794,x=708,==,=﹣x.【考点】BK:线性回归方程.【专题】38 :对应思想;4A :数学模型法;5I :概率与统计.【分析】(1)由题意求出回归系数、,写出线性回归方程;(2)根据线性回归模型的相关指数判断用二次函数回归模型更合适,计算x=3时的值即可.【解答】解:(1)由题意,n=7,=8,=42,x i y i=2794,x=708,∴===1.7,=﹣=42﹣1.7×8=28.4,∴y关于x的线性回归方程是=1.7x+28.4;(2)∵线性回归模型的R2:0.75<0.93,∴用二次函数回归模型拟合更合适,当x=3时,得=﹣0.17×32+5×3+20=33.47,预测A超市广告费支出为3万元时销售额为33.47万元.【点评】本题考查了线性回归方程的应用问题,是基础题.21.(12分))某商场销售某种商品的经验表明,该商品每日的销售量y(单位:千克)与销售价格x(单位:元/千克)满足关系式:y=+10(x﹣6)2,其中3<x<6,a为常数,已知销售的价格为5元/千克时,每日可以售出该商品11千克.(1)求a的值;(2)若该商品的成本为3元/千克,试确定销售价格x的值,使商场每日销售该商品所获得的利润最大,并求出最大值.【考点】6K:导数在最大值、最小值问题中的应用.【专题】34 :方程思想;48 :分析法;51 :函数的性质及应用;53 :导数的综合应用.【分析】(1)由x=5时,y=11,代入函数的解析式,解关于a的方程,可得a值;(2)商场每日销售该商品所获得的利润=每日的销售量×销售该商品的单利润,可得日销售量的利润函数为关于x的三次多项式函数,再用求导数的方法讨论函数的单调性,得出函数的极大值点,从而得出最大值对应的x值.【解答】解:(1)因为x=5时,y=11,y=+10(x﹣6)2,其中3<x<6,a为常数.所以+10=11,故a=2;(2)由(1)可知,该商品每日的销售量y=+10(x﹣6)2,所以商场每日销售该商品所获得的利润为f(x)=(x﹣3)[+10(x﹣6)2]=2+10(x﹣3)(x﹣6)2,3<x<6.从而,f′(x)=10[(x﹣6)2+2(x﹣3)(x﹣6)]=30(x﹣6)(x﹣4),于是,当x变化时,f(x)、f′(x)的变化情况如下表:x (3,4) 4 (4,6)f'(x)+ 0 ﹣f(x)单调递增极大值42 单调递减由上表可得,x=4是函数f(x)在区间(3,6)内的极大值点,也是最大值点.所以,当x=4时,函数f(x)取得最大值,且最大值等于42.答:当销售价格为4元/千克时,商场每日销售该商品所获得的利润最大.【点评】本题考查导数在实际问题中的运用:求最值,求出利润的函数式和正确求导是解题的关键,考查运算能力,属于中档题.22.(12分))已知函数f(x)=ax﹣lnx,F(x)=e x+ax,其中x>0.(1)若a<0,f(x)和F(x)在区间(0,ln3)上具有相同的单调性,求实数a的取值范围;(2)设函数h(x)=x2﹣f(x)有两个极值点x1、x2,且x1∈(0,),求证:h(x1)﹣h (x2)>﹣ln2.【考点】6B:利用导数研究函数的单调性;6D:利用导数研究函数的极值.【专题】33 :函数思想;4R:转化法;53 :导数的综合应用.【分析】(1)求出函数的导数,通过讨论a的范围,结合函数的单调性确定a的范围即可;(2)先求出h(x1)﹣h(x2)=ln2+2lnx1﹣x12+,构造函数,求出函数的导数,得到函数的单调区间,求出函数的最小值,从而证明结论.【解答】(1)解:f′(x)=a﹣=,F′(x)=e x+a,x>0,∵a<0,f′(x)<0在(0,+∞)上恒成立,即f(x)在(0,+∞)上单调递减,当﹣1≤a<0时,F′(x)>0,即F(x)在(0,+∞)上单调递增,不合题意;当a<﹣1时,由F′(x)>0,得x>ln(﹣a),由F′(x)<0,得0<x<ln(﹣a),∴F(x)的单调减区间为(0,ln(﹣a)),单调增区间为(ln(﹣a),+∞).∵f(x)和F(x)在区间(0,ln3)上具有相同的单调性,∴ln(﹣a)≥ln3,解得a≤﹣3,综上,a的取值范围是(﹣∞,﹣3].(2)证明:h(x)=x2﹣ax+lnx,∴h′(x)=,(x>0),x1•x2=,则x2=,h(x1)﹣h(x2)=lnx1+x12﹣ax1﹣lnx2﹣x22+ax2=ln +[x1+x2﹣2(x1+x2)(x1﹣x2)=ln2+2lnx1﹣x12+,令g(x1)=ln2+2lnx1﹣x12+,则g′(x)=﹣2x1﹣=﹣,∵0<x1<,∴g′(x1)<0,∴g(x1)在(0,)上单调递减,∴g(x1)>g(),而g()=﹣ln2,即g(x1)>﹣ln2,∴h(x1)﹣h(x2)>﹣ln2.【点评】本题考查了函数的单调性、最值问题,考查导数的应用,不等式的证明问题,是一道难题.。
桂林市名校2019-2020学年数学高二下期末达标检测试题一、选择题:本题共12小题,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.是的共轭复数,若为虚数单位) ,则=( ) A .B .C .D .【答案】D 【解析】 试题分析:设,依题意有,故.考点:复数概念及运算.【易错点晴】在复数的四则运算上,经常由于疏忽而导致计算结果出错.除了加减乘除运算外,有时要结合共轭复数的特征性质和复数模的相关知识,综合起来加以分析.在复数的四则运算中,只对加法和乘法法则给出规定,而把减法、除法定义为加法、乘法的逆运算.复数代数形式的运算类似多项式的运算,加法类似合并同类项;复数的加法满足交换律和结合律,复数代数形式的乘法类似多项式乘以多项式,除法类似分母有理化;用类比的思想学习复数中的运算问题.2.把一枚骰子连续掷两次,已知在第一次抛出的是奇数点的情况下,第二次抛出的也是奇数点的概率为( ) A .14B .13C .12D .1【答案】C 【解析】分析:设A 表示“第一次抛出的是奇数点”,B 表示“第二次抛出的是奇数点”,利用古典概型概率公式求出()(),P A P AB 的值,由条件概率公式可得结果. 详解:设A 表示“第一次抛出的是奇数点”,B 表示“第二次抛出的是奇数点”,()()31111,62224P A P AB ===⨯=, ()()()114|122P AB P B A P A ===,∴在第一次抛出的是奇数点的情况下,第二次抛出的也是奇数点的概率为12,故选C. 点睛:本题考查概率的求法,是基础题,解题时要认真审题,注意条件概率计算公式的合理运用,同时注意区分独立事件同时发生的概率与条件概率的区别与联系.3.若A ={(x ,y)|y =x}, B={(x,y)|=1}yx,则A ,B 关系为( ) A .A ≠⊆BB .B ≠⊆AC .A =BD .A ⊆B【答案】B 【解析】 【分析】分别确定集合A,B 的元素,然后考查两个集合的关系即可. 【详解】由已知(){}(){}|,|0Ax x x R B x x x ∈≠=,=, ,故B A ⊂≠,故选B.【点睛】本题主要考查集合的表示方法,集合之间的关系等知识,属于基础题.4.使得()3nx n N+⎛∈ ⎝的展开式中含有常数项的最小的n 为( )A .4B .5C .6D .7【答案】B 【解析】二项式展开式的通项公式为r -n 3x n rr C (),若展开式中有常数项,则3--=02n r r ,解得5=2n r ,当r 取2时,n 的最小值为5,故选B【考点定位】本题考查二项式定理的应用. 5.1817161211⨯⨯⨯⨯⨯等于( )A .818A B .918AC .1018AD .1118A【答案】A 【解析】 【分析】根据排列数的定义求解. 【详解】8181817161211A ⨯⨯⨯⨯⨯=,故选A.【点睛】本题考查排列数的定义.6. 设p :实数x ,y 满足(x -1)2+(y -1)2≤2,q :实数x ,y 满足111y x y x y ≥-⎧⎪≥-⎨⎪≤⎩则p 是q 的( )A .必要不充分条件B .充分不必要条件C .充要条件D .既不充分也不必要条件 【答案】A 【解析】试题分析:画圆:(x –1)2+(y –1)2=2,如图所示,则(x –1)2+(y –1)2≤2表示圆及其内部,设该区域为M.画出1,{1,1y x y x y ≥-≥-≤表示的可行域,如图中阴影部分所示,设该区域为N.可知N 在M 内,则p 是q 的必要不充分条件.故选A.【考点】充要条件的判断,线性规划【名师点睛】本题考查充分性与必要性的判断问题,首先是分清条件和结论,然后考察条件推结论,结论推条件是否成立.这类问题往往与函数、三角、不等式等数学知识相结合.本题的条件与结论可以转化为平面区域的关系,利用充分性、必要性和集合的包含关系得出结论. 7.小明同学在做市场调查时得到如下样本数据x1 3 6 10 y8a42他由此得到回归直线的方程为ˆ 2.115.5yx =-+,则下列说法正确的是( ) ①变量x 与y 线性负相关 ②当2x =时可以估计11.3y = ③6a = ④变量x 与y 之间是函数关系 A .① B .①②C .①②③D .①②③④【答案】C 【解析】【分析】根据数据和回归方程对每一个选项逐一判断得到答案. 【详解】① 2.1b =-⇒变量x 与y 线性负相关,正确 ②将2x =代入回归方程,得到11.3y =,正确 ③将(,)x y 代入回归方程,解得6a =,正确 ④变量x 与y 之间是相关关系,不是函数关系,错误 答案为C 【点睛】本题考查了回归方程的相关知识,其中中心点(,)x y 一定在回归方程上是同学容易遗忘的知识点. 8.一口袋里有大小形状完全相同的10个小球,其中红球与白球各2个,黑球与黄球各3个,从中随机取3次,每次取3个小球,且每次取完后就放回,则这3次取球中,恰有2次所取的3个小球颜色各不相同的概率为( ) A .18B .364C .38D .964【答案】C 【解析】每次所取的3个小球颜色各不相同的概率为:1111112232333102212C C C C C C C +=, ∴这3次取球中,恰有2次所取的3个小球颜色各不相同的概率为:2231131228p C ⎛⎫⎛⎫=-= ⎪⎪⎝⎭⎝⎭. 本题选择C 选项.9.一个篮球运动员投篮一次得3分的概率为a ,得2分的概率为b ,得0分的概率为0.5(投篮一次得分只能3分、2分、1分或0分),其中a 、b ,已知他投篮一次得分的数学期望为1,则ab 的最大值为 A .16B .112C .124D .132【答案】D 【解析】 【分析】设这个篮球运动员得1分的概率为c ,由题设知 ,解得2a+b=0.5,再由均值定理能求出ab 的最大值. 【详解】设这个篮球运动员得1分的概率为c ,∵这个篮球运动员投篮一次得3分的概率为a ,得2分的概率为b ,得0分的概率为0.5, 投篮一次得分只能3分、2分、1分或0分,他投篮一次得分的数学期望为1, ∴,解得2a+b=0.5, ∵a、b∈(0,1), ∴ ==,∴ab,当且仅当2a=b= 时,ab 取最大值.故选D .点评:本题考查离散型随机变量的分布列和数学期的应用,是基础题.解题时要认真审题,仔细解答,注意均值定理的灵活运用.10.若直线l :20(0,0)ax by a b -+=>>过点(1,2)-,当21a b+取最小值时直线l 的斜率为( ) A .2 B .12C 2D .2【答案】A 【解析】 【分析】 将点带入直线可得212a b+=,利用均值不等式“1”的活用即可求解. 【详解】因为直线l 过点()1,2-,所以220a b --+=,即212a b+=, 所以212121414()(4)(42)4222a b b a b a a b a b a b a b++=+=++≥+⨯= 当且仅当4b aa b =,即2a b =时取等号 所以斜率2ab=,故选A【点睛】本题考查均值不等式的应用,考查计算化简的能力,属基础题.11.《周髀算经》、《九章算术》、《海岛算经》、《孙子算经》是我国古代数学的重要文献.现拟把这4部著作分给甲、乙、丙3位同学阅读,每人至少1本,则甲没分到《周髀算经》的分配方法共有( ) A .18种 B .24种 C .30种 D .36种【答案】B 【解析】分析:先不考虑限制条件,则共有2343C A 种方法,若甲分到《周髀算经》,有两种情况:甲分到一本(只有《周髀算经》),甲分到2本(包括《周髀算经》),减去即可.详解:先不考虑限制条件,则共有234336C A =种方法,若甲分到《周髀算经》,有两种情况:甲分到一本(只有《周髀算经》),此时共有22326C A =种方法;甲分到2本(包括《周髀算经》),此时共有326A =种方法,则分配方法共有366624--=种.点睛:本题考查了分组分配的问题,关键在于除去不符合条件的情况,属于基础题12.用秦九韶算法求n 次多项式1110()+n n n n f x a x a x a x a --=+++,当0x x =时,求0()f x 需要算乘方、乘法、加法的次数分别为( ) A .(1),,2n n n n + B .,2,n n n C .0,2,n n D .0,,n n【答案】D 【解析】()()112110110+n n n n n n n n f x a x a x a x a a x a x a x a -----=+++=++⋯++()()231210n n n n a x a x a x a x a ---=++⋯+++=⋯()()()1210n n n a x a x a x a x a --=⋯++⋯++求多项式的值时,首先计算最内层括号内一次多项式的值, 即11n n v a x a -=+然后由内向外逐层计算一次多项式的值,即212n v v x a -=+. 323n v v x a -=+.…11n n v v x a -=+.这样,求n 次多项式f(x )的值就转化为求n 个一次多项式的值.∴对于一个n 次多项式,至多做n 次乘法和n 次加法 故选D.二、填空题:本题共4小题13.已知点A 在函数3x y =的图象上,点B ,C 在函数93x y =⨯的图象上,若ABC ∆是以A 为直角顶点的等腰直角三角形,且点A ,C 的纵坐标相同,则点B 的横坐标的值为______. 【答案】31log 4【解析】 【分析】根据题意,设B 的坐标为(),93mm ⨯,结合题意分析可得A 、C 的坐标,进而可得ABC 的直角边长为2,据此可得9332m m ⨯-=,即134m=,计算可得m 的值,即可得答案. 【详解】根据题意,设B 的坐标为(),93mm ⨯,如图:又由ABC 是以A 为直角顶点的等腰直角三角形且点A ,C 的纵坐标相同, 则A 、B 的横坐标相同,故A 的坐标为(),3mm ,C 的坐标为()2,3mm -,等腰直角三角形ABC 的直角边长为2, 则有9332m m ⨯-=,即134m=, 解可得31log 4m =, 故答案为:31log 4【点睛】本题主要考查指数函数性质以及函数值的计算,属于中档题. 14.已知角θ的终边经过()2,3-,则3cos 2πθ⎛⎫+= ⎪⎝⎭________. 313【解析】分析:根据任意角的三角函数的定义,求得sin θ的值,再结合诱导公式即可得到结果. 详解:∵角θ的终边经过点()2,3-, ∴x=2-,y=3,r=13, 则sin θ=y r =31313. ∴3313cos sin 213πθθ⎛⎫+== ⎪⎝⎭故答案为313. 点睛:本题主要考查任意角的三角函数的定义,考查了诱导公式,考查了计算能力,属于基础题. 15.已知,a b 是两个非零向量,且||2a =,22a b +=,则||a b b ++的最大值为_____. 【答案】22 【解析】 【分析】构造=a b m b n +=,,从而可知m n ⊥,于是||a b b ++的最大值可以利用基本不等式得到答案. 【详解】由题意,令=a b m b n +=,,所以||||2m n a -==,|||2|2m n a b +=+=,所以||||m n m n -=+,所以m n ⊥,所以()22||||||2||||22a b b m n m n ++=+≤+=,当且仅当||||2m n ==,且m n ⊥时取等号.故答案为22. 【点睛】本题主要考查平面向量的几何意义,模,基本不等式等知识,考查学生的运算求解能力,难度较大. 16.已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积是________. 【答案】24π 【解析】试题分析:正四棱柱的高是4,体积是16,则底面边长为2,底面正方形的对角线长度为,所以正四棱柱体对角线的长度为,四棱柱体对角线为外接球的直径,所以球的半径为,所以球的表面积为244624S r πππ==⋅=. 考点:正四棱柱外接球表面积.三、解答题:解答应写出文字说明、证明过程或演算步骤。