1.1.1《集合的概念》学案
- 格式:doc
- 大小:125.50 KB
- 文档页数:4
1—1.1.1集合的含义与表示一、教材分析1.在教材中的地位与作用在《集合与函数概念》一章中,《集合的含义与表示》是一项重要的基础内容,在知识体系来看,他不仅是高中数学的开始,也是中小学数学的一个承接。
具体体现在:第一、内容的定位。
集合在高中课程中的定位,在标准中写的比较清楚。
标准是这样说的,集合语言是现代数学的基本语言,使用集合语言可以简洁准确的表达数学中的一些内容。
高中数学只将集合作为一种语言来学习,它把集合是作为一种语言,来描述和表达问题的一种语言来学习的。
学生学会使用最基本的集合语言表示有关的数学对象,发展运用语言进行交流的能力。
我觉得这一段话,就给了我们这个集合内容的一个基本的定位。
第二、集合内容的一个目标。
集合在实现目标中的作用。
提高数学的表达和交流的能力,是集合的一个基本的目标。
集合作为一个数学的概念,对于数学中的分类思想,起了一个促进的作用。
我们数学里有自然语言,有符号语言,有图形语言,还有图表语言等等。
集合就是一种特殊的符号语言。
集合在实现这个目标中,是起了一个作用的。
集合主要是要把各种不同的事物能刻划清楚。
在我们中学所使用、所体现出来的具体集合,都是非常清楚的元素和集合之间的关系,是非常清楚的。
为了搞清楚集合在整个课程中的一个定位,我们应该搞清楚课程中的一个基本脉络。
那些可以作为集合的载体,教室里的男女同学,自然数、整数、分数、小数等等。
我们用这些来对数进行分类。
另外呢,数轴上的点集,比如说我们在讲不等式的点集、不等式的解集、方程的解。
我们总希望用数形结合,它反映在这个是一个点集。
另外还有直角坐标系中的点集、方程的根、不等式的解集、函数的定义域等等,函数的定义域、单调区间,函数这个单调的区间,还要学习图形,图形上的一些特殊点。
集合也需要,作为一种支撑的一个语言。
直线与平面的关系,我们常常说直线L是含于某一个平面的等等。
那么,到了我们学解析几何的时候,我们又要使用集合的语言来帮助我们去刻划平面直角坐标系中的某些特殊点,等等。
§1.1.1 集合的含义及其表示一、教学目标(1)通过实例,了解集合的含义,体会元素与集合的理解集合“属于”关系;初步了解属于关系和集合相等的意义(2)能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用;(3)熟记有关数集,培养学生认识事物的能力二、教学重点集合的基本概念与表示方法;三、教学难点运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合;四、教学过程1、创设情境,引入新课在小学和初中我们已经接触了一些集合,例如自然数的集合,有理数的集合,不等式x-7<3的解的集合,到一个定点的距离的定长的集合(即圆),到一条线段的两个端点距离相等的点的集合(即这条线段的垂直平分线)……那么集合的含义是什么呢?我们再来看看下面的一些例子:(1)1~20以内的所有质数(2)2010年4月1日之前与我国建立外交关系的所有国家(2)所有的正方形(3)高一<2>班的学生在上数学课(4)方程x2+3x-2=0的所有实数解上面这些例子有什么共同的特征?2、推进新课(1)元素与集合的概念:一般地,我们把研究对象统称为元素,把一些元素组成的总体叫做集合(简称为集)。
(2)集合的性质○1确定性:按照明确的判断标准给定一个元素或者在这个集合里,或者不在,不能模棱两可。
○2互异性:集合中的元素必须是互不相同的(即没有重复现象),相同的元素在集合中只能算作一个。
○3无序性:集合中的元素间是无次序关系的。
(3)集合相等:只要构成两个集合的元素是一样的,我们就称这两个集合是相等的。
练习:1.判断以下元素的全体是否组成集合(1)大于3小于11的偶数。
(2)我国的小河流。
2.说出集合A={a,b,c}和集合B={b, a,c}的关系。
(4)集合与元素的表示:集合通常用大括号或大写的拉丁字母表示,如{1,2,3,4,5}与{高一(2)班的所有学生},又如A、B、C、P、Q……元素通常用小写的拉丁字母表示,如a、b、c、p、q……如果a是集合A的元素,就说a属于A,记作a∈A。
1-1-1 集合的概念教案单元设计教案概述:本教案旨在帮助学生理解集合的概念,包括集合的定义、表示方法和集合的基本运算。
通过一系列的教学活动,学生将能够掌握集合的基本概念,并能够运用集合的知识解决实际问题。
教学目标:1. 了解集合的定义和表示方法。
2. 掌握集合的基本运算,包括并集、交集和补集。
3. 能够运用集合的知识解决实际问题。
教学内容:1. 集合的定义和表示方法。
2. 集合的基本运算。
3. 集合的应用。
教学过程:一、引入(10分钟)1. 引入集合的概念,通过举例说明集合的定义。
2. 介绍集合的表示方法,包括列举法和描述法。
二、集合的基本运算(15分钟)1. 交集的定义和运算方法。
2. 并集的定义和运算方法。
3. 补集的定义和运算方法。
三、集合的应用(15分钟)1. 通过实际问题引入集合的应用,如统计数据、voting 等。
2. 引导学生运用集合的知识解决实际问题。
四、练习与巩固(15分钟)1. 提供一些练习题,让学生运用集合的知识进行解答。
2. 引导学生互相讨论,共同解决问题。
五、总结与反思(10分钟)1. 对本节课的内容进行总结,强调集合的概念和基本运算。
2. 鼓励学生反思自己在学习过程中的理解和困惑,提出问题并进行讨论。
教学评价:1. 课堂参与度:观察学生在课堂上的积极参与情况和提问回答。
2. 练习解答:评估学生在练习题中的解答情况,检查其对集合知识的掌握程度。
3. 课后作业:布置相关的课后作业,让学生进一步巩固集合的概念和基本运算。
教学资源:1. 教学PPT:提供集合的概念和基本运算的PPT课件。
2. 练习题:提供一些相关的练习题供学生进行练习。
教学建议:1. 在引入集合的概念时,可以通过举例说明,让学生更好地理解。
2. 在讲解集合的基本运算时,可以使用图示或实物模型进行演示,帮助学生直观地理解。
3. 在集合的应用部分,可以提供一些实际问题供学生思考和解决,增强学生对集合知识的实际运用能力。
1.1 集合1.1。
1集合及其表示方法内容标准学科素养1。
通过实例了解集合的含义,体会元素与集合的“属于”关系.数学抽象数学建模2.能用自然语言、图形语言、集合语言描述不同的具体问题。
授课提示:对应学生用书第1页[教材提炼]知识点一元素与集合的概念1.集合:有一些能够确定的、不同的对象汇聚在一起,就说由这些对象构成一个集合.通常用英文大写字母A,B,C…表示.2.元素:组成集合的每个对象都是这个集合的元素,通常用英文小写字母a,b,c…表示.3.空集:不含任何元素的集合称为空集,记作∅。
知识点二元素与集合的关系1.属于:如果a是集合A的元素,就记作a∈A,读作a属于A。
2.不属于:如果a不是集合A中的元素,就记作a∉A,读作a 不属于集合A。
3.无序性:集合中的元素,可以任意排列,与次序无关.知识点三集合元素的特点1.确定性:集合的元素必须是确定的.2.互异性:对于一个给定的集合,集合中的元素一定是不同的.知识点四集合的分类1.有限集:含有有限个元素的集合.2.无限集:含有无限个元素的集合.知识点五几种常见的数集号N*知识点六集合的表示方法1.列举法把集合的所有元素一一列举出来(相邻元素之间用逗号分隔),并写在大括号内,这种表示集合的方法称为列举法.2.描述法(1)特征性质:一般地,如果属于集合A的任意一个元素x都具有性质p(x),而不属于集合A的元素都不具有这个性质,则性质p(x)称为集合A的一个特征性质.(2)描述法:用特征性质p(x)来表示集合的方法,称为特征性质描述法,简称描述法.知识点七区间及其表示1.如果a<b,则有下表:定义名称符号数轴表示{x|a≤x≤b}闭区间[a,b]{x|a 〈x<b}开区间(a,b){x|a≤x 〈b}半开半闭区间[a,b){x|a<x≤b}半开半闭区间(a,b]2.实数集R可以用区间表示为(-∞,+∞),“∞"读作“无穷大”.如:符号[a,+∞)(a,+∞)(-∞,a](-∞,a)定义{x|x≥a}{x|x〉a}{x|x≤a}{x|x〈a}[自主检测]1.下列给出的对象中,能组成集合的是()A.与定点A,B等距离的点B.高中学生中的游泳能手C.无限接近10的数D.非常长的河流答案:A2.若一个集合中的三个元素a,b,c是△ABC的三边长,则此三角形一定不是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形答案:D3.下列结论中,不正确的是()A.若a∈N,则错误!∉NB.若a∈Z,则a2∈ZC.若a∈Q,则|a|∈QD.若a∈R,则错误!∈R答案:A4.分别用描述法、列举法表示大于0小于6的自然数组成的集合.解析:描述法:{x∈N|0<x<6},列举法:{1,2,3,4,5}.授课提示:对应学生用书第2页探究一集合的概念[例1]下列对象中可以构成集合的是()A.大苹果B.小橘子C.中学生D.著名的数学家[解析]选项正误原因A×大苹果到底以多重算大,标准不明确B×小橘子到底以多重算小,标准不明确C√中学生标准明确,故可构成集合Dד著名”的标准不明确[答案]C判断一个“全体"是否能构成一个集合,其关键是对标准的“确定性”的把握,即根据这个“标准”,可以明确判定一个对象是或者不是给定集合的元素.给出下列元素①学习成绩较好的同学;②方程x2-1=0的解;③漂亮的花儿;④大气中直径较大的颗粒物.其中能组成集合的是()A.②B.①③C.②④D.①②④答案:A探究二元素与集合的关系[例2]集合A中的元素x满足错误!∈N,x∈N,则集合A 中的元素为________.[解析]由错误!∈N,x∈N知x≥0,错误!>0,且x≠3,故0≤x<3.又x∈N,故x=0,1,2。
《1.1.1集合的含义与表示》学案班级 姓名【学习目标】1.初步理解集合的概念,知道常用数集的概念及其记法。
2.理解集合的三个特征,能判断集合与元素之间的关系,正确使用符号∈。
3.能根据集合中元素的特点(有限还是无限),使用适当的方法和准确的语言将其表示出来,并从中体会到用数学抽象符号刻画客观事物的优越性(简洁明了).逐渐培养使用数学符号的自觉性。
【基础知识】1.元素与集合(1)一般地,我们把研究对象统称为 ,通常用 来表示;把由一些元素组成的总体叫做 (简称为 ),通常用 来表示。
如把中国的直辖市看作一个集合,北京市、上海市、天津市、重庆市就是构成这个集合的 。
(2)数学中常用的数集及其记法:2.集合中元素的确定性集合的核心是元素,集合中的元素必须具有 。
即,任给一个元素a ,对于集合A 来说,a 要么 集合A ,要么 集合A ,二者必具其一。
这两种情况可以用数学符号分别表示为: (读作: )、 (读作: )。
★根据上述知识,完成下列问题:(1)军训时教官喊口令“X 方队集合”,该方队的同学迅速从四面八方向教官靠拢。
这里教官的口令“集合”是否就是数学中“集合”的概念?如果教官喊“X 方队高个子同学集合”时,该方队中的每个同学是否知道自己该不该过去?(2)2008年所有参加北京奥运会的国家是否能构成一个集合?3.集合中元素的互异性:在同一个集合中,不存在 的元素,各元素都是 的。
★根据上述知识,完成下列问题:思考1:判断以下元素的全体是否组成集合,并说明理由:(1) 大于3小于11的偶数;(2) 我国的小河流;(3) 非负奇数;(4) 方程210x +=的解;(5)某校2007级新生; (6)血压很高的人; (7)著名的数学家; (8)平面直角坐标系内所有第三象限的点 (9) 全班成绩好的学生。
2:在集合}2,{2x x 中,实数x 应满足怎样的取值要求?4.集合的表示方法(1)把集合的元素 出来,并用 括起来表示集合的方法叫列举法。
第1章集合§1.1集合的含义及其表示(一)1.一般地,一定范围内某些确定的、不同的对象的全体构成一个集合.集合中的每一个对象称为该集合的元素,简称元.2.集合通常用大写拉丁字母A,B,C…表示,用小写拉丁字母a,b,c,…表示集合中的元素.3.如果a是集合A的元素,就说a属于集合A,记作a∈A,读作“a属于A”,如果a不是集合A的元素,就说a不属于A,记作a A或a∈A,读作“a不属于A”.4.集合中的元素具有确定性、互异性、无序性三种性质.5.实数集、有理数集、整数集、非负整数集、正整数集分别用字母R、Q、Z、N、N*或N+来表示.练习集合的概念【例1】考查下列每组对象能否构成一个集合:(1)著名的数学家;(2)某校2010年在校的所有高个子同学;(3)不超过20的非负数;(4)方程x2-9=0在实数范围内的解;(5)直角坐标平面内第一象限的一些点;(6)3的近似值的全体.规律方法判断指定的对象能不能构成集合,关键在于能否找到一个明确标准,对于任何一个对象,都能确定它是不是给定集合的元素,同时还要注意集合中元素的互异性、无序性.变式迁移1 下面有四个命题:(1)集合N中最小的数是零;(2)0是自然数;(3){1,2,3}是不大于3的自然数组成的集合;(4)若a∈N,b∈N,则a+b的最小值为2.其中正确的命题有________个.集合中元素的特性【例2】已知集合A是由a-2,2a2+5a,12三个元素组成的,且-3∈A,求a.变式迁移2 已知集合A是由0,m,m2-3m+2三个元素组成的集合,且2∈A,求实数m的值.元素与集合的关系【例3】若所有形如3a+2b(a∈Z,b∈Z)的数组成集合A,判断6-22是不是集合A中的元素.规律方法 判断一个元素是不是某个集合的元素,就是判断这个元素是否具有这个集合的元素的共同特征.像此类题,主要看能否将所给对象的表达式转化为集合中元素所具有的形式.变式迁移3 集合A 是由形如m +3n (m ∈Z ,n ∈Z )的数构成的,判断12-3是不是集合A 中的元素.1.充分利用集合中元素的三大特性是解决集合问题的基础.2.两集合中的元素相同则两集合就相同,与它们元素的排列顺序无关.3.解集合问题特别是涉及求字母的值或范围,把所得结果代入原题检验是不可缺少的步骤.特别是互异性,最易被忽视,必须在学习中引起足够重视.课时作业一、填空题 1.由下列对象组成的集体属于集合的是____ ____(填序号).①不超过π的正整数;②高一数学课本中所有的难题;③中国的大城市;④平方后等于自身的数;⑤某校高一(2)班中考试成绩在500分以上的学生.2.下列四个说法中正确的个数是________.①集合N 中最小数为1;②若a ∈N ,则-a ∉N ;③若a ∈N ,b ∈N ,则a +b 的最小值为2;④所有小的正数组成一个集合.3.用“∈”或“∉”填空.(1)-3______N ;(2)3.14______Q ;(3)13______Z ; (4)-12______R ;(5)1______N *;(6)0________N . 4.集合A ={1,2,3,5},当x ∈A 时,若x -1∉A ,x +1∉A ,则称x 为A 的一个“孤立元素”,则A 中孤立元素的个数为________.5.已知x 、y 、z 为非零实数,代数式x |x |+y |y |+z |z |+|xyz |xyz的值所组成的集合是M ,则M 中元素的个数为________. 6.方程x 2-2x +1=0的解集中含有________个元素.7.已知集合S 的三个元素a 、b 、c 是△ABC 的三边长,那么△ABC (填“能”或“不能”)________为等腰三角形.二、解答题8.已知集合M ={-2,3x 2+3x -4,x 2+x -4},若2∈M ,求x .9.设P 、Q 为两个非空实数集合,P 中含有0,2,5三个元素,Q 中含有1,2,6三个元素,定义集合P +Q 中的元素是a +b ,其中a ∈P ,b ∈Q ,则P +Q 中元素的个数是多少?10.设A 为实数集,且满足条件:若a ∈A ,则11-a∈A (a ≠1). 求证:(1)若2∈A ,则A 中必还有另外两个元素;(2)集合A 不可能是单元素集.答案:集合的概念【例1】 考查下列每组对象能否构成一个集合:(1)著名的数学家;(2)某校2010年在校的所有高个子同学;(3)不超过20的非负数;(4)方程x 2-9=0在实数范围内的解;(5)直角坐标平面内第一象限的一些点; (6)3的近似值的全体.解 (1)“著名的数学家”无明确的标准,对于某个人是否“著名”无法客观地判断,因此“著名的数学家”不能构成一个集合;类似地,(2)也不能构成集合;(3)任给一个实数x ,可以明确地判断是不是“不超过20的非负数”,即“0≤x ≤20”与“x >20或x <0”,两者必居其一,且仅居其一,故“不超过20的非负数”能构成集合;类似地,(4)也能构成集合;(5)“一些点”无明确的标准,对于某个点是否在“一些点”中无法确定,因此“直角坐标平面内第一象限的一些点”不能构成集合;(6)“3的近似值”不明确精确到什么程度,因此很难判断一个数比如“2”是不是它的近似值,所以(6)不能构成集合.规律方法 判断指定的对象能不能构成集合,关键在于能否找到一个明确标准,对于任何一个对象,都能确定它是不是给定集合的元素,同时还要注意集合中元素的互异性、无序性.变式迁移1 下面有四个命题:(1)集合N 中最小的数是零;(2)0是自然数;(3){1,2,3}是不大于3的自然数组成的集合;(4)若a ∈N ,b ∈N ,则a +b 的最小值为2.其中正确的命题有________个.答案 2解析 因为集合N 中最小的数是零,故(1)(2)正确,(3)(4)错误.故正确的命题有2个.集合中元素的特性【例2】 已知集合A 是由a -2,2a 2+5a,12三个元素组成的,且-3∈A ,求a .分析 考查元素与集合的关系,体会分类讨论思想的应用.解 ∵-3∈A ,则-3=a -2或-3=2a 2+5a ,∴a =-1或a =-32.则当a =-1时,a -2=-3,2a 2+5a =-3,不符合集合中元素的互异性,故a =-1应舍去. 当a =-32时,a -2=-72,2a 2+5a =-3, ∴a =-32. 规律方法 对于解决集合中元素含有参数的问题一定要全面思考,特别关注元素在集合中的互异性.分类讨论的思想是中学数学中的一种重要的数学思想,我们一定要在以后的学习中熟练掌握.变式迁移2 已知集合A 是由0,m ,m 2-3m +2三个元素组成的集合,且2∈A ,求实数m 的值.解 ∵2∈A ,∴m =2或m 2-3m +2=2.若m =2,则m 2-3m +2=0,不符合集合中元素的互异性,舍去.若m 2-3m +2=2,求得m =0或3.m =0不合题意,舍去.经验证m =3符合题意,∴m 的值为3.元素与集合的关系【例3】 若所有形如3a +2b (a ∈Z ,b ∈Z )的数组成集合A ,判断6-22是不是集合A 中的元素.分析 解答本题首先要理解∈与∉的含义,然后要弄清所给集合是由一些怎样的数构成的,6-22能否化成此形式,进而去判断6-22是不是集合A 中的元素.解 因为在3a +2b (a ∈Z ,b ∈Z )中,令a =2,b =-2,即可得到6-22,所以6-22是集合A 中的元素.规律方法 判断一个元素是不是某个集合的元素,就是判断这个元素是否具有这个集合的元素的共同特征.像此类题,主要看能否将所给对象的表达式转化为集合中元素所具有的形式.变式迁移3 集合A 是由形如m +3n (m ∈Z ,n ∈Z )的数构成的,判断12-3是不是集合A 中的元素. 解 ∵12-3=2+3=2+3×1,而2,1∈Z , ∴2+3∈A , 即12-3∈A .1.充分利用集合中元素的三大特性是解决集合问题的基础.2.两集合中的元素相同则两集合就相同,与它们元素的排列顺序无关.3.解集合问题特别是涉及求字母的值或范围,把所得结果代入原题检验是不可缺少的步骤.特别是互异性,最易被忽视,必须在学习中引起足够重视.课时作业一、填空题1.由下列对象组成的集体属于集合的是________(填序号).①不超过π的正整数;②高一数学课本中所有的难题;③中国的大城市;④平方后等于自身的数;⑤某校高一(2)班中考试成绩在500分以上的学生.答案 ①④⑤2.下列四个说法中正确的个数是________.①集合N 中最小数为1;②若a ∈N ,则-a ∉N ;③若a ∈N ,b ∈N ,则a +b 的最小值为2;④所有小的正数组成一个集合.答案 03.用“∈”或“∉”填空.(1)-3______N ;(2)3.14______Q ;(3)13______Z ; (4)-12______R ;(5)1______N *;(6)0________N . 答案 (1) ∉ (2)∈ (3) ∉ (4)∈ (5)∈(6)∈4.集合A ={1,2,3,5},当x ∈A 时,若x -1∉A ,x +1∉A ,则称x 为A 的一个“孤立元素”,则A 中孤立元素的个数为________.答案 1解析当x=1时,x-1=0∉A,x+1=2∈A;当x=2时,x-1=1∈A,x+1=3∈A;当x=3时,x-1=2∈A,x+1=4∉A;当x=5时,x-1=4∉A,x+1=6∉A;综上可知,A中只有一个孤立元素5.5.已知x、y、z为非零实数,代数式x|x|+y|y|+z|z|+|xyz|xyz的值所组成的集合是M,则M中元素的个数为________.答案 3解析分类讨论:x、y、z中三个为正,两个为正,一个为正,全为负,此时代数式的值分别为4,0,0,-4,根据集合中元素的互异性知,M中的元素为4,0,-4.6.方程x2-2x+1=0的解集中含有________个元素.答案 17.已知集合S的三个元素a、b、c是△ABC的三边长,那么△ABC(填“能”或“不能”)________为等腰三角形.答案不能解析由元素的互异性知a,b,c均不相等.二、解答题8.已知集合M={-2,3x2+3x-4,x2+x-4},若2∈M,求x.解当3 x2+3x-4=2时,即x2+x-2=0,则x=-2或x=1.经检验,x=-2,x=1均不合题意.当x2+x-4=2时,即x2+x-6=0,则x=-3或2.经检验,x=-3或x=2均合题意.∴x=-3或x=2.9.设P、Q为两个非空实数集合,P中含有0,2,5三个元素,Q中含有1,2,6三个元素,定义集合P+Q中的元素是a+b,其中a∈P,b∈Q,则P+Q中元素的个数是多少?解∵当a=0时,b依次取1,2,6,得a+b的值分别为1,2,6;当a=2时,b依次取1,2,6,得a+b的值分别为3,4,8;当a=5时,b依次取1,2,6,得a+b的值分别为6,7,11.由集合元素的互异性知P+Q中元素为1,2,3,4,6,7,8,11共8个.10.设A为实数集,且满足条件:若a∈A,则11-a∈A (a≠1).求证:(1)若2∈A,则A中必还有另外两个元素;(2)集合A不可能是单元素集.证明(1)若a∈A,则11-a∈A.又∵2∈A,∴11-2=-1∈A.∵-1∈A,∴11-(-1)=12∈A.∵12∈A,∴11-12=2∈A.∴A中另外两个元素为-1,1 2.(2)若A为单元素集,则a=11-a,即a2-a+1=0,方程无解.∴a≠11-a,∴A不可能为单元素集.。
1.1集合的含义及其表示一.课标解读1.《普通高中数学课程标准》明确指出:“通过实例,了解集合的含义,体会元素与集合的”属于”关系;能选择自然语言.图形语言(列举法或描述法)描述不同的具体问题感受集合语言的意义和作用.”2.重点:集合的概念与表示方法.3.难点:运用集合的两种常用表示法---列举法与描述法,正确表示一些简单的集合.二.要点扫描1.集合的概念一般地,把一些能够确定的不同的对象看成一个整体,就说这个整体是由这些对象的全体构成的集合(或集);构成集合的每个对象叫做这个集合的元素(或成员)。
集合的元素可以是我们看到的、听到的、闻到的、触摸到的、想到的各种各样的事物或者一些抽象符号。
2.集合元素的特征由集合概念中的两个关键词“确定的”、“不同的”可以知道集合元素有两大特征性质:⑴确定性特征:集合中的元素必须是明确的,不允许出现模棱两可、无法断定的陈述。
设集合A 给定,若有一具体对象x ,则x 要么是A 的元素,要么不是A 的元素,二者必居 其一,且只居其一。
⑵互异性特征:集合中的元素必须是互不相同的。
设集合A 给定,A 的元素是指含于其中的互不相同的元素,相同的对象归于同一集合时只能算集合的一个元素。
3.集合与元素之间的关系集合与元素之间只有“属于)(∈”或“不属于)(∉”。
例如:a 是集合A 的元素,记作A a ∈,读作“a 属于A ”;a 不是集合A 的元素,记作A a ∉,读作“a 不属于A ”。
4.集合的分类集合按照元素个数可以分为有限集和无限集。
特殊地,不含任何元素的集合叫做空集,记作∅。
5.集合的表示方法⑴列举法是把元素不重复、不计顺序的一一列举出来的方法,非常直观,一目了然。
⑵特征性质描述法是用确定的条件描述集合内元素特点的集合表示方法。
例如:集合A 可以用它的特征性质)(x p 描述为{)(x p I x ∈},这表示在集合I 中,属于集合A 的任意一个元素x 都具有性质)(x p ,而不属于集合A 的元素都不具有性质)(x p 。
亲爱的同学们:从今天开始,我们将学习高中数学的第一节,希望大家认真听讲,做好笔记,认真完成作业。
预祝大家取得好成绩!——高一数学组全体教师1.1集合与集合的表示方法(教学案)2011年9月1日学习目标:1.弄清楚集合的概念。
理解什么是对象、元素(成员);2.理解元素与集合的关系;3.弄清楚集合中元素的三性;4.熟记常见数集及其符号表示;5.理解集合的两种表示方法。
学法指导:学法指导:自学课本第3页至第8页,完成以下自学检测:1.下列各组对象能组成集合的是( )A. 著名影星B. 我国的小河流C.淮阴中学2007级高一学生D. 高中数学的难题2.下列叙述错误的是( )A. }02|{2=-x x 表示方程022=-x 的解集B. {1∉小于10 的质数}C. 所有正偶数组成的集合表示为},2|{N n n x x ∈=D. 集合},,{c b a 与集合},,{b c a 表示相同的集合3.用符号“∈”或“∉”填空(1)3.14 Q ; ; 0 N(2)32 }11|{<x x ; 5 },1|{2N n n x x ∈+=(3))1,1(- }|),{(2x y y x =; )1,1(- }|{2x y y =(4)0 {0}; 0 φ; φ }{φ4.已知A=}2,{x x -是含两个元素的集合,则x 的取值集合用描述法表示为5.下列各集合:①},01|{2R x x x ∈=+;②},15|{Z x x x ∈<-;③⎭⎬⎫⎩⎨⎧∈∈Q x N x x,2; ④},,0|),{(22R y R x y x y x ∈∈=+中, 空集为 ;有限集为 ;无限集为 .6.已知},3,1{2x x ∈,试用适当的方法表示x 的集合.1.用列举法表示集合⎭⎬⎫⎩⎨⎧∈∈-N x N x x,362.已知},12|{},,2|{Z n n x x B Z n n x x A ∈+==∈==,},14|{Z n n x x C ∈+==,若B b A a ∈∈,,试分别指出b a +与集合A 、B 、C 的关系。
第一章集合与常用逻辑用语第1节集合的概念本课是本节的第一课,也是同学们刚进入高中阶段的第一课.常言道“良好的开端是成功的一半”.本课主要是让学生从已有的集合知识和实际生活中的例子入手,体会集合的含义.集合作为一种基本的数学语言,学习并掌握它的最好方法是使用.因此,教学中要多引导学生使用集合语言描述对象,进行自然语言与集合语言间的转换. 养成良好的数学习惯。
集合语言是现代数学的基本语言,可以简洁、准确、规范的表达数学内容.本节学习集合的一些基本知识,用最基本的集合语言表示有关数学对象和数学问题等,并能在自然语言、图形语言、集合语言之间进行转换,初步运用集合的观点和思想来分析数学,解决简单的数学问题.A.通过实例了解集合的含义,体会元素与集合的“属于”关系,能选择集合不同的语言形式描述具体的问题.B.了解集合元素的确定性、互异性、无序性,掌握常用数集及其专用符号,并能够用其解决有关问题.C.会用集合语言表示有关数学对象:描述法,列举法。
1.教学重点:集合的含义与表示方法,元素与集合的关系;2.教学难点:选择恰当的方法表示一些简单的集合。
多媒体2. 描述法思考:能否用列举法表示不等式 x -3<7的解集?该集合中的元素有什么性质?【解析】不能。
但是可以看出,这个集合中的元素满足性质: (1) 集合中的元素都小于10.(2) 集合中的元素都是实数. 这个集合可以通过描述其元素性质的方法来表示, 写作:{}10,.x x x <∈R思考:所有奇数的集合怎么表示?偶数的集合怎样表示? 有理数集怎么表示呢?奇数集、偶数集表示方法是否唯一?},12|{Z k k x Z x ∈+=∈,或{|21,}x Z x k k Z ∈=-∈ ;},2|{Z k k x Z x ∈=∈}0,,,|{≠∈=∈=p Z q p p qx R x Q问题:通过思考以上问题大家能总结归纳出描述法的概念吗?在大括号内先写上表示这个集合元素的一般符号及其取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征.这种用集合所含元素的共同特征表示集合的方法叫做描述法.如:)}(|{x p A x ∈或)}({x p A x :∈或)}({x p A x ;∈。
第一课时
1.1.1《集合的概念》
一、课题引入
阅读教材中的章头引言
二、概念形成与深化
1、集合的概念
(1)元素:把我们研究的 叫做元素,用 符号表示
(2)集合: ,用 符号表示
2、元素与集合的关系
(1)属于:记作:Aa___;(2)不属于:记作:Aa___;
用符号和填空。
⑴ 设集合A是正整数的集合,则0_______A,2________A,01 ______A;
⑵ 设集合B是小于11的所有实数的集合,则23______B,1+2______B;
⑶ 设A为所有亚洲国家组成的集合,则中国_____A,美国_____A,印度_____A,英国
____A
3、集合中元素的性质
“著名的数学家”、”年轻人”、“较小的有理数”能否分别构成一个集合,为什么?
集合中元素的性质(1) ;(2) ;(3)_____________.
1)判断下列说法是否正确,并说明理由。
⑴ 某个单位里的年轻人组成一个集合; ( )
⑵ 1,23,46,21,21这些数组成的集合有五个元素; ( )
⑶ 由a,b,c组成的集合与b,a,c组成的集合是同一个集合 ( )
2) 由22,25,12xxx三个实数构成一个集合,若3是集合中元素,则x .
4、常用数集及其表示方法
(1)自然数集: 的集合.记作 ;
(2)正整数集: 的集合.记作 ;
(3)整数集: 的集合.记作 ;
(4)有理数集: 的集合.记作 ;
(5)实数集: 的集合.记作 。
三、概念应用
例1 用符号“”或“”填空
(1)0______N, 5______N, 16______N(2)QQ_____,____21
5、集合的表示方法
1)、列举法:把集合中的元素______出来,写在______内表示集合的方法。
例如,由方程 的所有解组成的集合,可以表示为{-1,1}
例2. 用列举法表示下列集合:
⑴ 小于10的所有自然数组成的集合A;
⑵ 方程x2= x的所有实根组成的集合B;
⑶ 由1~20中的所有质数组成的集合C
注:(1)有些集合亦可如下表示:
从51到100的所有整数组成的集合:{51,52,53,„,100}
所有正奇数组成的集合:{1,3,5,7,„}
(2)a与{a}不同:a表示一个元素,{a}表示一个集合,该集合只有一个元素
。
2). 描述法:
用集合所含元素的______表示集合,并把这个条件写在______内表示集
合的方法。
格式:{x∈A| P(x)} 含义:在集合A中满足条件P(x)的x的集合。
例如,不等式 的解集可以表示为:或
问 与{Nx一样吗
例3 用列举法表示下列集合
(1)05AxNx (2)2560Bxxx
(3)
注:(1)在不致混淆的情况下,可以省去竖线及左边部分。
如:{直角三角形};{大于104的实数}
(2)错误表示法:{实数集};{全体实数}
3、文氏图:用一条封闭的曲线的内部来表示一个集合的方法。
例4. 用列举法和描述法表示下列集合。
1) 方程x2-4=0的所有实根组成的集合;
2)由大于10小于20的所有整数组成的集合
注:何时用列举法?何时用描述法?
(1) 有些集合的公共属性不明显,难以概括,不便用描述法表示,只能用列举
法。
如:集合
(2) 有些集合的元素不能无遗漏地一一列举出来,或者不便于、不需要一一列举
出来,常用描述法。
如:集合 ;集合{1000以内的质数}
注:集合
问题:以下集合
①}1|),{(2xyyx;②2{|1}xyx;③}1|{2xyy;④2{1}yx
是同一个集合吗?
四、课堂练习:教材第5页练习1、2
六、课后作业:习题1-1A、B
七、预习作业:子集与真子集的概念;集合与其特征性质之间的关系
高考中出现的题
1. (2008·江西高考)定义集合运算:A*B={z∣z = xy,xA,yB}。设A={1,
2},B={0,2},则集合A*B的所有元素之和为( )
A. 0 B. 2 C. 3 D. 6
2. 已知x2{1,0,x},求实数x的值
3、用列举法表示下列集合
①{x∈N|x是15的约数} ②{(x,y)|x∈{1,2},y∈{1,
2}}
③ ④
4、用描述法表示下列集合
① {2,4,6,8,10} ② y=x2+x的函数值y组成的集合
5 用列举法表示下列集合
⑴ A={x∣x≤2,xZ};⑵ B={ x∣21x2x= 0}
⑶ M={yx, x+ y= 4,xN*,yN*}.
6. ⑴ 已知集合M={ xN∣x16Z},求M;
⑵ 已知集合C={x16Z∣xN},求C.