当前位置:文档之家› 固体火箭发动机工作原理及应用前景浅析

固体火箭发动机工作原理及应用前景浅析

固体火箭发动机工作原理及应用前景浅析
固体火箭发动机工作原理及应用前景浅析

固体火箭发动机工作原理及应用前景浅析

摘要:本文主要介绍了固体火箭发动机的发展简史、基本结构和工作原理以及随着国民经济的日益发展,固体火箭发动机的应用前景。

关键词:火箭发动机工作原理应用

概述

火箭有着悠久的发展历史,早在公元九世纪中期人们便利用火药制成了火箭,并应用于军事。到了14~17世纪,火箭技术相继传入阿拉伯国家和欧洲,并对火箭的结构进行了改进,火箭技术得到进一步发展。19世纪早期,人们将火箭技术的研究从军事目的转向宇宙航行,从固体推进剂转向液体推进剂。到19世纪50年代,中、远程导弹和人造卫星的运载火箭,以及后来发展的各种航天飞船、登月飞行器和航天飞机,其主发动机均为液体火箭发动机,在这一时期,液体火箭推进技术得到了飞速发展。随着浇注成型复合推进剂的研制成功,现代固体火箭推进技术的发展也进入了一个新的时期。使固体火箭推进技术向大尺寸、长工作时间的方向迅速发展,大大提高了固体火箭推进技术的水平,并扩大了它的应用范围。

固体火箭发动机的基本结构

固体火箭发动机主要由固体火箭推进剂装药、燃烧室、喷管和点火装置等部件组成,如图一所示。

图一发动机结构图

1推进剂装药:包含燃烧剂、氧化剂和其他组分是固体火箭发动机的能源部份。装药必须有一定的几何形状和尺寸,其燃烧面的变化必须符合一定的规律,才能实现预期的推力变化要求。

2燃烧室:是贮存装药的容器,也是装药燃烧的工作室。因此不仅要有一定的容积,而且还需具有对高温、高压气体的承载能力。燃烧室材料大多采用高强度的金属材料,也有采用玻璃纤维缠绕加树脂成型的玻璃钢结构,可以大幅减轻燃烧室壳体的重量。

3 点火装置:用于点燃装药的装置。一般采用电点火,由电发火管和点火剂组成。

发动机工作过程和原理基本分析

发动机工作过程和原理基本分析 发动机是一种能量转换机构,它将燃料燃烧产生的热能转变成机械能。那么,它是怎样完成这个能量转换过程呢?也就是说它是怎样把热能转换成机械能的呢?要完成这个能量转换必须经过进气,把可燃混合气(或新鲜空气)引入气缸;然后将进入气缸的可燃混合气(或新鲜空气)压缩,压缩接近终点时点燃可燃混合气(或将柴油高压喷入气缸内形成可燃混合气并引燃);可燃混合气着火燃烧,膨胀推动活塞下行实现对外作功;最后排出燃烧后的废气。即进气、压缩、作功、排气四个过程。 把这四个过程叫做发动机的一个工作循环,工作循环不断地重复,就实现了能量转换,使发动机能够连续运转。把完成一个工作循环,曲轴转两圈(720°),活塞上下往复运动四次,称为四行程发动机。而把完成一个工作循环,曲轴转一圈(360°),活塞上下往复运动两次,称为二行程发动机。下面介绍一下四行程发动机的工作原理和工作过程。 一.四行程汽油机的工作原理 四行程汽油机的运转是按进气行程、压缩行程、作功行程和排气行程的顺序不断循环反复的。

(1) 进气行程(图1-22) 由于曲轴的旋转,活塞从上止点向下止点运动,这时排气门关闭,进气门打开。进气过程开始时,活塞位于上止点,气缸内残存有上一循环未排净的废气,因此,气缸内的压力稍高于大气压力。随着活塞下移,气缸内容积增大,压力减小,当压力低于大气压时,在气缸内产生真空吸力,空气经空气滤清器并与化油器供给的汽油混合成可燃混合气,通过进气门被吸入气缸,直至活塞向下运动到下止点。 在进气过程中,受空气滤清器、化油器、进气管道、进气门等阻力影响,进气终了时,气缸内气体压力略低于大气压,约为0.075~0.09MPa,同时受到残余废气和高温机件加热的影响,温

固体火箭发动机壳体用材料综述

固体火箭发动机壳体用材料综述 摘要:概述了国内外固体火箭发动机壳体用先进复合材料研究应用现状,同时对固体火箭发动机壳体的纤维缠绕成型工艺进行了阐述。 关键词:固体火箭发动机复合材料树脂基体纤维缠绕成型 1 固体火箭发动机简介 固体火箭发动机是当今各种导弹武器的主要动力装置,在航空航天领域也有相当广泛的应用。它的特点是结构简单,因而具有机动、可靠、易于维护等一系列优点,非常适合现代化战争和航天事业的需要。但固体火箭发动机部件在工作中要承受高温、高压和化学气氛下的各种复杂载荷作用,因此其材料通常具有极优异的性能,往往代表着当代材料科学的最先进水平。标志当代高性能固体发动机的主要特征是:“高能、轻质、可控”,这三者都是以先进材料为基础和支柱的,选用具有优良比强度和卓越耐热性能的先进复合材料已成为提高发动机性能的一项决定性因素。 2 固体火箭发动机壳体用材料 固体火箭发动机壳体既是推进剂贮箱又是燃烧室,同时还是火箭或导弹的弹体,因此,在进行发动机壳体材料设计时,应考虑如下几个基本原则[1]: a. 固体火箭发动机壳体就其工作方式来讲,是一个内压容器,所以壳体承受内压的能力是衡量其技术水平的首要指标; b. 发动机壳体是导弹整体结构的一部分,所以又要求壳体具有适当结构刚度; c. 作为航天产品,不仅要求结构强度高,而且要求材料密度小; d. 发动机点火工作时,壳体将受到来自内部燃气的加热,而壳体结构材料,尤其是壳体结构复合材料的强度对温度的敏感性较强,所以,在设计壳体结构材料时,不能仅限于其常温力学性能,而应充分考虑其在发动机工作过程中,可能遇到的温度范围内的全面性能。评价和鉴定壳体材料的性能水平,固然要以最终产品是否满足使用要求为原则,但从设计选材的角度来说,也应有衡量的指标和

“固体火箭发动机气体动力学”课程 学习指南

1.课程属性 火箭武器专业(即武器系统与工程专业的火箭弹方向)的专业课程体系包括固体火箭发动机气体动力学、固体火箭发动机原理、火箭弹构造与作用、火箭弹设计理论和火箭实验技术。“固体火箭发动机气体动力学”属于专业基础课,是该专业的先修课程。 2.为什么要学习固体火箭发动机气体动力学课程 固体火箭发动机的工作过程是由推进剂燃烧和燃气流动构成的,燃气流动既是燃烧的直接结果,也是固体火箭发动机产生推进动力所需要的。因此,燃气流动是“固体火箭发动机原理”的重要组成部分。 “固体火箭发动机原理”课程将固体火箭发动机内的流动处理成燃烧室内的零维流和喷管中的一维流,如果不学习本课程,一方面不易理解固体火箭发动机内的流动过程,对学好“固体火箭发动机原理”课程是不利的;另一方面,对毕业后继续深造的学生而言,缺乏必要的气体动力学知识,难以深入开展本学科领域的基础理论研究,而本科毕业后直接从事固体火箭研制工作的学生将难以利用先进的计算工具进行工程设计与性能分析,不能适应时代发展和技术进步的要求。通过“固体火箭发动机气体动力学”课程的学习,学生既可以结合固体火箭发动机中的燃气流动问题,系统了解和掌握气体动力学的基本理论和计算方法,构建起完备的专业知识结构,同时也为学好后修课程奠定了坚实的理论基础,提高解决固体火箭发动机设计、内弹道计算、性能分析等实际工程技术问题的能力。 3.“固体火箭发动机气体动力学”的知识结构 把握课程的知识结构是学好“固体火箭发动机气体动力学”的前提。本课程由三个知识模块组成,即气体动力学基础知识、固体火箭发动机中一维定常流动和激波、膨胀波与燃烧波。 (1)气体动力学模块(14学时) 该模块由教材的第一至第三章组成,是相对独立、自成系统的知识模块,目的是建立起基本的气体动力学系统知识,为学习第二个知识模块奠定必要的气体动力学理论基础。该模块的主要知识点为 ?课程背景 ?流体与气体,气体的输运性质,连续介质假设,热力学基本概念与基础知识:系统,环境,边界,状态,过程,功,热量,焓,比热 比,热力学第二定律,理想气体,等熵过程方程,气体动力学基本 概念:控制体,拉格朗日方法,欧拉方法,迹线,流线,作用在流 体上的外力,扰动 ?拉格朗日方法与欧拉方法的关系,连续方程,动量方程,能量方程,熵方程 ?流动定常假设,一维流动假设,一维定常流的控制方程组,伯努利方程,气流推力,声速,对数微分,马赫数,马赫锥,理想气体一 维定常流的控制方程组,滞止状态,滞止过程,滞止参数,动压, 气体可压缩性,临界状态,最大等熵膨胀状态,速度系数,气体动 力学函数 (2)固体火箭发动机中的一维定常流动模块(8学时) 该模块为教材的第四章,是气体动力学知识在固体火箭发动机中的具体应用,分别针对喷管、长尾管、燃烧室装药通道展开讲述,最后简要介绍多驱动势广义一维流动。本知识模块的目的是为学生学习固体火箭发动机原理奠定理论基

电喷发动机工作原理

电喷发动机工作原理 电喷发动机工作时,需要随时从各种传感器中获取数据,然后由行车电脑运算后,送到各执行部件进行调整来实现对发动机的控制的。简单的说分以下几种情况:(只对电喷型发动机)1. 着车:当你将钥匙转动到on位时,行车电脑开始对各传感器和执行器进行自检,并同时接通汽油泵继电器供油,这时如果车子里很静的话,你会听到在油箱里的电子油泵转动的声音,1-2秒左右后,当油压达到标准压力后,汽油泵停转。同时,电脑将向位于节气门处的怠速步进电机供电,使其进入正常位置。这时将钥匙转向start位置,接通启动继电器,启动机开始转动; 2. 怠速:启动机开始转动后,电脑开始读取位于发动机飞轮处的曲轴位置传感器和位于分电器中的同步传感器这两个传感器的读数,如果读数正常,且两信号数据变化与启动条件吻合,则电脑再根据当前的发动机冷却水温度,进气岐管空气温度数据调整怠速步进电机,将怠速调整杆调整到合适位置。一切就绪后,电脑开始根据曲轴位置传感器和同步传感器传来的信号计算出点火时机,并根据水温和气温传感器的数据计算出喷油咀开启时隙(脉冲),然后根据计算结果开始向高压包的低压线供电和向喷油咀线路供电,其中,向喷油咀供电是以脉冲方式进行的。根据以上原理,在冻天启动电喷车是不用加油门的,不然行车电脑还要将节气们开启度数据进行运算,会影响启动效果。点火成功后,行车电脑将时刻监视各传感器数据,并根据安装在发动机进气岐管上的进气岐管绝对压力传感器所传入的真空压力值,结合水温、进气温度等信号,调整怠速电机和喷油咀开启脉冲,将转速控制在最低的稳定转速下; 3. 加速:当你踩下油门时,电脑及时从节气门上的节气门位置传感器读到数值,并结合节气门上的进气岐管绝对压力(真空度)传感器和分动箱上(2021切诺基)的行车速度传感器共同算出车辆负荷信息,调整喷油咀喷油脉冲(实际上是延长喷油时间),加大喷油量,完成加速动作; 4. 减速:当你松开油门时,电脑如上面加速一样,根据各传感器信号,调整喷油脉冲实现减速,但此时为保证减速效果平稳,电脑会对喷油量

康明斯电喷发动机故障代码资料

注意:此翻译稿仅供参考,所有内容以英文原版公告AEB15.43为准。

第I节 - Quantum诊断 先进的诊断技术 先进的诊断技术可对Quantum发动机进行简单的维修和服务。故障或保养条件的诊断检验可通过机载或非机载系统进行。 机载诊断 ?ECM具有大范围检测故障的能力 ?闪烁故障代码 ?位于驾驶室仪表盘上的故障指示灯可指示警告/停机故障 ?保养指示灯 机载诊断 1. 故障检测 在设备自己工作期间,当钥匙开关处于ON位置时检测故障。如果此时故障变为现行故障(当前检测到),存储器中就会记录故障,同时记录发动机参数速录数据。另外根据现行故障的严重程度,特定的故障可能会使警告指示灯(黄色)或停机指示灯(红色)、保养指示灯或燃油含水(WIF)指示灯变亮。 2. 闪烁故障代码 可通过诊断开关或油门踏板进入故障代码闪烁模式。要进入故障代码闪烁模式,钥匙开关必须处于ON(接通)位置并且发动机停机。使用诊断开关进入该模式时,在诊断开关转到ON位置后,ECM将自动闪烁第一个故障代码。诊断增加/减少将向前或向后调整现行故障代码。要使用油门踏板进入故障代码闪烁模式,必须循环踩下和释放油门踏板,使油门开度连续3次从0到100%。一旦进入诊断模式,循环踩下和释放油门踏板可顺序向前达到现行故障代码。下图描述了通过停机指示灯指示的故障代码闪烁方式的类型。

3. 故障指示灯 Quantum 系统使用多达5个指示灯(每个指示灯具有两种功能):停机指示灯、警告指示灯、保养指示灯/发动机保护指示灯(所有发动机系列使用其中一个,而不是同时使用两个)、等待起动指示灯和燃油含水指示灯。如果钥匙开关转到ON 位置而诊断开关保持断开,这些指示灯将会亮约2秒钟然后熄灭,以证实指示灯正常工作和接线正确。参阅下面的插图,这些指示灯全部变亮然后每次熄灭一个。 警告指示灯 – 用于所有Quantum 发动机 - 警告指示灯提供重要的操作员信息。要求操作员及时注意这些信息。 警告指示灯还用于描述诊断故障代码。 停机指示灯 – 用于所有Quantum 发动机 - 停机指示灯提供紧急的操作员信息。这些信息要求操作者快速响应并采取正确措施。停机指示灯还用于闪烁诊断故障代码。 发动机保护指示灯 – 用于QSK19/45/60, QST30发动机 - 当存在发动机保护故障时,发动机保护指示灯将变亮。可通过OEM 配线配置系统,以便用红色/停机指示灯指示发动机保护故障。这是通过将红色指示灯连接至ECM 的红色/停机指示灯输入和发动机保护指示灯输入来实现的。如果发动机保护指示灯信号用于控制其它功能,如车辆驱动电路,该电路中必须接入一个二极管。 选装 - 2指示灯布置方案- 用于QSK19/45/60发动机 - 选装的2-灯布置方案将取消发动机保护(白色)指示灯。因此,操作员仪表盘上只有一个警告指示灯(黄色)和一个停机指示灯(红色)。所有通过发动机保护指示灯指示的故障将通过停机(红色)指示灯来指示。这种改进只会影响故障指示灯的线路布置,不会影响软件或标定程序。参阅下面的线路图。

电喷柴油机的工作原理教学教材

电喷柴油发动机的工作原理和使用方法 电喷柴油机的工作原理 高压共轨(Common Rail)电喷技术是指在高压油泵、压力传感器和电子控制单元(ECU)组成的闭环系统中,将喷射压力的产生和喷射过程彼此完全分开的一种供油方式。它是由高压油泵将高压燃油输送到公共供油管(Rail),通过公共供油管内的油压实现精确控制,使高压油管压力(Pressure)大小与发动机的转速无关,可以大幅度减小柴油机供油压力随发动机转速变化的程度. 共轨技术是指高压油泵、压力传感器和ECU组成的闭环系统 中,将喷射压力的产生和喷射过程彼此完全分开的一种供油方式,由高压油泵把高压燃油输送到公共供油管,通过对公共供油 管内的油压实现精确控制,使高压油管压力大小与发动机的转速无 Rail p^ewure sensor 屮轨 压 站 carm-qr HMMnl speed sansar p?aei (trpdl’t^rnaor 凸能IHt* i?kfk 力 High t>ressuc? pjmp CPN2 2 wdh 惟逼「irp up.* rAoin-+ilter rAoin-+ilter ffi KB S&nsors High \$屮£ limiter valw K I Low pnKQMie 带*樹泵的粋直春 E^ctrortic ewol wnii AduAt*^ MtrS Injector Tank with pre酬即 VMd sensor 祐出舸*槪専箪 利梓敢jt wnscu 驕?H■ 芍

关,可以大幅度减小柴油机供油压力随发动机转速的变化,因此也就减少了传统柴油机的缺陷。ECU空制喷油器的喷油量,喷油量大小取决于燃油轨(公共供油管)压力和电磁阀开启时间的长短。 高压共轨系统利用较大容积的共轨腔将油泵输出的高压燃油 蓄积起来,并消除燃油中的压力波动,然后再输送给每个喷油器,通过控制喷油器上的电磁阀实现喷射的开始和终止。 其主要特点可以概括如下: 共轨腔内的高压直接用于喷射,可以省去喷油器内的增压机构;而且共轨腔内是持续高压,高压油泵所需的驱动力矩比传统油泵小得多。 通过高压油泵上的压力调节电磁阀,可以根据发动机负荷状 况以及经济性和排放性的要求对共轨腔内的油压进行灵活调 节,尤其优化了发动机的低速性能。 通过喷油器上的电磁阀控制喷射定时,喷射油量以及喷射速率,还可以灵活调节不同工况下预喷射和后喷射的喷射油量以及与主喷射的间隔。 高压共轨系统由五个部分组成,即高压油泵、共轨腔及高压油管、喷油器、电控单元、各类传感器和执行器。供油泵从油箱将燃油泵入高压油泵的进油口,由发动机驱动的高压油泵将燃油

发动机的基本工作原理

发动机的基本工作原理 发动机(Engine)是一种能够把其它形式的能转化为机械能的机器,包括如内燃机(汽油发动机等)、外燃机(斯特林发动机、蒸汽机等)、电动机等。下面是收集的发动机的基本工作原理,欢迎阅读。 我们以单缸汽油发动机为例,讲解一下汽油机的工作原理。 气缸内装有活塞,活塞通过活塞销、连杆与曲轴相连接。活塞 在气缸内做往复运动,通过连杆推动曲轴转动。为了吸入新鲜气体和排出废气,设有进气门和排气门。 活塞顶离曲轴中心最远处,即活塞最高位置,称为上止点。活 塞顶部离曲轴中心最近处,即活塞最低位置,称为下止点。上、下止点间的距离称为活塞行程,曲轴与连杆下端的连接中心至曲轴中心的距离称为曲轴半径。活塞每走一个行程相应于曲轴转角180°。对于气缸中心线通过曲轴中心线的发动机,活塞行程等于曲柄半径的两倍。 活塞从上止点到下止点所扫过的容积称为发动机的工作容积或 发动机排量,用符号VL表示。 四冲程发动机的工作循环包括四个活塞行程,既进气行程、压 缩行程、膨胀行程(作功行程)和排气行程。 进气行程 化油器式汽油机将空气与燃料先在气缸外部的化油器中进行混合,然后再吸入气缸。进气行程中,进气门打开,排气门关闭。随着活塞从上止点向下止点移动,活塞上方的气缸容积增大,从而气缸内

的压力降低到大气压力以下,即在气缸内造成真空吸力。这样,可燃混合气便经进气管道和进气门被吸入气缸。 压缩行程 为使吸入气缸内可燃混合气能迅速燃烧,以产生较大的压力,从而使发动机发出较大功率,必须在燃烧前将可燃混合气压缩,使其容积缩小、密度加大、温度升高,即需要有压缩过程。在这个过程中,进、排气门全部关闭,曲轴推动活塞由下止点向上止点移动一个行程称为压缩行程。 压缩终了时,活塞到达上止点,活塞上方形成很小空间,称为燃烧室。压缩前气缸中气体的最大容积与压缩后的最小容积之比称为压缩比,以ε表示: 压缩比愈大,在压缩终了时混合气的压力和温度便愈高,,燃烧速度也愈快,因而发动机发出的功率愈大,经济性愈好。但压缩比过大时,不仅不能进一步改善燃烧情况,反而会出现爆燃和表面点火等不正常燃烧现象。爆燃是由于气体压力和温度过高,在燃烧室内离点燃中心较远处的末端可燃混合气自燃造成的一种不正常燃烧。爆燃时火焰以极高的速率向外传播,甚至在气体来不及膨胀的情况下,温度和压力急剧升高。同时,还会引起发动机过热,功率下降,燃油消耗量增加等一系列不良后果。表面点火是由于燃烧室内炽热表面与炽热处(如排气门头,火花塞电极,积炭处)点燃混合气产生的另一种不正常燃烧(也称为炽热点火或早燃)。表面点火发生时,也伴有强烈的敲击声(较沉闷),产生的高压会使发动机件负荷增加,寿命降低。

电喷发动机工作原理

电喷发动机工作原理 现在的电喷车在行驶过程中,当司机突然松开油门踏板(使节气门完全关闭)时,发动机不需要输出转矩,而是由汽车的动能拖动。这一工况被称为拖动工况或滑行工况。 在拖动工况为了减少废弃排放和降低燃油消耗以及改善行驶特性,电控系统中央控制器识别出发动机处于拖动工况后,首先立即推迟当时的点火角,然后全部切断向发动机喷油,这样可使工况的过度过程较为平稳。 当发动机转速超过规定转速界限(转速界限2)并且节气门关闭时,喷嘴将不再喷油,发动机的供油被切断;而发动机转速一旦低于下个转速界限(转速界限3),则喷嘴又重新开始喷油。如果在拖动工况出现发动机转速急剧下降,如在紧急刹车时,则喷嘴将在较高转速(转速界限1)恢复喷油,以防止低于发动机怠速转速或发动机完全熄火。 一、简介 电子燃油喷射控制系统(简称EFI或EGI系统),以一个电子控制装置(又称电脑或ECU)为控制中心,利用安装在发动机不同部位上的各种传感器,测得发动机的各种工作参数,按照在电脑中设定的控制程序,通过控制喷油器,精确地控制喷油量,使发动机在各种工况下都能获得最佳浓度的混合气。 此外,电子控制燃油喷射系统通过电脑中的控制程序,还能实现起动加浓、暖机加浓、加速加浓、全负荷加浓、减速调稀、强制断油、自动怠速控制等功能,满足发动机特殊工况对混合气的要求,使发动机获得良好的燃料经济性和排放性,也提高了汽车的使用性能。 电子控制燃油喷射系统的喷油压力是由电动燃油泵提供的,电动燃油泵装在油箱内,

浸在燃油中。油箱内的燃油被电动燃油泵吸出并加压,压力燃油经燃油滤清器滤去杂质后,被送至发动机上方的分配油管。分配油管与安装在各缸进气歧管上的喷油器相通。喷油器是一种电磁阀,由电脑控制。通电时电磁阀开启,压力燃油以雾状喷入进气歧管内,与空气混合,在进气行程中被吸进气缸。分配油管的末端装有燃油压力调节器,用来调整分配油管中燃油的压力,使燃油压力保持某一定值,多余的燃油从燃油压力调节器上的回油口返回燃油箱。 进气量由驾驶员通过加速踏板操纵节气门来控制。节气门开度不同,进气量也不同,进气歧管内的真空度也不同。在同一转速下,进气歧管真空度与进气量成一定的比例关系。进气管压力传感器可将进气歧管内真空度的变化转变成电信号的变化,并传送给电脑,电脑根据进气歧管真空度的大小计算出发动机进气量,再根据曲轴位置传感器测得信号计算出发动机转速。根据进气量和转速计算出相应的基本喷油量。电脑根据进气压力和发动机转速控制各缸喷油器,通过控制每次喷油的持续时间来控制喷油量。喷油持续时间愈长,喷油量就愈大。一般每次喷油的持续时间为2~10ms。各缸喷油器每次喷油的开始时刻则由电脑根据安装于离合器壳体上的发动机转速(曲轴位置)传感器测得某一位置信号来控制。这种类型的燃油喷射系统的每个喷油器在发动机每个工作循环中喷油两次,喷油是间断进行的,属于间歇喷射方式 二、电子燃油喷射控制的原理 (一)各种工况控制简介

固体燃料火箭发动机学习笔记

固体火箭发动机的基本结构:点火装置、燃烧室、装药、喷嘴构成。 固体火箭发动机的工作与空气无关 常见的推进剂有:1.双基推进剂(双基药) 2.复合推进剂(复合药) 3.复合改进双基推进剂(改进双基药)

直接装填! 形式: 自由装填:药柱直接放在燃料室 贴壁浇筑:把燃料直接和燃烧室粘贴在一起(液体发动机发射前现场加注推进剂)固体火箭一旦制造完成即处于待发状态 经过压身或浇注后形成的一定结构形式的装药我们叫他装药或者药柱 药柱的燃烧面积在燃烧过程中随时间变化必须满足一定的规律 完成特定任务所需要的。

装药面积的燃烧规律决定了发动机压强和推力面积的发展规律。 为了满足上述规律需要对装药的表面用阻燃层进行包裹,来控制燃烧面积变化规律。 药柱可以是:当根、多根,也可事实圆孔药,心孔药 燃烧室是一个高压容器! 装药燃烧的工作室。 燃烧时要求要求: 容积、对高温(2000-3000K)高压气体(十几到几十兆帕)的承载能力 与高温燃气直接接触的壳体表面需要采用适当的隔热措施

高温高压燃气的出口 作用: 1.控制燃气流出量保持燃烧室内足够压强。 2.使燃气加速膨胀,形成超声速气流,产生推动火箭前进的反作用推力。

部件作用:进行能量转化 工艺特点: 形状:先收拢后扩张的拉瓦尔喷灌,由收敛段、头部、扩张段、 中小型火箭,锥形喷管(节省成本和时间) 工作时间长、推力大、质量流速大采用高速推进剂的大型火箭采用特制喷管(收敛段和和直线段的母线可能不是直线可能是抛物线双圆弧)仔细设计型面,提高效率 作用:使燃气的流动能够从亚声速加速到超声速流 喉部环境十分恶略,烧蚀沉积现象影响性能(改变喉部尺寸改变性能)。

汽车发动机的工作原理和各部件作用

汽车发动机的工作原理和各部件作用 汽车, 原理, 发动机 发动机,又称为引擎,是一种能够把一种形式的能转化为另一种更有用的能的机器,通常是把化学能转化为机械能。(把电能转化为机器能的称谓电动机)有时它既适用于动力发生装置,也可指包括动力装置的整个机器.比如汽油发动机,航空发动机. 基本理论 汽油发动机将汽油的能量转化为动能来驱动汽车,最简单的办法是通过在发动机内部燃烧汽油来获得动能。因此,汽车发动机是内燃机----燃烧在发动机内部发生。 有两点需注意: 1.内燃机也有其他种类,比如柴油机,燃气轮机,各有各的优点和缺点。 2.同样也有外燃机。在早期的火车和轮船上用的蒸汽机就是典型的外燃机。燃料(煤、木头、油)在发动机外部燃烧产生蒸气,然后蒸气进入发动机内部来产生动力。内燃机的效率比外燃机高不少,也比相同动力的外燃机小很多。所以,现代汽 车不用蒸汽机。 相比之下,内燃机比外燃机的效率高,比燃气轮机的价格便宜,比电动汽车容易添加燃料。这些优点使得大部分现代汽车都使用往复式的内燃机。 结构 机体是构成发动机的骨架,是发动机各机构和各系统的安装基础,其内、外安装着发动机的所有主要零件和附件,承受各种载荷。因此,机体必须要有足够的强度和刚度。机体组主要由气缸体、曲轴箱、气缸盖和气缸垫等零件组成。 一. 气缸体 水冷发动机的气缸体和上曲轴箱常铸成一体,称为气缸体——曲轴箱,也可称为气缸体。气缸体一般用灰铸铁铸成,气缸体上部的圆柱形空腔称为气缸,下半部为支承曲轴的曲轴箱,其内腔为曲轴运动的空间。在气缸体内部铸有许多加强筋,冷却 水套和润滑油道等。 气缸体应具有足够的强度和刚度,根据气缸体与油底壳安装平面的位置不同,通常 把气缸体分为以下三种形式。

发动机电喷系统的工作原理

发动机电喷系统的工作原理 现在的电喷车在行驶过程中,当司机突然松开油门踏板(使节气门完全关闭)时,发动机不需要输出转矩,而是由汽车的动能拖动。这一工况被称为拖动工况或滑行工况。 在拖动工况为了减少废弃排放和降低燃油消耗以及改善行驶特性,电控系统中央控制器识别出发动机处于拖动工况后,首先立即推迟当时的点火角,然后全部切断向发动机喷油,这样可使工况的过度过程较为平稳。 当发动机转速超过规定转速界限(转速界限2)并且节气门关闭时,喷嘴将不再喷油,发动机的供油被切断;而发动机转速一旦低于下个转速界限(转速界限3),则喷嘴又重新开始喷油。如果在拖动工况出现发动机转速急剧下降,如在紧急刹车时,则喷嘴将在较高转速(转速界限1)恢复喷油,以防止低于发动机怠速转速或发动机完全熄火。 一、简介 电子燃油喷射控制系统(简称EFI或EGI系统),以一个电子控制装置(又称电脑或ECU)为控制中心,利用安装在发动机不同部位上的各种传感器,测得发动机的各种工作参数,按照在电脑中设定的控制程序,通过控制喷油器,精确地控制喷油量,使发动机在各种工况下都能获得最佳浓度的混合气。 此外,电子控制燃油喷射系统通过电脑中的控制程序,还能实现起动加浓、暖机加浓、加速加浓、全负荷加浓、减速调稀、强制断油、自动怠速控制等功能,满足发动机特殊工况对混合气的要求,使发动机获得良好的燃料经济性和排放性,也提高了汽车的使用性能。 电子控制燃油喷射系统的喷油压力是由电动燃油泵提供的,电动燃油泵装在油箱,浸在燃油中。油箱的燃油被电动燃油泵吸出并加压,压力燃油经燃油滤清器滤去杂质后,被送至发动机上方的分配油管。分配油管与安装在各缸进气歧管上的喷油器相通。喷油器是一种电磁阀,由电脑控制。通电时电磁阀开启,压力燃油以雾状喷入进气歧管,与空气混合,在进气行程中被吸进气缸。分配油管的末端装有燃油压力调节器,用来调整分配油管中燃油的压力,使燃油压力保持某一定值,多余的燃油从燃油压力调节器上的回油口返回燃油箱。 进气量由驾驶员通过加速踏板操纵节气门来控制。节气门开度不同,进气量也不同,进气歧管的真空度也不同。在同一转速下,进气歧管真空度与进气量成一定的比例关系。进气管压力传感器可将进气歧管真空度的变化转变成电信号的变化,并传送给电脑,电脑根据进气歧管真空度的大小计算出发动机进气量,再根据曲轴位置传感器测得信号计算出发动机转速。根据进气量和转速计算出相应的基本喷油量。电脑根据进气压力和发动机转速控制各缸

康明斯电喷发动机故障代码

注意:此翻译稿仅供参考,所有内容以英文原版公告为准。

第I节 - Quantum诊断 先进的诊断技术 先进的诊断技术可对Quantum发动机进行简单的维修和服务。故障或保养条件的诊断检验可通过机载或非机载系统进行。 机载诊断 ECM具有大范围检测故障的能力 闪烁故障代码 位于驾驶室仪表盘上的故障指示灯可指示警告/停机故障 保养指示灯 机载诊断 1.故障检测 在设备自己工作期间,当钥匙开关处于ON位置时检测故障。如果此时故障变为现行故障(当前检测到),存储器中就会记录故障,同时记录发动机参数速录数据。另外根据现行故障的严重程度,特定的故障可能会使警告指示灯(黄色)或停机指示灯(红色)、保养指示灯或燃油含水(WIF)指示灯变亮。 2.闪烁故障代码 可通过诊断开关或油门踏板进入故障代码闪烁模式。要进入故障代码闪烁模式,钥匙开关必须处于ON(接通)位置并且发动机停机。使用诊断开关进入该模式时,在诊断开关转到ON位置后,ECM将自动闪烁第一个故障代码。诊断增加/减少将向前或向后调整现行故障代码。要使用油门踏板进入故障代码闪烁模式,必须循环踩下和释放油门踏板,使油门开度连续3次从0到100%。一旦进入诊断模式,循环踩下和释放油门踏板可顺序向前达到现行故障代码。下图描述了通过停机指示灯指示的故障代码闪烁方式的类型。

3. 故障指示灯 Quantum 系统使用多达5个指示灯(每个指示灯具有两种功能):停机指示灯、警告指示灯、保养指示灯/发动机保护指示灯(所有发动机系列使用其中一个,而不是同时使用两个)、等待起动指示灯和燃油含水指示灯。如果钥匙开关转到ON 位置而诊断开关保持断开,这些指示灯将会亮约2秒钟然后熄灭,以证实指示灯正常工作和接线正确。参阅下面的插图,这些指示灯全部变亮然后每次熄灭一个。 警告指示灯 – 用于所有Quantum 发动机 - 警告指示灯提供重要的操作员信息。要求操作员及时注意这些信息。 警告指示灯还用于描述诊断故障代码。 停机指示灯 – 用于所有Quantum 发动机 - 停机指示灯提供紧急的操作员信息。这些信息要求操作者快速响应并采取正确措施。停机指示灯还用于闪烁诊断故障代码。 发动机保护指示灯 – 用于QSK19/45/60, QST30发动机 - 当存在发动机保护故障时,发动机保护指示灯将变亮。可通过OEM 配线配置系统,以便用红色/停机指示灯指示发动机保护故障。这是通过将红色指示灯连接至ECM 的红色/停机指示灯输入和发动机保护指示灯输入来实现的。如果发动机保护指示灯信号用于控制其它功能,如车辆驱动电路,该电路中必须接入一个二极管。 选装 - 2指示灯布置方案- 用于QSK19/45/60发动机 - 选装的2-灯布置方案将取消发动机保护(白色)指示灯。因此,操作员仪表盘上只有一个警告指示灯(黄色)和一个停机指示灯(红色)。所有通过发动机保护指示灯指示的故障将通过停机(红色)指示灯来指示。这种改进只会影响故障指示灯的线路布置,不会影响软件或标定程序。参阅下面的线路图。

汽车构造发动机原理试卷及标准答案

发动机构造试卷 考号姓名专业 1.EQ6100――1型汽油机 2.压缩比 3.发动机的工作循环 4.活塞环端隙 5.轴瓦的自由弹势 6.干式缸套 7.气门重叠角 8.配气相位 9.空燃比 10.发动机怠速 11.多点喷射 12.压力润滑 13.冷却水大循环 14.废气涡轮增压 二、选择(12×1=12分) 1.汽车用发动机一般按(C )来分类。 A.排量B.气门数目C.所用燃料D.活塞的行程 2.气缸工作容积是指(C )的容积。 A.活塞运行到下止点活塞上方B.活塞运行到上止点活塞上方C.活塞上、下止点之间D.进气门从开到关所进空气 3.湿式缸套上平面比缸体上平面( A ) A.高B.低C.一样高D.依具体车型而定,有的高有的低。 4.为了限制曲轴轴向移动,通常在曲轴采用( A )方式定位。 A.在曲轴的前端加止推片B.在曲轴的前端和后端加止推片C.在曲轴的前端和中部加止推片D.在曲轴的中部和后端加止推片 5.液力挺柱在发动机温度升高后,挺柱有效长度( B )。 A.变长B.变短C.保持不变D.依机型而定,可能变长也可能变短。 6.排气门在活塞位于( B )开启。 A.作功行程之前B.作功行程将要结束时C.进气行程开始前D.进气行程开始后 7.发动机在冷启动时需要供给( A )混合气。 A.极浓B.极稀C.经济混合气D.功率混合气 8.在电喷发动机的供油系统中,油压调节器的作用是( C )。 A.控制燃油压力衡压B.在节气门开度大时燃油压力变小C.燃油压力与进气管压力之差保持恒定D.进气管压力大时燃油压力小 9.在柴油机燃料供给系中,喷油压力的大小取决于( D )。 A.发动机的转速B.节气门开度的大小C.喷油泵的柱塞行程D.喷油器弹簧的预紧力 共2页第1页 10.当节温器失效后冷却系( A )。 A.冷却系只有小循环B.冷却系只有大循环C.冷却系既有大循环又有小循环D.电控风扇停转11.转子式机油细滤清器( B )。 A.依靠曲轴前端的皮带轮驱动运转B.依靠机油压力驱动其运转C.依靠蓄电池的电力驱动其运转D.依靠压缩空气驱动其运转 12.电喷发动机的在怠速时( A )。 A.节气门全关B.节气门全开C.节气门微开D.阻风门全关

发动机的组成及工作原理

发动机的组成及工作原理 一、组成: 总的来说,目前发动机由两大机构、五大系统组成 1、曲柄连杆机构 曲柄连杆机构是发动机实现工作循环,完成能量转换的主要运动零件。它由机体组、活塞连杆组和曲轴飞轮组等组成。 2、配气机构 配气机构的功用是根据发动机的工作顺序和工作过程,定时开启和关闭进气门和排气门,使可燃混合气或空气进入气缸,并使废气从气缸内排出,实现换气过程。进、排气门的开闭由凸轮轴控制。凸轮轴由曲轴通过齿形带或齿轮或链条驱动。进、排气门和凸轮轴以及其他一些零件共同组成配气机构 3、燃料供给系 汽油机燃料供给系的功用是根据发动机的要求,配制出一定数量和浓度的混合气,供入气缸,并将燃烧后的废气从气缸内排出到大气中去; 4、润滑系 润滑系的功用是向作相对运动的零件表面输送定量的清洁润滑油,以实现液体摩擦,减小摩擦阻力,减轻机件的磨损。并对零件表面进行清洗和冷却。润滑系通常由润滑油道、机油泵、机油滤清器和一些阀门等组成。 5、冷却系 冷却系的功用是将受热零件吸收的部分热量及时散发出去,保证发动机在最适宜的温度状态下工作。水冷发动机的冷却系通常由冷却水套、水泵、风扇、水箱、节温器等组成。 6、点火系 在汽油机中,气缸内的可燃混合气是靠电火花点燃的,为此在汽油机的气缸盖上装有火花塞,火花塞头部伸入燃烧室内。能够按时在火花塞电极间产生电火花的全部设备称为点火系,点火系通常由蓄电池、发电机、分电器、点火线圈和火花塞等组成。 火花塞有一个中心电极和一个侧电极,两电极之间是绝缘的。当在火花塞两电极间加上直流电压并且电压升高到一定值时,火花塞两电极之间的间隙就会被击穿而产生电火花,能够在火花塞两电极间产生电火花所需要的最低电压称为击穿电压;能够在火花塞两电极间产生电火花的全部设备称为发动机点火系。 7、起动系 理解这个并不难,要使发动机由静止状态过渡到工作状态,必须先用外力转动发动机的曲轴,使活塞作往复运动,气缸内的可燃混合气燃烧膨胀作功,推动

电喷发动机空气供给系统的组成和工作原理简介

电喷发动机空气供给系统的组成和工作原理简介 ?作者:admin ?来源:本站原创 ?时间:2008-04-04 ?浏览: 内容简介:L型为进气管道设有空气流量计的电控系统,称为流量检测型。D型为没有空气流量计,而设有进气压力传感器,电脑依进气管压力来计算发动机负荷,称为压力检测型。而现代汽车电控系统广泛使用空气流量计,为了提高控制精度,个别车同是装有空气流量计和进气压力传感器 相关推荐阅读 ?上篇文章 ?造成发动机控制电脑ECU多次损坏故障实例 电喷发动机空气供给组成部件介绍

电喷发动机空气供给系统的部件图 (1)空气滤清器:过滤空气中的杂质; (2)空气流量计:检测发动机的进气量,反馈给电脑,是主脑控制喷油量的主要信号; (3)进气温度传感器:检测发动机的进气温度,作为喷油量的修正信号; (4)节气门体:安装有节气门、节节气门位置传感器及怠速控制阀等;其中节气门位置传感器检测节气门的开度信号反馈给电脑; (5)进气压力传感器:检测进气管的的压力,因为进气管的压力反映了发动机的负荷,电脑依进气压力传感器信号计算发动机的负荷。 空气供给系统的类别注意: 1 关于D型和L型电控系统:

进气压力传感器 L型为进气管道设有空气流量计的电控系统,称为流量检测型。D型为没有空气流量计,而设有进气压力传感器,电脑依进气管压力来计算发动机负荷,称为压力检测型。 空气流量计图 注:现代汽车电控系统广泛使用空气流量计,为了提高控制精度,个别车同是装有空气流量计和进气压力传感器,如别克 关于怠速控制方式:

旁通气道式怠速控制阀 1 旁通气道式:怠速时,节气门全关,ECU通过怠速控制阀控制旁通气道的通气量实现对怠速的控制。常见的怠速控制阀有步进电机式、旋转阀式和直动电磁阀式;

固体火箭发动机工作原理及应用前景浅析

固体火箭发动机工作原理及应用前景浅析 摘要:本文主要介绍了固体火箭发动机的发展简史、基本结构和工作原理以及随着国民经济的日益发展,固体火箭发动机的应用前景。 关键词:火箭发动机工作原理应用 概述 火箭有着悠久的发展历史,早在公元九世纪中期人们便利用火药制成了火箭,并应用于军事。到了14~17世纪,火箭技术相继传入阿拉伯国家和欧洲,并对火箭的结构进行了改进,火箭技术得到进一步发展。19世纪早期,人们将火箭技术的研究从军事目的转向宇宙航行,从固体推进剂转向液体推进剂。到19世纪50年代,中、远程导弹和人造卫星的运载火箭,以及后来发展的各种航天飞船、登月飞行器和航天飞机,其主发动机均为液体火箭发动机,在这一时期,液体火箭推进技术得到了飞速发展。随着浇注成型复合推进剂的研制成功,现代固体火箭推进技术的发展也进入了一个新的时期。使固体火箭推进技术向大尺寸、长工作时间的方向迅速发展,大大提高了固体火箭推进技术的水平,并扩大了它的应用范围。 固体火箭发动机的基本结构 固体火箭发动机主要由固体火箭推进剂装药、燃烧室、喷管和点火装置等部件组成,如图一所示。 图一发动机结构图 1推进剂装药:包含燃烧剂、氧化剂和其他组分是固体火箭发动机的能源部份。装药必须有一定的几何形状和尺寸,其燃烧面的变化必须符合一定的规律,才能实现预期的推力变化要求。 2燃烧室:是贮存装药的容器,也是装药燃烧的工作室。因此不仅要有一定的容积,而且还需具有对高温、高压气体的承载能力。燃烧室材料大多采用高强度的金属材料,也有采用玻璃纤维缠绕加树脂成型的玻璃钢结构,可以大幅减轻燃烧室壳体的重量。 3 点火装置:用于点燃装药的装置。一般采用电点火,由电发火管和点火剂组成。

电喷发动机工作原理及常见故障概述

电喷发动机是采用电子控制装置,取代传统地机械系统(如化油器)来控制发动机地供油过程.如汽油机电喷系统就是通过各种传感器将发动机地温度、空燃比油门状况、发动机地转速、负荷、曲轴位置、车辆行驶状况等信号输入电子控制装置,电子控制装置根据这些信号参数.计算并控制发动机各气缸所需要地喷油量和喷油时刻,将汽油在一定压力下通过喷油器喷入到进入气管中雾化.并与进入地空气气流混合,进入燃烧室燃烧.从而确保发动机和催化转化器始终工作在最佳状态.这种由电子系统控制将燃料由喷油器喷入发动机进气系统中地发动机称为电喷发动机. 电喷发动机按喷油器数量可分为多点喷射和单点喷射.发动机每一个气缸有一个喷油嘴,英文缩写为,称多点喷射.发动机几个气缸共用一个喷油嘴,英文缩写,称单点喷射.文档来自于网络搜索 故障诊断及排除 电喷发动机怠速不稳故障诊断及排除 发动机怠速不稳是汽车使用中常见地故障之一.尽管现在大多数地轿车都有故障自诊断系统,但也会出现汽车有故障面自诊断系统却显示正常代码或显示与故障无关地代码地情况.这通常是由不受电控单元()直接控制地执行装置发生故障或传统机械故障成.下面列举在此情况下常兄地故障原因及它们地诊断与排除方法.文档来自于网络搜索 、怠速开关不闭合 故障分析:怠速触点断开,便判定发动机处于部分负荷状态.此时根据空气流量计和曲轴转速信号确定喷油量.面此时发动机却是在怠速工况下工作,进气量较少,造成混合气过浓,转速上升.当收到氧传感器反馈地“混合气过浓”信号时,减少喷油量,增加怠速控制阀地开度,又造成混合气过稀.使转速下降.当收到氧传感器反馈地“混合气过稀”信号时,又增加喷油量,减小怠速控制阀地开度,又造成混合气过浓,使转速上升.如此反复使发动机怠速不稳,在怠速工况时开空调,打方向盘,开前照灯会增加发动机地负荷.为了防止发动机因负荷增大而熄火.会增人喷油量来维持发动机地平稳运转.怠速触点断开,认为发动机不是处于怠速工况,就小会增大喷油量,因而转速没有提升.文档来自于网络搜索 诊断方法:怠速时打开空调,打方向盘.发动机转速不升高,可证明是此故障. 故障排除:对节气门位置传感器进行调整、修复或更换. 、怠速控制阀()故障 故障分析:电喷发动机地正确怠速足通过电控怠速控制阀来保证地.根据发动机转速、温度、节气门开关及空调等信号,红过运算对怠速控制阀进行调节.当怠速转速低于设定转速值时,电脑指令怠速控制阀打开进气旁通道或直接或直接加大节气门地开度,使进气量增加,以提高发动机怠速.当怠速转速高于设定转速值时,电脑便指令怠速控制阀关小进飞旁通道,使进气最减小,降低发动机转速.由于油污、积炭造成怠速控制阀动作滞涩或卡死,节气门关闭不到位等原因,使无法对发动机进行正确地怠速调节,造成怠速转速不稳.文档来自于网络搜索 诊断方法:检查怠速控制阀地作动声音,若无作动声即怠速控制阀出现故障. 故障排除:清洗或业换怠速控制阀,并用专用解码器对怠速转速进行基本设定. 、进气管路漏气 故障分析:由发动机地怠速稳定控制原理可知,在正常情况下,怠速控制阀地开度与进气量严格遵循某种函数关系,即怠速控制阀开度增大,进气量相应增加.进气管路漏气,进气量与怠速控制阀地开度将不严格遵循原函数关系,即进飞量随怠速控制阀地变化有突变现象,空气流量计此无法测出真实地进气量,造成对进气量控制不准确,导致发动机怠速不稳.文档来自于网络搜索 诊断方法:若听见进气管有泄漏地嗤嗤声,则证明进气系统漏气.

电喷发动机工作原理及常见故障

电喷发动机工作原理及常见故障 概述 电喷发动机是采用电子控制装置,取代传统的机械系统(如化油器)来控制发动机的供油过程。如汽油机电喷系统就是通过各种传感器将发动机的温度、空燃比油门状况、发动机的转速、负荷、曲轴位置、车辆行驶状况等信号输入电子控制装置,电子控制装置根据这些信号参数.计算并控制发动机各气缸所需要的喷油量和喷油时刻,将汽油在一定压力下通过喷油器喷入到进入气管中雾化。并与进入的空气气流混合,进入燃烧室燃烧.从而确保发动机和催化转化器始终工作在最佳状态。这种由电子系统控制将燃料由喷油器喷入发动机进气系统中的发动机称为电喷发动机。 电喷发动机按喷油器数量可分为多点喷射和单点喷射。发动机每一个气缸有一个喷油嘴,英文缩写为MPI,称多点喷射。发动机几个气缸共用一个喷油嘴,英文缩写SPl,称单点喷射。 故障诊断及排除 电喷发动机怠速不稳故障诊断及排除 发动机怠速不稳是汽车使用中常见的故障之一。尽管现在大多数的轿车都有故障自诊断系统,但也会出现汽车有故障面自诊断系统却显示正常代码或显示与故障无关的代码的情况。这通常是由不受电控单元(ECU)直接控制的执行装置发生故障或传统机械故障成。下面列举在此情况下常兄的故障原因及它们的诊断与排除方法。 1、怠速开关不闭合 故障分析:怠速触点断开,ECU便判定发动机处于部分负荷状态。此时ECU根据空气流量计和曲轴转速信号确定喷油量。面此时发动机却是在怠速工况下工作,进气量较少,造成混合气过浓,转速上升。当ECU收到氧传感器反馈的“混合气过浓”信号时,减少喷油量,增加怠速控制阀的开度,又造成混合气过稀。使转速下降。当ECU收到氧传感器反馈的“混合气过稀”信号时,又增加喷油量,减小怠速控制阀的开度,又造成混合气过浓,使转速上升。如此反复使发动机怠速不稳,在怠速工况时开空调,打方向盘,开前照灯会增加发动机的负荷。为了防止发动机因负荷增大而熄火.ECU会增人喷油量来维持发动机的平稳运转。怠速触点断开,ECU认为发动机不是处于怠速工况,就小会增大喷油量,因而转速没有提升。 诊断方法:怠速时打开空调,打方向盘.发动机转速不升高,可证明是此故障。 故障排除:对节气门位置传感器进行调整、修复或更换。 2、怠速控制阀(ISC)故障 故障分析:电喷发动机的正确怠速足通过电控怠速控制阀来保证的。ECU根据发动机转速、温度、节气门开关及空调等信号,红过运算对怠速控制阀进行调节。当怠速转速低于设定转速值时,电脑指令怠速控制阀打开进气旁通道或直接或直接加大节气门的开度,使进气量增加,以提高发动机怠速。当怠速转速高于设定转速值时,电脑便指令怠速控制阀关小进飞旁通道,使进气最减小,降低发动机转速。由于油污、积炭造成怠速控制阀动作滞涩或卡死,

相关主题
文本预览
相关文档 最新文档