PECVD氮化硅
- 格式:ppt
- 大小:357.00 KB
- 文档页数:40
PECVD 在多晶硅上沉积氮化硅膜的研究2011-05-24 16:34:49 来源:光伏太阳能网氮化硅薄膜作为一种新型的太阳电池减反射膜已被工业界认识和应用。
应用PECVD(等离子体增强化学气相沉积) 系统, 以硅烷、氨气和氮气为气源在多晶硅片上制备了具有减反射作用的氮化硅薄膜。
并研究了在沉积过程中, 衬底温度、硅烷与氨气的流比以及射频功率对薄膜质量的影响。
由于氮化硅膜具有良好的绝缘性、致密性、稳定性和对杂质离子的掩蔽能力, 氮化硅薄膜作为多晶硅太阳电池的减反射膜, 可显著地提高电池的转换效率, 还可使生产成本降低。
PECVD 法沉积氮化硅薄膜, 沉积温度低、沉积速度快、薄膜质量好、工艺简单、易于工人掌握操作技术。
由化学法和PECVD 法制成的氮化硅薄膜的折射率一般可达2.0 左右, 接近太阳电池所要求的最佳折射率(2.35) , 最为符合太阳电池反射层的要求。
一、实验PECVD 氮化硅使用SY2型射频电源等离子台来制备。
高频信号发生的频率是13. 56 MHz 。
所用气体为高纯氨(99. 999 %) 和高纯氮气、高纯硅烷,实验时气体直接通入炉内, 主要反应气体是高纯氨和高纯硅烷, 氮气主要用来调节系统的真空度和稀释尾气中的硅烷。
本实验所用沉积炉为不锈钢体结构, 其炉膛有效容积为0115m3 , 氮化硅薄膜的折射率是用TP-77 型椭偏仪测量。
太阳电池的减反射膜,其折射率和厚度要满足ndn =λ/4 关系式, 即折射率为2. 35 附近为好。
因此从生产的角度有必要对膜的特性与工艺参数之间的关系进行研究。
二、结果与讨论1、流比的影响从氮化硅(Si3N4) 分子式可知, SiH4/NH3= (3×32)/(4 ×17) = 1.4 为理想的质量比, 理想的流比为(1. 4 ×01599) / 0. 719 = 1. 16。
而在实际当中,硅烷的价格是较昂贵的, 因此在生产过程中, 廉价的氨气适当过量以达到硅烷的较大利用率, 而以总体的成本最低, 经济效益最高为目的。
PECVD氮化硅薄膜性质及工艺研究1. 引言1.1 研究背景PECVD氮化硅薄膜是一种在微电子领域广泛应用的材料,具有优异的绝缘性能和稳定的化学性质。
随着微电子器件的不断发展,对PECVD氮化硅薄膜的性能要求也越来越高。
目前,人们对氮化硅薄膜的制备工艺、性质分析、表面形貌研究以及应用前景进行了深入探讨,但仍有许多问题有待解决。
传统的PECVD氮化硅薄膜的制备工艺存在着很多缺陷,如膜的致密性不足、氢气残留量较高等,限制了其在微电子器件中的应用。
研究优化PECVD氮化硅薄膜的制备工艺,提高膜的质量和稳定性,具有重要意义。
随着半导体器件尺寸的不断缩小,对氮化硅薄膜表面形貌的要求也越来越严格。
如何通过PECVD技术获得具有良好表面形貌的氮化硅薄膜,是当前研究的重点之一。
对PECVD氮化硅薄膜的制备工艺、性质分析、表面形貌研究以及应用前景进行深入探讨,对进一步推动微电子器件的发展具有重要意义。
1.2 研究意义通过深入研究PECVD氮化硅薄膜的制备工艺和性质分析,可以为提高氮化硅薄膜的质量和稳定性提供理论基础和实验依据。
探究PECVD氮化硅薄膜的表面形貌以及优化其工艺参数,有助于提高薄膜的光学、电学性能,从而拓展其在微电子领域的应用范围。
本研究将为氮化硅薄膜的生产和应用提供新的思路和方法,对于推动半导体器件技术的发展具有重要意义。
2. 正文2.1 PECVD氮化硅薄膜的制备工艺PECVD氮化硅薄膜的制备工艺是利用等离子体增强化学气相沉积技术,在特定的工艺条件下,将硅源气体(如二甲基硅醚、三甲基氯硅烷等)与氨气(NH3)反应生成氮化硅薄膜。
制备工艺中的关键参数包括沉积温度、沉积压力、沉积速率、氮源气体流量等。
在制备过程中,首先需要清洁基底表面,去除氧化层和杂质,以保证薄膜的质量和附着力。
在PECVD氮化硅薄膜制备过程中,通过控制沉积温度和压力,可以调节薄膜的致密性和结晶度,从而影响其机械性能和光学性能。
氮源气体的流量和比例也会影响氮化硅薄膜的成分和性质。
PECVD的工作原理PECVD(Plasma Enhanced Chemical Vapor Deposition)是一种利用等离子体增强的化学气相沉积技术,用于在材料表面沉积薄膜。
PECVD广泛应用于微电子、光电子、光伏等领域,可以制备具有特定功能的薄膜,如氮化硅、氮化硼、二氧化硅等。
工作原理:PECVD的工作原理基于等离子体的产生和化学反应。
其主要步骤包括气体供给、等离子体激发、表面反应和薄膜沉积。
1. 气体供给:PECVD过程中,需要供给适当的气体混合物。
常见的气体有硅源气体(如二甲基硅烷)、氮源气体(如氨气)和稀释气体(如氩气)。
这些气体通过气体供给系统进入反应室。
2. 等离子体激发:在反应室中,通过加入能量,如射频电场或微波辐射,将气体转化为等离子体。
等离子体是由电离的气体分子和自由电子组成的高能态物质,具有较高的反应活性。
3. 表面反应:等离子体激发后,气体分子与表面进行化学反应。
例如,在PECVD氮化硅薄膜的制备过程中,二甲基硅烷和氨气会在等离子体的作用下发生反应,生成氮化硅薄膜。
4. 薄膜沉积:反应生成的物质会沉积在基底表面,形成所需的薄膜。
沉积速率和薄膜性质可以通过调节气体流量、反应温度和功率密度等参数来控制。
优点:PECVD具有以下几个优点:1. 温度低:相比于热化学气相沉积(CVD),PECVD在较低的温度下进行,有利于对基底材料的保护,尤其适用于对温度敏感的基底材料。
2. 薄膜均匀性好:等离子体激发的特性使得PECVD沉积的薄膜具有较好的均匀性,能够满足微电子器件对薄膜均匀性的要求。
3. 沉积速率高:PECVD的沉积速率较高,可以快速制备薄膜,提高生产效率。
应用领域:PECVD广泛应用于微电子、光电子和光伏等领域,常见的应用包括:1. 薄膜光学器件:PECVD可用于制备具有特定光学性质的薄膜,如反射镜、透镜等。
2. 电子器件:PECVD可用于制备绝缘层、导电层和隔离层等,用于微电子器件的制备。
毕业设计(论文)( 2013 届)题目 PECVD制备氮化硅薄膜的研究进展学号 1003020147姓名钟建斌所属系新能源科学与工程学院专业材料加工及技术应用班级 10材料(1)班指导教师胡耐根新余学院教务处制目录摘要 0Abstract .............................. 错误!未定义书签。
第一章氮化硅薄膜的性质与制备方法 (2)1.1 氮化硅薄膜的性质 (2)1。
2 与常用减反射膜的比较 (4)1。
3 氮化硅薄膜的制备方法 (5)第二章工艺参数对PECVD法制备氮化硅减反膜性能的影响研究82.1 温度对双层氮化硅减反膜性能的影响 (9)2.2 射频频率对双层氮化硅减反膜性能的影响 (9)2.3 射频功率对双层氮化硅性能的影响 (10)2。
4 腔室压力对氮化硅减反膜性能的影响 (11)2。
5 优化前后对太阳电池电性能对比分析 (12)第三章结论与展望 (13)参考文献 (15)致谢 (16)PECVD 制备氮化硅薄膜的研究进展摘要功率半导体器件芯片制造过程中实际上就是在衬底上多次反复进行的薄膜形成、光刻与掺杂等加工过程,其首要的任务是解决薄膜制备问题.随着功率半导体器件的不断发展,要求制备的薄膜品种不断增加,对薄膜的性能要求日益提高,新的制备方法随之不断涌现,并日趋成熟。
以功率半导体器件为例,早期的器件只需在硅衬底上生长热氧化硅与单层金属膜即可;随着半导体工艺技术的进步和发展,为了改进器件的稳定性与可靠性还需淀积 PSG 、Si 3N 4、半绝缘多晶硅等等钝化膜.氮化硅是一种性能优良的功能材料,它具有良好的介电特性(介电常数低、损耗低)、高绝缘性,而且高致密性的氮化硅对杂质离子,即使是很小体积的 Na +都有很好的阻挡能力。
因此, 氮化硅被作为一种高效的器件表面钝化层而广泛应用于半导体器件工艺中。
等离子增强型化学气相淀积(PECVD)是目前较为理想和重要的氮化硅薄膜制备方法。
PECVD氮化硅薄膜性质及工艺研究1. 引言1.1 背景介绍PECVD氮化硅薄膜是一种重要的薄膜材料,广泛应用于半导体领域、光电子器件和微电子器件中。
氮化硅薄膜具有优异的光学、电学和机械性能,具有很高的化学稳定性和耐热性,因此在微电子工业中具有广泛的应用前景。
随着半导体器件尺寸的不断缩小和功能的不断提高,对PECVD氮化硅薄膜的性能和工艺要求也越来越高。
传统的PECVD氮化硅薄膜制备工艺通常采用硅烷和氨气作为前驱物质,在高温和低压条件下沉积在衬底表面上。
由于氨气具有毒性和爆炸性,并且在制备过程中易产生氢气等副产物,对环境和人员健康造成威胁。
研究人员开始探索其他替代性氮源气体,如氮气等,以提高PECVD氮化硅薄膜的制备效率和质量,并减少对环境的影响。
本文旨在探究PECVD氮化硅薄膜的制备工艺、性质分析、影响因素、优化工艺以及未来应用展望,以期为相关领域的研究和应用提供参考和指导。
1.2 研究目的研究目的:本研究旨在深入探究PECVD氮化硅薄膜的性质及制备工艺,分析影响其性质的因素,为优化PECVD氮化硅薄膜的制备工艺提供理论依据。
通过对氮化硅薄膜在不同条件下的特性和性能进行研究,探讨其在光电子、微电子领域的潜在应用,为相关领域的科学研究和工程应用提供参考和指导。
通过本研究的开展,希望能够深化对PECVD氮化硅薄膜的认识,并为该材料的制备工艺和性能优化提供新思路和方法。
通过对未来应用展望的探讨,为相关领域的发展方向提供启示,促进氮化硅薄膜在光电子、微电子等领域的进一步研究和应用。
2. 正文2.1 PECVD氮化硅薄膜的制备工艺PECVD氮化硅薄膜的制备工艺是一项关键的研究内容,其制备过程必须严格控制以确保薄膜质量和性能。
通常,制备工艺包括以下几个步骤:首先是前处理步骤,包括基板清洗和表面处理。
基板清洗可以采用溶剂清洗、超声清洗等方法,以去除表面的杂质和污染物。
表面处理可以采用氧等离子体处理、氢气退火等方法,以改善基板表面的粗糙度和亲水性。
管式PECVD如何退火,氮化硅薄膜工艺参数最佳?广告位招租摘要:研究了在真空与氮气两种环境中不同的退火温度和退火时间对氮化膜薄膜性能影响,测试了退火后氮化硅薄膜的膜厚、折射率、少子寿命以及电性能参数。
结果表明,多晶硅管式PECVD真空退火环境优于氮气,并确定当退火温度在450℃、退火时间20min时,工艺参数最佳。
当温度过高过低均不利于膜厚的增加也不利于形成良好的欧姆接触,且此时光电转换效率较差。
折射率的变化却不同,其最大值是在低温下达到的,此时氮气环境更有利于高折射率的获得。
此外,还就膜厚和折射率随温度、环境变化的情况进行了详细的讨论。
引言氮化硅薄膜制备在太阳能电池生产中起着减少硅片表面的反射、进而增加光的利用率的作用,是晶体硅太阳能电池的重要步骤之一。
其关键在于该薄膜不仅减少硅表面反射,还钝化硅材料中大量的杂质和缺陷,并通过改变禁带中能带为价带或导带以提高硅片中的载流子迁移率,延长少子寿命调高光电转化效率的目的[1-3]。
因此如何更好的增强镀减反射膜的钝化效果,对于电池片效率的提升有着重要的意义。
目前在太阳能光伏领域常用的钝化方法有:氢气氛退火、微波诱导远距等离子氢钝化、等离子增强化学气相沉积即PECVD法三种[4]。
通常PECVD法的钝化效果并不理想,因此如何进一步提高氢的钝化效果,以达到提高少子寿命和短路电流从而最终达到提高效率的目的就显得尤为重要。
故本文针对PECVD不同温度下真空和氮气两种环境中的退火对电池片的影响进行了研究。
实验本实验需在PECVD工艺配方中的沉积步骤后增加一个退火步骤,即对已完成沉积步骤的硅片保持真空度均为1700mtoor,其退火温度分别为350℃,400℃,450℃,500℃温度的条件下、真空和氮气两种不同环境中、不同退火时间内在PECVD管内完成退火工艺。
测试其退火热处理前后载流子少子寿命,并观察其对丝网印刷效率等工艺参数的影响。
2.1实验原料及仪器实验所选硅片导电类型为P型多晶硅片,电阻率为1~3Ω·cm,厚度为(200±20)μm,硅片尺寸为156mm×156mm。
PECVD氮化硅薄膜性质及工艺研究PECVD氮化硅薄膜是一种常用的薄膜材料,具有多种优异的性质,广泛应用于半导体、光电子等领域。
本文主要研究PECVD氮化硅薄膜的性质及工艺。
PECVD氮化硅薄膜具有较高的耐热性和化学稳定性。
在高温下,氮化硅薄膜能够保持结构和性质的稳定,不易发生松散和脱附现象。
化学稳定性表现为氮化硅薄膜能够抵御多种酸、碱和溶剂的侵蚀,保持较好的化学性质。
PECVD氮化硅薄膜具有良好的电学性能。
氮化硅薄膜具有较高的比电容和低的介电常数,可用于制备高性能的电容器和绝缘层。
氮化硅薄膜还具有较高的击穿电压和较低的漏电流密度,有利于提高器件的可靠性和稳定性。
PECVD氮化硅薄膜可实现较好的光学性能。
氮化硅薄膜具有较高的折射率,可用于光波导和反射镜等光电子器件的制备。
氮化硅薄膜在可见光和红外光波段具有较高的透过率,可应用于透明导电膜和太阳能电池等领域。
氮化硅薄膜的工艺研究主要包括沉积温度、气体流量和沉积时间等方面。
沉积温度是影响氮化硅薄膜性质的重要参数。
较高的沉积温度有利于氮化硅薄膜的致密化和结晶化,但过高的温度会引起膜层应力和晶粒长大。
气体流量主要影响薄膜的化学组成和成分均匀性。
适当的气体流量可以实现理想的薄膜组成和均匀性,但过高或过低的流量都会导致薄膜性能的下降。
沉积时间则决定了薄膜的厚度和沉积速率,需要根据具体应用要求进行调节。
PECVD氮化硅薄膜具有多种优异的性质,包括耐热性、化学稳定性、电学性能和光学性能。
工艺研究可以通过调节沉积温度、气体流量和沉积时间等参数来实现理想的薄膜性质。
这些研究将为氮化硅薄膜在半导体、光电子等领域的应用提供重要的基础和支持。
目录1引言-------------------------------------------------------------------------------------------------------------------错误!未定义书签。
1.1氮化硅的特性-----------------------------------------------------------11.2氮化硅的制备方法----------------------------------------------------------------------------------------21.2.1常压化学气相沉积(APCVD)--------------------------------------------------------------------21.2.2低压化学气相沉积(LPCVD)--------------------------------------------------------------------21.2.3等离子体增强化学气相沉积(PECVD)------------------------------------------------------31.3氮化硅薄膜PECVD制备的特点-----------------------------------------------------------------------4 2实验-------------------------------------------------------------------------------------------------------------------42.1实验仪器的介绍-------------------------------------------------------------------------------------------42.2PECVD法制备氮化硅薄膜的原理----------------------------------------52.3实验方法------------------------------------------------------------53 实验结果与讨论-------------------------------------------------------------------------------------------------5 参考文献--------------------------------------------------------------------------------------------------------------10氮化硅薄膜材料的PECVD制备及其光学性质研究摘要:等离子增强型化学气相沉积(Plasma Enhanced Chemical Vapor Deposition , PECVD)是目前较为理想和重要的氮化硅薄膜制备方法,本文详细探讨了对氮化硅薄膜PECVD制备的方法、原理以及制备过程,成功生长了质量较好的氮化硅薄膜,并用紫外-可见光光谱仪研究了沉积薄膜的表面形貌及其光学带隙,得出氮化硅薄膜相关的光学特性,结果表明,氮气流量对薄膜的光学带隙影响较大,制备的薄膜主要为富硅氮化硅薄膜。