钛铝合金溅射镀膜靶材的研究进展
- 格式:pdf
- 大小:223.67 KB
- 文档页数:3
钛合金表面耐磨性能及抗氧化性能的研究现状韩杰阁;陈蔚泽;张浩;黄安国【摘要】钛合金具有密度小、质量轻、比强度高、比刚度高、良好的耐腐蚀性和耐热性、塑韧性好以及优良的加工性等优点,广泛应用于航空航天、交通运输、石油化工、体育器械及生物医疗等众多领域.但钛合金摩擦系数大、易黏着、耐磨性能差、高温(700℃)条件下氧化严重、不易润滑等缺点,大大限制了钛合金的应用和发展.介绍激光熔覆、磁控溅射、离子注入等常见的钛合金表面改性技术的研究现状,指出各种改性技术对钛合金耐磨性能、高温抗氧化性能的改善效果,并探讨各种改性技术的优缺点.在此基础上提出综合提高钛合金耐磨性和高温抗氧化性的新思路并展望其发展前景.%Titanium and its alloys have broad applications in aerospace,transportation,petrochemical industry,sports equipment and bio-medical due to their excellent material properties such as low density,high specific strength and rigidity,excellent thermal and corrosion resistance,specific stiffness and high fatigue.However,its shortcomings are also obvious:its large friction coefficient,stick easily,poorly wear resistance,not lubricate and serious oxidation under the high temperature (700 ℃) conditions,which have greatly limited the application and development of titanium alloy.This paper introduces the research status of laser cladding,magnetron sputtering,ion implantation and other common titanium alloy surface modification technology.Points out the improvement of each modification technology on the wear resistance and high temperature oxidation resistance of titanium alloy,and discusses their advantages and disadvantages.On this basis,a new idea of compositeimproving the wear resistance and high temperature oxidation resistanceof titanium alloy is put forward and prospected its development prospect.【期刊名称】《电焊机》【年(卷),期】2017(047)003【总页数】6页(P73-78)【关键词】钛合金;耐磨性;高温氧化性;表面改性技术【作者】韩杰阁;陈蔚泽;张浩;黄安国【作者单位】华中科技大学材料成型与模具设计国家重点实验室,湖北武汉430074;华中科技大学材料成型与模具设计国家重点实验室,湖北武汉430074;华中科技大学材料成型与模具设计国家重点实验室,湖北武汉430074;华中科技大学材料成型与模具设计国家重点实验室,湖北武汉430074【正文语种】中文【中图分类】TG457钛合金具有比刚度、比强度高,耐腐蚀性、耐热性和塑韧性好以及加工性优良等优点[1-4],已成为应用于航空航天、交通运输、石油化工和生物医学等领域[5-6]的重要材料,在尖端学科与高新技术方面占有重要的地位。
120赵向杰磁控溅射镀膜技术的研究及发展趋势磁控溅射镀膜技术的研究及发展趋势**基金项目:2018年西安航空职业技术学院校级综合科研项目(18XHZH-015)o 作者简介:赵向杰,硕士研究生,讲师,教学研究方向;机械工程。
赵向杰(西安航空职业技术学院,陕西西安710089)摘要:综述了磁控溅射镀膜技术在非平衡磁场溅射、脉冲磁控溅射等方面的发展,利用新型的磁控溅射镀膜技术可以实现薄膜的高速沉积、高纯薄膜制备以及提高反应溅射沉积薄膜的质量等,并进一步取代电镀等传统表面处理技术。
并阐述磁控溅射镀膜技术在电子、光学、表面功能薄膜等许多方面的应用。
关键词:磁控溅射镀膜,薄膜制备,应用中图分类号:TB79Development and Research of Magnetron Sputtering Coating TechnologyZHAO Xiang-jie(Xi?an Aeronautical Polytechnic Institute,Xi*an710089shaanxi,China)Abstract:In this paper,the magnetron sputtering technology in the non-equilibrium magnetic field sputtering,pulsed magnetron sputtering and other aspects were.introdnced It is shown that the new type of magnetron sputtering technology can realize the high-speed deposition of the film,the preparation of the high purity film,improve the quality of the reactive sputtering deposition film,and further replace the traditional surface treatment technology such as electroplating.Finally,the application of magnetron sputtering technology in many aspects such as electronics,optics,surface functional film and so on were expounded.Key words:magnetron sputtering coating,film fabrication,气相沉积是指气态(含等离子态)的镀料物质在基体上沉积,形成薄膜的过程。
第53卷第5期2024年5月人㊀工㊀晶㊀体㊀学㊀报JOURNAL OF SYNTHETIC CRYSTALS Vol.53㊀No.5May,2024钛基材Pt 涂层接触电阻及耐蚀性能研究宋㊀洁1,2,梁丹曦1,2,岳㊀骆2,3,徐桂芝1,2,胡㊀晓2,常㊀亮2,徐㊀超1(1.华北电力大学,能源动力与机械工程学院,北京㊀102206;2.先进输电技术全国重点实验室(国网智能电网研究院有限公司),北京㊀102209;3.清华大学,高端装备界面科学与技术全国重点实验室,北京㊀100084)摘要:质子交换膜(PEM)电解制氢系统因具有宽范围㊁快速动态响应能力,在新能源消纳㊁电网调峰等领域具有广阔的应用前景㊂为了提升制氢电解堆电传输性能,降低接触电阻,本文利用磁控溅射技术制备了钛毡和钛板上的Pt 涂层,并对这些涂层进行了研究,探究了制备工艺对薄膜的微观结构㊁传输性能和耐蚀性能的影响㊂研究发现,最佳磁控溅射工艺包括等离子清洗时间20min,溅射时间10min,以及溅射功率100W㊂在接触电阻方面,镀有铂的钛毡表现出优异的接触电阻性能㊂通过SEM 和EDS 测试分析,发现随着功率和时间的增加,Pt 颗粒的尺寸逐渐增大㊂然而,当颗粒尺寸过大时,Pt 颗粒之间发生相互挤压,导致微小裂纹的产生,从而影响Pt 涂层耐蚀性能㊂这些研究结果对于优化PEM 制氢电解堆的性能,提高其稳定性具有重要意义㊂关键词:Pt 涂层;PEM 膜电解制氢;磁控溅射;工艺参数;微观结构;接触电阻;耐蚀性能中图分类号:TG174.4㊀㊀文献标志码:A ㊀㊀文章编号:1000-985X (2024)05-0873-09Study on the Conductive and Corrosion-Resistant Properties of Pt Coatings on Titanium SubstratesSONG Jie 1,2,LIANG Danxi 1,2,YUE Luo 2,3,XU Guizhi 1,2,HU Xiao 2,CHANG Liang 2,XU Chao 1(1.School of Energy Power and Mechanical Engineering,North China Electric Power University,Beijing 102206,China;2.State Key Laboratory of Advanced Power Transmission Technology (State Grid Smart Grid Research Institute Co.,Ltd.),Beijing 102209,China;3.State Key Laboratory of Tribology in Advanced Equipment,Tsinghua University,Beijing 100084,China)㊀㊀收稿日期:2023-11-22㊀㊀基金项目:国家重点研发计划(2021YFB4000100);国家电网有限公司科技资助项目(521532220014);国家资助博士后研究人员计划(C 档)(GZC20231287)㊀㊀作者简介:宋㊀洁(1982 ),女,河北省人,教授级高工㊂E-mail:songjie_bj@ ㊀㊀通信作者:徐㊀超,教授㊂E-mail:mechxu@Abstract :Proton exchange membrane (PEM)water electrolysers for hydrogen production boast a wide range of flexible and adjustable capabilities,including fast dynamic responses.They hold extensive potential in fields like new energy consumption and power grid peak shaving.To enhance the electrical transmission performance and minimize the contact resistance of the water electrolyser stack,this study employs magnetron sputtering technology to deposit Pt coatings on titanium felt and titanium plates.Scholarly investigation has increasingly adopted innovative methodologies like magnetron sputtering to develop advanced electrode materials.Central to this research is an in-depth examination of the effects of magnetron-sputtered Pt coatings on titanium felts and plates.The study meticulously analyzed these coatings to elucidate their microstructural characteristics,transport properties,and corrosion-resistance.Rigorous experimentation determined the optimal sputtering parameters:a 20min plasma cleaning phase,a 10min sputtering period,and a power input of 100watts.These precise conditions yielded coatings with notable performance attributes.Specifically,the study highlighted a significant reduction in contact resistance for platinum-coated titanium felts,demonstrating the sputtering technique s ability to enhance charge transfer kinetics efficiently.Analysis of the platinum particle dynamics employed SEM and EDS,revealing that increased sputtering power and duration led to larger platinum particles.However,maintaining a balance is crucial,as excessive particle enlargement may induce compressive forces between particles,causing micro-fissures that could compromise the coatings corrosion-resistance.In conclusion,the insights derived from this research are instrumental in improving the overall efficiency and durability of PEM874㊀研究论文人工晶体学报㊀㊀㊀㊀㊀㊀第53卷electrolysis systems.By optimizing the fabrication process and understanding the relationship between deposition parameters and material characteristics,this study makes a significant contribution to advancing robust hydrogen production technologies, further supporting the integration of clean energy solutions.Key words:Pt coating;PEM water electrolysers for hydrogen production;magnetron sputtering;process parameter; microstructure;contact resistance;corrosion-resistant property0㊀引㊀㊀言新能源主导的新型电力系统肩负着能源转型的重要使命,作为清洁低碳㊁高效安全的能源体系组成部分[1-2]㊂然而,由于新能源的波动性和负荷的随机性相互叠加,电力系统的能量/功率平衡问题逐渐凸显,威胁着系统的稳定运行[3-4]㊂在这种情况下,寻找可调节的负荷成为解决方案之一,将可再生能源转化为氢能被认为是支持高比例新能源电网能量/功率平衡,保障能源系统安全的关键方法之一[5]㊂氢能具有绿色无碳㊁适于长期存储等特点,是构建低碳高效现代能源体系的关键媒介[6]㊂质子交换膜(proton exchange membrane,PEM)电解水制氢因出色的动态调节能力,能够支撑可再生能源的消纳,平抑波动性和间歇性等特点,具有巨大潜力[7-8]㊂PEM电解水制氢中的核心部件,如双极板和多孔传输层,在酸性㊁高电压工作环境下容易受到腐蚀,最终影响其性能,从而影响整个电解堆的欧姆阻抗[9-10]㊂铂涂层作为PEM电解堆最常用的涂层之一,成功降低了欧姆阻抗,提升了接触性能,从而优化了电解堆的性能[11-12]㊂然而,目前关于铂涂层的研究主要集中在制备方法和表面性能测试方面,对于工艺参数等方面的研究相对较少㊂磁控溅射表面处理技术作为一种物理气相沉积工艺,具有能量高[13-14]㊁结合力强[15-16]㊁膜层致密[17]㊁溅射速率高[18]㊁基底升温小和环保等特点[19]㊂本研究利用磁控溅射技术,系统研究了不同等离子清洗时间㊁功率和时间等工艺参数对钛毡和极板涂层性能的影响规律㊂通过接触电阻测试㊁扫描电镜,以及电化学测试等手段,深入分析了涂层的电学和力学性能㊂本文的研究成果有助于更好地理解涂层制备过程中的关键参数对性能的影响,为优化电解堆的设计和性能提供了有力的支持㊂1㊀实㊀㊀验1.1㊀实验原料和制备方法本次实验选用了钛毡(贝卡尔特有限公司)及直径为13mm的工业TA1圆片作为基材(陕西盈高金属材料有限公司)㊂在制备样品之前,首先通过磨抛机(UNIPOL-1502自动精密研磨抛光机,沈阳科晶自动化设备有限公司)对圆片进行打磨处理,设置转速为300r/min,打磨至达到3000目(5nm)的细度㊂接着,将样品置于无水乙醇中进行超声处理,时间为15min,然后进行烘干,为后续的溅射制备做好准备㊂本实验使用磁控溅射仪(Moorfield-MiniLab S060M,英国Quantum Design公司)㊂所用的靶材纯度达到99.99%,尺寸为ϕ76.2mmˑ3mm,使用高纯氩气作为反应气体㊂在样品和靶材之间,设置了45ʎ的夹角㊂在进行镀膜前,通过等离子清洗对样品进行了彻底的清洁,然后进行了溅射沉积㊂具体的沉积工艺参数如表1所示㊂表1㊀不同样品的磁控溅射工艺参数Table1㊀Magnetron sputtering process parameters of different samplesSample Time/min Power/W Pressure/(10-3bar)Rotation speed/(r㊃min-1)11100552510055310100554151005551030055610500551.2㊀性能测试与表征实验中,对制备好的样品进行了一系列表征㊂首先,使用扫描电子显微镜(FESEM;SU8220,日本日立㊀第5期宋㊀洁等:钛基材Pt 涂层接触电阻及耐蚀性能研究875㊀公司)对样品进行了表面形貌观察,主要观察了Pt 粒径大小㊁表面覆盖情况等特征㊂随后,进行了能谱分析(EDS;QUANTAX,Bruker 公司),以观察Pt 的含量和分布情况㊂接着,使用电导率测试仪测量了不同样品的接触电阻和导电率,以获得样品的电学性能数据㊂最后,采用电化学工作站对样品进行了动电位极化曲线测试,以获取腐蚀电流密度和腐蚀电位等信息㊂在电化学工作站(CHI600E,上海辰华仪器有限公司)测试中,使用氯化银参比电极㊁10mm ˑ10mm 方形铂片辅助电极和镀铂钛圆片工作电极构成了三电极体系,电解液采用去离子水㊂在连接设备后,首先进行了2~3h 的开路电压稳定,然后打开塔菲尔曲线进行动电位极化曲线测试㊂测试过程中,初始电位设置为-0.8V,终止电位设置为1.2V,扫描速率为0.001V /s㊂通过这些测试,获得了不同清洗时间样品的极化曲线数据,进一步分析了镀铂钛圆片的腐蚀性能㊂2㊀结果与讨论2.1㊀等离子清洗时间对镀层的影响在实验中,经过一般清洗和深度清洗的基材在放入溅射镀膜机或者在真空室抽真空过程中,往往会因为各种因素而遭受二次污染㊂然而,等离子清洗作为一种在基材固定于基台且真空环境下进行的清洗方式,排除了二次污染的可能性,保持了镀膜前基材表面的高度纯净㊂此外,等离子清洗还能提高基材表面的润湿性,增加基材表面的极性,为后续镀层原子与基材之间的键合提供必要的能量㊂为了研究磁控溅射等离子清洗时间对Pt 涂层及其性能的影响,本节设置清洗功率为300W,氩气流量为50mL /min,改变等离子清洗时图1㊀清洗时间对薄膜厚度的影响Fig.1㊀Effect of cleaning time on film thickness 间为5㊁10㊁15min㊂如图1所示,随着等离子清洗时间的增加,Pt 膜的厚度呈现出先增加后减小的趋势㊂当等离子清洗时间为20min 时,薄膜厚度达到最大值(约76nm)㊂这是因为适度的等离子清洗时间对基材的温度影响相对较小,随着基底温度增加,磁控溅射产生的粒子到达基底时具有更大的动能使表面更容易扩散成核,这有利于增加靶材表面受到等离子体轰击的数量,从而促进原子的沉积㊂然而,过长的等离子清洗时间会导致基材温度不断升高,过高的增加表面的激发状态,导致钛原子从基材表面脱离,产生表面刻蚀现象,降低表面活性,进而影响涂层与基材的结合强度㊂因此,在制备过程中需要权衡等离子清洗时间,以确保合适的表面性能和涂层质量㊂不同等离子清洗时间对钛毡接触电阻的结果如图2(a)和(b)所示,BEK56代表基材,而 Fuel Cell 则是商业化成熟产品㊂可以看出在对BEK56进行镀铂处理后,其钛毡接触电阻,从6.5mΩ㊃cm 2@2MPa 明显下降至1.5mΩ㊃cm 2@2MPa,显示出显著的电性能提升㊂然而,对于不同等离子清洗时间的样品,其接触电阻之间的差异不大,这可能是因为涂层接触电阻性能受影响的因素与等离子清洗时间的关系较低㊂腐蚀电流密度(I corr )是衡量材料抵抗腐蚀的关键参数,对应于材料腐蚀电位下的电流密度㊂从图2(c)的测试结果可以看出,不同样品的腐蚀电流密度分别为3.00ˑ10-7㊁1.89ˑ10-8㊁9.50ˑ10-7A /cm 2,实验环境为电解制氢等效环境,其中pH 值为5.5,温度为60ħ㊂从结果来看,当等离子清洗时间为20min 时,样品的腐蚀电流密度最低,表现出较好的耐蚀性能,这可能是因为适宜的等离子清洗时间有助于保持涂层的表面状态,这主要有以下三个方面的表现:首先是表面清洁度提高,等离子清洗去除了表面的油污㊁氧化层和其他杂质,提高了涂层与基体材料的结合力,减少了腐蚀萌生;其次是表面活性增强,等离子处理可能在表面形成更多的活性位点,促进涂层更好地附着并形成均匀连续的保护层;最后是微观结构优化,可能在微观层面改善了涂层的结构,使其更致密,减少了腐蚀介质渗透到基体的机会,从而提高了其耐蚀性能㊂不同清洗时间下的Pt 涂层SEM 照片如图3所示㊂从图中可以明显看出,所有的Pt 涂层表面都有小颗粒的沉积㊂当清洗时间从10min 延长至20min 时,沉积在钛毡表面的Pt 颗粒数量呈逐渐增加的趋势,同时晶粒尺寸也有明显提升,这种现象可能是由于较长的清洗时间有助于更多的Pt 颗粒被溅射到表面,并且晶876㊀研究论文人工晶体学报㊀㊀㊀㊀㊀㊀第53卷粒尺寸的增大进一步提升了薄膜的比表面积,从而增强了薄膜的电化学性能㊂然而,随着清洗时间进一步增加,当达到30min时,晶粒尺寸和数量开始略微减小,并且在样品表面出现了较为明显的刻蚀现象㊂这可能是过长的清洗时间导致氩离子轰击基材表面的能量增加,超过了钛原子之间相互作用的结合能,进而使钛原子从表面脱离,引发刻蚀现象,降低了表面的活性和涂层的稳定性㊂此外,由于离子清洗进行的时间越长,基材表面和等离子体之间的相互作用也越多,因为等离子体中的高能粒子和辐射持续作用于表面,转换为热能导致基材温度升高;基材温度的升高可以加速等离子中的化学反应,会减少达到相同清洗效果所需的时间㊂但是,这种效应到达一定阈值后可能会逆转,温度过高会导致基材损伤或改变材料特性㊂控制等离子清洗的时间,可以防止温度升高到损害基材的程度㊂图2㊀不同等离子清洗时间后Pt涂层的接触电阻(a)㊁(b)和腐蚀电流密度(c)Fig.2㊀Contact resistance(a),(b)and corrosion current density(c)of Pt coating after plasma cleaning for different time图3㊀不同等离子清洗时间后Pt涂层的SEM照片Fig.3㊀SEM images of Pt coating after plasma cleaning for different time2.2㊀磁控溅射时间对镀层的影响不同磁控溅射时间下的Pt涂层厚度与接触电阻之间的关系如图4所示㊂结果表明,随着溅射时间的延长,Pt涂层的厚度逐渐增加㊂具体来说,溅射1㊁5㊁10㊁15min所得的涂层厚度分别为10㊁45㊁68㊁64nm㊂值得注意的是,在溅射10min时,涂层厚度达到最大,之后随着时间的继续增加,涂层厚度不再显著增加㊂采用㊀第5期宋㊀洁等:钛基材Pt涂层接触电阻及耐蚀性能研究877㊀电导率测试仪对不同溅射时间下的镀铂钛毡进行了接触电阻测试,随着压力的增加,样品与测试台之间的接触点面积也随之增大,随着磁控溅射时间的增加,Pt涂层逐渐覆盖了表面形成了更多的导电位点,从而提高了表面的电导率㊂当接触点逐渐趋于稳定时,表面电导率也趋于稳定㊂考虑到实际应用中电解堆的组装压力通常为2MPa,因此将该压力作为接触电阻的测试标准,可以发现不同溅射时间的镀Pt涂层均能显著提升钛毡的导电性能,降低表面的接触电阻㊂这主要归因于等离子清洗去除了钛表面的钝化层,同时高导电性的Pt涂层也覆盖了表面,接触电阻随时间的增加而增大,明显表现出正相关关系㊂然而,当磁控溅射时间超过10min后,不同样品的接触电阻差异较小㊂不同磁控溅射时间的钛毡微观结构如图5和图6所示,可以发现随着磁控时间的不断增大,钛毡表面不断被Pt所覆盖,Pt的覆盖面积不断增大,这与磁控溅射时间与Pt层厚度之间关系保持一致㊂此外,随着磁控溅射时间的不断增加,Pt的晶粒大小也不断增大㊂图4㊀不同溅射溅射时间下薄膜厚度(a)和接触电阻(b)㊁(c)曲线Fig.4㊀Thickness(a)and contact resistance(b),(c)curves for different sputtering time图5㊀不同溅射时间下的Pt涂层EDS㊂(a)㊁(b)1min;(c)㊁(d)5min;(e)㊁(f)10min;(g)㊁(h)15min Fig.5㊀EDS of Pt coating for different sputtering time.(a),(b)1min;(c),(d)5min;(e),(f)10min;(g),(h)15min878㊀研究论文人工晶体学报㊀㊀㊀㊀㊀㊀第53卷图6㊀不同溅射时间下的Pt 涂层SEM 照片㊂(a)㊁(b)1min;(c)㊁(d)5min;(e)㊁(f)10min;(g)㊁(h)15min Fig.6㊀SEM images of Pt coating for different sputtering time.(a),(b)1min;(c),(d)5min;(e),(f)10min;(g),(h)15min图7㊀不同溅射时间下的极化曲线图Fig.7㊀Tafel curves for different sputtering time 通过电化学工作站和三电极体系对镀铂钛片进行动电位极化曲线测试㊂在测试过程中,初始电位设定为-0.8V,终止电位设定为1.2V,扫描速率为0.001V /s㊂不同镀膜时间样品的极化曲线如图7所示,根据Tafel 拟合,磁控溅射时间10㊁15min 的钛片的腐蚀电流密度分别为7.01㊁6.91μA /cm 2㊂这些结果表明涂层在耐蚀性方面发挥了明显作用,形成了一道保护性屏障,对基材的钛毡进行了保护㊂这对于电解堆的长时间稳定运行具有重要意义㊂通过分析这些数据,可以更好地理解涂层在保护基材方面的效果,并为电解堆的性能和稳定运行提供有益信息㊂2.3㊀镀膜功率对镀层的影响不同磁控溅射功率对Pt 性能的影响如图8所示㊂可以看出Pt 薄膜厚度随溅射功率增加而明显增加,溅射功率为500W 的样品涂层厚度为285nm,而磁控溅射功率为100W 的样品涂层厚度为68nm㊂这是由于高的磁控溅射功率会激发大量的Pt,引起单位时间内沉积量增加,厚度明显增加;随着厚度的增加,其接触电阻明显降低,从100W 样品的2.5mΩ㊃cm 2@2MPa 降低到0.15mΩ㊃cm 2@2MPa,这主要是涂层厚度越厚,接触位点增多,接触电阻降低,导电性增强,最终降低了电解堆中的欧姆阻抗㊂为了探究不同磁控溅射功率对Pt 涂层的表面结构与性能之间的关系,进行了SEM 测试(见图9)㊂通过图像观察,可以明显发现磁控溅射功率与Pt 涂层中晶粒的大小之间存在直接的关联㊂随着磁控溅射功率的增加,Pt 晶粒的尺寸也逐渐增大㊂例如,在磁控溅射功率为100W 的样品中,Pt 晶粒的尺寸约为30nm,而在磁控溅射功率为500W 的样品中,Pt 晶粒的尺寸增长到了约150nm㊂这种现象主要是由于高功率的磁控溅射过程中,更多的Pt 粒子被激发并在基底上沉积,在[111]方向上的生长显著增大㊂同时,高功率溅射产生的能量更高的原子有助于在基底中快速扩散和迁移,从而促进了晶粒的更快生长,形成较大的晶粒㊂此外,在磁控溅射过程中,随着功率的提升,腔室内的溅射气压也逐渐增加㊂这是因为较高的功率提高了气体的电离效率,增加了氩离子的最大饱和度㊂当腔室内的氩离子浓度未达到饱和状态时,沉积速率随着溅射气压的增加而增大㊂此时,溅射过程中的氩离子可以更充分地参与靶材溅射,从而形成更大尺寸的晶粒㊂从实验结果来看,当溅射量较少时,涂层表面出现相互分离的团簇体㊂在这种情况下,涂层的导电功能主要通过电子隧穿效应实现㊂然而,随着溅射量的增加,晶粒尺寸逐渐增大,导致金属团聚现象的发生,从而在涂层内部形成了导电通道㊂这使涂层的导电方式由电子隧穿方式转变为接触导电方式,呈现出更低的电阻特性㊂㊀第5期宋㊀洁等:钛基材Pt涂层接触电阻及耐蚀性能研究879㊀图8㊀不同溅射功率的薄膜厚度(a)和接触电阻(b)㊁(c)曲线Fig.8㊀Thickness(a)and contact resistance(b),(c)curves with different sputtering powers图9㊀不同磁控溅射功率下的Pt涂层SEM照片㊂(a)㊁(b)100W;(c)㊁(d)300W;(e)㊁(f)500W Fig.9㊀SEM images of Pt coating with different sputtering powers.(a),(b)100W;(c),(d)300W;(e),(f)500W通过电化学工作站和三电极体系对不同磁控溅射功率样品进行极化曲线测试,其结果如图10所示㊂磁控溅射功率100㊁300和500W的钛片的腐蚀电流密度分别为7.12㊁6.87㊁6.52μA/cm2㊂随着镀膜功率的增大,腐蚀电流密度并没有进一步减小㊂这说明随着Pt晶粒密度和尺寸的急剧增大,样品的耐腐蚀性并没有得到较好改善,说明粒径的过度增长会影响镀膜材料的耐腐蚀性,这主要是由于晶粒增大其发生较大的晶界界面出现,晶界处活性较高极其容易发生点蚀等腐蚀萌生行为,因此耐蚀性下降㊂880㊀研究论文人工晶体学报㊀㊀㊀㊀㊀㊀第53卷图10㊀不同溅射功率下的极化曲线图Fig.10㊀Tafel curves with different sputtering powers3㊀结㊀㊀论通过磁控溅射对钛毡及钛片进行镀铂,并将得到的样品进行各种电性能及微观测试,得到结论如下: 1)等离子清洗是去除钛毡氧化层㊁提升钛毡电传导性能的有效方法,溅射时保持其他工作条件不变,提高清洗时间可以降低钛毡的接触电阻㊂镀层厚度㊁电导率及耐腐蚀性会随着清洗时间的增加先增大后减少,等离子清洗时间为20min时钛毡性能达到最优㊂2)磁控溅射时间对Pt涂层的厚度和晶粒尺寸产生影响㊂随着溅射时间的增加,涂层厚度逐渐增加,同时Pt晶粒的尺寸也逐渐增大㊂当磁控溅射时间为10min时,晶粒尺寸增大至约60nm,此时接触电阻降至0.15mΩ㊃cm2@2MPa㊂相较于未镀铂的钛毡,接触电阻下降了一定比例㊂EDS分析显示,磁控溅射10min 的样品表现出均匀的Pt分布,表明优异的电传输性能㊂3)磁控溅射功率对Pt涂层的厚度和晶粒尺寸具有直接影响㊂高功率的溅射会激发高能量的Pt原子,加速在基底中的扩散和迁移,导致晶粒尺寸增大㊂500W功率下的样品,Pt晶粒尺寸增至约150nm,但晶粒之间的挤压造成微小裂纹㊂涂层的导电机制由电子隧穿方式转变为接触导电方式,呈现出宏观层面的低电阻特性㊂参考文献[1]㊀欧阳明高.发展可再生能源制氢推进氢能产业高质量发展[J].科学新闻,2022,24(2):17-19.OUYANG M G.Developing hydrogen production from renewable energy to promote the high-quality development of hydrogen energy industry[J].Science News,2022,24(2):17-19(in Chinese).[2]㊀王士博,孔令国,蔡国伟,等.电力系统氢储能关键应用技术现状㊁挑战及展望[J].中国电机工程学报,2023,43(17):6660-6681.WANG S B,KONG L G,CAI G W,et al.Current status,challenges and prospects of key application technologies for hydrogen storage in power system[J].Proceedings of the CSEE,2023,43(17):6660-6681(in Chinese).[3]㊀刘俊磊,刘新苗,卢㊀洵,等.高比例新能源系统供需平衡分析方法和对策[J].高电压技术,2023,49(7):2711-2724.LIU J L,LIU X M,LU X,et al.Analysis methods and countermeasures of supply and demand balance of high proportion of new energy system[J].High Voltage Engineering,2023,49(7):2711-2724(in Chinese).[4]㊀傅㊀旭,李富春,刘㊀飞,等.高比例新能源系统储能需求优化研究[J].电力需求侧管理,2020,22(6):26-32.FU X,LI F C,LIU F,et al.Research on energy storage demand optimization of high proportion new energy system[J].Power Demand Side Management,2020,22(6):26-32(in Chinese).[5]㊀翁智敏,朱振山,温步瀛,等.高比例新能源电力系统研究综述[J].电器与能效管理技术,2021(11):1-7.WENG Z M,ZHU Z S,WEN B Y,et al.Review of power system with high proportion of renewable energy[J].Electrical&Energy Management Technology,2021(11):1-7(in Chinese).[6]㊀邵志刚,衣宝廉.氢能与燃料电池发展现状及展望[J].中国科学院院刊,2019,34(4):469-477.SHAO Z G,YI B L.Developing trend and present status of hydrogen energy and fuel cell development[J].Bulletin of Chinese Academy of Sciences,2019,34(4):469-477(in Chinese).[7]㊀俞红梅,邵志刚,侯㊀明,等.电解水制氢技术研究进展与发展建议[J].中国工程科学,2021,23(2):146-152.㊀第5期宋㊀洁等:钛基材Pt涂层接触电阻及耐蚀性能研究881㊀YU H M,SHAO Z G,HOU M,et al.Hydrogen production by water electrolysis:progress and suggestions[J].Strategic Study of CAE,2021, 23(2):146-152(in Chinese).[8]㊀赵雪莹,李根蒂,孙晓彤,等. 双碳 目标下电解制氢关键技术及其应用进展[J].全球能源互联网,2021,4(5):436-446.ZHAO X Y,LI G D,SUN X T,et al.Key technology and application progress of hydrogen production by electrolysis under peaking carbon dioxide emissions and carbon neutrality targets[J].Journal of Global Energy Interconnection,2021,4(5):436-446(in Chinese). [9]㊀ROJAS N,SÁNCHEZ-MOLINA M,SEVILLA G,et al.Coated stainless steels evaluation for bipolar plates in PEM water electrolysis conditions[J].International Journal of Hydrogen Energy,2021,46(51):25929-25943.[10]㊀TEUKU H,ALSHAMI I,GOH J,et al.Review on bipolar plates for low-temperature polymer electrolyte membrane water electrolyzer[J].International Journal of Energy Research,2021,45(15):20583-20600.[11]㊀罗小军,徐永海,张招贤.钛涂铂电极在电解功能水机中的应用研究[J].电镀与涂饰,2009,28(10):72-74.LUO X J,XU Y H,ZHANG Z X.Study on application of platinum-coated titanium electrode to electrolysis functional water producing device[J].Electroplating&Finishing,2009,28(10):72-74(in Chinese).[12]㊀KıSTıM,UYSAL S,KAYA M F.Development of Pt coated SS316mesh gas diffusion electrodes for a PEM water electrolyzer anode[J].Fuel,2022,324:124775.[13]㊀魏永强,顾艳阳,蒋志强.高功率脉冲磁控溅射制备金属氮化物涂层[J].中国表面工程,2022,35(5):70-92.WEI Y Q,GU Y Y,JIANG Z Q.Application research progress of high power impulse magnetron sputtering in the preparation of metal nitrides coatings[J].China Surface Engineering,2022,35(5):70-92(in Chinese).[14]㊀YANG Y Z,ZHANG Y X,YAN M.A review on the preparation of thin-film YSZ electrolyte of SOFCs by magnetron sputtering technology[J].Separation and Purification Technology,2022:121627.[15]㊀张冰烨,袁妍妍,涂昱淳,等.反应磁控溅射周期结构TiN/ZrO x N y多层膜的微结构与膜基结合力[J].江苏科技大学学报(自然科学版),2021,35(1):30-35.ZHANG B Y,YUAN Y Y,TU Y C,et al.Microstructure and adhesionof periodic structure TiN/ZrO x N y multilayer film prepared by reactive magnetron sputtering[J].Journal of Jiangsu University of Science and Technology(Natural Science Edition),2021,35(1):30-35(in Chinese).[16]㊀XU Y F,XU Y,LUO L M,et al.Manufacturing of magnetron sputtering tungsten coatings and irradiation damage behavior under helium plasmaexposure[J].Vacuum,2022,205:111411.[17]㊀王跃明,唐求豪,闫志巧,等.真空室压力对低压等离子喷涂成形钨靶材显微组织及性能的影响[J].材料工程,2018,46(10):104-112.WANG Y M,TANG Q H,YAN Z Q,et al.Influence of vacuum chamber pressure on microstructure and properties of tungsten target fabricated by low pressure plasma spraying[J].Journal of Materials Engineering,2018,46(10):104-112(in Chinese).[18]㊀王朝勇,李㊀伟,王凯宏,等.直流磁控溅射制备锐钛矿TiO2薄膜生长速率的研究及其在多层膜制备中的应用[J].真空,2020,57(5):19-23.WANG C Y,LI W,WANG K H,et al.Study on depositing rate of the anatase TiO2thin film preparated by the direct current magnetron sputtering technique and its application in the fabricating of multilayer films[J].Vacuum,2020,57(5):19-23(in Chinese). [19]㊀余东海,王成勇,成晓玲,等.磁控溅射镀膜技术的发展[J].真空,2009,46(2):19-25.YU D H,WANG C Y,CHENG X L,et al.Recent development of magnetron sputtering processes[J].Vacuum,2009,46(2):19-25(in Chinese).。
钛合金表面涂层的制备及其性能研究随着科技和工业的不断发展,高性能材料的需求越来越大,钛合金作为一种优秀的材料被广泛应用于航空、航天、汽车、医疗等领域。
然而,钛合金的表面易受到氧化、腐蚀、磨损等因素的影响,这就需要通过涂层技术来改善其表面性能,延长材料的使用寿命,提高其在特定领域的应用价值。
本文旨在介绍钛合金表面涂层的制备及其性能研究,为相关领域的读者提供一定的参考。
一、钛合金表面涂层的分类钛合金表面涂层可以根据涂层材料的不同分类,大致可分为单层涂层和复合涂层两类。
单层涂层通常使用单一的材料或化合物,如硅化物、氮化物、碳化物等,可以提高钛合金的表面硬度、耐磨性和抗腐蚀性。
而复合涂层则是将不同的材料或化合物组合在一起,通常包括硬质相、润滑相、金属基体等,可以同时提高钛合金表面的机械性能和化学性能。
二、钛合金表面涂层的制备方法目前,制备钛合金表面涂层的方法主要包括物理气相沉积、化学气相沉积、溅射沉积、电化学沉积和喷涂等。
其中,物理气相沉积是最常用的技术之一,其基本原理是利用高能电子束、离子束、等离子体等将涂层材料直接沉积在钛合金表面,形成复合涂层。
化学气相沉积的原理是将金属有机化合物气体进行分解,生成金属离子和氧化物,然后与气体中的氢原子反应,最终生成涂层。
溅射沉积技术则是将涂层材料放置在真空室中,在离子轰击或电子轰击的作用下,将其析出并沉积在钛合金表面。
电化学沉积技术则是利用电化学反应,在钛合金表面形成涂层。
除了以上几种常用的制备方法以外,喷涂技术也被广泛应用于钛合金表面涂层的制备。
喷涂技术又可分为火焰喷涂、等离子喷涂、渐进尺寸喷涂等多种方式,适用于不同涂层材料和不同需求的应用场合。
三、钛合金表面涂层的性能研究钛合金表面涂层的性能研究涉及到多个方面,如机械性能、热学性能、化学稳定性、表面能等等。
在机械性能方面,涂层应具有足够的硬度、强度和韧性,以抵御外部因素的影响。
热学性能方面,则需要涂层具有良好的导热性和热稳定性,能够有效地抵御高温和低温的变化。
磁控溅射镀膜技术的研究进展磁控溅射镀膜技术是一种常见的表面处理技术,它可以在各种基材表面制备出具有特殊性能的薄膜层。
随着技术的不断发展,在材料的选择、制备工艺、表面状态分析等方面都有所进步,使得磁控溅射镀膜技术在科学研究和实际应用中发挥着重要作用。
一、磁控溅射镀膜技术的基本原理磁控溅射镀膜技术基于靶材发射金属离子的原理,通过高能离子轰击固体靶材表面,使得金属离子从靶材表面脱离并沉积在基材表面上,从而形成具有一定厚度和化学组成的功能性膜层。
这种技术的独特之处在于可以通过控制靶材的化学成分和溅射工艺参数来调控薄膜层的结构和性能。
其中,靶材的化学成分直接影响薄膜层的组成,而溅射工艺参数如气压、功率、溅射气体种类和气体流量等则直接影响溅射速率和膜层的质量。
二、材料选择与制备工艺磁控溅射镀膜技术广泛用于各种材料的制备,包括金属、合金、氧化物、硅类材料以及半导体材料等。
对于不同的材料,其制备工艺也有所不同。
金属材料通常采用单一金属靶材或合金靶材进行制备,而合金靶材的组成比例可以通过调整靶材的制备工艺来实现。
氧化物材料则需要先将靶材还原成金属或合金形态,然后利用气氛调节技术调节气氛中氧气含量来制备氧化物膜层。
在制备工艺方面,需要进行适当的气氛调节和工艺优化。
例如,在制备合金材料时,需要考虑合金靶材的制备过程中的变形问题,找到合适的制备参数来保证靶材的均匀溅射和膜层的均匀沉积。
三、表面状态分析磁控溅射镀膜技术制备出的膜层常常需要通过表面状态分析来控制其性能,最常用的分析方法是X射线衍射和扫描电镜技术。
X射线衍射技术可以用于分析膜层的结晶性、晶格参数和晶胞结构等信息,从而定量描述膜层的结构和性能。
而扫描电镜技术则可以提供更丰富和直观的表面形貌信息,包括表面粗糙度、形貌变化和结构特征等。
此外,还有一些其他的表面分析技术如原子力显微镜、能量散射光谱和X射线光电子能谱等,可以用于全面分析膜层的属性和性能。
四、应用前景磁控溅射镀膜技术在各种领域都得到了广泛应用,在新能源、医疗、航空航天等高科技产业中有着重要的地位。
试谈磁控溅射镀膜技术的研究及发展趋势作者:孙毅来源:《科学与财富》2020年第35期摘要:本文概述磁控溅射镀膜及其工作原理,着重探討当前现有的镀膜工艺,包括平衡及非平衡磁控、脉冲磁控、反应磁控等,进一步分析此类技术未来的发展趋势。
关键词:磁控溅射镀膜;非平衡磁控;脉冲磁控引言:磁控溅射镀膜工艺的出现,已经获得优异的成绩,并被广大相关专业人士关注,在镀膜行业中展现出非凡的发展速度。
其出现之初,仅能在表面平整的工件上达到较好的处理效果。
一、磁控溅射镀膜此项技术是基于特定的物理反应,实行与气相沉积相似的一项工艺。
镀膜需在真空环境下,将电量两极导入磁场,在电场及磁场的双重作用下,完成溅射。
该种溅射方式弥补常规溅射技术的部分不足,并合理开拓其他运用领域。
在阴极靶材之上构建电磁场,在此范围内,若因溅射出现加速成高能电子的情况,不会直接撞击阳极,会受到磁场的“指引”,进行摆动,借助摆动的力会冲击气体分子,由此将带有的能量传送至气体分子,进而出现电力,冲击的一方便又回到原本的低能状态。
之后会跟随磁力线的移动,达到距离阴极较近的辅助阳极处,而被吸入。
此过程能有效降低高能电子产生的冲击力,对基材起到保护的作用,并展现出低温溅射的特征。
同时,高能电子的持续摆动,需经过较长的距离才进入阳极,但受到电子量级的影响,电离度偏高,所以放电的概率相对提升,离子的电流密度有所增大,由此溅射的速度快,反而展现出高速溅射的特征。
二、常见的磁控溅射镀膜工艺(一)平衡磁控此项工艺属于一项相对常规的溅射工艺,其利用永磁体及电磁圈,引导电子活动。
电磁场能把控电子的活动轨迹,让其和气体分子相互接触并产生反应,由此确保溅射的质量及最终的沉淀速度。
由于二次电子与靶材相距不远,再加上等离子的密度偏高,且密度会随着与靶材的距离拉长逐渐降低,镀膜的质量也随之下降,因此,该项工艺对加工构件的大小有限制。
实际应用平衡溅射时,飞出的电子一般是低能状态,难以满足加工的实际标准,而提升温度能优化镀膜的质量,但需考量加工构件本身可以承受的温度。
磁控溅射钛膜
磁控溅射技术是一种常用的薄膜沉积技术,通过使用磁场控制离子束方向和能量,实现在靶材表面磁控溅射金属原子,沉积在基片表面形成薄膜。
磁控溅射技术具有高沉积速率、均匀性好、成膜质量高等优点,在各种领域广泛应用。
钛膜是一种常见的功能性薄膜材料,广泛用于金属加工、光学涂层、防腐蚀膜等领域。
是制备高质量、高稳定性钛膜的重要方法之一,通过合理的工艺参数设置和优化条件,可以获得具有优异性能的钛膜。
磁控溅射钛膜的工艺流程主要包括:清洗基片、真空抽气、预热基片、靶材镀膜、退火处理等步骤。
在整个工艺中,优化靶材的成分、结构和形状对最终膜层质量具有重要影响。
选择合适的靶材材料和优化靶材表面结构可以提高膜层的致密性、结晶度和附着力,从而提高钛膜的性能。
磁控溅射钛膜的成膜过程中,可以通过调控离子束能量、靶材温度、气体压力等参数来控制膜层的厚度、组分和微观结构。
同时,还可以通过应用外加磁场调控离子束的轨迹和能量分布,优化膜层形貌和性能。
在钛膜的沉积过程中,还可以控制离子束的入射角度和功率密度,实现对膜层性能的精细调控。
磁控溅射钛膜的优点在于成膜速率快、成膜温度低、沉积过程稳定可控。
通过磁控溅射技术可以制备出均匀致密、结晶度高的钛膜,具有优异的耐蚀性、硬度和光学性能。
在金属加工、光学涂层、生物医学等领域,磁控溅射钛膜的应用广泛,为相关产业的发展提供了重要支撑。
总的来说,磁控溅射钛膜技术是一种成熟、有效的薄膜制备技术,具有广泛的应
用前景和重要的经济意义。
通过不断优化工艺和改进设备,可以实现对钛膜性能的精细调控,满足不同领域的需求,推动相关产业的发展和创新。