岩土工程软件FLAC3D的基本知识介绍
- 格式:doc
- 大小:32.00 KB
- 文档页数:4
flac3d入门指南•软件介绍与安装•界面操作与基本功能•初级实例分析:简单模型模拟•中级实例分析:复杂模型模拟目•高级功能应用与技巧•工程案例分析与实战演练录01软件介绍与安装FLAC3D概述FLAC3D(Fast Lagrangian Analysis ofContinua in3Dimensions)是一款用于模拟三维连续介质力学行为的有限差分软件。
它基于显式拉格朗日算法和混合离散化技术,适用于分析复杂地质和岩土工程问题。
FLAC3D广泛应用于边坡稳定、地下工程、隧道开挖、地震工程等领域。
A BC D软件特点与优势显式算法采用显式有限差分法,无需迭代求解,计算效率高。
强大的后处理提供丰富的后处理功能,如等值线、矢量图、动画等,方便用户分析和展示模拟结果。
真实模拟能够模拟复杂的材料本构关系、节理、断层等地质结构,实现真实世界的准确模拟。
开放性支持用户自定义本构模型、边界条件等,方便用户进行二次开发和扩展。
1 2 3安装步骤1. 下载FLAC3D安装包,并解压到指定目录。
2. 运行安装程序,按照提示完成安装过程。
3. 配置环境变量,将FLAC3D的安装路径添加到系统环境变量中。
4. 启动FLAC3D软件,进行初步设置和配置。
01注意事项02确保计算机满足FLAC3D的系统要求,如操作系统、内存、硬盘空间等。
03在安装过程中,选择合适的安装选项和配置,以满足个人或团队的需求。
04在使用FLAC3D前,建议仔细阅读用户手册和相关教程,以充分了解软件的功能和操作方法。
02界面操作与基本功能启动界面及工具栏介绍启动界面展示软件LOGO、版本信息以及最近打开的文件列表。
工具栏包含文件操作、模型操作、视图操作、分析设置等常用工具按钮。
菜单栏提供详细的软件功能选项,包括模型、网格、材料、边界条件、分析等。
通过绘制点、线、面等基本元素构建三维模型。
模型建立网格划分几何体素导入对模型进行离散化,生成有限元网格,可设置网格密度和类型。
/* 2.2 三维数值模拟方法及其原理2.2.1 FLAC3D工程分析软件特点FLAC3D是由美国Itasca Consulting Group, Inc. 为地质工程应用而开发的连续介质显式有限差分计算机软件。
FLAC即Fast Lagrangian Analysis of Continua 的缩写。
该软件主要适用于模拟计算岩土体材料的力学行为及岩土材料达到屈服极限后产生的塑性流动,对大变形情况应用效果更好。
FLAC3D程序在数学上采用的是快速拉格朗日方法,基于显式差分来获得模型全部运动方程和本构方程的步长解,其本构方程由基本应力应变定义及虎克定律导出,运动平衡方程则直接应用了柯西运动方程,该方程由牛顿运动定律导出。
计算模型一般是由若干不同形状的三维单元体组成,也即剖分的空间单元网络区,计算中又将每个单元体进一步划分成由四个节点构成的四面体,四面体的应力应变只通过四个节点向其它四面体传递,进而传递到其它单元体。
当对某一节点施加荷载后,在某一个微小的时间段内,作用于该点的荷载只对周围的若干节点(相邻节点)有影响。
利用运动方程,根据单元节点的速度变化和时间,可计算出单元之间的相对位移,进而求出单元应变,再利用单元模型的本构方程,可求出单元应力。
在计算应变过程中,利用高斯积分理论,将三维问题转化为二维问题而使其简单化。
在运动方程中,还充分考虑了岩土体所具有的粘滞性,将其视作阻尼附加于方程中。
FLAC3D具有一个功能强大的网格生成器,有12种基本形状的单元体可供选择,利用这12种基本单元体,几乎可以构成任何形状的空间立体模型。
FLAC3D主要是为地质工程应用而开发的岩土体力学数值评价计算程序,自身设计有九种材料本构模型:(1)空模型(Null Model)(2)弹性各向同性材料模型(Elastic, Isotropic Model)(3)弹性各向异性材料模型(Elastic, anisotropic Model)(4)德拉克-普拉格弹塑性材料模型(Drucker-Prager Model)(5)莫尔-库伦弹塑性材料模型(Mohr-Coulomb Model)/* (6)应变硬化、软化弹塑性材料模型(Strain-Hardening/Softening Mohr-Coulomb Model)(7)多节理裂隙材料模型(Ubiquitous-Joint Model)(8)双曲型应变硬化、软化多节理裂隙材料模型(Bilinear Strain-Hardening/Softening Ubiquitous-Joint Model)(9)修正的Cam粘土材料模型(Modified Cam-clay Model)除上述本构模型之外,FLAC3D还可进行动力学问题、水力学问题、热力学问题等的数值模拟。
FLAC 3D基础知识介绍一、概述FLAC(Fast Lagrangian Analysis of Continua)由美国Itasca公司开发的。
目前,FLAC有二维和三维计算程序两个版本,二维计算程序V3.0以前的为DOS版本,V2.5版本仅仅能够使用计算机的基本内存64K),所以,程序求解的最大结点数仅限于2000个以内。
1995年,FLAC2D已升级为V3.3的版本,其程序能够使用护展内存。
因此,大大发护展了计算规模。
FLAC3D是一个三维有限差分程序,目前已发展到V3.0版本。
FLAC3D的输入和一般的数值分析程序不同,它可以用交互的方式,从键盘输入各种命令,也可以写成命令(集)文件,类似于批处理,由文件来驱动。
因此,采用FLAC程序进行计算,必须了解各种命令关键词的功能,然后,按照计算顺序,将命令按先后,依次排列,形成可以完成一定计算任务的命令文件。
FLAC3D是二维的有限差分程序FLAC2D的护展,能够进行土质、岩石和其它材料的三维结构受力特性模拟和塑性流动分析。
调整三维网格中的多面体单元来拟合实际的结构。
单元材料可采用线性或非线性本构模型,在外力作用下,当材料发生屈服流动后,网格能够相应发生变形和移动(大变形模式)。
FLAC3D采用的显式拉格朗日算法和混合-离散分区技术,能够非常准确的模拟材料的塑性破坏和流动。
由于无须形成刚度矩阵,因此,基于较小内存空间就能够求解大范围的三维问题。
三维快速拉格朗日法是一种基于三维显式有限差分法的数值分析方法,它可以模拟岩土或其他材料的三维力学行为。
三维快速拉格朗日分析将计算区域划分为若干四面体单元,每个单元在给定的边界条件下遵循指定的线性或非线性本构关系,如果单元应力使得材料屈服或产生塑性流动,则单元网格可以随着材料的变形而变形,这就是所谓的拉格朗日算法,这种算法非常适合于模拟大变形问题。
三维快速拉格朗日分析采用了显式有限差分格式来求解场的控制微分方程,并应用了混合单元离散模型,可以准确地模拟材料的屈服、塑性流动、软化直至大变形,尤其在材料的弹塑性分析、大变形分析以及模拟施工过程等领域有其独到的优点。
1.FLAC3D知识基本介绍SimWe岩土工程结构的数值解是建立在满足基本方程(平衡方程、几何方程、本构方程)和边界条件下推导的。
由于基本方程和边界条件多以微分方程的形式出现,因此,将基本方程近假发改用差分方程(代数方程)表示,把求解微分方程的问题改换成求解代数方程的问题,这就是所谓的差分法。
差分法由来已久,但差分法需要求解高阶代数方程组,只有在计算机的出现,才使该法得以实施和发展。
FLAC3D(Fast Lagrangian Analysis of Continua)由美国Itasca公司开发的。
目前,FLAC 有二维和三维计算程序两个版本,二维计算程序V3.0以前的为DOS版本,V2.5版本仅仅能够使用计算机的基本内存(64K),所以,程序求解的最大结点数仅限于2000个以内。
1995年,FLAC2D已升级为V3.3的版本,其程序能够使用护展内存。
因此,大大发护展了计算规模。
FLAC3D是一个三维有限差分程序,目前已发展到V2.1版本。
FLAC3D的输入和一般的数值分析程序不同,它可以用交互的方式,从键盘输入各种命令,也可以写成命令(集)文件,类似于批处理,由文件来驱动。
因此,采用FLAC程序进行计算,必须了解各种命令关键词的功能,然后,按照计算顺序,将命令按先后,依次排列,形成可以完成一定计算任务的命令文件。
FLAC3D是二维的有限差分程序FLAC2D的护展,能够进行土质、岩石和其它材料的三维结构受力特性模拟和塑性流动分析。
调整三维网格中的多面体单元来拟合实际的结构。
单元材料可采用线性或非线性本构模型,在外力作用下,当材料发生屈服流动后,网格能够相应发变形和移动(大变形模式)。
FLAC3D采用的显式拉格朗日算法和混合-离散分区技术能够非常准确发模拟材料的塑性破坏和流动。
由于无须形成刚度矩阵,因此,基于较小内存空间就能够求解大范围的三维问题。
FLAC3D采用ANSI C++语言编写的。
FLAC3D有以下几个优点:1 对模拟塑性破坏和塑性流动采用的是“混合离散法“。
《FLACFLAC3D基础与工程实例》阅读札记目录一、FLACFLAC3D软件概述 (2)1. 软件背景与简介 (3)1.1 FLACFLAC3D的发展历程 (4)1.2 软件的应用领域及特点 (5)2. 软件安装与运行环境 (6)2.1 系统要求 (7)2.2 安装步骤 (8)2.3 运行环境配置 (10)二、FLACFLAC3D基础知识 (11)1. 基本概念与术语 (13)1.1 有限元分析原理 (14)1.2 离散元法简介 (14)1.3 FLACFLAC3D中的相关术语解释 (15)2. 软件操作界面及功能模块 (17)2.1 操作界面介绍 (18)2.2 主要功能模块说明 (20)2.3 菜单功能详解 (20)三、工程实例分析 (22)1. 地质工程实例 (23)1.1 工程背景及问题定义 (25)1.2 模型建立与参数设置 (26)1.3 结果分析与讨论 (27)2. 土木工程实例 (29)2.1 工程概况与建模目的 (30)2.2 建模过程及计算步骤 (31)2.3 结果展示与工程应用 (32)四、FLACFLAC3D应用技巧与注意事项 (33)1. 建模技巧与优化方法 (34)1.1 建模策略及优化思路 (35)1.2 网格划分与模型简化技巧 (36)1.3 参数设置与模型验证方法 (38)2. 数据分析与处理方法 (40)2.1 数据采集与整理方法 (41)2.2 结果分析与图表展示技巧 (42)一、FLACFLAC3D软件概述3D是一种广泛使用的岩土力学与有限元分析软件。
它是一套专门用来分析连续介质中的物理力学现象的强大工具,主要应用于土木、矿山、隧道等领域,能针对各种复杂的工程问题进行数值建模和模拟分析。
3D以其高效、灵活的数值分析能力,为工程师提供了强大的技术支持。
其主要特点包括:多功能:3D能够模拟多种物理过程,包括应力分析、稳定性分析、流体流动分析等,适用于多种工程场景。
FLAC3D入门基本知识FLAC3D一点知识点,仅以参考4、id,cid的区别id是指在整个结构中的编号,而cid是指在某一类比如说cable中的编号。
拿cable 中的一个单元来说,它既有自己在整个结构中的cd,又有自己在cable中的cid如果我设置了两个pilesel pile id=1 begin=(10.0, 1.0, 0.0) end=(10.0, 1.0, -10.0) nseg=5sel pile id=2 begin=(10.0, 3.0, 0.0) end=(10.0, 3.0, -10.0) nseg=5那么,id=1是不是代表第一根桩?第一根桩分五段,cid=1~5,那么第二根桩是cid=6~10!5、什么情况下使用set large?初始应力平衡的时候,不能用large模式。
在进行初始应力平衡时一定不要用!在进行大变形计算时,最好要用!!一般硬岩可以使用FLAC默认的小应变,如果是土体和软岩,用大应变. 在做开挖的时候在进行原始应力平衡计算的时候是用小应变,后面的开挖以及支护的时候选用大应变.6、得到初始应力的方法:方法、可以先给一些材料参数很大的值,进行初始求解,在计算之前再将材料参数设为正常值,即可。
如在手册中给的第一个示例中就是这样做的。
下面是例子,These are only initial values that are used during the development of gravitational stresses within the body. In effect, we are forcing the body to behave elastically during the development of the initial in-situ stress state.* This prevents any plastic yield during the initial loading phase of the analysis.Gen zone brick size 6 8 8Mode mohrProp bulk 1e8 shear 0.3e8 fric 35Prop cohesion 1e10 tens 1e10 ;注意在此这个值给的很大。
FLAC 3D基础知识介绍一、概述FLAC(Fast Lagrangian Analysis of Continua)由美国Itasca公司开发的。
目前,FLAC有二维和三维计算程序两个版本,二维计算程序V3.0以前的为DOS版本,V2.5版本仅仅能够使用计算机的基本内存64K),所以,程序求解的最大结点数仅限于2000个以内。
1995年,FLAC2D已升级为V3.3的版本,其程序能够使用护展内存。
因此,大大发护展了计算规模。
FLAC3D是一个三维有限差分程序,目前已发展到V3.0版本。
FLAC3D的输入和一般的数值分析程序不同,它可以用交互的方式,从键盘输入各种命令,也可以写成命令(集)文件,类似于批处理,由文件来驱动。
因此,采用FLAC程序进行计算,必须了解各种命令关键词的功能,然后,按照计算顺序,将命令按先后,依次排列,形成可以完成一定计算任务的命令文件。
FLAC3D是二维的有限差分程序FLAC2D的护展,能够进行土质、岩石和其它材料的三维结构受力特性模拟和塑性流动分析。
调整三维网格中的多面体单元来拟合实际的结构。
单元材料可采用线性或非线性本构模型,在外力作用下,当材料发生屈服流动后,网格能够相应发生变形和移动(大变形模式)。
FLAC3 D采用的显式拉格朗日算法和混合-离散分区技术,能够非常准确的模拟材料的塑性破坏和流动。
由于无须形成刚度矩阵,因此,基于较小内存空间就能够求解大范围的三维问题。
三维快速拉格朗日法是一种基于三维显式有限差分法的数值分析方法,它可以模拟岩土或其他材料的三维力学行为。
三维快速拉格朗日分析将计算区域划分为若干四面体单元,每个单元在给定的边界条件下遵循指定的线性或非线性本构关系,如果单元应力使得材料屈服或产生塑性流动,则单元网格可以随着材料的变形而变形,这就是所谓的拉格朗日算法,这种算法非常适合于模拟大变形问题。
三维快速拉格朗日分析采用了显式有限差分格式来求解场的控制微分方程,并应用了混合单元离散模型,可以准确地模拟材料的屈服、塑性流动、软化直至大变形,尤其在材料的弹塑性分析、大变形分析以及模拟施工过程等领域有其独到的优点。
FLAC3D基本原理FLAC3D是一种常用的三维数值模拟软件,用于模拟岩土结构与地下工程行为。
该软件基于行为离散化原理,采用有限差分(Finite Difference)法进行数值计算,能够模拟地质和土木工程中的各种复杂现象。
1.离散化方法:FLAC3D使用有限差分法将模拟空间离散化,将三维空间划分为规则的网格单元。
每个单元内的物理特性和力学行为都通过节点上的数值来表示,如应力、应变、速度和位移等。
这种离散化方法能够准确地描述物理实体及其行为,方便进行数值计算。
2.材料模型:FLAC3D提供了一系列常用的材料模型,用于描述不同类型的岩土材料的力学性质。
这些材料模型可以基于材料的实验数据进行参数校准,用于模拟材料的弹性、塑性、损伤和破坏行为。
通过选择合适的材料模型,可以准确地模拟不同材料在不同工况下的力学响应。
3.节点连接:FLAC3D使用连接单元将不同类型的节点连接起来,表示它们之间的物理关系。
连接单元可以用于定位节点的相对位置、约束节点的运动、传递节点间的力和应力等。
通过定义不同的连接单元,可以准确地设置节点间的物理行为,从而模拟复杂的地质和结构体系。
4.边界条件:FLAC3D允许用户设定各种边界条件,以模拟实际工况下的问题。
边界条件可以是预设的平移、旋转或固定约束,也可以是施加在表面或内部的荷载、速度或位移等条件。
通过设置合适的边界条件,可以模拟出各种复杂的力学行为,如坡体稳定性、岩石应力分布、地下水渗流等。
5.可视化显示:FLAC3D具有强大的可视化功能,可以将模拟结果以直观的方式展示出来。
用户可以通过设置不同的颜色、亮度和透明度等参数,来显示节点和单元的不同属性,如应力、位移和应变等。
这些可视化结果可以帮助用户直观地理解模拟的物理过程和行为规律。
总而言之,FLAC3D的基本原理是基于离散化方法和有限差分法,使用材料模型、连接单元和边界条件来模拟复杂的地质和土木工程行为。
通过可视化显示结果,用户可以直观地理解模拟的物理过程和行为规律,并进行相应的工程分析和设计。
FLAC3D简述与使用步骤FLAC3D是一种三维数值建模和数据分析软件,主要用于模拟和分析地下结构中的岩石和土壤行为。
它基于有限元方法,可以模拟地下开挖、地下水流、地震响应等复杂的地下工程问题,帮助工程师和地质学家做出准确的预测和决策。
在本文中,我们将对FLAC3D的概念和使用步骤进行简要介绍。
首先,我们来了解FLAC 3D的基本概念。
FLAC是Fast Lagrangian Analysis of Continua(快速拉格朗日连续体分析)的缩写,是一种用于建模和分析连续体力学问题的软件。
它采用了非线性弹性、塑性和损伤模型,并使用有限元离散化技术将复杂的问题转化为简单的网格模型。
FLAC 3D可以模拟岩土体的变形、破裂和失稳行为,帮助用户评估地下工程的安全性和可行性。
使用FLAC3D进行建模和分析的步骤如下:1.建立模型:在FLAC3D中,用户需要创建一个模型来描述地下结构。
模型可以包括岩石和土壤的几何形状、材料属性和边界条件等信息。
用户可以使用软件提供的几何建模工具创建模型,也可以导入其他CAD软件中的模型。
2.定义材料属性:在FLAC3D中,用户可以定义不同材料的物理和力学特性。
这些特性可以包括杨氏模量、泊松比、体积权重等。
用户可以根据实际材料的性质来设置这些参数,以便更真实地模拟地下结构的行为。
3.设置边界条件:在建模过程中,用户需要为模型设置适当的边界条件。
边界条件可以包括施加的加载、支撑结构和地下水流等。
用户可以通过定义加载的类型、大小和方向来模拟各种工程场景。
4.设定数值参数:在FLAC3D中,用户需要设置一些数值参数来控制数值计算的准确性和稳定性。
这些参数包括网格密度、时间步长和收敛准则等。
用户可以通过对不同参数的测试和调整来优化模拟结果的精度。
5.进行模拟和分析:完成模型设置后,用户可以运行FLAC3D来进行模拟和分析。
软件会根据用户定义的模型和参数对地下结构的行为进行预测和计算。
flac3dFLAC3D是一款强大的数值分析软件包,广泛应用于地质工程、岩石力学和土木工程领域。
它具有极强的计算能力和模拟功能,能够模拟和分析各种地质和工程问题,如地下隧道工程、岩土体开挖、地质灾害等。
本文将介绍FLAC3D的主要功能和应用领域,并探讨其在地质和工程领域中的重要性和优势。
首先,FLAC3D具有灵活而强大的建模功能。
用户可以利用软件提供的模型构建工具,以直观的方式创建复杂的地质模型。
该软件支持各种几何和物理参数,包括岩体的几何形状、强度参数、应力状态等。
用户可以根据具体需要对模型进行灵活的调整和修改,以满足各种工程实际问题的需求。
其次,FLAC3D具有高度准确的数值计算能力。
该软件采用离散元方法(DEM)进行数值计算,能够将复杂的地质和工程问题转化为离散粒子之间的相互作用。
离散元模型能够准确地模拟材料的物理行为,如断裂、变形、变形和变形耦合等。
通过数值模拟,用户可以预测和分析地质和工程系统的行为,为工程决策提供科学依据。
第三,FLAC3D提供了广泛的分析功能。
该软件提供了丰富的分析工具,包括应力分析、位移分析、变形分析、振动分析、渗流分析等。
用户可以根据具体需要选择不同的分析方法,以获得所需的工程和地质参数。
此外,软件还提供了可视化工具,用于直观地展示模拟结果,帮助用户更好地理解模型的行为和特性。
第四,FLAC3D的广泛应用领域。
该软件在地质工程、岩石力学和土木工程等领域具有广泛的应用。
举几个例子来说明:在地下隧道工程中,FLAC3D可以模拟地下岩层的变形和稳定性,为隧道设计和施工提供指导;在岩土体开挖中,软件可模拟岩土体的塑性变形和破坏机制,评估开挖对周围环境的影响;在地质灾害预测和评估方面,FLAC3D可以模拟地震、滑坡、地表沉降等自然灾害过程,提供科学的预警和风险评估。
最后,FLAC3D的优势和重要性。
FLAC3D作为一款成熟且可靠的数值分析软件,其重要性不言而喻。
它不仅可以提供准确的工程和地质参数,还可以帮助分析人员更好地理解系统的行为和特性。
岩土工程软件FLAC3D的基本知识介绍岩土工程结构的数值解是建立在满足基本方程(平衡方程、几何方程、本构方程)和边界条件下推导的。
由于基本方程和边界条件多以微分方程的形式出现,因此,将基本方程近假发改用差分方程(代数方程)表示,把求解微分方程的问题改换成求解代数方程的问题,这就是所谓的差分法。
差分法由来已久,但差分法需要求解高阶代数方程组,只有在计算机的出现,才使该法得以实施和发展。
一、FLAC3D简介FLAC3D(Fast Lagrangian Analysis of Continua)由美国Itasca公司开发的。
目前,FLAC有二维和三维计算程序两个版本,二维计算程序V3.0以前的为DOS版本,V2.5版本仅仅能够使用计算机的基本内存(64 K),所以,程序求解的最大结点数仅限于2000个以内。
1995年,FLAC2D已升级为V3.3的版本,其程序能够使用护展内存。
因此,大大发护展了计算规模。
FLAC3D是一个三维有限差分程序,目前已发展到V2.1版本。
FLAC3D的输入和一般的数值分析程序不同,它可以用交互的方式,从键盘输入各种命令,也可以写成命令(集)文件,类似于批处理,由文件来驱动。
因此,采用FLAC程序进行计算,必须了解各种命令关键词的功能,然后,按照计算顺序,将命令按先后,依次排列,形成可以完成一定计算任务的命令文件。
FLAC3D是二维的有限差分程序FLAC2D的护展,能够进行土质、岩石和其它材料的三维结构受力特性模拟和塑性流动分析。
调整三维网格中的多面体单元来拟合实际的结构。
单元材料可采用线性或非线性本构模型,在外力作用下,当材料发生屈服流动后,网格能够相应发变形和移动(大变形模式)。
FLAC3D 采用的显式拉格朗日算法和混合-离散分区技术能够非常准确发模拟材料的塑性破坏和流动。
由于无须形成刚度矩阵,因此,基于较小内存空间就能够求解大范围的三维问题。
FLAC3D采用ANSI C++语言编写的。
岩土工程软件FLAC3D的基本知识介绍
[作者:ChinaMaker 转贴自:天创论坛点击数:185 更新时间:2004-9-17 文章录入:admin ]
减小字体增大字体岩土工程结构的数值解是建立在满足基本方程(平衡方程、几何方程、本构方程)和边界条件下推导的。
由于基本方程和边界条件多以微分方程的形式出现,因此,将基本方程近假发改用差分方程(代数方程)表示,把求解微分方程的问题改换成求解代数方程的问题,这就是所谓的差分法。
差分法由来已久,但差分法需要求解高阶代数方程组,只有在计算机的出现,才使该法得以实施和发展。
一、FLAC3D简介
FLAC3D(Fast Lagrangian Analysis of Continua)由美国Itasca公司开发的。
目前,FLAC有二维和三维计算程序两个版本,二维计算程序V3.0以前的为DOS版本,V2.5版本仅仅能够使用计算机的基本内存(64K),所以,程序求解的最大结点数仅限于2000个以内。
1995年,FLAC2D已升级为V3.3的版本,其程序能够使用护展内存。
因此,大大发护展了计算规模。
FLAC3D是一个三维有限差分程序,目前已发展到V2.1版本。
FLAC3D的输入和一般的数值分析程序不同,它可以用交互的方式,从键盘输入各种命令,也可以写成命令(集)文件,类似于批处理,由文件来驱动。
因此,采用FLAC程序进行计算,必须了解各种命令关键词的功能,然后,按照计算顺序,将命令按先后,依次排列,形成可以完成一定计算任务的命令文件。
FLAC3D是二维的有限差分程序FLAC2D的护展,能够进行土质、岩石和其它材料的三维结构受力特性模拟和塑性流动分析。
调整三维网格中的多面体单元来拟合实际的结构。
单元材料可采用线性或非线性本构模型,在外力作用下,当材料发生屈服流动后,网格能够相应发变形和移动(大变形模式)。
FLAC3D采用的显式拉格朗日算法和混合-离散分区技术能够非常准确发模拟材料的塑性破坏和流动。
由于无须形成刚度矩阵,因此,基于较小内存空间就能够求解大范围的三维问题。
FLAC3D采用ANSI C++语言编写的。
二、优缺点
FLAC3D有以下几个优点:
1 对模拟塑性破坏和塑性流动采用的是“混合离散法“。
这种方法比有限元法中通常采用的“离散集成法“更为准确、合理。
2 即使模拟的系统是静态的,仍采用了动态运动方程,这使得FLAC3D在模拟物理上的不稳定过程不存在数值上的障碍。
3 采用了一个“显式解“方案。
因此,显式解方案对非线性的应力-应变关系的求解所花费的时间,几互与线性本构关系相同,而隐式求解方案将会花费较长的时间求解非线性问题。
面且,它没有必要存储刚度矩阵,这就意味着采用中等容量的内存可以求解多单元结构;模拟大变形问题几互并不比小变形问题多消耗更多的计算时间,因为没有任何刚度矩阵要被修改。
FLAC3D的不足之处
1 对于线性问题的求解,FLAC3D比有限元程序运行得要慢;因此,当进行大变形非线性问题或模拟实际可能出现不稳定问题时,FLAC3D是最有效的工具。
2 用FLAC3D求解时间取决于最长的自然周期和最短的自然周期之比。
但某些问题对模型是无效的。
三、本构模型
FLAC3D中包括10种材料模型:
1. 开挖模型null
2. 3个弹性模型(各向同性,横观各向同性和正交各向同性弹性模型)
3. 6个塑性模型(Drucker-Prager模型、Morh-Coulomb模型、应变硬化/软化模型、遍布节理模型、双线性应变硬化/软化遍布节理模型和修正的剑桥模型)。
四、单元与网格生成
Flac3D网格中的每个区域可以给以不同的材料模型,并且还允许指定材料参数的统计分布和变化梯度。
而且,还包含了节理单元,也称为界面单元,能够模拟两种或多种材料界面不同材料性质的间断特性。
节理允许发生滑动或分离,因此可以用来模拟岩体中的断层、节理或摩擦边界。
FLAC3D中的网格生成器gen,通过匹配、连接由网格生成器生成局部网格,能够方便地生成所需要的三维结构网格。
还可以自动产生交叉结构网格(比如说相交的巷道),三维网格由整体坐标系x,y,z系统所确定,不同于FLAC程序是由行列方式确定。
这就提供了比较灵活的产生和定义三维空间参数。
五、边界条件和初始条件:
定义方式与FLAC相同。
在边界区域可以指定速度(位移)边界条件或应力(力)边界条件。
也可以给出初始应力条件,包括重力荷载以及地下水位线。
所有的条件都充许指定变化梯度。
FLAC3D还包含了模拟区域地下水流动、孔隙水压力的扩散以及可形的多孔隙固体和在孔隙内粘性流动流体的相互耦合。
流体被认为是服从各向同性的达西定律。
流体和孔隙固体中的颗粒是可变形的,将稳态流处理为紊态流可以模拟非稳态流。
同时能够考虑固定的孔隙压力和常流的边界条件,也能模拟源和井。
流体模型可以与结构的力学分析独立进行。
六、计算步骤
与大多数程序采用数据输入方式不同,FLAC采用的是命令驱动方式。
命令字控制着程序的运行。
在必要时,尤其是绘图,还可以启动FLAc 用户交互式图形界面。
为了建立FLAC计算模型,必须进行以下三个方面的工作:
1. 有限差分网格
2. 本构特性与材料性质
3. 边界条件与初始条件
完成上述工作后,可以获得模型的初始平衡状态,也就是模拟开挖前的原岩应力状态。
然后,进行工程开挖或改变边界条件来进行工程的响应分析,类似于FLAC的显式有限差分程序的问题求解。
与传统的隐式求解程序不同,FLAC采用一种显式的时间步来求解代数方程。
进行一系列计算步后达到问题的解。
在FLAC中,达到问题所需的计算步能够通过程序或用户加以控制,但是,用户必须确定计算步是否已经达到问题的最终的解。
END:Summary of New Features in FLAC3D Version 2.1:
1. New fluid-flow logic with phreatic surface calculation
2. Addition of double-yield constitutive model for volumetric yielding
3. User-defined constitutive models in C++, loaded at run-time
4. Conversion to Visual C++ compiler
5. Linking FLAC3D to other Itasca codes via TCP/IP connection
6. New printing/output facilities (BMP, JPEG, DXF, PCX)
7. New SOLVE FOS command automatically performs factor-of-safety calculations for slopes and similar problems
8. Modification to Finn model for dynamic pore pressure generation
9. Implementation of Von Neumann and Landshoff artificial viscosity terms
10. Addition of liner and geogrid structural elements
11. Improvement of calculation for stress resultants in Structural Elements upgrade to facilitate use of structural elem ents, including additional example applications in manual
12. Extension to pile elements to simulate effect of rockbolt reinforcement
13. Additional FISH functions to assist access to FLAC3D variables
14. Revised and expanded user's manual with several new examples and verification problems
15. New creep models:Burger viscoelastic and viscoplastic models and power-law viscoplastic model。