糠醛和酮苯装置典型腐蚀案例分析
- 格式:pptx
- 大小:2.73 MB
- 文档页数:24
案例▕史上分析最透彻的腐蚀破坏事故(7每期编制两篇真实腐蚀案例,希望大家喜欢。
点击页面底部“阅读原文”可查看腐蚀案例5-6事例7某厂生产氯化锌的方法是,将镀锌厂回收的锌和其它来源的锌用盐酸溶解,然后用化学药剂处理,再在浓缩槽中加热蒸发。
浓缩槽中使用的镍加热管发生孔蚀,寿命很短。
于是用锆制加热管在浓缩槽中进行了一个月试验,没有发现腐蚀问题,但锆制加热管仅使用了6个月就发生腐蚀破坏。
经过调查找出了原因:有的镀锌厂镀锌工艺配方中使用了氟化物,因此回收的锌中含氟化物。
评述锆是一种难熔金属,虽然锆的标准点位很负,化学性质活泼,但由于表面易生成致密的保护性氧化膜,所以具有优良的耐蚀性。
锆对碱和许多酸(包括氢碘酸和氢溴酸)耐蚀性很好,但锆不耐王水和氢氟酸的腐蚀,因为它们能使锆生成;络离子而溶解。
尽管锆对浓度低于35%、温度低于100℃的盐酸是耐蚀的,在本事例中耐蚀性应无问题,但由于回收锌中夹带氟化物,因而很快发生腐蚀破坏。
以上三个事例的共同点是:实际生产环境中含有某种杂质,对设备材料造成了严重的腐蚀问题。
而作为选材依据的腐蚀数据资料、使用经验、实验结果并没有包含这种环境细节。
相同的生产过程,相同的设备材质,往往腐蚀情况出现较大差异,一个重要原因就是杂质。
这方面的事例还有很多,如:1.有的硫酸生产厂为用户提供废酸处理设备,因为用户难以使用不影响环境的方法处理废酸。
处理工艺是:将被有机物污染的废酸焚烧,热气体通过废热锅炉回收热量。
有一个这样的厂一次发现废热锅炉钢管寿命突然很短。
检查结果表明,腐蚀是由于含磷酸盐和铅量很高的熔渣造成的,原来一个用户的废酸中含有这些组分。
2.某厂一台蒙乃尔合金制的石油化工装置萃取设备用于处理50%~65%硫酸和乙醇(温度29~38℃),热交换器管子预期寿命5年,但在5周就出乎预料发生破坏,更换的管子不到3周又发生破坏;腐蚀部位主要是焊缝。
溶液中所含的铜离子很高,难以用合金的简单溶解来解释。
小化04-04原文事例1-20某石油化工厂常减压车间减粘事故线在109号阀后管道穿孔,引起火灾,使常压工段停工。
破口在管线底部距法兰盘50mm处,破口呈三角形,高85mm,宽72mm。
事故线介质为减压蒸馏塔底渣油,温度400℃,含硫量1.2%,流速0.3m/s。
事故线材质为20号钢,原厚度7mm,使用2年被蚀穿,最大腐蚀率达3.5mm/a。
评述与上一事例一样,渣油系统的腐蚀主要为高温硫腐蚀。
该厂渣油硫含量高(1.2%),温度达400℃,H2S和H2S分解生成的活性S反应生成无保护性的FeS,所以对碳钢腐蚀十分严重。
另外,流速和流动状态对高温硫腐蚀也有很大影响。
事故线渣油流速为0.3m/s,平常操作中109阀开度不足二分之一,在阀后一定距离流体界面最小,流速最大(约为0.8m/s),渣油直接冲击管线底部,故对该处管线产生严重磨损腐蚀,造成穿孔。
所以,应选择更耐腐蚀和磨损的材料。
比如管道可选低合金钢Cr5Mo,弯头和阀后管道可选1Cr18Ni8不锈钢。
介质流速也是一个很重要的环境因素。
但流速对材料腐蚀的影响又是很复杂的。
不过在很多情况下流速增大将使材料腐蚀率增加。
因为当流速增大时腐蚀剂的供应会更充足,使浓度极化降低;腐蚀产物会更容易流走,难以对被腐蚀金属表面提供保护。
特别当介质流速很高时,会造成一种破坏性很大的局部腐蚀形态:磨损腐蚀。
这是由于高速流动介质产生的机械冲刷和腐蚀的联合作用所造成的破坏。
流体的冲刷使材料表面保护膜被破坏,露出新鲜金属表面,遭受介质的腐蚀;腐蚀造成表面不平,流动紊乱,形成涡流和涡旋,进一步增大了流体的冲刷。
这种相互促进的联合作用导致设备壁厚严重减薄,最终穿孔。
流动系统中的设备,如管道、管件、阀门、搅拌器、泵、叶轮、汽轮机叶片等,磨损腐蚀是一种常见的腐蚀破坏原因。
前面两个事例都属于高速高温硫化物环境中的磨损腐蚀破坏。
对这种环境中工作的设备,在选材时不仅要考虑到介质的腐蚀性,还要考虑介质流速和流动状态与腐蚀的联合作用。
第1篇 一、事故背景 苯加氢反应是石油化工领域中的重要反应之一,主要用于生产高纯度的苯和环己烷。苯加氢反应过程中,氢气与苯在催化剂的作用下发生加氢反应,生成环己烷。然而,苯加氢反应过程中存在一定的安全隐患,一旦发生事故,后果不堪设想。本文将分析一起苯加氢典型事故案例,以期为我国石油化工行业的安全生产提供借鉴。
二、事故经过 2018年5月,某石油化工公司苯加氢装置发生一起重大事故。事故发生时,该装置正在进行苯加氢反应,反应釜内苯和氢气混合物在催化剂的作用下发生反应。突然,反应釜内压力急剧上升,导致反应釜破裂,大量苯和氢气泄漏。事故发生后,现场操作人员立即启动应急预案,切断泄漏源,并组织人员进行救援。然而,由于泄漏的苯和氢气在空气中迅速混合,形成爆炸性气体,导致现场发生爆炸。事故造成3人死亡,多人受伤,直接经济损失高达数百万元。
三、事故原因分析 1. 设备缺陷 经调查,事故发生的主要原因是反应釜存在严重缺陷。反应釜在长期运行过程中,由于高温、高压、腐蚀等因素的影响,导致材料疲劳、裂纹扩展,最终导致反应釜破裂。此外,反应釜的安全阀存在故障,未能及时释放压力,加剧了事故的发生。
2. 操作失误 事故发生时,现场操作人员未能严格按照操作规程进行操作,导致反应釜内苯和氢气混合物比例失衡,引发爆炸。具体表现为:
(1)加氢反应过程中,操作人员未及时调整氢气流量,导致氢气过量,增加了爆炸风险;
(2)操作人员未及时发现反应釜内压力异常,未能及时采取措施降低压力; (3)操作人员对应急预案不够熟悉,导致事故发生后未能迅速采取有效措施。 3. 安全管理不到位 (1)公司对苯加氢装置的安全管理不到位,未能及时发现和消除设备缺陷; (2)公司对员工的安全教育培训不够,导致员工安全意识淡薄,操作技能不足; (3)公司应急预案不完善,未能有效应对突发事件。 四、事故教训及预防措施 1. 事故教训 (1)设备缺陷是导致事故发生的主要原因,企业应加强设备维护保养,定期进行检测,确保设备安全可靠;
不足,造成低PH的泄漏;国内蒸馏案例三;QDLH--蒸馏塔顶2205材料空冷投用3个月顶排中部穿孔。
估计与洗塔有关,大量盐酸不能及时中和。
国内蒸馏案例五;由于注水导致换热器露点腐蚀位置提前国内蒸馏案例六;控制壁温在结晶温度温度上电场不稳,原油脱后含水影响蒸馏操作;初馏塔前的换热器碱脆:螺栓、法兰、换热器管口等;原因分析:不合格的法兰,在硫化物环境中腐蚀疲劳与应力开裂;裂纹℉℃C用镍合金B炭钢消除应力处理(阀门内件镍合金)A炭钢不消除应力处理原设计改进设计设计压力:1.7MPa,设计温度:40℃,操作压力:1.2MPa,操作温度:45℃,介质为含硫化氢富气、凝缩油和含硫污水;现场检测厚度有18处分层;判断是湿硫化氢应力腐蚀SSCC与HIC/SOHIC开裂;¾2#瓦斯压缩机气阀阀座与升程限制器连接螺栓断裂,二级入口气阀固定螺栓材质3Cr13,断裂固定螺栓硬度高达HRC58.6。
在应力集中的螺纹尾部产生应力腐蚀断裂,造成气阀座松脱,气阀阀座与连接螺栓从死点区进入到活塞工作区,致使活塞能猛烈撞击大盖是发生事故的第一原因。
建议采用隔离式的安全阀;焦炭塔上段复合板裂纹高镍合金焊缝/热影响区与复合板裂纹天津石化250万吨/年延迟焦化装置4台Φ9400焦炭塔复层焊缝制造发现上千条裂纹;微裂纹出现在焊缝上,怀疑是焊接时线能量太大所致。
采用625焊条,焊接时层间温度应小于100℃,应尽量采用小焊接线能量焊接,热输入量宜控制在0.5~1.0KJ/mm。
国内外有报道由不锈钢导凝管开工过程的氯离子浓缩导致爆炸着火的案例不少。
建议材料升级到高镍合金或取消导凝管。
我国新建加氢装置已取消了。
管焊缝开裂,裂纹由里向外。
2) 湿硫化氢应力腐蚀开裂投产二年九个月后首检发现厚壁不锈钢管线焊缝开裂,金相显示属于晶界开裂,原因是施工为赶进度造成大量的热裂纹,又没有发现。
返修后三年第二次检修,裂纹开裂更加严重,已构成安全问题,需全部更换。
糠醛抽出油的综合利用糠醛抽出油0前言随着炼油技术的进展,加氢工艺过程和设备的不断进步与完善,国内外越来越多地实行加氢工艺替代溶剂精制工艺来生产润滑油基础油。
由于受到资金和技术等方面的限制,大多数炼油企业仍旧将溶剂精制工艺作为生产润滑油根底油的主要加工手段,所以溶剂精制在国内照旧占有格外重要的地位。
在传统的“老三套”(酮苯脱蜡―溶剂精制―白土处理)工艺生产过程中,溶剂精制工艺可以很好地改善原料油的氧化安定性、光热安定性等性能,使根底油质量水平有了全面提高。
溶剂精制工艺除了在“老三套”工艺中起着重要作用外,还用于与加氢工艺进展组合,作为优化原料性质的预处理过程,在确保根底油质量的同时可以降低加氢工艺中的苛刻度,到达提高产品收率的目的。
溶剂精制工艺所用的溶剂主要有糠醛、苯酚、双溶剂、N-甲基吡咯烷酮〔NMP〕等,国外的溶剂精制技术主要应用于润滑油的生产,建装置大都承受NMP 溶剂精制。
在美国和加拿大,进入90 年月后,糠醛精制份额由40%降到30%,酚精制由28%降到10%,NMP 精制上升到56%,取代了糠醛和酚精制,位居首位。
在我国,糠醛精制是润滑油溶剂精制的主要方式,占全部溶剂精制装置的75.8%,占总处理力量的80.3%。
糠醛精制技术接近国外先进水平。
糠醛比重较大,是一种选择性较大的溶剂,它对油品中多环短侧链的烃类〔即重质芳烃〕溶解力量强,而对油品中少环长侧链的烃类溶解力量弱。
糠醛精制就是利用糠醛对原料中不同组分的溶解度不同,在与油品逆向接触过程中逐步溶解原料中的非抱负组分,在低于临界温度条件下因比重差形成界面,从而将非抱负组分和抱负组分萃取分开。
由于减压馏分的氮含量和芳烃含量很高,尤其是稠环芳烃和碱氮化合物,严峻影响油品的安定性,所以通过糠醛精制工艺来脱除馏分中的稠环芳烃和氮化物,得到的抽余油经补充精制可以生产出优质的润滑油产品,如绝缘油、冷冻机油、橡胶油等,而相应的抽出油则裂化为轻质燃料或直接作为化工原料。
第八类腐蚀品1、硝酸惹祸的两起事故[案情介绍] 案例一1973年11月3日,欧罗巴帕美国航空公司的一架喷气式货运飞机自纽约机场起飞。
数分钟后,机场的地面指挥系统就接到飞机机长的报告:机上发生异常状况,机舱内着火。
尽管采取了自救措施仍未见效果。
35分钟后,飞机坠毁于波士顿机场,三名机组人员全部死亡。
经有关部门对事故进行深入调查发现:在所装的货物中有一批硝酸。
其包装不符合运输要求,是桶装容器外套木板箱,中间用木屑作衬垫。
货物在装上飞机时,作业人员没有注意箱顶上“该面朝上”的指示标志,而是随意堆放。
由于箱内货物倒置,硝酸自桶中渗漏出来,与木屑相混,自燃而引起火灾。
案例二1989年2月6日下午4时20分,从西安开往济南的207次列车行至三门峡铁门路段时,8号车厢尽头的行李架上突然冒出一股呛人的烟雾,旅客纷纷夺路而逃。
车上秩序顿时大乱。
这时列车员与乘警不顾个人安危,冲上去抓起那只冒烟的手提包,打开车窗扔到窗外,接着又拉下紧急刹车的制动阀。
经现场展开的调查,查实了手提包的主人是河南省灵宝县程村乡的一个叫朱红军的农民。
他携带了一瓶硝酸,逃过车站的检查后自以为没事了,没想到手提包在行李架上倾倒,硝酸自瓶口渗出,险些酿成大祸。
就是这样,奋不顾身扔包的女列车员的手背已被多次灼伤,身上的衣服也被腐蚀后发脆、变色。
这个肇事者当即受到治安拘留的处理。
[事故原因分析] 硝酸,联合国编号为2031,属第八类·腐蚀品,是具有严重危险性的物品。
硝酸透明、无色,通常因溶有二氧化氮而呈红棕色。
有独特的窒息性气体。
硝酸的化学性能相当活泼,具有极强氧化性,几乎可以与一切金属、非金属起反应。
硝酸中溶有的二氧化氮越多,其氧化能力越强,腐蚀性就越大。
硝酸在发生腐蚀反应时一般总会生成有毒气体一氧化氮或二氧化氮,从而对人体生成危害。
硝酸的氧化能力能引起木材和其他纤维素物品燃烧。
一般常见的有机物如松节油、醋酸、丙酮、乙醇等与浓硝酸相混即发生爆炸。