ieee333节点牛拉法潮流计算结果
- 格式:docx
- 大小:37.21 KB
- 文档页数:3
ieee333节点牛拉法潮流计算结果潮流计算是电力系统分析中的一项重要工作,用于确定系统中各节点的电压幅值和相角的分布情况。
本文将以IEEE 333节点系统为例,使用牛拉法潮流计算方法,对该系统进行潮流计算,并给出计算结果。
IEEE 333节点系统是一个中等规模的电力系统,包含333个节点。
在进行潮流计算之前,我们需要确定系统中的各个节点的发电机有功和无功注入,以及负载的有功和无功消耗。
注入和消耗的功率值可以通过实际测量或者根据电力系统数据获得。
假设我们已经获取了这些信息,下面将进行潮流计算。
潮流计算的主要目标是确定系统中各节点的电压幅值和相角。
潮流计算可分为以下几个步骤:1.建立雅可比矩阵潮流计算的第一步是建立雅可比矩阵。
雅可比矩阵描述了节点电压和注入功率之间的关系。
在IEEE 333节点系统中,节点电压表示为复数形式,即幅值和相角。
雅可比矩阵的大小由系统的节点数决定,对于333节点系统,雅可比矩阵的大小为333x333。
2.初始化节点电压和功率不平衡在开始潮流计算之前,需要初始化节点电压和功率不平衡。
初始化时,可以假设节点电压的幅值为1,相角为0度。
同时,初始化功率不平衡为初始负荷值。
3.迭代计算节点电压和功率不平衡通过迭代计算的方式,逐步更新节点电压和功率不平衡,直到收敛为止。
在每一次迭代计算中,通过雅可比矩阵和牛拉法方程来更新节点电压和功率不平衡。
4.收敛判断和结果分析在迭代计算过程中,需要判断潮流计算是否收敛。
通常使用节点电压和功率不平衡的变化情况来判断收敛性。
当节点电压和功率不平衡的变化小于预定的阈值时,可以认为潮流计算已经收敛。
此时,可以得到系统中各节点的电压幅值和相角。
通过对IEEE 333节点系统进行潮流计算,可以得到系统中各节点的电压幅值和相角分布情况。
这些结果对电力系统的运行和规划具有重要意义,可以用于判断系统的稳定性和对系统进行优化。
值得注意的是,潮流计算是一项复杂而繁琐的工作,需要进行大量的计算和数据处理。
%本程序的功能是用牛拉法进行潮流计算%原理介绍详见鞠平著《电气工程》%默认数据为鞠平著《电气工程》例8.4所示数据%B1是支路参数矩阵%第一列和第二列是节点编号。
节点编号由小到大编写%对于含有变压器的支路,第一列为低压侧节点编号,第二列为高压侧节点编号%第三列为支路的串列阻抗参数,含变压器支路此值为变压器短路电抗%第四列为支路的对地导纳参数,含变压器支路此值不代入计算%第五烈为含变压器支路的变压器的变比,变压器非标准电压比%第六列为变压器是否是否含有变压器的参数,其中“1”为含有变压器,“0”为不含有变压器%B2为节点参数矩阵%第一列为节点注入发电功率参数%第二列为节点负荷功率参数%第三列为节点电压参数%第四列%第五列%第六列为节点类型参数,“1”为平衡节点,“2”为PQ节点,“3”为PV节点参数%X为节点号和对地参数矩阵%第一列为节点编号%第二列为节点对地参数clear;clc;num=input('是否采用默认数据?(1-默认数据;2-手动输入)');if num==1n=4;n1=4;isb=4;pr=0.00001;B1=[1 2 0.1667i 0 0.8864 1;1 3 0.1302+0.2479i 0.0258i 1 0;1 4 0.1736+0.3306i 0.0344i 1 0;3 4 0.2603+0.4959i 0.0518i 1 0];B2=[0 0 1 0 0 2;0 -0.5-0.3i 1 0 0 2;0.2 0 1.05 0 0 3;0 -0.15-0.1i 1.05 0 0 1];X=[1 0;2 0.05i;3 0;4 0];elsen=input('请输入节点数:n=');n1=input('请输入支路数:n1=');isb=input('请输入平衡节点号:isb=');pr=input('请输入误差精度:pr=');B1=input('请输入支路参数:B1=');B2=input('请输入节点参数:B2=');X=input('节点号和对地参数:X=');endTimes=1; %迭代次数%创建节点导纳矩阵Y=zeros(n);for i=1:n1if B1(i,6)==0 %不含变压器的支路p=B1(i,1);q=B1(i,2);Y(p,q)=Y(p,q)-1/B1(i,3);Y(q,p)=Y(p,q);Y(p,p)=Y(p,p)+1/B1(i,3)+0.5*B1(i,4);Y(q,q)=Y(q,q)+1/B1(i,3)+0.5*B1(i,4);else %含有变压器的支路p=B1(i,1);q=B1(i,2);Y(p,q)=Y(p,q)-B1(i,5)/B1(i,3);Y(q,p)=Y(p,q);Y(p,p)=Y(p,p)+B1(i,5)/B1(i,3)+(1-B1(i,5))/B1(i,3);Y(q,q)=Y(q,q)+B1(i,5)/B1(i,3)+(B1(i,5)*(B1(i,5)-1))/B1(i,3);endendfor i=1:n1Y(i,i)=Y(i,i)+X(i,2); %计及补偿电容电纳enddisp('导纳矩阵为:');disp(Y); %显示导纳矩阵%初始化OrgS、DetaSOrgS=zeros(2*n-2,1);DetaS=zeros(2*n-2,1);%创建OrgS,用于存储初始功率参数h=0;j=0;for i=1:n %对PQ节点的处理if i~=isb&B2(i,6)==2 %不是平衡点&是PQ点h=h+1;for j=1:n%公式8-74%Pi=ei*(Gij*ej-Bij*fj)+fi*(Gij*fj+Bij*ej)%Qi=fi*(Gij*ej-Bij*fj)-ei*(Gij*fj+Bij*ej)OrgS(2*h-1,1)=OrgS(2*h-1,1)+real(B2(i,3))*(real(Y(i,j))*real(B2(j,3))-imag(Y(i,j))*imag(B2(j,3)))+imag(B2(i,3))*(real(Y(i,j))*imag(B2(j,3))+imag(Y(i,j))*real(B2(j ,3)));OrgS(2*h,1) =OrgS(2*h,1)+imag(B2(i,3))*(real(Y(i,j))*real(B2(j,3))-imag(Y(i,j))*imag(B2(j,3)))-real(B2(i,3))*(real(Y(i,j))*imag(B2(j,3))+imag(Y(i,j))*real(B2(j,3)));endendendfor i=1:n %对PV节点的处理,注意这时不可再将h初始化为0if i~=isb&B2(i,6)==3 %不是平衡点&是PV点h=h+1;for j=1:n%公式8-75-a%Pi=ei*(Gij*ej-Bij*fj)+fi*(Gij*fj+Bij*ej)%Qi=fi*(Gij*ej-Bij*fj)-ei*(Gij*fj+Bij*ej)OrgS(2*h-1,1)=OrgS(2*h-1,1)+real(B2(i,3))*(real(Y(i,j))*real(B2(j,3))-imag(Y(i,j))*imag(B2(j,3)))+imag(B2(i,3))*(real(Y(i,j))*imag(B2(j,3))+imag(Y(i,j))*real(B2(j ,3)));OrgS(2*h,1)=OrgS(2*h,1)+imag(B2(i,3))*(real(Y(i,j))*real(B2(j,3))-imag(Y(i,j))*imag(B2(j,3)))-real(B2(i,3))*(real(Y(i,j))*imag(B2(j,3))+imag(Y(i,j))*real(B2(j,3)));endendend%创建PVU 用于存储PV节点的初始电压PVU=zeros(n-h-1,1);t=0;for i=1:nif B2(i,6)==3t=t+1;PVU(t,1)=B2(i,3);endend%创建DetaS,用于存储有功功率、无功功率和电压幅值的不平衡量h=0;for i=1:n %对PQ节点的处理if i~=isb&B2(i,6)==2h=h+1;DetaS(2*h-1,1)=real(B2(i,2))-OrgS(2*h-1,1); %delPiDetaS(2*h,1)=imag(B2(i,2))-OrgS(2*h,1); %delQi endendt=0;for i=1:n %对PV节点的处理,注意这时不可再将h初始化为0if i~=isb&B2(i,6)==3h=h+1;t=t+1;DetaS(2*h-1,1)=real(B2(i,1))-OrgS(2*h-1,1); %delPiDetaS(2*h,1)=real(PVU(t,1))^2+imag(PVU(t,1))^2-real(B2(i,3))^2-imag(B2(i,3))^2; %delUiendend% DetaS%创建I,用于存储节点电流参数i=zeros(n-1,1);h=0;for i=1:nif i~=isbh=h+1;I(h,1)=(OrgS(2*h-1,1)-OrgS(2*h,1)*sqrt(-1))/conj(B2(i,3));%conj求共轭endend%创建Jacbi(雅可比矩阵)Jacbi=zeros(2*n-2);h=0;k=0;for i=1:n %对PQ节点的处理if B2(i,6)==2h=h+1;for j=1:nif j~=isbk=k+1;if i==j %对角元素的处理Jacbi(2*h-1,2*k-1)=-imag(Y(i,j))*real(B2(i,3))+real(Y(i,j))*imag(B2(i,3))+imag(I(h,1));Jacbi(2*h-1,2*k)=real(Y(i,j))*real(B2(i,3))+imag(Y(i,j))*imag(B2(i,3))+real(I(h,1));Jacbi(2*h,2*k-1)=-Jacbi(2*h-1,2*k)+2*real(I(h,1));Jacbi(2*h,2*k)=Jacbi(2*h-1,2*k-1)-2*imag(I(h,1));else %非对角元素的处理Jacbi(2*h-1,2*k-1)=-imag(Y(i,j))*real(B2(i,3))+real(Y(i,j))*imag(B2(i,3));Jacbi(2*h-1,2*k)=real(Y(i,j))*real(B2(i,3))+imag(Y(i,j))*imag(B2(i,3));Jacbi(2*h,2*k-1)=-Jacbi(2*h-1,2*k);Jacbi(2*h,2*k)=Jacbi(2*h-1,2*k-1);endif k==(n-1) %将用于内循环的指针置于初始值,以确保雅可比矩阵换行k=0;endendendendendk=0;for i=1:n %对PV节点的处理if B2(i,6)==3h=h+1;for j=1:nif j~=isbk=k+1;if i==j %对角元素的处理Jacbi(2*h-1,2*k-1)=-imag(Y(i,j))*real(B2(i,3))+real(Y(i,j))*imag(B2(i,3))+imag(I(h,1));Jacbi(2*h-1,2*k)=real(Y(i,j))*real(B2(i,3))+imag(Y(i,j))*imag(B2(i,3))+real(I(h,1));Jacbi(2*h,2*k-1)=2*imag(B2(i,3));Jacbi(2*h,2*k)=2*real(B2(i,3));else %非对角元素的处理Jacbi(2*h-1,2*k-1)=-imag(Y(i,j))*real(B2(i,3))+real(Y(i,j))*imag(B2(i,3));Jacbi(2*h-1,2*k)=real(Y(i,j))*real(B2(i,3))+imag(Y(i,j))*imag(B2(i,3));Jacbi(2*h,2*k-1)=0;Jacbi(2*h,2*k)=0;endif k==(n-1) %将用于内循环的指针置于初始值,以确保雅可比矩阵换行k=0;endendendendenddisp('初始雅可比矩阵为:');disp(Jacbi);%求解修正方程,获取节点电压的不平衡量DetaU=zeros(2*n-2,1);DetaU=inv(Jacbi)*DetaS; %inv矩阵求逆% DetaU%修正节点电压j=0;for i=1:n %对PQ节点处理if B2(i,6)==2j=j+1;B2(i,3)=B2(i,3)+DetaU(2*j,1)+DetaU(2*j-1,1)*sqrt(-1);endendfor i=1:n %对PV节点的处理if B2(i,6)==3j=j+1;B2(i,3)=B2(i,3)+DetaU(2*j,1)+DetaU(2*j-1,1)*sqrt(-1);endend% B2%开始循环********************************************************************** while abs(max(DetaU))>prOrgS=zeros(2*n-2,1);h=0;j=0;for i=1:nif i~=isb&B2(i,6)==2h=h+1;for j=1:nOrgS(2*h-1,1)=OrgS(2*h-1,1)+real(B2(i,3))*(real(Y(i,j))*real(B2(j,3))-imag(Y(i,j))*imag(B2(j,3)))+imag(B2(i,3))*(real(Y(i,j))*imag(B2(j,3))+imag(Y(i,j))*real(B2(j ,3)));OrgS(2*h,1)=OrgS(2*h,1)+imag(B2(i,3))*(real(Y(i,j))*real(B2(j,3))-imag(Y(i,j))*imag(B2(j,3)))-real(B2(i,3))*(real(Y(i,j))*imag(B2(j,3))+imag(Y(i,j))*real(B2(j,3)));endendendfor i=1:nif i~=isb&B2(i,6)==3h=h+1;for j=1:nOrgS(2*h-1,1)=OrgS(2*h-1,1)+real(B2(i,3))*(real(Y(i,j))*real(B2(j,3))-imag(Y(i,j))*imag(B2(j,3)))+imag(B2(i,3))*(real(Y(i,j))*imag(B2(j,3))+imag(Y(i,j))*real(B2(j ,3)));OrgS(2*h,1)=OrgS(2*h,1)+imag(B2(i,3))*(real(Y(i,j))*real(B2(j,3))-imag(Y(i,j))*imag(B2(j,3)))-real(B2(i,3))*(real(Y(i,j))*imag(B2(j,3))+imag(Y(i,j))*real(B2(j,3)));endendend% OrgS%创建DetaSh=0;for i=1:nif i~=isb&B2(i,6)==2h=h+1;DetaS(2*h-1,1)=real(B2(i,2))-OrgS(2*h-1,1);DetaS(2*h,1)=imag(B2(i,2))-OrgS(2*h,1);endendt=0;for i=1:nif i~=isb&B2(i,6)==3h=h+1;t=t+1;% DetaS(2*h-1,1)=real(B2(i,2))-OrgS(2*h-1,1);DetaS(2*h-1,1)=real(B2(i,1))-OrgS(2*h-1,1);DetaS(2*h,1)=real(PVU(t,1))^2+imag(PVU(t,1))^2-real(B2(i,3))^2-imag(B2(i,3))^2;endend% DetaS%创建Ii=zeros(n-1,1);h=0;for i=1:nif i~=isbh=h+1;I(h,1)=(OrgS(2*h-1,1)-OrgS(2*h,1)*sqrt(-1))/conj(B2(i,3));endend% I%创建JacbiJacbi=zeros(2*n-2);h=0;k=0;for i=1:nif B2(i,6)==2h=h+1;for j=1:nif j~=isbk=k+1;if i==jJacbi(2*h-1,2*k-1)=-imag(Y(i,j))*real(B2(i,3))+real(Y(i,j))*imag(B2(i,3))+imag(I(h,1));Jacbi(2*h-1,2*k)=real(Y(i,j))*real(B2(i,3))+imag(Y(i,j))*imag(B2(i,3))+real(I(h,1));Jacbi(2*h,2*k-1)=-Jacbi(2*h-1,2*k)+2*real(I(h,1));Jacbi(2*h,2*k)=Jacbi(2*h-1,2*k-1)-2*imag(I(h,1));elseJacbi(2*h-1,2*k-1)=-imag(Y(i,j))*real(B2(i,3))+real(Y(i,j))*imag(B2(i,3));Jacbi(2*h-1,2*k)=real(Y(i,j))*real(B2(i,3))+imag(Y(i,j))*imag(B2(i,3));Jacbi(2*h,2*k-1)=-Jacbi(2*h-1,2*k);Jacbi(2*h,2*k)=Jacbi(2*h-1,2*k-1);endif k==(n-1)k=0;endendendendendk=0;for i=1:nif B2(i,6)==3h=h+1;for j=1:nif j~=isbk=k+1;if i==jJacbi(2*h-1,2*k-1)=-imag(Y(i,j))*real(B2(i,3))+real(Y(i,j))*imag(B2(i,3))+imag(I(h,1));Jacbi(2*h-1,2*k)=real(Y(i,j))*real(B2(i,3))+imag(Y(i,j))*imag(B2(i,3))+real(I(h,1));Jacbi(2*h,2*k-1)=2*imag(B2(i,3));Jacbi(2*h,2*k)=2*real(B2(i,3));elseJacbi(2*h-1,2*k-1)=-imag(Y(i,j))*real(B2(i,3))+real(Y(i,j))*imag(B2(i,3));Jacbi(2*h-1,2*k)=real(Y(i,j))*real(B2(i,3))+imag(Y(i,j))*imag(B2(i,3));Jacbi(2*h,2*k-1)=0;Jacbi(2*h,2*k)=0;endif k==(n-1)k=0;endendendendend% JacbiDetaU=zeros(2*n-2,1);DetaU=inv(Jacbi)*DetaS;% DetaU%修正节点电压j=0;for i=1:nif B2(i,6)==2j=j+1;B2(i,3)=B2(i,3)+DetaU(2*j,1)+DetaU(2*j-1,1)*sqrt(-1);endendfor i=1:nif B2(i,6)==3j=j+1;B2(i,3)=B2(i,3)+DetaU(2*j,1)+DetaU(2*j-1,1)*sqrt(-1);endend% B2Times=Times+1; %迭代次数加1enddisp('迭代次数为:');disp(Times);disp('收敛时电压修正量为::');disp(DetaU);for k=1:nE(k)=B2(k,3);e(k)=real(E(k));f(k)=imag(E(k));V(k)=sqrt(e(k)^2+f(k)^2);sida(k)=atan(f(k)./e(k))*180./pi;end%=============== 计算各输出量=========================== disp('各节点的实际电压标幺值E为(节点号从小到大排列):');disp(E); %显示各节点的实际电压标幺值E用复数表示disp('-----------------------------------------------------');disp('各节点的电压大小V为(节点号从小到大排列):');disp(V); %显示各节点的电压大小V的模值disp('-----------------------------------------------------');disp('各节点的电压相角sida为(节点号从小到大排列):');disp(sida); %显示各节点的电压相角for p=1:nC(p)=0;for q=1:nC(p)=C(p)+conj(Y(p,q))*conj(E(q)); %计算各节点的注入电流的共轭值endS(p)=E(p)*C(p); %计算各节点的功率S = 电压X 注入电流的共轭值enddisp('各节点的功率S为(节点号从小到大排列):');disp(S); %显示各节点的注入功率Sline=zeros(n1,5);disp('-----------------------------------------------------');disp('各条支路的首端功率Si为(顺序同您输入B1时一致):');for i=1:n1p=B1(i,1);q=B1(i,2);Sline(i,1)=B1(i,1);Sline(i,2)=B1(i,2);if B1(i,6)==0Si(p,q)=E(p)*(conj(E(p))*conj(B1(i,4)./2)+(conj(E(p)*B1(i,5))-conj(E(q)))*conj(1./(B1(i,3)*B1(i,5))));Siz(i)=Si(p,q);elseSi(p,q)=E(p)*(conj(E(p))*((1-B1(i,5))/B1(i,3))+(conj(E(p))-conj(E(q)))*(B1(i,5)/B1(i,3)));Siz(i)=Si(p,q);endSSi(p,q)=Si(p,q);Sline(i,3)=Siz(i);ZF=['S(',num2str(p),',',num2str(q),')=',num2str(SSi(p,q))];disp(ZF);enddisp('-----------------------------------------------------');disp('各条支路的末端功率Sj为(顺序同您输入B1时一致):');for i=1:n1p=B1(i,1);q=B1(i,2);if B1(i,6)==0Sj(q,p)=E(q)*(conj(E(q))*conj(B1(i,4)./2)+(conj(E(q)./B1(i,5))-conj(E(p)))*conj(1./(B1(i,3)*B1(i,5))));Sjy(i)=Sj(q,p);elseSj(q,p)=E(q)*(conj(E(q))*((B1(i,5)*(B1(i,5)-1))/B1(i,3))+(conj(E(q))-conj(E(p)))*(B1(i,5)/B1(i,3)));Sjy(i)=Sj(q,p);endSSj(q,p)=Sj(q,p);Sline(i,4)=Sjy(i);ZF=['S(',num2str(q),',',num2str(p),')=',num2str(SSj(q,p))];disp(ZF);enddisp('-----------------------------------------------------');disp('各条支路的功率损耗DS为(顺序同您输入B1时一致):');for i=1:n1p=B1(i,1);q=B1(i,2);DS(i)=Si(p,q)+Sj(q,p);DDS(i)=DS(i);Sline(i,5)=DS(i);ZF=['DS(',num2str(p),',',num2str(q),')=',num2str(DDS(i))];disp(ZF);enddisp('-----------------------------------------------------');disp('各支路首端编号末端编号首端功率末端功率线路损耗');disp(Sline);。
摘要电力系统潮流计算是研究电力系统稳态运行的一种重要方法,它根据给定的运行条件及系统接线情况确定整个电力系统各部分的运行状态,包括各母线的电压、线路的功率分布以及功率损耗等等。
潮流计算主要用于电网规划和静态安全分析,它可为扩建电力网络,以达到规划周期内所需要的输电能力提供依据;也可以对预想事故进行模拟和分析,校核预想事故下的电力系统安全性。
本文简单介绍了牛顿-拉夫逊潮流计算的原理、模型与算法,然后用具体的实例,利用MATLAB对牛顿-拉夫逊法的算法进行了验证。
关键词:电力系统潮流计算牛顿-拉夫逊法 MATLAB一、牛拉法的数学模型对一个N 节点的电力网路,列写节点电压方程,即I =Y V(1.1)式中,I 为节点注入电流列相量,Y 为节点导纳矩阵,V 为节点电压列相量。
由于异地测量的两个电流缺少时间同步信息,以注入功率替换注入电流作为已知量。
即***1+niij j ij j i i i Y V V I V Q P ••===∑(1.2)其中,Y ij =G ij +jB ij ,带入上式,得到有功功率和无功功率方程 P i =V i ∑V j (G ij cos θij +B ij sin θij )n j=1 (1.3)Q i =V i ∑Vj (G ij sin θij −B ij cos θij )n j=1 (1.4)大部分情况下,已知PQ ,求解V θ。
考虑到电网的功率平衡,至少选择一台发电机来平衡全网有功功率,即至少有一个平衡节点,常选择调频或出线较多的发电机作为平衡节点。
具有无功补偿的母线能保持电压幅值恒定,这类节点可作为PV 节点。
潮流计算中节点分类总结如下:已知电力系统有m 个PQ 节点,r 个PV 节点和1个平衡节点,则可以提取m+r 个有功功率方程和m 个无功功率方程,从而求解出m+r 个θ和m 个V ,其余节点的有功和无功可通过式(1.3)、(1.4)求得,这样就完成了潮流计算。
复杂电力系统潮流计算的牛拉法和 pq 分解法下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!一、引言在电力系统中,潮流计算是一项重要的工作。
自动化07-1班段佳function nl;%------------------------------------------------------------------------%===================================================================%======================牛顿——拉夫逊法==============================%===========================潮流计算=================================%===================================================================%-----------------------------------------------------------------------% % %---------------使用说明部分---------------------------display('% %本程序的功能是用牛顿——拉夫逊法进行潮流计算');display('% %本程序要求用户按照一定的格式将电力系统的参数制成excel表格,系统运行时将从excel中加载这些参数,随后后即可进行潮流计算');display('% %为了方便运算,用户再给系统节点进行编号时,请按照先PQ节点,再PV节点,最后平衡节点的顺序从小到大编号');display('% %电力系统潮流计算excel格式——支路参数:1、支路首端号;2、末端号;3、支路阻抗;4、支路对地电纳;5、支路的变比K:1;6、支路首端处于K侧为1,1侧为0'); display('% %电力系统潮流计算excel格式——节点参数:1、节点号;2、电压大小;3、相位角;4、发电机有功;5、发电机无功;6、负载有功;7、负载无功;8、节点类型'); %===================================================================%==============================数据准备==============================%===================================================================% %---------------------电力系统数据加载部分-----------------------------------------------clearx=0;Branch=0;%支路参数Note=0;%节点参数[filename, pathname] = uigetfile('*.xls', 'please choose the excel file with your powersystem parameters ');%从外部excel导入电力系统潮流计算相关参数tryif filename ~= 0x=xlsread([pathname,filename],'sheet1', 'A3:F3');Branch=xlsread([pathname,filename],'sheet1', 'A5:G10');%读支路参数Note=xlsread([pathname,filename],'sheet1', 'A15:H19');%读节点参数endcatch%进行出错处理errmsg = lasterr;errordlg(errmsg,'Save as Error');rethrow(lasterror);end% %---------------------支路参数初始化部分-----------------------------------------------SB=100;UB=220;n=1;m=1;pr=0.0001;SB=x(5);%功率基准值UB=x(6);%电压基准值n=x(1);%节点数nl=x(2);%支路数m=x(3);%PQ节点的个数pr=x(4);;%误差精度B1(:,1)=Branch(:,1);%1、支路首端号B1(:,2)=Branch(:,2);%2、末端号B1(:,3)=Branch(:,3)+Branch(:,4)*i;%3、支路阻抗B1(:,4)=Branch(:,5)*i;%4、支路对地电纳B1(:,5)=Branch(:,6);%5、支路的变比K:1;B1(:,6)=Branch(:,7);%6、支路首端处于K侧为1,1侧为0'% %% %---------------------节点参数初始化部分--------------------------------------------------U=ones(n,1);a=zeros(n,1);Ps=zeros(n,1);Qs=zeros(n,1);P=zeros(n,1);Q=zeros(n,1);detp=zeros(n-1,1);detq=zeros(m,1);deta=zeros(n-1,1);detu=zeros(m,1);k=0;%迭代次数U=Note(:,2);%各节点电压初始值(标幺值)a=Note(:,3);%各节点电压相位初始值(弧度)Gp=Note(:,4);%各节点发电机有功功率初始值(标幺值)Gq=Note(:,5);%各节点发电机无功功率初始值(标幺值)Lp=Note(:,6);%各节点负载有功功率初始值(标幺值)Lq=Note(:,7);%各节点负载无功功率初始值(标幺值)type=Note(:,8);%节点类型,PQ节点=1 ,PV节点=2 ,平衡节点=3for h=1:nPs(h)=Gp(h)-Lp(h);%各节点注入的有功功率Qs(h)=Gq(h)-Lq(h);%各节点注入的无功功率end% % %---------------------导纳矩阵计算部分-----------------------------------------------------Y=zeros(n);for h=1:nl %支路数if B1(h,6)==0 %左节点处于低压侧(6、支路首端处于K侧为1,1侧为0)p=B1(h,1);q=B1(h,2); %1、支路首端号;2、末端号;Y(p,q)=Y(p,q)-1./B1(h,3); %非对角元 3、支路阻抗;4、支路对地电纳;5、支路的变比;Y(q,p)=Y(p,q);Y(p,p)=Y(p,p)+1./B1(h,3)+B1(h,4);Y(q,q)=Y(q,q)+1./B1(h,3)+B1(h,4);elsep=B1(h,1);q=B1(h,2); %1、支路首端号;2、末端号;Y(p,q)=Y(p,q)-1./(B1(h,3)*B1(h,5));%非对角元 3、支路阻抗;4、支路对地电纳;5、支路的变比;Y(q,p)=Y(p,q);Y(p,p)=Y(p,p)+1./B1(h,3)+B1(h,4);Y(q,q)=Y(q,q)+1./(B1(h,3)*B1(h,5)^2)+B1(h,4);endend%导纳矩阵显示disp('导纳矩阵 Y=');disp(Y)% % %-------------OK,至此潮流计算所需的数据已经准备好了----------------%===================================================================%==============================潮流计算==============================%===================================================================%u(i)=e(i)+jf(i);Y(ij)=G(ij)+jB(ij);G=real(Y);B=imag(Y);%分解出导纳阵的实部和虚部%============================计算失配功率初始值detp\detq==========================for h=1:n-1s=0;for j=1:ns=s+U(j)*(G(h,j)*cos(a(h)-a(j))+B(h,j)*sin(a(h)-a(j)));endP(h)=U(h)*s;endfor h=1:n-1s=0;for j=1:ns=s+U(j)*(G(h,j)*sin(a(h)-a(j))-B(h,j)*cos(a(h)-a(j)));endQ(h)=U(h)*s;endfor h=1:n-1detp(h)=Ps(h)-P(h);endfor h=1:mdetq(h)=Qs(h)-Q(h);end%============================不满足精度要求则进入循环========================== while(max(abs(detp))>=pr|max(abs(detq))>=pr)%%不满足精度要求则循环%=================================求取Jacobi矩阵===============================H=zeros(n-1,n-1);N=zeros(n-1,m);K=zeros(m,n-1);L=zeros(m,m);for h=1:n-1for j=1:n-1if h==jH(h,j)=U(h)^2*B(h,j)+Q(h);elseH(h,j)=-U(h)*U(j)*(G(h,j)*sin(a(h)-a(j))-B(h,j)*cos(a(h)-a(j)));endendendfor h=1:n-1for j=1:mif h==jN(h,j)=-U(h)^2*G(h,j)-P(h);elseN(h,j)=-U(h)*U(j)*(G(h,j)*cos(a(h)-a(j))+B(h,j)*sin(a(h)-a(j)));endendendfor h=1:mfor j=1:n-1if h==jK(h,j)=U(h)^2*G(h,j)-P(h);elseK(h,j)=U(h)*U(j)*(G(h,j)*cos(a(h)-a(j))+B(h,j)*sin(a(h)-a(j)));endendendfor h=1:mfor j=1:mif h==jL(h,j)=U(h)^2*B(h,j)-Q(h);elseL(h,j)=-U(h)*U(j)*(G(h,j)*sin(a(h)-a(j))-B(h,j)*cos(a(h)-a(j)));endendend%========================解修正方程,得到修正量detu,deta============================Jacobi=[H N;K L];display(Jacobi);dets=[detp;detq];solutions=-inv(Jacobi)*dets;deta=solutions(1:n-1,:);detu=solutions(n:n-1+m,:);%==============================迭代过程中的电压====================================for h=1:n-1a(h)=a(h)+deta(h);endfor h=1:mU(h)=U(h)+detu(h);endk=k+1;fprintf('迭代次数k=%d\n',k);disp('节点电压大小(标幺值)');disp(U);disp('节点电压相位角(弧度)');disp(a);%===========================迭代过程中的失配功率detp\detq===========================for h=1:n-1s=0;for j=1:ns=s+U(j)*(G(h,j)*cos(a(h)-a(j))+B(h,j)*sin(a(h)-a(j)));endP(h)=U(h)*s;endfor h=1:n-1s=0;for j=1:ns=s+U(j)*(G(h,j)*sin(a(h)-a(j))-B(h,j)*cos(a(h)-a(j)));endQ(h)=U(h)*s;endfor h=1:n-1detp(h)=Ps(h)-P(h);endfor h=1:mdetq(h)=Qs(h)-Q(h);enddisp('迭代过程中的有功失配功率(标幺值)');disp(detp);disp('迭代过程中的无功失配功率(标幺值)');disp(detq);end% % %-------------OK,至此潮流计算已经完成了----------------%===================================================================%==============================计算结果输出到工作区========================== %===================================================================%=================================迭代次数、各节点电压和视在功率==============================disp('计算结果');fprintf('总的迭代次数k=%d\n',k);disp('-----------------------------------------------------');disp('各节点电压大小(标幺值)为(节点号从小到大排列)');disp(U);disp('各节点电压相位角(角度)为(节点号从小到大排列)');A=a*180/pi;disp(A);disp('-----------------------------------------------------');disp('各节点视在功率(标幺值)为(节点号从小到大排列)');S=P+Q*i;disp(S);%=============================各条支路功率损耗和总损耗========================= ZSH=0;DS=zeros(nl,1);for h=1:nlp=B1(h,1);q=B1(h,2);DS(h)=S(p)-S(q);ZSH=ZSH+DS(h);DDS(h)=DS(h)*SB;ZF=['DS(',num2str(p),',',num2str(q),')=',num2str(DDS(h)),' (MVA) 标么值:',num2str(DS(h))];disp(ZF);enddisp('-----------------------------------------------------');disp(['总损耗为:ZSH=',num2str(ZSH*SB),' (MVA) 标么值:',num2str(ZSH)]);%==============================结果输出到原excel========================== result0=U;%电压result1=A;%相位result2=P;%节点有功result3=Q;%节点无功result4=real(DS);%线路有功损耗result5=imag(DS);%线路无功损耗result6=real(ZSH);%系统总有功损耗result7=imag(ZSH);%系统总无功损耗[filename1, pathname1] = uiputfile('*.xls', 'put the result into the excel with your powersystem parameters ');%从外部excel导入电力系统潮流计算相关参数tryif filename1 ~= 0xlswrite([pathname1,filename1],result0 , 'sheet1', 'J3');xlswrite([pathname1,filename1],result1 , 'sheet1', 'K3');xlswrite([pathname1,filename1],result2 , 'sheet1', 'L3');xlswrite([pathname1,filename1],result3 , 'sheet1', 'M3');xlswrite([pathname1,filename1],result4 , 'sheet1', 'N3');xlswrite([pathname1,filename1],result5 , 'sheet1', 'O3');xlswrite([pathname1,filename1],result6 , 'sheet1', 'P3');xlswrite([pathname1,filename1],result7 , 'sheet1', 'Q3');endcatch%进行出错处理errmsg = lasterr;errordlg(errmsg,'Save as Error');rethrow(lasterror);end%==============================打开excel查看计算结果========================== winopen([pathname1,filename1]);% % %-------------OK,至此潮流计算已经全部完成----------------% % %-------------O(∩_∩)O哈!----------------% %本程序的功能是用牛顿——拉夫逊法进行潮流计算% %本程序要求用户按照一定的格式将电力系统的参数制成excel表格,系统运行时将从excel中加载这些参数,随后后即可进行潮流计算% %为了方便运算,用户再给系统节点进行编号时,请按照先PQ节点,再PV节点,最后平衡节点的顺序从小到大编号% %电力系统潮流计算excel格式——支路参数:1、支路首端号;2、末端号;3、支路阻抗;4、支路对地电纳;5、支路的变比K:1;6、支路首端处于K侧为1,1侧为0% %电力系统潮流计算excel格式——节点参数:1、节点号;2、电压大小;3、相位角;4、发电机有功;5、发电机无功;6、负载有功;7、负载无功;8、节点类型导纳矩阵 Y=6.3110 -20.4022i -3.5587 +11.3879i -2.7523 + 9.1743i 0 0-3.5587 +11.3879i 8.5587 -31.0093i -5.0000 +15.0000i 0 + 4.9889i-2.7523 + 9.1743i -5.0000 +15.0000i 7.7523 -28.7757i 0 0 + 4.9889i0 0 + 4.9889i 0 0 - 5.2493i0 0 0 + 4.9889i 0 0 - 5.2493iJacobi =-20.5622 11.3879 9.1743 0 -6.3110 3.5587 2.752311.3879 -31.3768 15.0000 4.9889 3.5587 -8.5587 5.00009.1743 15.0000 -29.1632 0 2.7523 5.0000 -7.75230 4.9889 0 -4.9889 0 0 06.3110 -3.5587 -2.7523 0 -20.2422 11.3879 9.1743-3.5587 8.5587 -5.0000 0 11.3879 -30.6418 15.0000-2.7523 -5.0000 7.7523 0 9.1743 15.0000 -28.3882迭代次数k=1节点电压大小(标幺值)1.00361.02971.03271.00001.0000节点电压相位角(弧度)-0.0900-0.0577-0.06120.0425迭代过程中的有功失配功率(标幺值)0.0193-0.0059-0.0007-0.0140迭代过程中的无功失配功率(标幺值)-0.0148-0.0387-0.0270Jacobi =-21.0649 11.6431 9.4218 0 -5.5312 4.0561 3.1247 11.8809 -32.9618 15.9694 5.1115 3.2952 -9.0811 5.2601 9.5859 15.9316 -30.6597 0 2.5776 5.3736 -8.2678 0 5.1115 0 -5.1115 0 -0.5140 0 7.1808 -4.0561 -3.1247 0 -20.0304 11.6431 9.4218 -3.2952 9.0693 -5.2601 -0.5140 11.8809 -32.7992 15.9694 -2.5776 -5.3736 8.2664 0 9.5859 15.9316 -30.7138迭代次数k=2节点电压大小(标幺值)0.99371.02071.02401.00001.0000节点电压相位角(弧度)-0.0904-0.0587-0.06200.0397迭代过程中的有功失配功率(标幺值)0.0019-0.0010-0.0008-0.0002迭代过程中的无功失配功率(标幺值)0.0046-0.0041-0.0041Jacobi =-20.6812 11.4294 9.2518 0 -5.4239 3.9739 3.0648 11.6585 -32.4210 15.6951 5.0675 3.2410 -8.9173 5.1741 9.4110 15.6605 -30.1704 0 2.5340 5.2777 -8.1299 0 5.0675 0 -5.0675 0 -0.5002 0 7.0387 -3.9739 -3.0648 0 -19.6079 11.4294 9.2518 -3.2410 8.9154 -5.1741 -0.5002 11.6585 -32.1891 15.6951 -2.5340 -5.2777 8.1284 0 9.4110 15.6605 -30.1786迭代次数k=3节点电压大小(标幺值)0.99351.02031.02371.00001.0000节点电压相位角(弧度)-0.0905-0.0587-0.06200.0397迭代过程中的有功失配功率(标幺值)1.0e-004 *0.6037-0.2358-0.3406-0.0364迭代过程中的无功失配功率(标幺值)1.0e-003 *0.1808-0.1108-0.1555Jacobi =-20.6709 11.4238 9.2471 0 -5.4240 3.9719 3.0632 11.6527 -32.4023 15.6839 5.0657 3.2395 -8.9101 5.1705 9.4062 15.6495 -30.1528 0 2.5328 5.2739 -8.1234 0 5.0657 0 -5.0657 0 -0.5000 0 7.0351 -3.9719 -3.0632 0 -19.6066 11.4238 9.2471 -3.2395 8.9101 -5.1705 -0.5000 11.6527 -32.1625 15.6839 -2.5328 -5.2739 8.1233 0 9.4062 15.6495 -30.1531迭代次数k=4节点电压大小(标幺值)0.99351.02031.02361.00001.0000节点电压相位角(弧度)-0.0905-0.0587-0.06200.0397迭代过程中的有功失配功率(标幺值)1.0e-005 *0.1199-0.0264-0.0861-0.0075迭代过程中的无功失配功率(标幺值)1.0e-005 *0.3521-0.1563-0.3785计算结果总的迭代次数k=4-----------------------------------------------------各节点电压大小(标幺值)为(节点号从小到大排列)0.99351.02031.02361.00001.0000各节点电压相位角(角度)为(节点号从小到大排列)-5.1825-3.3648-3.55382.2723-----------------------------------------------------各节点视在功率(标幺值)为(节点号从小到大排列)-0.8055 - 0.5320i0.0000 - 0.1200i0.0000 + 0.0000i0.5000 + 0.1837iDS(1,2)=-80.5501-41.2005i (MVA) 标么值:-0.8055-0.41201iDS(1,3)=-80.5502-53.2007i (MVA) 标么值:-0.8055-0.53201iDS(2,3)=-5.97263e-005-12.0002i (MVA) 标么值:-5.9726e-007-0.12i DS(4,2)=50+30.3696i (MVA) 标么值:0.5+0.3037iDS(5,3)=-8.6117e-005-0.i (MVA) 标么值:-8.6117e-007-3.7855e-006i -----------------------------------------------------总损耗为:ZSH=-111.1005-76.03228i (MVA) 标么值:-1.111-0.76032i。
基于牛顿拉夫逊法潮流计算的matlab实验报告一、实验目的和要求1.学习掌握matlab的基本用法2.应用MATLAB语言编写具有一定通用性的牛顿-拉夫逊法潮流计算程序。
要求:(1)潮流计算方法为牛顿-拉夫逊法。
(2)编程语言为MATLAB。
(3)程序具有较强通用性。
二、程序流程图1.程序流程图开始形成节点导纳矩阵输入原始数据,节点重新编号设节点电压初值(0)(0)i ie f,i=1,2…,n,i≠s置迭代次数P=0置节点号i=1计算雅克比矩阵元素按公式计算PQ节点的()k i P∆,()kiQ∆,PV节点的()kiP∆,()2kiU∆求解修正方程式,得()kie∆,()kif∆雅克比矩阵是否已全部形成?求()max||ke∆,()max||kf∆迭代次数P=P+1i=i+1计算各节点电压的新值:(1)()()k k kie e e+=+∆(1)()()k k kif f f+=+∆三、求解问题及其结果1.求解问题:IEEE-美国新英格兰10机39节点测试系统1)系统单线图2)系统参数1)系统容量基准值为100MV A。
2) 负荷数据见表D-1表D-1 负荷数据3)发电机数据见表D-24)线路参数见表D-3LN35: BUS-4接有并联电容器,B 4=1.0000 LN36: BUS-5接有并联电容器,B 4=2.00005)变压器参数见表D-4%IEEE-美国新英格兰10机39节点测试系统% 1 2 3 4 5 6% bus volt angle p q typebus=[ 1 1.0000 0.00 0.00 0.00 12 1.0000 0.00 0.00 0.00 13 1.0000 0.00 -3.22 -0.024 14 1.0000 0.00 -5.00 -1.84 15 1.0000 0.00 0.00 0.00 16 1.0000 0.00 0.00 0.00 17 1.0000 0.00 -2.338 -0.84 18 1.0000 0.00 -5.22 -1.76 19 1.0000 0.00 0.00 0.00 110 1.0000 0.00 0.00 0.00 111 1.0000 0.00 0.00 0.00 112 1.0000 0.00 -0.085 -0.88 113 1.0000 0.00 0.00 0.00 114 1.0000 0.00 0.00 0.00 115 1.0000 0.00 -3.20 -1.53 116 1.0000 0.00 -3.29 -0.323 117 1.0000 0.00 0.00 0.00 118 1.0000 0.00 -1.58 -0.30 119 1.0000 0.00 0.00 0.00 120 1.0000 0.00 -6.80 -1.03 121 1.0000 0.00 -2.74 -1.15 122 1.0000 0.00 0.00 0.00 123 1.0000 0.00 -2.475 -1.15 124 1.0000 0.00 -3.08 -0.922 125 1.0000 0.00 -2.24 -0.472 126 1.0000 0.00 -1.39 -0.17 127 1.0000 0.00 -2.81 -0.755 128 1.0000 0.00 -2.06 -0.276 129 1.0000 0.00 -2.835 -0.269 130 1.0475 0.00 2.50 0.00 231 1.0000 0.00 0.00 0.00 332 1.0000 0.00 6.50 1.759 133 1.0000 0.00 6.32 1.0335 134 1.0123 0.00 5.08 0.00 235 1.0493 0.00 6.50 0.00 236 1.0000 0.00 5.60 0.9688 137 1.0278 0.00 5.40 0.00 238 1.0265 0.00 8.30 0.00 239 1.0300 0.00 -1.04 0.00 2];% 1 2 3 4 5 6 7 % line: from bus to bus R, X, G, B/2 Kline=[ 2 1 0.00350 0.04110 0 0.34935 0;39 1 0.00100 0.02500 0 0.37500 0;3 2 0.00130 0.01510 0 0.12860 0;25 2 0.00700 0.00860 0 0.07300 0;4 3 0.00130 0.02130 0 0.11070 0;18 3 0.00110 0.01330 0 0.10690 0;5 4 0.00080 0.01280 0 0.06710 0;14 4 0.00080 0.01290 0 0.06910 0;6 5 0.00020 0.00260 0 0.02170 0;8 5 0.00080 0.01120 0 0.07380 0;7 6 0.00060 0.00920 0 0.05650 0;11 6 0.00070 0.00820 0 0.06945 0;8 7 0.00040 0.00460 0 0.03900 0;9 8 0.00230 0.03630 0 0.19020 0;39 9 0.00100 0.02500 0 0.60000 0;11 10 0.00040 0.00430 0 0.03645 0;13 10 0.00040 0.00430 0 0.03645 0;14 13 0.00090 0.01010 0 0.08615 0;15 14 0.00180 0.02170 0 0.18300 0;16 15 0.00090 0.00940 0 0.08550 0;17 16 0.00070 0.00890 0 0.06710 0;19 16 0.00160 0.01950 0 0.15200 0;21 16 0.00080 0.01350 0 0.12740 0;24 16 0.00030 0.00590 0 0.03400 0;18 17 0.00070 0.00820 0 0.06595 0;27 17 0.00130 0.01730 0 0.16080 0;22 21 0.00080 0.01400 0 0.12825 0;23 22 0.00060 0.00960 0 0.09230 0;24 23 0.00220 0.03500 0 0.18050 0;26 25 0.00320 0.03230 0 0.25650 0;27 26 0.00140 0.01470 0 0.11980 0;28 26 0.00430 0.04740 0 0.39010 0;29 26 0.00570 0.06250 0 0.51450 0;29 28 0.00140 0.01510 0 0.12450 0;4 0 0 0 0 1.0000 0;5 0 0 0 0 2.0000 0;11 12 0.00160 0.04350 0 0 100.60000/100;13 12 0.00160 0.04350 0 0 100.60000/100;30 2 0.00000 0.01810 0 0 102.50000/100 ;31 6 0.00000 0.02500 0 0 107.00000/100 ;32 10 0.00000 0.02000 0 0 107.00000/100 ;34 20 0.00090 0.01800 0 0 100.90000/100 ;33 19 0.00070 0.01420 0 0 107.00000/100 ;35 22 0.00000 0.01430 0 0 102.50000/100 ;36 23 0.00050 0.02720 0 0 100.00000/100 ;37 25 0.00060 0.02320 0 0 102.50000/100 ;38 29 0.00080 0.01560 0 0 102.50000/100 ;20 19 0.00070 0.01380 0 0 106.00000/100] ;计算结果牛顿-拉夫逊法潮流计算结果节点计算结果:n节点节点电压节点相角(角度)节点注入功率1 1.049185 -8.874991 0.000000 + j 0.0000002 1.053167 -6.367180 0.000000 + j 0.0000003 1.041493 -9.207297 -3.220000 + j -0.0240004 1.036574 -10.042585 -5.000000 + j -1.8400005 1.044652 -8.959237 0.000000 + j 0.0000006 1.043883 -8.293104 0.000000 + j 0.0000007 1.032645 -10.342431 -2.338000 + j -0.8400008 1.031177 -10.811816 -5.220000 + j -1.7600009 1.042715 -10.595648 0.000000 + j 0.00000010 1.046426 -6.010476 0.000000 + j 0.00000011 1.044322 -6.792462 0.000000 + j 0.00000012 1.030736 -6.795388 -0.085000 + j -0.88000013 1.042351 -6.675491 0.000000 + j 0.00000014 1.036310 -8.232337 0.000000 + j 0.00000015 1.018517 -8.519794 -3.200000 + j -1.53000016 1.025492 -7.051856 -3.290000 + j -0.32300017 1.032750 -8.077118 0.000000 + j 0.00000018 1.034779 -8.936485 -1.580000 + j -0.30000019 1.044862 -2.382169 0.000000 + j 0.00000020 0.988148 -3.811032 -6.800000 + j -1.03000021 1.024926 -4.596980 -2.740000 + j -1.15000022 1.042650 -0.070512 0.000000 + j 0.00000023 1.032952 -0.245457 -2.475000 + j -1.15000024 1.021125 -6.906503 -3.080000 + j -0.92200025 1.060163 -4.952002 -2.240000 + j -0.47200026 1.052697 -6.205207 -1.390000 + j -0.17000027 1.037683 -8.217337 -2.810000 + j -0.75500028 1.050444 -2.695196 -2.060000 + j -0.27600029 1.050163 0.063077 -2.835000 + j -0.26900030 1.004392 1.594781 6.500000 + j 1.75900031 0.991632 2.892572 6.320000 + j 1.03350032 1.050539 7.797786 5.600000 + j 0.96880033 1.047500 -3.957598 2.500000 + j 1.21117434 1.012300 1.385774 5.080000 + j 1.82635935 1.049300 4.925324 6.500000 + j 2.63756636 1.027800 1.819476 5.400000 + j -0.10822437 1.026500 7.125579 8.300000 + j 0.21422538 1.030000 -10.390696 -1.040000 + j -2.29163939 1.000000 0.000000 5.628660 + j 1.384403线路计算结果:n节点I 节点J 线路功率S(I,J) 线路功率S(J,I) 线路损耗dS(I,J)2 1 1.178698 + j -0.360055 -1.174311 + j -0.360481 0.004386 + j -0.720536 39 1 6.405845 + j -2.096152 -6.361848 + j 2.408287 0.043997 + j 0.3121353 2 -3.633961 + j -0.542613 3.649983 + j 0.446577 0.016021 + j -0.096036 25 2 2.370242 + j -1.109311 -2.328681 + j 0.997356 0.041562 + j -0.1119554 3 -0.750370 + j -0.307172 0.751094 + j 0.080014 0.000724 + j -0.227159 18 3 0.337560 + j -0.663855 -0.337133 + j 0.438599 0.000427 + j -0.225256 5 4 1.635254 + j 0.499000 -1.633054 + j -0.609119 0.002200 + j -0.110119 14 4 2.621711 + j -0.216428 -2.616576 + j 0.150777 0.005135 + j -0.065651 6 5 4.826035 + j -0.675350 -4.821682 + j 0.684607 0.004353 + j 0.0092578 5 -3.178130 + j -1.041836 3.186428 + j 0.998989 0.008297 + j -0.042847 7 6 -4.249274 + j -0.969559 4.259899 + j 1.010657 0.010625 + j 0.04109811 6 3.465003 + j -0.270003 -3.457273 + j 0.209136 0.007730 + j -0.0608668 7 -1.909893 + j -0.196732 1.911274 + j 0.129559 0.001381 + j -0.0671739 8 0.132235 + j 0.116464 -0.131977 + j -0.521432 0.000258 + j -0.404968 39 9 7.617154 + j -1.902126 -7.557438 + j 2.142687 0.059717 + j 0.24056111 10 -3.483660 + j -0.203064 3.488121 + j 0.171352 0.004461 + j -0.03171213 10 -3.008372 + j -0.730489 3.011879 + j 0.688680 0.003508 + j -0.04180914 13 -2.934129 + j -0.411463 2.941429 + j 0.307264 0.007300 + j -0.10419915 14 -0.311115 + j -0.998556 0.312417 + j 0.627891 0.001303 + j -0.37066516 15 2.896296 + j 0.430232 -2.888885 + j -0.531444 0.007411 + j -0.10121217 16 -2.048841 + j 0.950740 2.052282 + j -1.049122 0.003441 + j -0.098383 19 16 4.542969 + j 0.681545 -4.511670 + j -0.625873 0.031300 + j 0.05567221 16 3.324778 + j -0.302389 -3.316338 + j 0.177006 0.008440 + j -0.125383 24 16 0.410793 + j -0.811601 -0.410571 + j 0.744757 0.000222 + j -0.066844 18 17 -1.917560 + j 0.363855 1.920087 + j -0.475208 0.002527 + j -0.111353 27 17 -0.128621 + j 0.132648 0.128754 + j -0.475531 0.000133 + j -0.342884 22 21 6.093176 + j 1.070437 -6.064778 + j -0.847611 0.028398 + j 0.22282623 22 -0.406149 + j -1.116063 0.406824 + j 0.928040 0.000675 + j -0.18802424 23 -3.490793 + j -0.110399 3.516516 + j 0.138837 0.025723 + j 0.02843826 25 -0.771398 + j -0.442881 0.773189 + j -0.111580 0.001791 + j -0.55446027 26 -2.681379 + j -0.887648 2.691475 + j 0.731900 0.010096 + j -0.15574828 26 1.416063 + j -0.565082 -1.408178 + j -0.210747 0.007885 + j -0.77583029 26 1.921038 + j -0.679443 -1.901899 + j -0.248272 0.019138 + j -0.927715 29 28 3.491624 + j -0.395924 -3.476063 + j 0.289082 0.015561 + j -0.106842 4 0 0.000000 + j -1.074485 0.000000 + j 0.000000 0.000000 + j -1.0744855 0 0.000000 + j -2.182596 0.000000 + j 0.000000 0.000000 + j -2.18259611 12 0.018656 + j 0.473066 -0.018327 + j -0.464126 0.000329 + j 0.00894013 12 0.066943 + j 0.423225 -0.066673 + j -0.415874 0.000270 + j 0.00735130 2 7.897633 + j -0.731582 -7.897633 + j 1.860277 0.000000 + j 1.12869531 6 7.506817 + j 1.371343 -7.506817 + j 0.109153 0.000000 + j 1.48049632 10 12.260592 + j 5.296517 -12.260592 + j -2.064007 0.000000 + j 3.23250934 20 5.080000 + j 1.826359 -5.054406 + j -1.314473 0.025594 + j 0.51188633 19 -1.716763 + j 5.348910 1.736896 + j -4.940504 0.020133 + j 0.40840535 22 6.500000 + j 2.637566 -6.500000 + j -1.998477 0.000000 + j 0.63908936 23 1.402814 + j -0.195113 -1.401865 + j 0.246763 0.000949 + j 0.05165037 25 9.586236 + j 0.419689 -9.533808 + j 1.607517 0.052428 + j 2.02720638 29 -12.165903 + j 2.106593 12.280860 + j 0.135062 0.114957 + j 2.24165520 19 -1.745594 + j 0.284473 1.747837 + j -0.240265 0.002242 + j 0.044208结果分析:此程序的运行结果和试验程序给出的结果是一致的。
第46卷第1期2024年1月沈 阳 工 业 大 学 学 报JournalofShenyangUniversityofTechnologyVol 46No 1Jan 2024收稿日期:2021-07-22基金项目:国家自然科学基金项目(61501285);内蒙古电力科学研究院项目(2020-71)。
作者简介:贾俊青(1974—),男,山东泰安人,高级工程师,硕士,主要从事配电网、电能质量控制等方面的研究。
檪檪檪檪檪檪檪檪檪檪殏殏殏殏电气工程 DOI:10.7688/j.issn.1000-1646.2024.01.07基于模糊理论的输电网络电压无功控制策略贾俊青,段玮(内蒙古电力科学研究院可靠性及电能质量技术中心,内蒙古呼和浩特010020)摘 要:为解决新能源、电动汽车、储能等新技术应用下,高复杂度电力系统电压稳定控制问题,提出了一种基于模糊理论的输电网络电压无功控制策略。
该方法引入模糊理论中的隶属度函数,根据系统节点与不同分区之间的耦合程度制定无功控制策略。
根据灵敏度计算网络各个节点之间的电气距离,通过模糊聚类算法对节点进行初步分区,并采用聚类融合算法对聚类产生的多个结果进行融合,从而得到最终分区结果。
根据关键节点对各个分区的隶属度制定主辅控制策略。
IEEE30节点输电网络的算例分析表明,该控制策略可以有效实现对无功功率的控制。
关 键 词:无功控制;电压分区;电压稳定;模糊隶属度;模糊聚类;聚类融合;控制策略;数据分析中图分类号:TM711 文献标志码:A 文章编号:1000-1646(2024)01-0035-07VoltageandreactivepowercontrolstrategyoftransmissionnetworksbasedonfuzzytheoryJIAJunqing,DUANWeidi(ReliabilityandPowerQualityTechnologyCenter,InnerMongoliaElectricPowerResearchInstitute,Hohhot010020,InnerMongolia,China)Abstract:Inordertosolvethevoltagestabilitycontrolproblemsforhigh complexitypowersystemsunderthebackgroundofnewenergy,electricvehicles,energystorageandothernewtechnologies,avoltageandreactivepowercontrolstrategyfortransmissionnetworksbasedonfuzzytheorywasproposed.Thismethodintroducedthemembershipfunctioninfuzzytheory,andformulatedreactivepowercontrolstrategiesaccordingtothecouplingdegreebetweensystemnodesanddifferentpartitions.Inaddition,theelectricaldistanceamongeachnodeofthenetworkwascalculatedaccordingtothesensitivityanalysis;thefuzzyclusteringalgorithmwasusedtoperformthepreliminarypartitionforthenodes;theclusteringfusionalgorithmwasusedtoperformfusioncalculationofthemultipleresultsgeneratedbytheclusteringforthefinalpartitionresults.Theprimaryandsecondarycontrolstrategiesbasedonthemembershipofkeynodestoeachpartitionwerethusformulated.TestexampleofIEEE30bussystemwassimulatedaccordingly.Theresultsshowthatthisstrategycancontrolreactivepowereffectively.Keywords:reactivepowercontrol;voltagepartition;voltagestability;fuzzymembership;fuzzyclustering;clusteringfusion;controlstrategy;dataanalysis 近年来,受节能减排、绿色发展等国内外形势及政策影响,新能源、电动汽车、储能等技术不断快速发展。
两机五节点网络潮流计算牛拉法设计说明书第一章前言1.1 潮流计算1.1.1 潮流计算概述潮流计算是研究电力系统稳态运行情况的一种基本电气计算,常规潮流计算的任务是根据给定的运行条件和网路结构确定整个系统的运行状态,如各母线上的电压(幅值及相角)、网络中的功率分布以及功率损耗等。
潮流计算的结果是电力系统稳定计算和故障分析的基础。
通过潮流计算可以判断电网母线电压、支路电流和功率是否越限,如果有越限,就应采取措施,调整运行方式。
对于正在规划的电力系统,通过潮流计算,可以为选择电网供电方案和电气设备提供依据。
潮流计算还可以为继电保护和自动装置定整计算、电力系统故障计算和稳定计算等提供原始数据。
具体表现在以下方面:(1) 在电网规划阶段,通过潮流计算,合理规划电源容量及接入点,合理规划网架,选择无功补偿方案,满足规划水平的大、小方式下潮流交换控制、调峰、调相、调压的要求。
(2) 在编制年运行方式时,在预计负荷增长及新设备投运基础上,选择典型方式进行潮流计算,发现电网中薄弱环节,供调度员日常调度控制参考,并对规划、基建部门提出改进网架结构,加快基建进度的建议。
(3) 正常检修及特殊运行方式下的潮流计算,用于日运行方式的编制,指导发电厂开机方式,有功、无功调整方案及负荷调整方案,满足线路、变压器热稳定要求及电压质量要求(4) 预想事故、设备退出运行对静态安全的影响分析及作出预想的运行方式调整方案。
总结为在电力系统运行方式和规划方案的研究中,都需要进行潮流计算以比较运行方式或规划供电方案的可行性、可靠性和经济性。
同时,为了实时监控电力系统的运行状态,也需要进行大量而快速的潮流计算。
因此,潮流计算是电力系统中应用最广泛、最基本和最重要的一种电气运算。
在系统规划设计和安排系统的运行方式时,采用离线潮流计算;在电力系统运行状态的实时监控中,则采用在线潮流计算。
此外,电力系统潮流计算也是计算系统动态稳定和静态稳定的基础。
电力系统稳态分析课程设计题目名称两机五节点网络潮流计算方法牛拉法和pq法目录摘要.........................................................................................................第一章原理简介 (3)1.1对潮流分析的简介 (3)1.1.1 潮流计算方法分析比较 (3)1.2 MATLAB简介 (4)1.2.1 矩阵的运算 (5)1.3牛顿拉夫逊法计算潮流分布 (6)第二章程序及结果 (10)2.1 设计资料及参数 (10)2.1.1 牛顿拉夫逊法的程序框图 (13)2.2 用Matlab设计程序 (14)2.2.1 程序的编写 (14)2.2.2程序运行结果 (19)2.2.3p_q法程序编写 (22)总结 (32)参考文献 (32)电力系统稳态分析课程设计1.1对潮流分析的简介潮流分析是研究电力系统的一种最基本和最重要的计算。
最初,电力系统潮流计算是通过人工手算的,后来为了适应电力系统日益发展的需要,采用了错误!未指定书签。
交流计算台。
随着电子数字计算机的出现,1956 年Ward 等人编制了实际可行的计算机潮流计算程序。
这样,就为日趋复杂的大规模电力系统提供了极其有力的计算手段。
经过几十年的时间,电力系统潮流计算已经发展得十分成熟。
潮流计算是研究电力系统稳态运行情况的一种计算,是根据给定的运行条件及系统接线情况确定整个电力系统各个部分的运行状态,如各母线的电压、各元件中流过的功率、系统的功率损耗等等。
电力系统潮流计算是计算系统动态稳定和静态稳定的基础。
在电力系统规划设计和现有电力系统运行方式的研究中,都需要利用电力系统潮流计算来定量的比较供电方案或运行方式的合理性、可靠性和经济性。
1.1.1潮流计算方法分析比较高斯- 赛德尔潮流计算法原理简单,编程实现容易,特别是对于配网潮流有其独特优势。
基于牛拉法的预估校正潮流计算算法段俊东;薛静杰;栗维冰【摘要】为了减少迭代次数,提高收敛性,在一阶牛顿拉夫逊法基础上对不平衡量△P 和△Q进行修正,采用一阶牛顿法得到的修正量作为预测量,利用节点注入电流方程和电压方程形成不平衡量的校正值,从而得到新的修正方程,沿用传统牛顿法进行迭代计算.从理论上讲该方法具有三阶收敛性.通过对典型IEEE节点实例进行Matlab 编程仿真,与传统牛拉法做对比,该方法具有迭代次数少,收敛性好,编程量增加不多的特点.【期刊名称】《河南理工大学学报(自然科学版)》【年(卷),期】2015(034)003【总页数】4页(P396-399)【关键词】潮流计算;牛拉法;注入电流;预估校正【作者】段俊东;薛静杰;栗维冰【作者单位】河南理工大学电气工程与自动化学院,河南焦作454000;河南理工大学电气工程与自动化学院,河南焦作454000;河南理工大学电气工程与自动化学院,河南焦作454000【正文语种】中文【中图分类】TM744电力系统潮流计算是电力系统分析中的一种最基本的计算,同时也是电力系统网络重构建模,静态特性分析以及系统运行和安全评估的重要计算工具[1-4]。
潮流计算的本质是求解非线性方程组,它的计算速度由迭代次数和每次迭代需要的时间决定,为了提高潮流计算的求解速度通常采用两种方法:一是减少迭代次数;二则是减少每次迭代的时间。
这两种观点在采用牛拉法和快速解耦方法中被广泛应用[5-6]。
其中传统牛拉法求解潮流方程时采用了逐次线性化的方法,其求解非线性方程组具有二阶收敛速度[7-8]。
为了减少迭代次数得到更加精确的数学模型,日本学者岩本伸一和田村康南提出采取保留泰勒级数二阶项的潮流算法,于是便产生了一类保留非线性的潮流算法。
这种算法的迭代次数减少,由于二阶项的引入其算法中雅可比矩阵具有不对称性质,所需矩阵存储量增大,又因为其算法中主要包括了泰勒级数的二阶项,所以也称为二阶潮流算法,但是在计算过程中遇到具有二阶微分的海森矩阵,求解复杂。
一、概述IEEE 333节点潮流计算是电力系统分析中的一种重要方法,通过对电力系统各节点的电压、电流等参数进行计算和分析,可以帮助电力系统运营人员进行合理的运行和调度。
本文将对IEEE 333节点潮流计算结果进行详细分析和讨论。
二、IEEE 333节点潮流计算模型1. 潮流计算基本原理潮流计算是分析电力系统稳态工作状态的一种方法,通过对电力系统中各节点的功率平衡、电压平衡等进行计算,得到系统各个节点的电压、有功功率、无功功率等参数。
IEEE 333节点潮流计算是基于IEEE 标准的潮流计算模型,包括发电机、变压器、负荷等各种元件的模型。
2. IEEE 333节点潮流计算模型描述IEEE 333节点潮流计算模型包括各个节点的潮流方程、节点之间的电压关系等,通过建立节点方程组,利用牛顿-拉夫逊法或高斯-赛德尔法等迭代方法,得到系统各节点的电压和功率参数。
三、IEEE 333节点潮流计算结果分析1. 节点电压分布通过IEEE 333节点潮流计算,可以得到系统中各个节点的电压分布情况,包括各个节点的电压幅值和相位角度等。
通过分析节点电压分布,可以了解系统中各个节点的电压稳定状况,及时发现电压异常情况。
2. 有功功率分布通过潮流计算还可以得到系统中各个节点的有功功率分布情况,包括发电机的有功出力、负荷的有功消耗等。
有功功率分布情况对于电力系统的负荷分配、发电机运行等方面具有重要的指导意义。
3. 无功功率分布除了有功功率分布情况外,潮流计算还可以得到系统中各个节点的无功功率分布情况,包括发电机的无功出力、负荷的无功消耗等。
无功功率分布情况对于电力系统的电压稳定和无功补偿具有重要的影响。
四、IEEE 333节点潮流计算结果的应用1. 电力系统调度通过对IEEE 333节点潮流计算结果的分析,可以帮助电力系统运营人员进行合理的电力系统调度,包括发电机出力的调整、负荷的分配等。
合理的电力系统调度可以保证电网的安全稳定运行。
牛拉法潮流计算%本程序的功能是用牛拉法进行潮流计算 %原理介绍详见鞠平著《电气工程》%默认数据为鞠平著《电气工程》例8.4所示数据±是支路参数矩阵%第一列和第二列是节点编号。
节点编号由小到大编写%对于含有变压器的支路,第一列为低压侧节点编号,第二列为高压侧节点编号 %第三列为支路的串列阻抗参数,含变压器支路此值为变压器短路电抗 %第四列为支路的对地导纳参数,含变压器支路此值不代入计算 %第五烈为含变压器支路的变压器的变比,变压器非标准电压比%第六列为变压器是否是否含有变压器的参数,其中“1”为含有变压器,“0”为不含有变压器2为节点参数矩阵%第一列为节点注入发电功率参数 %第二列为节点负荷功率参数 %第三列为节点电压参数 %第四列 %第五列%第六列为节点类型参数,“1”为平衡节点,“2”为PQ节点,“3”为PV节点参数%X为节点号和对地参数矩阵 %第一列为节点编号 %第二列为节点对地参数clear; clc;num=input('是否采用默认数据?(1-默认数据;2-手动输入)'); if num==1 n=4; n1=4; isb=4;pr=0.00001;B1=[1 2 0.1667i 0 0.8864 1;1 3 0.1302+0.2479i 0.0258i 1 0;1 40.1736+0.3306i 0.0344i 1 0;3 4 0.2603+0.4959i 0.0518i 1 0];B2=[0 0 1 0 0 2;0 -0.5-0.3i 1 0 0 2;0.2 0 1.05 0 0 3;0 -0.15-0.1i 1.05 0 0 1]; X=[1 0;2 0.05i;3 0;4 0]; elsen=input('请输入节点数:n='); n1=input('请输入支路数:n1=');isb=input('请输入平衡节点号:isb='); pr=input('请输入误差精度:pr=');B1=input('请输入支路参数:B1='); B2=input('请输入节点参数:B2=');X=input('节点号和对地参数:X='); endTimes=1; %迭代次数%创建节点导纳矩阵 Y=zeros(n); for i=1:n1if B1(i,6)==0 %不含变压器的支路 p=B1(i,1); q=B1(i,2);Y(p,q)=Y(p,q)-1/B1(i,3); Y(q,p)=Y(p,q);Y(p,p)=Y(p,p)+1/B1(i,3)+0.5*B1(i,4);Y(q,q)=Y(q,q)+1/B1(i,3)+0.5*B1(i,4); else %含有变压器的支路p=B1(i,1); q=B1(i,2);Y(p,q)=Y(p,q)-B1(i,5)/B1(i,3); Y(q,p)=Y(p,q);Y(p,p)=Y(p,p)+B1(i,5)/B1(i,3)+(1-B1(i,5))/B1(i,3);Y(q,q)=Y(q,q)+B1(i,5)/B1(i,3)+(B1(i,5)*(B1(i,5)-1))/B1(i,3); end end for i=1:n1Y(i,i)=Y(i,i)+X(i,2); %计及补偿电容电纳 enddisp('导纳矩阵为:');disp(Y); %显示导纳矩阵%初始化OrgS、DetaS OrgS=zeros(2*n-2,1); DetaS=zeros(2*n-2,1);%创建OrgS,用于存储初始功率参数 h=0; j=0;for i=1:n %对PQ节点的处理if i~=isb&B2(i,6)==2 %不是平衡点&是PQ点 h=h+1; forj=1:n%公式8-74%Pi=ei*(Gij*ej-Bij*fj)+fi*(Gij*fj+Bij*ej) %Qi=fi*(Gij*ej-Bij*fj)-ei*(Gij*fj+Bij*ej)OrgS(2*h-1,1)=OrgS(2*h-1,1)+real(B2(i,3))*(real(Y(i,j))*real(B2(j,3))-imag(Y(i,j))*imag(B2(j,3)))+imag(B2(i,3))*(real(Y(i,j))*imag(B2(j,3))+imag(Y(i ,j))*real(B2(j,3))); OrgS(2*h,1)=OrgS(2*h,1)+imag(B2(i,3))*(real(Y(i,j))*real(B2(j,3))-imag(Y(i,j))*imag(B2(j,3)))-real(B2(i,3))*(real(Y(i,j))*imag(B2(j,3))+imag(Y(i,j))*real(B2(j,3))); end endendfor i=1:n %对PV节点的处理,注意这时不可再将h初始化为0 ifi~=isb&B2(i,6)==3 %不是平衡点&是PV点 h=h+1; for j=1:n%公式8-75-a%Pi=ei*(Gij*ej-Bij*fj)+fi*(Gij*fj+Bij*ej) %Qi=fi*(Gij*ej-Bij*fj)-ei*(Gij*fj+Bij*ej)OrgS(2*h-1,1)=OrgS(2*h-1,1)+real(B2(i,3))*(real(Y(i,j))*real(B2(j,3))-imag(Y(i,j))*imag(B2(j,3)))+imag(B2(i,3))*(real(Y(i,j))*imag(B2(j,3))+imag(Y(i ,j))*real(B2(j,3)));OrgS(2*h,1)=OrgS(2*h,1)+imag(B2(i,3))*(real(Y(i,j))*real(B2(j,3))-imag(Y(i,j))*imag(B2(j,3)))-real(B2(i,3))*(real(Y(i,j))*imag(B2(j,3))+imag(Y(i,j))*real(B2(j,3))); end end end%创建PVU 用于存储PV节点的初始电压 PVU=zeros(n-h-1,1); t=0; for i=1:nif B2(i,6)==3 t=t+1;PVU(t,1)=B2(i,3); end end%创建DetaS,用于存储有功功率、无功功率和电压幅值的不平衡量 h=0;for i=1:n %对PQ节点的处理 if i~=isb&B2(i,6)==2 h=h+1;DetaS(2*h-1,1)=real(B2(i,2))-OrgS(2*h-1,1); TlPiDetaS(2*h,1)=imag(B2(i,2))-OrgS(2*h,1); TlQi end end t=0;for i=1:n %对PV节点的处理,注意这时不可再将h初始化为0 ifi~=isb&B2(i,6)==3 h=h+1; t=t+1;DetaS(2*h-1,1)=real(B2(i,1))-OrgS(2*h-1,1); TlPiDetaS(2*h,1)=real(PVU(t,1))^2+imag(PVU(t,1))^2-real(B2(i,3))^2-imag(B2(i,3))^2; TlUi end end % DetaS%创建I,用于存储节点电流参数i=zeros(n-1,1); h=0; for i=1:n if i~=isb h=h+1;I(h,1)=(OrgS(2*h-1,1)-OrgS(2*h,1)*sqrt(-1))/conj(B2(i,3));%conj求共轭end end%创建Jacbi(雅可比矩阵) Jacbi=zeros(2*n-2); h=0; k=0;for i=1:n %对PQ节点的处理 if B2(i,6)==2 h=h+1; forj=1:n if j~=isb k=k+1;if i==j %对角元素的处理Jacbi(2*h-1,2*k-1)=-imag(Y(i,j))*real(B2(i,3))+real(Y(i,j))*imag(B2(i,3))+imag(I(h,1));Jacbi(2*h-1,2*k)=real(Y(i,j))*real(B2(i,3))+imag(Y(i,j))*imag(B2(i,3))+real(I(h,1)); Jacbi(2*h,2*k-1)=-Jacbi(2*h-1,2*k)+2*real(I(h,1));Jacbi(2*h,2*k)=Jacbi(2*h-1,2*k-1)-2*imag(I(h,1)); else %非对角元素的处理Jacbi(2*h-1,2*k-1)=-imag(Y(i,j))*real(B2(i,3))+real(Y(i,j))*imag(B2(i,3)); Jacbi(2*h-1,2*k)=real(Y(i,j))*real(B2(i,3))+imag(Y(i,j))*imag(B2(i,3)); Jacbi(2*h,2*k-1)=-Jacbi(2*h-1,2*k);Jacbi(2*h,2*k)=Jacbi(2*h-1,2*k-1); endif k==(n-1) %将用于内循环的指针置于初始值,以确保雅可比矩阵换行k=0; end end end end end k=0;for i=1:n %对PV节点的处理 if B2(i,6)==3 h=h+1; forj=1:n if j~=isb k=k+1;if i==j %对角元素的处理Jacbi(2*h-1,2*k-1)=-imag(Y(i,j))*real(B2(i,3))+real(Y(i,j))*imag(B2(i,3))+imag(I(h,1));Jacbi(2*h-1,2*k)=real(Y(i,j))*real(B2(i,3))+imag(Y(i,j))*imag(B2(i,3))+real(I(h,1)); Jacbi(2*h,2*k-1)=2*imag(B2(i,3));Jacbi(2*h,2*k)=2*real(B2(i,3)); else %非对角元素的处理Jacbi(2*h-1,2*k-1)=-imag(Y(i,j))*real(B2(i,3))+real(Y(i,j))*imag(B2(i,3)); Jacbi(2*h-1,2*k)=real(Y(i,j))*real(B2(i,3))+imag(Y(i,j))*imag(B2(i,3)); Jacbi(2*h,2*k-1)=0; Jacbi(2*h,2*k)=0; endif k==(n-1) %将用于内循环的指针置于初始值,以确保雅可比矩阵换行k=0; end end end end enddisp('初始雅可比矩阵为:'); disp(Jacbi);%求解修正方程,获取节点电压的不平衡量 DetaU=zeros(2*n-2,1);DetaU=inv(Jacbi)*DetaS; %inv矩阵求逆 % DetaU%修正节点电压 j=0;for i=1:n %对PQ节点处理 if B2(i,6)==2 j=j+1;B2(i,3)=B2(i,3)+DetaU(2*j,1)+DetaU(2*j-1,1)*sqrt(-1); end endfor i=1:n %对PV节点的处理 if B2(i,6)==3 j=j+1;B2(i,3)=B2(i,3)+DetaU(2*j,1)+DetaU(2*j-1,1)*sqrt(-1); end end % B2%开始循环********************************************************************** whileabs(max(DetaU))>pr OrgS=zeros(2*n-2,1); h=0;感谢您的阅读,祝您生活愉快。
电力系统潮流分析—基于牛拉法和保留非线性的随机潮流姓名:***学号:***1 潮流算法简介1。
1 常规潮流计算常规的潮流计算是在确定的状态下.即:通过已知运行条件(比如节点功率或网络结构等)得到系统的运行状态(比如所有节点的电压值与相角、所有支路上的功率分布和损耗等)。
常规潮流算法中的一种普遍采用的方法是牛顿-拉夫逊法。
当初始值和方程的精确解足够接近时,该方法可以在很短时间内收敛。
下面简要介绍该方法。
1.1.1牛顿拉夫逊方法原理对于非线性代数方程组式(1-1),在待求量x 初次的估计值(0)x 附近,用泰勒级数(忽略二阶和以上的高阶项)表示它,可获得如式(1-2)的线性化变换后的方程组,该方程组被称为修正方程组。
'()f x 是()f x 对于x 的一阶偏导数矩阵,这个矩阵便是重要的雅可比矩阵J .12(,,,)01,2,,i n f x x x i n ==(1—1)(0)'(0)(0)()()0f x f x x +∆=(1—2)由修正方程式可求出经过第一次迭代之后的修正量(0)x ∆,并用修正量(0)x ∆与估计值(0)x 之和,表示修正后的估计值(1)x ,表示如下(1-4).(0)'(0)1(0)[()]()x f x f x -∆=-(1-3)(1)(0)(0)x x x =+∆(1-4)重复上述步骤。
第k 次的迭代公式为: '()()()()()k k k f x x f x ∆=-(1-5)(1)()()k k k x x x +=+∆(1—6)当采用直角坐标系解决潮流方程,此时待解电压和导纳如下式:i i i ij ij ijV e jf Y G jB =+=+ (1—7)假设系统的网络中一共设有n 个节点,平衡节点的电压是已知的,平衡节点表示如下。
n n n V e jf =+(1—8)除了平衡节点以外的所有2(1)n -个节点是需要求解的量。
两机五节点网络潮流计算—牛拉法牛拉法(Gauss-Seidel Method)是一种常用的迭代方法,用于解决电力系统的潮流计算问题。
在电力系统中,潮流计算是一项重要的工作,用于求解网络中各节点的电压和功率大小。
牛拉法是一种有效的求解方法,适用于小型电力系统,其基本思想是通过迭代来逼近最优解。
潮流计算问题可以抽象成求解非线性方程组的问题,即求解节点电压复数值的方程组。
具体来说,我们需要求解以下方程组:P_i = V_i * ( G_ii * cosθ_i + ∑(G_ij * cos(θ_i - θ_j)) - B_ii * sinθ_i - ∑(B_ij * sin(θ_i - θ_j)))Q_i = V_i * ( G_ii * sinθ_i + ∑(G_ij * sin(θ_i - θ_j)) + B_ii * cosθ_i + ∑(B_ij * cos(θ_i - θ_j)))其中,P_i和Q_i分别表示第i个节点的有功功率和无功功率,V_i表示第i个节点的电压幅值,θ_i表示第i个节点的电压相角,G_ij和B_ij分别表示节点i和节点j之间的导纳和电纳。
牛拉法的基本思路是通过迭代,逐步逼近节点电压的最优解。
假设我们需要求解的是一个两机五节点网络。
首先,我们可以随机初始化每个节点的电压幅值和相角值(也可以根据经验给定初始值)。
然后,根据上述方程组,计算每个节点的有功功率和无功功率。
接下来,我们采用牛拉法的迭代步骤来逼近节点电压的最优解。
具体步骤如下:1.选择一个初始节点(可以是任意节点),将其电压相角θ_i固定为0。
2.通过方程组计算该节点的电压幅值V_i。
3.将计算得到的电压幅值V_i和电压相角θ_i作为该节点的新的电压值。
4.对于其他节点,计算它们的电压相角θ_i和电压幅值V_i,并将其更新为新的电压值。
5.重复2-4步骤,直到收敛或满足收敛条件。
在每次迭代过程中,我们可以根据收敛准则来判断是否达到收敛,通常是通过计算两次迭代之间电压的变化量来判断。
IEEE 333节点牛拉法潮流计算结果分析
一、潮流计算简介
潮流计算是电力系统分析的基础之一,通过对电力系统各个节点的电压、功率以及电流等参数进行计算和分析,从而得到电力系统各个节
点的电气特性。
潮流计算的结果对于电力系统的稳定运行、负荷分配、设备运行等方面具有重要的指导意义,因此潮流计算一直是电力系统
研究和运行中的一个重要课题。
二、IEEE 333节点牛拉法潮流计算
IEEE 333节点系统是一个经典的电力系统仿真模型,它包括了发电机、负荷、变压器、输电线路等多种设备,并具有典型的电力系统特性。
针对IEEE 333节点系统进行潮流计算能够充分考察电力系统在不同工作条件下的运行特性,对于电力系统的研究和分析具有重要的参考价值。
在IEEE 333节点系统中,采用了牛拉法潮流计算方法,该方法通过对电力系统各个节点的功率平衡方程和节点电压平衡方程进行求解,从
而得到电力系统各个节点的电压、相角、有功和无功功率等参数。
这
些计算结果可以直观地反映出电力系统在不同工况下的运行状况,为
电力系统的分析和设计提供了重要的数据支持。
三、IEEE 333节点潮流计算结果分析
1. 电压分布
通过对IEEE 333节点系统进行潮流计算,可以得到不同节点的电压值。
电压是电力系统中非常重要的参数,它直接关系到负载的供电质量和
设备的安全运行。
潮流计算结果表明,在IEEE 333节点系统中,各个节点的电压分布相对均匀,没有出现明显的电压偏差,表明该系统在
静态稳定方面具有较好的特性。
2. 有功功率分布
有功功率是电力系统的重要性能指标,它直接关系到发电机的输出能
力和负载的用电需求。
通过潮流计算得到的有功功率分布结果显示,
在IEEE 333节点系统中,各个节点的有功功率消耗相对均衡,未出现严重的功率不平衡现象,表明该系统在功率分配方面具有较好的平衡性。
3. 无功功率分布
无功功率是电力系统的另一个重要性能指标,它与电力系统的稳定运
行和无功补偿设备的运行有着密切的关系。
潮流计算结果显示,在IEEE 333节点系统中,各个节点的无功功率产生和消耗相对平衡,表
明该系统在无功功率控制方面具有较好的稳定性。
四、结论与展望
通过对IEEE 333节点系统进行潮流计算的分析,可以得出该系统在电压分布、有功功率分布和无功功率分布等方面具有较好的性能特征,
表明该系统在静态稳定和动态特性方面具有一定的优越性。
针对潮流计算结果中可能存在的一些问题,如节点的潮流调节、电压控制和负载均衡等方面,可以通过系统的优化设计和控制策略来进一步改善。
IEEE 333节点牛拉法潮流计算结果对于电力系统的运行和分析具有重要的意义,它为电力系统的安全稳定运行和设备的合理配置提供了重要的参考依据,也为电力系统的研究和设计提供了有力支持。
我们有理由相信,在今后的电力系统研究和发展中,潮流计算方法将继续发挥重要的作用,为电力系统的安全高效运行提供更加科学的支持和保障。