七年级上册整式的加减经典易错题
- 格式:doc
- 大小:118.50 KB
- 文档页数:2
(名师选题)七年级数学上册第二章整式的加减易错题集锦单选题1、要使多项式mx2−2(x2+3x−1)化简后不含x的二次项,则m的值是()A.2B.0C.−2D.3答案:A分析:先将原式化简,再根据题意判断m的值即可;解:原式=mx2−2x2−6x+2=(m−2)x2−6x+2∵原式化简后不含x的二次项,∴m−2=0,∴m=2,故选:A.小提示:本题主要考查代数式的应用,掌握相关运算法则是解题的关键.2、下列去括号或添括号的变形中,正确的是()A.2a-(3b-c)=2a-3b-c B.3a+2(2b-1)=3a+4b-1C.a+2b-3c=a+(2b-3c)D.m-n+a-b=m-(n+a-b)答案:C分析:由去括号和添括号的法则可直接判断各个选项的正误,进而得到答案.解:2a−(3b−c)=2a−3b+c,故选项A错误,不符合题意;3a+2(2b−1)=3a+4b−2,故选项B错误,不符合题意;a+2b−3c=a+(2b−3c),故选项C正确,符合题意;m−n+a−b=m−(n−a+b),故选项D错误,不符合题意;故选:C.小提示:本题考查去括号和添括号,熟练掌握相关知识是解题的关键.3、把菱形按照如图所示的规律拼图案,其中第①个图案中有1个菱形,第②个图案中有3个菱形,第③个图案中有5个菱形,…,按此规律排列下去,则第⑥个图案中菱形的个数为()A.15B.13C.11D.9答案:C分析:根据第①个图案中菱形的个数:1;第②个图案中菱形的个数:1+2=3;第③个图案中菱形的个数:1+2×2=5;…第n个图案中菱形的个数:1+2(n−1),算出第⑥个图案中菱形个数即可.解:∵第①个图案中菱形的个数:1;第②个图案中菱形的个数:1+2=3;第③个图案中菱形的个数:1+2×2=5;…第n个图案中菱形的个数:1+2(n−1),∴则第⑥个图案中菱形的个数为:1+2×(6−1)=11,故C正确.故选:C.小提示:本题主要考查的是图案的变化,解题的关键是根据已知图案归纳出图案个数的变化规律.4、若x+y=2,z−y=−3,则x+z的值等于()A.5B.1C.-1D.-5答案:C分析:将两整式相加即可得出答案.∵x+y=2,z−y=−3,∴(x+y)+(z−y)=x+z=−1,∴x+z的值等于−1,故选:C.小提示:本题考查了整式的加减,熟练掌握运算法则是解本题的关键.5、古希腊毕达哥拉斯学派的“三角形数”是一列点(或圆球)在等距的排列下可以形成正三角形的数,如1,3,6,10,15,….我国宋元时期数学家朱世杰在《四元玉鉴》中所记载的“垛积术”其中的“落一形”堆垛就是每层为“三角形数”的三角锥的锥垛(如图所示顶上一层1个球,下一层3个球,再下一层6个球),若一个“落一形”三角锥垛有10层,则该堆垛球的总个数为()A.55B.220C.285D.385答案:B分析:“三角形数”可以写为:1,3=1+2,6=1+2+3,10=1+2+3+4,15=1+2+3+4+5,所以第n层“三角形数”为n(n+1)2,再把n=10代入计算即可.解:∵“三角形数”可以写为:第1层:1,第2层:3=1+2,第3层:6=1+2+3,第4层:10=1+2+3+4,第5层:15=1+2+3+4+5,∴第n层“三角形数”为n(n+1)2,n层时,垛球的总个数为:12+22+⋯+n22+1+2+⋯+n2=n(n+1)(2n+1)12+n(n+1)4∴若一个“落一形”三角锥垛有10层,则该堆垛球的总个数为10×11×2112+10×114=220故选:B.小提示:本题考查了等腰三角形的性质以及数字变化规律,得出第n层“三角形数”为n(n+1)2是解答本题的关键.6、将多项式−9+x3+3xy2−x2y按x的降幂排列的结果为()A.x3+x2y−3xy2−9B.−9+3xy2−x2y+x3C.−9−3xy2+x2y+x3D.x3−x2y+3xy2−9答案:D分析:根据降幂排列的定义,我们把多项式的各项按照x的指数从大到小的顺序排列起来即可.解:多项式−9+x3+3xy2−x2y按x的降幂排列为x3−x2y+3xy2−9.故选D.小提示:此题考查了多项式的降幂排列的定义.首先要理解降幂排列的定义,然后要确定是哪个字母的降幂排列,这样才能比较准确解决问题.7、下列关于“代数式4x+2y”的意义叙述正确的有()个.①x的4倍与y的2倍的和是4x+2y;②小明以x米/分钟的速度跑了4分钟,再以y米/分钟的速度步行了2分钟,小明一共走了(4x+2y)米;③苹果每千克x元,橘子每千克y元,买4千克橘子、2千克苹果一共花费(4x+2y)元.A.3B.2C.1D.0答案:B分析:根据代数式4x+2y的意义分别对三个叙述进行判断即可.解:①x的4倍与y的2倍的和是4x+2y,正确;②小明以x米/分钟的速度跑了4分钟,再以y米/分钟的速度步行了2分钟,小明一共走了(4x+2y)米,正确;③苹果每千克x元,橘子每千克y元,买4千克橘子、2千克苹果一共花费(2x+4y)元,错误;故正确的有2个故选:B.小提示:此题考查了代数式的问题,解题的关键是掌握代数式的意义以及性质.8、下面图案是用长度相同的火柴棒按一定规律拼搭而成,若第n个图案需要y根火柴棒,则y与n的函数关系式为()A.y=3n B.y=3n+3C.y=4n+3D.y=4n−1答案:A分析:根据题意可得第1个图,火柴棒个数是3;第2个图,火柴棒个数是3+3=2×3;第3个图,火柴棒个数是3+3+3=3×3;第4个图,火柴棒个数是3+3+3+3=4×3;......由此发现规律,即可求解.解:根据题意得:第1个图,火柴棒个数是3;第2个图,火柴棒个数是3+3=2×3;第3个图,火柴棒个数是3+3+3=3×3;第4个图,火柴棒个数是3+3+3+3=4×3;......第n个图,火柴棒个数是3+3+3+3+......+3=3n;故选:A.小提示:本题主要考查了图形类规律题,明确题意,准确得到规律是解题的关键.9、对多项式x−y−z−m−n任意加括号后仍然只含减法运算并将所得式子化简,称之为“加算操作”,例如:(x−y)−(z−m−n)=x−y−z+m+n,x−y−(z−m)−n=x−y−z+m−n,…,给出下列说法:①至少存在一种“加算操作”,使其结果与原多项式相等;②不存在任何“加算操作”,使其结果与原多项式之和为0;③所有的“加算操作”共有8种不同的结果.以上说法中正确的个数为()A.0B.1C.2D.3答案:D分析:给x−y添加括号,即可判断①说法是否正确;根据无论如何添加括号,无法使得x的符号为负号,即可判断②说法是否正确;列举出所有情况即可判断③说法是否正确.解:∵(x−y)−z−m−n=x−y−z−m−n∴①说法正确∵x−y−z−m−n−x+y+z+m+n=0又∵无论如何添加括号,无法使得x的符号为负号∴②说法正确③第1种:结果与原多项式相等;第2种:x -(y -z )-m -n =x -y +z -m -n ;第3种:x -(y -z )-(m -n )=x -y +z -m +n ;第4种:x -(y -z -m )-n =x -y +z +m -n ;第5种:x -(y -z -m -n )=x -y +z +m +n ;第6种:x -y -(z -m )-n =x -y -z +m -n ;第7种:x -y -(z -m -n )=x -y -z +m +n ;第8种:x -y -z -(m -n )=x -y -z -m +n ;故③符合题意;∴共有8种情况∴③说法正确∴正确的个数为3故选D .小提示:本题考查了新定义运算,认真阅读,理解题意是解答此题的关键.10、代数式1x , 2x +y , 13a 2b , x−y π, 5y 4x , 0.5 中整式的个数( ) A .3个B .4个C .5个D .6个答案:B分析:根据单项式和多项式统称为整式.单项式是字母和数的乘积,单个的数或单个的字母也是单项式.多项式是若干个单项式的和,再逐一判断可得答案.解:整式有2x +y , 13a 2b , x−y π,0.5共有4个;故选:B .小提示:本题考查了整式.解题的关键是掌握整式的定义:单项式和多项式统称为整式,注意分母中含有字母的式子是分式不是整式.填空题11、若34x m −1y 3与−5x 2y 2n −1的和是单项式,则m +n =___.答案:5分析:根据34x m−1y3与−5x2y2n−1的和是单项式,可知34x m−1y3与−5x2y2n−1是同类项,可得m-1=2,2n-1=3,据此即可解答.解:∵34x m−1y3与−5x2y2n−1的和是单项式,∴34x m−1y3与−5x2y2n−1是同类项,∴m-1=2,2n-1=3,解得m=3,n=2,∴m+n=3+2=5,所以答案是:5.小提示:本题考查了同类项概念的应用,熟练掌握同类项的定义是解题的关键.12、计算:3a−a=_____________.答案:2a分析:按照合并同类项法则合并即可.3a-a=2a,所以答案是:2a.小提示:本题考查了合并同类项,解题关键是熟练运用合并同类项法则进行计算.13、多项式4x3y3−5x4y3−3x2−y2+5x+2的次数是________次.答案:七分析:根据多项式的次数的定义解答即可.解:根据多项式以及次数的定义,多项式4x3y3−5x4y3−3x2−y2+5x+2含4x3y3,−5x4y3,−3x2,−y2,5x,2这六项,次数分别为6、7、2、2、1、0,∴多项式4x3y3−5x4y3−3x2−y2+5x+2的次数是七次.所以答案是:七.小提示:本题主要考查多项式的次数的定义.几个单项式的和叫做多项式,每个单项式叫做多项式的项,其中不含字母的项叫做常数项,多项式中次数最高的项的次数叫做多项式的次数.熟练掌握多项式的次数的定义是解题的关键.14、若x3m y2与−2x6y n是同类项,则m+n=______.答案:4分析:根据同类项定义求出m、n值,代入m+n计算即可.解:由题意,得3m=6,2=n,∴m=2,n=2,∴m+n=2+2=4,所以答案是:4.小提示:本题考查同类项,代数式求值,所含字母相同,相同字母指数相同的项叫同类项,根据同类项定义求出m、n值是解题的关键.15、若2x2−3x−2=0,则代数式3−4x2+6x的值为________.答案:-1分析:将2x2−3x−2=0变形为2x2-3x=2,再将3−4x2+6x变形为3-2(2x2-3x),然后整体代入计算即可.解:∵2x2−3x−2=0∴2x2-3x=2,∴3−4x2+6x=3-2(2x2-3x)=3-2×2=-1,所以答案是:-1.小提示:本题考查代数式求值,将式子恒等变形,利用整体思想求解是解题的关键.解答题16、(1)观察下列各式:31=3,32=9,33=27,34=81,35=243,36=729,37=2187,⋯131=13,132=169,133=2197,134=28561,135=371293,136=4826809,⋯根据你发现的规律回答下列问题:①32022的个位数字是___________;1399的个位数字是___________;②4399的个位数字是___________;4355的个位数字是___________;(2)自主探究回答问题:①799的个位数字是___________,755的个位数字是___________;②5299的个位数字是___________,5255的个位数字是___________.(3)若n是自然数,则n99−n55的个位上的数字()A.恒为0 B.有时为0,有时非0 C.与n的末位数字相同D.无法确定答案:(1)①9;7 ②7;7 (2)①3;3 ②8;8 (3)A分析:(1)根据已知式子可以得到末尾数字4个一循环,据此解得即可;(2)可以先列出7的乘方及2的乘方的式子,可以得到末尾数字4个一循环,据此解得即可;(3)根据(1)(2)中的结论可知n99与n55个位上的数字相同即可得出答案.解:(1)①∵31=3,32=9,33=27,34=81,35=243,36=729,37=2187,⋯∴3的乘方的个位数字依次是3,9,7,1,以此4个数为一个循环依次进行循环∵2022÷4=505 (2)∴32022的个位数字是9;∵131=13,132=169,133=2197,134=28561,135=371293,136=4826809,⋯∴13的乘方的个位数字依次是3,9,7,1,以此4个数为一个循环依次进行循环∵99÷4=24 (3)∴1399的个位数字是7;所以答案是:9;7;②由①可知尾号为3的数的乘方的个位数字依次是3,9,7,1,以此4个数为一个循环依次进行循环∵99÷4=24...3,55÷4=13 (3)∴4399的个位数字是7,4355的个位数字是7;所以答案是:7;7;(2)①∵71=7,72=49,73=343,74=2401,75=16807,76=117649...∴7的乘方的个位数字依次是7,9,3,1,以此4个数为一个循环依次进行循环∵99÷4=24...3,55÷4=13 (3)∴799的个位数字是3,755的个位数字是3所以答案是:3;3②∵21=2,22=4,23=8,24=16,25=32,26=64...∴2的乘方的个位数字依次是2,4,8,6,以此4个数为一个循环依次进行循环∴52的乘方的个位数字依次是2,4,8,6,以此4个数为一个循环依次进行循环∵99÷4=24...3,55÷4=13 (3)∴5299的个位数字是8,5255的个位数字是8所以答案是:8;8(3)由(1)(2)中的结论可知n99与n55个位上的数字相同∴n99−n55的个位上的数字恒为0故选A.小提示:本题考查数字的变化规律,找出数字之间的规律是解题的关键.17、如图,甲、乙两人(看成点)分别在数轴上表示-3和5的位置,沿数轴做移动游戏,每次移动游戏规则:裁判先捂住一枚硬币,再让两人猜向上一面是正是反,而后根据所猜结果进行移动.①若都对或都错,则甲向东移动1个单位,同时乙向西移动1个单位;②若甲对乙错,则甲向东移动4个单位,同时乙向东移动2个单位;③若甲错乙对,则甲向西移动2个单位,同时乙向西移动4个单位.(1)若经过第一次移动游戏,甲的位置停在了数轴的正半轴上,则甲、乙猜测的结果是______(填“谁对谁错”)(2)从如图的位置开始,若完成了10次移动游戏,发现甲、乙每次所猜结果均为一对一错,设乙猜对n次,且他最终停留的位置对应的数为m.①试用含n的代数式表示m;②该位置距离原点O最近时n的值为(3)从如图的位置开始,若进行了k次移动游戏后,甲与乙的位置相距2个单位,则k的值是答案:(1)甲对乙错(2)①-6n+25 ;②4(3)3或5分析:(1)由题意知,甲只能向东移动才有可能停在数轴正半轴上,则只需考虑①与②的情形即可确定对错;(2)①根据题意乙猜对n次,则乙猜错了(10-n)次,利用平移规则即可推算出结果;②根据题意乙猜对n次,则乙猜错了(10-n)次,利用平移规则即可推算出结果;(3)由题意可得刚开始两人的距离为8,根据三种情况下计算出缩小的距离,即可算出缩小的总距离,分别除以2即可得到结果.(1)解:∵甲、乙两人(看成点)分别在数轴-3和5的位置上,∴甲乙之间的距离为8.∵若甲乙都错,则甲向东移动1个单位,在同时乙向西移动1个单位,∴第一次移动后甲的位置是-3+1=-2,停在了数轴的负半轴上,∵若甲对乙错,则甲向东移动4个单位,同时乙向东移动2个单位,∴第一次移动后甲的位置是-3+4=1,停在了数轴的正半轴上.所以答案是:甲对乙错;(2)解:①∵乙猜对n次,∴乙猜错了(10-n)次.∵甲错乙对,乙向西移动4个单位,∴乙猜对n次后,乙停留的位置对应的数为:5-4n.∵若甲对乙错,乙向东移动2个单位,∴乙猜错了(10-n)次后,乙停留的位置对应的数为:m=5-4n+2(10-n)=25-6n;②∵n为正整数,∴当n=4时该位置距离原点O最近.所以答案是:4;(3)解:k=3 或k=5.由题意可得刚开始两人的距离为8,∵若都对或都错,则甲向东移动1个单位,同时乙向西移动1个单位,∴若都对或都错,移动后甲乙的距离缩小2个单位.∵若甲对乙错,则甲向东移动4个单位,同时乙向东移动2个单位,∴若甲对乙错,移动后甲乙的距离缩小2个单位.∵若甲错乙对,则甲向西移动2个单位,同时乙向西移动4个单位,∴若甲错乙对,移动后甲乙的距离缩小2个单位.∴甲乙每移动一次甲乙的距离缩小2个单位.∵甲与乙的位置相距2个单位,∴甲乙共需缩小6个单位或10个单位.∵6÷2=3,10÷2=5,∴k的值为3或5.所以答案是:3或5.小提示:本题主要考查了列代数式,数轴,本题是动点型题目,找出移动后甲乙距离变化的规律是解题的关键.18、如图,用字母表示图中阴影部分的面积.答案:阴影部分的面积为mn−pq分析:根据阴影部分面积=大长方形面积-空白部分长方形面积进行求解即可.解:由题意得:S阴影=S大长方形−S空白长方形=mn−pq,∴阴影部分的面积为mn−pq.小提示:本题考查列代数式,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.。
一、选择题1.下列方程变形中,正确的是( )A .方程3221x x -=+,移项,得3212x x -=-+B .方程()3251x x -=--,去括号,得3251x x -=--C .方程2332t =,系数化为1,得1t = D .方程110.20.5x x--=,整理得36x = 2.新制作的渗水防滑地板是形状完全相同的长方形.如图,三块这样的地板可以拼成一个大的长方形.如果大长方形的周长为150cm ,那么一块渗水防滑地板的面积是( ).A .2450cmB .2600cmC .2900cmD .21350cm3.如果x =2是方程12x +a =﹣1的解,那么a 的值是( ) A .0B .2C .﹣2D .﹣64.有两支同样长的蜡烛,一支能点燃小时,另一支能点燃小时,一次遇到停电,同时点燃这两支蜡烛,来电后同时吹灭,发现其中一支的长度是另一支的一半,则停电时间为( ) A .小时B .小时C .小时D .小时5.互联网“微商”经营已成为大众创业新途径,某微信平台上一件商品标价为200元,按标价的五折销售,仍可获利20元,则这件商品的进价为( ) A .120元B .100元C .80元D .60元6.已知a=2b ,则下列选项错误的是( ) A .a+c=c+2bB .a ﹣m=2b ﹣mC .2a b = D .2ab= 7.若代数式x +2的值为1,则x 等于( ) A .1B .-1C .3D .-38.某校在举办“读书月”的活动中,将一些图书分给了七年一班的学生阅读,如果每人分3本,则剩余20本:如果每人分4本,则还缺25本.若设该校七年一班有学生x 人,则下列方程正确的是( ) A .3x ﹣20=24x +25 B .3x +20=4x ﹣25 C .3x ﹣20=4x ﹣25D .3x +20=4x +259.两年前,李叔叔在银行存了一笔两年的定期存款,年利率是2.75%.到期后取出,得到本金和利息总共21100元.设李叔叔存入的本金为x 元,则下列方程正确的是( ) A .2 2.75%21100x ⨯= B . 2.75%21100x x += C .2 2.75%21100x x +⨯=D .2( 2.75%)21100x x +=10.某项工作甲单独做4天完成,乙单独做6天完成,若甲先做1天,然后甲、乙合作完成此项工作,若甲一共做了x 天,则所列方程为( ) A .1146x x++= B .1146x x ++= C .1146x x -+= D .111446x x +++= 11.某种高端品牌的家用电器,若按标价打八折销售该电器一件,则可获纯利润500元,其利润率为20%,则该电器的标价为( ) A .3750元B .4000元C .4250元D .3500元12.某工厂一、二月份共完成生产任务吨,其中二月份比一月份的多吨,设一月份完成吨,则下列所列方程正确的是( ) A . B . C .D .二、填空题13.解关于x 的方程,有如下变形过程:①由2316x =-,得2316x =-; ②由342x -=,得324x =-;③由0.221 1.530.1x x -+=+,得366045x x +=-+; ④由253x x-=,得352x x -=. 以上变形过程正确的有_____.(只填序号)14.一个“数值转换机”按如图的程序计算,例如:输入的数为36,则经过一次运算即可输出结果106.若输出的结果127是经过两次运算才输出的,则输入的数是_____.15.当3x =时,式子22x +与5x k +的值相等,则k 的值是______. 16.对于实数a ,b ,c ,d ,规定一种运算a b c d=ad -bc ,如102(2)-=1×(-2)-0×2=-2,那么当(1)(2)(3)(1)x x x x ++--=27时,则x =_____.17.若关于x 的方程23360m x m --+=是一元一次方程,则这个方程的解是__________. 18.在某张月历表上,若前三个星期日的数字之和是42,则第一个星期_______号.19.用5个同样大小的小长方形恰好可以拼成如图所示的大长方形,若大长方形的周长是14,则小长方形的长是_______,宽是________.20.若关于x的方程3x m-2-m=0是一元一次方程,则m=________,方程的解为________.三、解答题21.解方程:2284 25920x x x--+=-.22.如表是中国电信两种“4G套餐”计费方式.(月基本费固定收,主叫不超过主叫时间,流量不超上网流量不再收费,主叫超时和上网流量超出部分加收超时费和超流量费)(1)若小萱某月主叫通话时间为220分钟,上网流量为800MB,则她按套餐1计费需________元,按套餐2计费需________元;若小花某月按套餐2计费需129元,主叫通话时间为240分钟,则上网流量为________MB.(2)若上网流量为540MB,是否存在某主叫通话时间t(分),按套餐1和套餐2计费相等?若存在,请求出t的值;若不存在,请说明理由.(3)若上网流量为540MB,直接写出当主叫通话时间t(分)满足什么条件时,选择套餐1省钱;当主叫通话时间t(分)满足什么条件时,选择套餐2省钱.月基本费/元主叫通话时间/分上网流量/MB套餐149200500套餐269250600接听超时费(元/分)超流量费(元/MB)套餐1免费0.20.3套餐2免费0.150.223.李老师准备购买一套小户型商品房,他去售楼处了解情况得知,该户型商品房的单价是5000元2/m,如图所示(单位:m,卫生间的宽未定,设宽为xm),售楼处为李老师提供了以下两种优惠方案:方案一:整套房的单价为5000元2/m,其中卫生间可免费赠送一半的面积;方案二:整套房按原销售总金额的9.5折出售.(1)用含x的代数式表示该户型商品房的面积及按方案一、方案二购买一套该户型商品房的总金额;(2)当2x 时,通过计算说明哪种方案更优惠,优惠多少元.24.某市水果批发欲将A市的一批水果运往本市销售,有火车和汽车两种运输方式,运输过程中的损耗均为200元/时,其它主要参考数据如下:运输工具途中平均速度(千米/时)运费(元/千米)装卸费用(元)火车100152000汽车8020900(1) 如果汽车的总支出费用比火车费用多1100元,你知道本市与A市之间的路程是多少千米吗?请你列方程解答.(总支出包含损耗、运费和装卸费用)(2) 如果A市与B市之间的距离为S千米,你若是A市水果批发部门的经理,要想将这种水果运往B市销售,试分析以上两种运输工具中选择哪种运输方式比较合算呢?25.数学课上,某班同学用天平和一些物品(如图)探究了等式的基本性质.该班科技创新小组的同学提出问题:仅用一架天平和一个10克的砝码能否测量出乒乓球和一次性纸杯的质量?科技创新小组的同学找来足够多的乒乓球和某种一次性纸杯(假设每个乒乓球的质量相同,每个纸杯的质量也相同),经过多次试验得到以下记录:记录天平左边天平右边状态记录一6个乒乓球,1个10克的砝码14个一次性纸杯平衡记录二8个乒乓球7个一次性纸杯,平衡请算一算,一个乒乓球的质量是多少克?一个这种一次性纸杯的质量是多少克? 解:(1)设一个乒乓球的质量是x 克,则一个这种一次性纸杯的质量是______克;(用含x 的代数式表示)(2)列一元一次方程求一个乒乓球的质量,并求出一个这种一次性纸杯的质量. 26.学友书店推出售书优惠方案:①一次性购书不超过100元,不享受优惠;②一次性购书超过100元但不超过200元一律打九折;③一次性购书超过200元一律打八折.如果王明同学一次性购书付款162元,那么王明所购书的原价为多少?【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据解方程的步骤逐一对选项进行分析即可. 【详解】A . 方程3221x x -=+,移项,得3212x x -=+,故A 选项错误;B . 方程()3251x x -=--,去括号,得325+5-=-x x ,故B 选项错误;C . 方程2332t =,系数化为1,得94t =,故C 选项错误;D . 方程110.20.5x x--=,去分母得()5121--=x x ,去括号,移项,合并同类项得:36x =,故D 选项正确. 故选:D 【点睛】本题主要考查解一元一次方程,掌握解一元一次方程的步骤是解题的关键. 2.A解析:A 【分析】设小长方形的长为x ,根据大的长方形对边相等得到小长方形的宽为2x ,再根据长方形的周长列等量关系得到2(2x+2x+x )=150,再解方程求出x ,然后计算小长方形的面积. 【详解】解:设小长方形的长为x ,则宽为2x , 根据题意得2(2x+2x+x )=150,解得x=15,2x=30,所以x•2x=15×30=450.答:一块渗水防滑地板的面积为450cm2.故选A.【点睛】本题考查了一元一次方程的应用:首先审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x,然后用含x的式子表示相关的量,找出之间的相等关系列方程、求解、作答,即设、列、解、答.3.C解析:C【分析】将x=2代入方程12x+a=-1可求得.【详解】解:将x=2代入方程12x+a=﹣1得1+a=﹣1,解得:a=﹣2.故选C.【点睛】本题是一道求方程待定字母值的试题,把方程的解代入原方程是求待定字母的值的常用方法,平时应多注意领会和掌握.4.C解析:C【解析】【分析】根据每小时两支蜡烛燃烧总长度的,再利用燃烧后其中的一支是另一支的一半,进而得出等式求出即可.【详解】设停电时间为x小时,根据题意可得:1−x=2×(1−x),解得:x=.答:停电时间为小时.故选C.【点睛】此题考查一元一次方程的应用,解题关键在于根据题意列出方程.5.C解析:C 【详解】解:设该商品的进价为x 元/件,依题意得:(x+20)÷510=200,解得:x=80. ∴该商品的进价为80元/件. 故选C .6.D解析:D 【分析】根据等式的性质判断即可. 【详解】解:A 、因为a=2b ,所以a+c=c+2b ,正确; B 、因为a=2b ,所以a-m=2b-m ,正确; C 、因为a=2b ,所以2a=b ,正确; D 、因为a=2b ,当b≠0,所以ab=2,错误; 故选D . 【点睛】此题考查比例的性质,关键是根据等式的性质解答.7.B解析:B 【分析】 列方程求解. 【详解】解:由题意可知x+2=1,解得x=-1, 故选B . 【点睛】本题考查解一元一次方程,题目简单.8.B解析:B 【分析】如果每人分 3 本,则剩余 20 本,此时这些图书的数量可表示为3x+20;如果每人分 4 本,则还缺25本,此时这些图书的数量可表示为4x-25,据此列出方程即可. 【详解】解:根据题意可得:3x +20=4x ﹣25.【点睛】本题考查了一元一次方程的应用,找到图书的数量是相等的是解题关键.9.C解析:C 【分析】根据“利息=本金×利率×时间”(利率和时间应对应),列出方程,即可得出结论. 【详解】 解:根据题意得: x+2×2.75%x=21100; 故选:C . 【点睛】此题主要考查了一元一次方程的应用,计算的关键是掌握根据利息、利率、时间和本金的等量关系,列出方程.10.C解析:C 【分析】首先要理解题意找出题中存在的等量关系:甲完成的工作量+乙完成的工作量=总的工作量,根据题意我们可以设总的工作量为单位“1“,根据效率×时间=工作量的等式,分别用式子表示甲乙的工作量即可列出方程. 【详解】设甲一共做了x 天,则乙一共做了(x−1)天. 可设工程总量为1,则甲的工作效率为14 ,乙的工作效率为16. 那么根据题意可得出方程1146x x -+=, 故选C. 【点睛】此题考查由实际问题抽象出一元一次方程,解题关键在于理解题意列出方程.11.A解析:A 【分析】先根据利润=20%×成本,设未知数解方程求出成本,再用售价÷8折=标价解答即可. 【详解】解:设该电器的成本为x 元.依题意,得50020%x =,解得2500x =. 所以该电器的标价为(2500500)0.83750+÷=(元). 故选:A .本题考查了一元一次方程的应用,属于常考题型,正确理解题意、找准相等关系是解题的关键.12.B解析:B 【解析】 【分析】由题意可知:一月份完成吨,二月份完成()吨,一、二月份共完成生产任务吨,列出方程解答即可. 【详解】 由题意可知:.故选:B 【点睛】此题考查从实际问题中抽象出一元一次方程,找出题目蕴含的数量关系是解决问题的关键.二、填空题13.无【分析】①方程x 系数化为1求出解即可做出判断;②方程移项得到结果即可做出判断;③方程去分母得到结果即可做出判断;④方程去分母得到结果即可做出判断【详解】①由得;②由得;③由得;④由得则以上变形过程解析:无. 【分析】①方程x 系数化为1求出解,即可做出判断; ②方程移项得到结果,即可做出判断; ③方程去分母得到结果,即可做出判断; ④方程去分母得到结果,即可做出判断. 【详解】①由2316x =-,得1623x =-; ②由342x -=,得324x =+; ③由0.221 1.530.1x x -+=+,得3660 4.5x x +=-+; ④由253x x-=,得3530x x -=. 则以上变形过程正确的有无, 故答案为:无本题考查等式的基本性质,掌握等式的基本性质,对等式进行变形是解答此题的关键.14.15【分析】根据题中的数值转换机计算即可求出所求【详解】解:根据题意得:3x﹣2=127解得:x=43可得3x﹣2=43解得:x=15则输入的数是15故答案为15【点睛】考核知识点:解一元一次方程理解析:15【分析】根据题中的“数值转换机”计算即可求出所求.【详解】解:根据题意得:3x﹣2=127,解得:x=43,可得3x﹣2=43,解得:x=15,则输入的数是15,故答案为15【点睛】考核知识点:解一元一次方程.理解程序意义是关键.15.-7【分析】把x=3代入两个式子即可表示出两个式子的值就可得到一个关于k的方程从而求得k的值【详解】解:由题意得:8=15+k解得:k=-7故答案为:-7【点睛】本题要注意列出方程求出未知数的值解析:-7【分析】把x=3代入两个式子即可表示出两个式子的值,就可得到一个关于k的方程,从而求得k 的值.【详解】解:由题意得:8 =15+k,解得:k=-7,故答案为:-7【点睛】本题要注意列出方程,求出未知数的值.16.22【分析】由题中的新定义可知此种运算为对角线乘积相减的运算化简所求的式子得到关于x的方程然后解方程即可求出x的值【详解】解:∵=27∴(x+1)(x-1)-(x+2)(x-3)=27∴x2-1-(解析:22【分析】由题中的新定义可知,此种运算为对角线乘积相减的运算,化简所求的式子得到关于x的方程,然后解方程即可求出x的值.【详解】解:∵(1)(2) (3)(1)x xx x++--=27,∴(x+1)(x-1)-(x+2)(x-3)=27,∴x2-1-(x2-x-6)=27,∴x2-1-x2+x+6=27,∴x=22;故答案为:22.【点睛】本题考查了新定义运算,及灵活运用新定义的能力,根据新定义把所给算式转化为一元一次方程是解答本题的关键.17.x=1【分析】利用一元一次方程的定义求解即可【详解】∵关于x的方程3xm-2-3m+6=0是一元一次方程∴m-2=1解得:m=3此时方程为3x-9+6=0解得:x=1故答案为x=1【点睛】此题考查一解析:x=1【分析】利用一元一次方程的定义求解即可.【详解】∵关于x的方程3x m-2-3m+6=0是一元一次方程,∴m-2=1,解得:m=3,此时方程为3x-9+6=0,解得:x=1,故答案为x=1.【点睛】此题考查一元一次方程的定义以及解一元一次方程,熟练掌握一元一次方程的定义是解题的关键.18.【解析】【分析】根据题意先设中间一个的数字为x即可解答【详解】设中间一个的数字为x其他两个为x+7x-7则x+7+x+x-7=42解答x=14所以第一个是14-7=7日故答案为:7【点睛】此题考查一解析:7【解析】【分析】根据题意先设中间一个的数字为x,即可解答.【详解】设中间一个的数字为x,其他两个为x+7,x-7,则x+7+x+x-7=42,解答x=14,所以第一个是14-7=7日,故答案为:7.此题考查一元一次方程的应用,解题关键在于找出等量关系.19.1【解析】【分析】观察图形找出大长方形与小长方形的关系设小长方形的宽为x列出方程即可求出其长和宽的值【详解】解:设小长方形的宽为x则长=(14-10x)=2x解得x=1即小长方形的宽为1长为2;故答解析:1【解析】【分析】观察图形找出大长方形与小长方形的关系,设小长方形的宽为x,列出方程即可求出其长和宽的值.【详解】解:设小长方形的宽为x,则长=12(14-10x)=2x,解得x=1,即小长方形的宽为1,长为2;故答案为:2;1.【点睛】本题考查了一元一次方程的应用,准确识图并列出方程是解题的关键.20.x=1【解析】【分析】根据一元一次方程的定义得到:m-2=1进而求得M结合m的值可得原方程为3x-3=0求解可得方程的解【详解】由题意得:m-2=1解得:m=3所以原方程为3x-3=0解得x=1【点解析:x=1【解析】【分析】根据一元一次方程的定义得到:m-2=1,进而求得M,结合m的值可得原方程为3x-3=0,求解可得方程的解【详解】由题意得:m-2=1,解得:m=3所以原方程为3x-3=0解得x=1【点睛】此题考查一元一次方程的知识,熟练掌握一元一次方程的定义是关键三、解答题21.49 x考虑到最后一项的分子分母可同时除以4,可化简此项后再根据解一元一次方程的方法和步骤解答.【详解】 解:原方程可化为:2222595x x x --+=+. 移项、合并同类项,得229x =. 系数化为1,得49x =. 【点睛】 本题考查了一元一次方程的解法,灵活应用整体思想、熟练掌握解一元一次方程的方法和步骤是解题的关键.22.(1)143,109,900;(2)若上网流量为540MB ,当主叫通话时间为240分钟时,按套餐1和套餐2计费相等;(3)当240t <时,选择套餐1省钱;当240t >时,选择套餐2省钱.【分析】(1)根据表中数据分别计算两种计费方式,第三空求上网流量时,可设上网流量为xMB ,列方程求解即可;(2)分0≤t <200时,当200≤t≤250时,当t >250时,三种情况分别计算讨论即可; (3)由(2)中结果直接得出.【详解】(1)143,109,900套餐1:490.2(220200)0.3(800500)+⨯-+⨯-490.2200.3300=+⨯+⨯49490=++143=(元).套餐2:690.2(800600)+⨯-690.2200=+⨯6940=+109=(元)设上网流量为x MB ,则690.2(600)129x +-=.解得900x =.故答案为:143;109;900.(2)存在.当0200t 时,490.3(540500)6169+-=≠,所以此时不存在这样的t ,按套餐1和套餐2计费相等;当200250t <时,490.2(200)0.3(540500)69t +-+-=.解得240t =;当250t >时,490.2(200)0.3(540500)690.15(250)t t +-+-=+-.解得210t =,不合题意,舍去.综上,若上网流量为540MB ,当主叫通话时间为240分钟时,按套餐1和套餐2计费相等;(3)由(2)可知,当240t <时,选择套餐1省钱;当240t >时,选择套餐2省钱.【点睛】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键. 23.(1)该户型商品房的面积为2(482)x m +,按方案一购买一套该户型商品房的总金额为(2400005000)x +元,按方案二购买一套该户型商品房的总金额为(2280009500)x +元;(2)当2x =时,方案二更优惠,优惠3000元.【分析】(1)该户型商品房的面积=大长方形的面积-卫生间右侧的长方形,代入计算,也可以利用各间的面积和来求;方案一:(总面积-厨房的12)×单价5000;方案二:总价×0.95; (2)分别把数据代入计算即可;【详解】解:(1)该户型商品房的面积为: 2473(84)2(73)(842)(482)x x m ⨯+⨯-+⨯-+--=+按方案一购买一套该户型商品房的总金额为:147342425000(2400005000)2x x ⎛⎫⨯+⨯+⨯+⨯⨯=+ ⎪⎝⎭元; 按方案二购买一套该户型商品房的总金额为:(4734242)500095%(2280009500)x x ⨯+⨯+⨯+⨯⨯=+元.(2)当2x =时,方案一总金额为2400005000250000x +=(元);方案二总金额为2280009500247000x +=(元).方案二比方案一优惠2500002470003000-=(元).所以方案二更优惠,优惠3000元.【点睛】本题是根据实际应用列代数式,是楼房销售问题,考查了图形面积与销售总额及银行利率的知识;解题的关键是熟练掌握利用代数式表示图形的面积.24.(1) x =400;(2) 当s >200时,选择火车运输;当s <200时,选择汽车运输;当s =200时,两种方式都一样【分析】(1)设路程为x 千米,题中等量关系是:汽车的总支出费用比火车费用多1100元,列出方程解答;(2)根据(1)中结论分别算出火车和汽车所需的运费,再进行比较即可求解.【详解】(1) 设本市与A 市之间的路程是x 千米200•20015200011002090010080x x x x +++=++, 解得x =400(2) 火车的运输费用为•200152000172000100s s s ++=+ 汽车运输的费用为•2002090022.590080s s s ++=+ 当17s +2000=22.5s +900,解得s =200当s >200时,选择火车运输当s <200时,选择汽车运输当s =200时,两种方式都一样【点睛】本题主要考查了一元一次方程的应用,根据题意列出方程是解答本类问题的关键. 25.(1)61014x +或8107x -;(2)一个乒乓球的质量是3克,一个这种一次性纸杯的质量是2克.【分析】(1)根据题意即可得出答案;(2)弄清题意,找到合适的等量关系,列出方程,解方程即可.【详解】解:(1)61014x +或8107x - (2)根据题意得,610810147x x +-= 6101620x x +=-6162010x x -=--1030x -=-3x =.当3x =时,610631021414x +⨯+==(克). 答:一个乒乓球的质量是3克,一个这种一次性纸杯的质量是2克.【点睛】本题考查了一元一次方程与实际问题,解题的关键是找到合适的等量关系,列出方程,解方程.26.180元或202.5元【分析】先根据题意判断出可能打折的情况,再分别算出可能的可能的原价.【详解】∵200×0.9=180,200×0.8=160,160<162<180,∴一次性购书付款162元,可能有两种情况.162÷0.9=180元;162÷0.8=202.5元.故王明所购书的原价一定为180元或202.5元.【点睛】本题考查打折销售问题,关键在于分类讨论.。
1.下列代数式的书写,正确的是()A.5n B.n5 C.1500÷t D.114x2y A解析:A【分析】直接利用代数式书写方法分析得出答案.【详解】解:A、5n,书写正确,符合题意;B、n5,书写错误,不合题意;C、1500÷t,应为1500t,故书写错误,不合题意;D、114x2y=54x2y,故书写错误,不合题意;故选:A.【点睛】此题主要考查了代数式,正确把握代数式的书写方式是解题关键.2.把有理数a代入|a+4|﹣10得到a1,称为第一次操作,再将a1作为a的值代入得到a2,称为第二次操作,…,若a=23,经过第2020次操作后得到的是()A.﹣7 B.﹣1 C.5 D.11A解析:A【分析】先确定第1次操作,a1=|23+4|-10=17;第2次操作,a2=|17+4|-10=11;第3次操作,a3=|11+4|-10=5;第4次操作,a4=|5+4|-10=-1;第5次操作,a5=|-1+4|-10=-7;第6次操作,a6=|-7+4|-10=-7;…,后面的计算结果没有变化,据此解答即可.【详解】解:第1次操作,a1=|23+4|-10=17;第2次操作,a2=|17+4|-10=11;第3次操作,a3=|11+4|-10=5;第4次操作,a4=|5+4|-10=-1;第5次操作,a5=|-1+4|-10=-7;第6次操作,a6=|-7+4|-10=-7;第7次操作,a7=|-7+4|-10=-7;…第2020次操作,a2020=|-7+4|-10=-7.故选:A.【点睛】本题考查了绝对值和探索规律.解题的关键是先计算,再观察结果是按照什么规律变化的.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.3.如图,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y与n之间的关系是()A.y=2n+1 B.y=2n+n C.y=2n+1+n D.y=2n+n+1B解析:B【详解】∵观察可知:左边三角形的数字规律为:1,2,…,n,右边三角形的数字规律为:2,22,…,2n,n+,下边三角形的数字规律为:1+2,2+, (2)22∴最后一个三角形中y与n之间的关系式是y=2n+n.故选B.【点睛】考点:规律型:数字的变化类.4.有一组单项式如下:﹣2x,3x2,﹣4x3,5x4……,则第100个单项式是()A.100x100B.﹣100x100C.101x100D.﹣101x100C解析:C【分析】由单项式的系数,字母x的指数与序数的关系求出第100个单项式为101x100.【详解】由﹣2x,3x2,﹣4x3,5x4……得,单项式的系数的绝对值为序数加1,系数的正负为(﹣1)n,字母的指数为n,∴第100个单项式为(﹣1)100(100+1)x100=101x100,故选C.【点睛】本题综合考查单项式的概念,乘方的意义,数字变化规律与序数的关系等相关知识点,重点掌握数字的变化与序数的关系.5.若 3x m y3 与﹣2x2y n 是同类项,则()A.m=1,n=1 B.m=2,n=3 C.m=﹣2,n=3 D.m=3,n=2B解析:B【分析】根据同类项是字母相同且相同字母的指数也相,可得答案.【详解】3﹣是同类项,得3m x y和2x y2nm=2,n=3,所以B 选项是正确的. 【点睛】本题考查了同类项,利用了同类项的定义.6.已知322x y 和m 2x y -是同类项,则式子4m 24-的值是( ) A .21- B .12- C .36 D .12B解析:B 【分析】根据同类项定义得出m 3=,代入求解即可. 【详解】解:∵322x y 和m 2x y -是同类项,∴m 3=,∴4m 24432412-=⨯-=-, 故选B . 【点睛】本题考查了对同类项定义的应用,注意:所含字母相同,并且相同字母的指数也分别相等的项,叫同类项,常数也是同类项. 7.化简2a -[3b -5a -(2a -7b )]的值为( ) A .9a -10b B .5a +4b C .-a -4b D .-7a +10b A解析:A 【解析】2a -[3b -5a -(2a -7b)]=2a-(3b-5a-2a+7b)=2a-(10b-7a)=2a-10b+7a=9a-10b , 故选A.【点睛】本题考查去括号,合并同类项,解题的关键是按运算的顺序先去括号,然后再进行合并同类项.8.已知整数1234,,,a a a a ……满足下列条件:12132430,1,2,3a a a a a a a ==-+=-+=-+……,依次类推,则2019a 的值为( )A .2018B .2018-C .1009-D .1009C解析:C 【分析】根据条件求出前几个数的值,再分n 是奇数时,结果等于-12(n-1),n 是偶数时,结果等于-2n,然后把n 的值代入进行计算即可得解. 【详解】 解:123450|01|1|12|1|13|2|24|2a a a a a ==-+=-=--+=-=--+=-=--+=- 678|25|3|36|3|37|4a a a =--+=-=-+=-=--+=-⋯⋯∴201920181009a a ==-, 故选择C 【点睛】本题考查了数字变化规律,根据所求出的数,观察出n 为奇数与偶数时的结果的变化规律是解题的关键.9.下列各式中,符合代数书写规则的是( )A .273xB .14a ⨯C .126p - D .2y z ÷ A解析:A【分析】根据代数式的书写要求判断各项. 【详解】 A 、273x 符合代数书写规则,故选项A 正确. B 、应为14a ,故选项B 错误; C 、应为136p -,故选项C 错误; D 、应为2yz,故选项D 错误; 故选:A . 【点睛】此题考查代数式,代数式的书写要求:(1)在代数式中出现的乘号,通常简写成“•”或者省略不写; (2)数字与字母相乘时,数字要写在字母的前面;(3)在代数式中出现的除法运算,一般按照分数的写法来写.带分数要写成假分数的形式.10.下面去括号正确的是( ) A .2()2y x y y x y +--=+- B .2(35)610a a a a --=-+ C .()y x y y x y ---=+-D .222()2x x y x x y +-+=-+ B解析:B 【分析】根据去括号法则对四个选项逐一进行分析,要注意括号前面的符号,以选用合适的法则. 【详解】A. 2()2y x y y x y +--=--,故错误;B. 2(35)610a a a a --=-+,故正确;C. ()y x y y x y ---=++,故错误;D. 222()22x x y x x y +-+=-+,故错误; 故选:B 【点睛】本题考查去括号的方法:去括号时,运用乘法的分配律,先把括号前的数字与括号里各项相乘;括号前是“+”,去括号后,括号里的各项都不改变符号;括号前是“一”,去括号后,括号里的各项都改变符号.11.点O ,A ,B ,C 在数轴上的位置如图所示,其中O 为原点,2BC =,OA OB =,若C 点所表示的数为x ,则A 点所表示的数为( )A .2x -+B .2x --C .2x +D .-2A解析:A 【分析】由BC=2,C 点所表示的数为x ,求出B 表示的数,然后根据OA=OB ,得到点A 、B 表示的数互为相反数,则问题可解. 【详解】解:∵BC=2,C 点所表示的数为x , ∴B 点表示的数是x-2, 又∵OA=OB ,∴B 点和A 点表示的数互为相反数, ∴A 点所表示的数是-(x-2),即-x+2. 故选:A . 【点睛】此题考查用数轴上的点表示数的方法和数轴上两点间的距离以及相反数的性质,解答关键是应用数形结合思想解决问题. 12.代数式21a b-的正确解释是( ) A .a 与b 的倒数的差的平方 B .a 与b 的差的平方的倒数 C .a 的平方与b 的差的倒数 D .a 的平方与b 的倒数的差D解析:D 【分析】说出代数式的意义,实际上就是把代数式用语言叙述出来.叙述时,要求既要表明运算的顺序,又要说出运算的最终结果. 【详解】 解:代数式21a b-的正确解释是a 的平方与b 的倒数的差. 故选:D. 【点睛】用语言表达代数式的意义,一定要理清代数式中含有的各种运算及其顺序.具体说法没有统一规定,以简明而不引起误会为出发点.13.已知3a b -=-,2c d +=,则()()a d b c --+的值为( ) A .﹣5 B .1C .5D .﹣1A解析:A 【分析】先把所求代数式去掉括号,再化为已知形式把已知代入求解即可. 【详解】解:根据题意:(a-d )-(b+c )=(a-b )-(c+d )=-3-2=-5, 故选:A . 【点睛】本题考查去括号、添括号的应用.先将其去括号化简后再重新组合,得出答案. 14.小明乘公共汽车到白鹿原玩,小明上车时,发现车上已有(6a ﹣2b )人,车到中途时,有一半人下车,但又上来若干人,这时车上共有(10a ﹣6b )人,则中途上车的人数为( ) A .16a ﹣8b B .7a ﹣5bC .4a ﹣4bD .7a ﹣7b B解析:B 【分析】根据题意表示出途中下车的人数,再根据车上总人数即可求得中途上车的人数. 【详解】由题意可得:(10a ﹣6b )﹣[(6a ﹣2b )﹣(3a ﹣b )] =10a ﹣6b ﹣6a +2b +3a ﹣b =7a ﹣5b . 故选B . 【点睛】本题考查了整式加减的应用,根据题意正确列出算式是解决问题的关键.15.一列数:0,1,2,3,6,7,14,15,30,___,___,___这串数是由小能按照一定规则写下来的,他第一次写下“0,1”,第二次按着写“2,3”,第三次接着写“6,7”第四次接着写“14,15”,就这样一直接着往下写,那么这串数的最后三个数可能是下面的 A .31,63,64 B .31,32,33C .31,62,63D .31,45,46C解析:C 【分析】本题通过观察可知下一组数的第一个数是前一组数的第二个数的两倍,在同一组数中的前后两个数相差1.由此可写出最后的3个数.【详解】解:本题通过观察可知下一组数的第一个数是前一组数的第二个数的两倍,在同一组数中的前后两个数相差1,所以这串数最后的三个数为31,62,63.故选:C.【点睛】本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.1.填在各正方形中的四个数字之间具有相同的规律,根据这种规律,m的值应是_______.184【分析】根据题意知:前三个图形的左上角与右下角数的和等于右上角与左下角数的积且左上左下右上三个数是相邻的奇数据此解答【详解】由前面数字关系:135;357;579可得最后一个三个数分别为:11解析:184【分析】根据题意知:前三个图形的左上角与右下角数的和等于右上角与左下角数的积,且左上,左下,右上三个数是相邻的奇数.据此解答.【详解】由前面数字关系:1,3,5;3,5,7;5,7,9,可得最后一个三个数分别为:11,13,15,3×5-1=14;5×7-3=32;7×9-5=58;由于左上的数是11,则左下角的是13,右上角的是15,∴m=13×15-11=184.故答案为:184.【点睛】本题考查了数字的变化类,解答本题的关键是明确题意,发现数字的变化特点,求出m的值.2.如图是用棋子摆成的“上”字:如果按照以下规律继续摆下去,第n个“上”字需用______枚棋子.(4n+2)【分析】先数出前三个上字各所需棋子数然后规律即可解答【详解】解:∵第一个上字需用6枚棋子第二个上字需用10枚棋子第三个上字需用14枚棋子∴依次多4个∴第n个上字需用(4n+2)枚棋子故答解析:(4n+2). 【分析】先数出前三个“上”字各所需棋子数,然后规律即可解答. 【详解】解:∵第一个“上”字需用6枚棋子,第二个“上”字需用10枚棋子,第三个“上”字需用14枚棋子, ∴依次多4个∴第n 个“上”字需用(4n+2)枚棋子. 故答案为:(4n+2). 【点睛】本题主要考查了图形的变化规律,观察出哪些部分发生了变化、是按照什么规律变化的是解答本题的关键. 3.请观察下列等式的规律:111=11323⎛⎫- ⎪⨯⎝⎭,1111=-35235⎛⎫ ⎪⨯⎝⎭, 1111=-57257⎛⎫ ⎪⨯⎝⎭,1111=-79279⎛⎫ ⎪⨯⎝⎭, … 则1111...=133********++++⨯⨯⨯⨯______.【解析】试题 解析:50101【解析】 试题1111++++133********⨯⨯⨯⨯=111111111111)()()()23235257299101-+-+-++-( =111111111++)23355799101---++-( =111)2101-( =11002101⨯ =50101. 4.将连续正整数按以下规律排列,则位于第 7 行第 7 列的数 x 是________________.? 13 6 10 15 21282 5 9 1420 27 ? 48 13 19 26 ? ? 7121825 ? ? 1117 24? ? 16 23??22 ? ? ? ? ? x?【分析】先根据第一行的第一列的数以及第二行的第二列的数第三行的第三列数第四行的第四列数进而得出变化规律由此得出结果【详解】第一行的第一列的数是1;第二行的第二列的数是5=1+4;第三行的第三列的数是 解析:85【分析】先根据第一行的第一列的数,以及第二行的第二列的数,第三行的第三列数,第四行的第四列数,进而得出变化规律,由此得出结果. 【详解】第一行的第一列的数是 1; 第二行的第二列的数是 5=1+4; 第三行的第三列的数是 13=1+4+8; 第四行的第四列的数是 25=1+4+8+12; ......第n 行的第n 列的数是1+4+8+12+...+4(n-1)=1+4[1+2+3+...+(n+1)]=1+2n(n-1); ∴第七行的第七列的数是1+2×7×(7-1)=85; 故答案为:85. 【点睛】本题考查数字的变化规律,学生通过观察、分析、归纳发现其中的规律,从而利用规律解决问题.5.单项式20.8a h π-的系数是______.【分析】根据单项式系数的定义进行求解即可【详解】单项式的系数是故答案为:【点睛】本题考查了单项式的系数问题掌握单项式系数的定义是解题的关键 解析:0.8π-【分析】根据单项式系数的定义进行求解即可. 【详解】单项式20.8a h π-的系数是0.8π- 故答案为:0.8π-. 【点睛】本题考查了单项式的系数问题,掌握单项式系数的定义是解题的关键.6.将一列数1,2,3,4,5,6---,…,按如图所示的规律有序排列.根据图中排列规律可知,“峰1”中峰顶位置(C 的位置)是4,那么“峰206”中C 的位置的有理数是______.-1029【分析】由题意根据图中排列规律得出每5个数为一组依次排列所以峰n 中峰顶C 的位置的有理数的绝对值为以此进行分析即可【详解】解:由图可知每5个数为一组依次排列所以峰n 中峰顶C 的位置的有理数的绝解析:-1029 【分析】由题意根据图中排列规律得出每5个数为一组依次排列,所以“峰n”中峰顶C 的位置的有理数的绝对值为51n -,以此进行分析即可. 【详解】解:由图可知,每5个数为一组依次排列,所以“峰n”中峰顶C 的位置的有理数的绝对值为51n -,当206n =时,52061103011029⨯-=-=,因为1029是奇数,所以“峰206”中C 的位置的有理数是1029-. 故答案为:1029-. 【点睛】本题考查图形的数字规律,熟练掌握根据图中排列规律得出每5个数为一组依次排列,所以“峰n”中峰顶C 的位置的有理数的绝对值为51n -是解题的关键.7.在如图所示的运算流程中,若输出的数3y =,则输入的数x =________________.或【分析】由运算流程可以得出有两种情况当输入的x 为偶数时就有y=x 当输入的x 为奇数就有y=(x+1)把y=3分别代入解析式就可以求出x 的值而得出结论【详解】解:由题意得当输入的数x 是偶数时则y=x 当解析:5或6【分析】由运算流程可以得出有两种情况,当输入的x 为偶数时就有y=12x ,当输入的x 为奇数就有y=12(x+1),把y=3分别代入解析式就可以求出x 的值而得出结论. 【详解】解:由题意,得当输入的数x 是偶数时,则y=12x ,当输入的x 为奇数时,则y=12(x+1). 当y=3时,∴3=12x 或3=12(x+1). ∴x=6或5故答案为:5或6【点睛】本题考查了有理数的混合运算,解答此题的关键是,根据流程图,列出方程,解方程即可得出答案.8.一个长方形的周长为68a b +,其一边长为23a b +,则另一边长为______.【分析】根据长方形的周长公式列出代数式求解即可【详解】解:由长方形的周长=2×(长+宽)可得另一边长为:故答案为:a+b 【点睛】本题考查了整式的加减长方形的周长公式列出代数式是解决此题的关键解析:+a b【分析】根据长方形的周长公式列出代数式求解即可.【详解】解:由长方形的周长=2×(长+宽)可得,另一边长为:()()68223a b a b a b +÷-+=+. 故答案为:a +b .【点睛】本题考查了整式的加减,长方形的周长公式列出代数式是解决此题的关键.9.如图,大、小两个正方形ABCD 与正方形BEFG 并排放在一起,点G 在边BC 上.已知两个正方形的面积之差为31平方厘米,则四边形CDGF 的面积是______平方厘米.【分析】设出两个正方形边长分别为ab (a>b )表示正方形面积之差用ab 表示四边形的面积进行整体代入即可【详解】解:设两个正方形边长分别为ab (a>b )由已知四边形的面积为:故答案为:【点睛】本题考查 解析:312【分析】设出两个正方形边长分别为a ,b (a>b ),表示正方形面积之差,用a 、b 表示四边形CDGF 的面积,进行整体代入即可.【详解】解:设两个正方形边长分别为a ,b (a>b )由已知2231a b -=四边形CDGF 的面积为:()()()()()()2211113122222DC GF GC DC GF BC BG a b a b a b +⋅=+-=+-=-= 故答案为:312 【点睛】本题考查了列代数式和整体代入的相关知识,解答关键是将求值式子进行变式,再应用整体代入解答问题。
洛阳市七年级数学上册第二章整式的加减易错题集锦单选题1、下列去括号或添括号不正确的是( )A .a −b +c =a −(b −c )B .a −b +c =a +(c −b )C .a −2(b −c )=a −2b +2cD .a −2(b −c )=a −2b +c答案:D分析:根据去括号法则:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.添括号法则:添括号时,如果括号前面是正号,括到括号里的各项都不变号,如果括号前面是负号,括到括号里的各项都改变符号.进行分析即可. 解:A. a −b +c =a −(b −c ),正确,故A 不符合题意;B. a −b +c =a +(c −b ),正确,故B 不符合题意;C. a −2(b −c )=a −2b +2c ,正确,故C 不符合题意;D. a −2(b −c )=a −2b +c ,∵a −2(b −c )=a −2b +2c ,∴计算不正确,故D 符合题意;故选:D小提示:本题考查了去括号和添括号的方法,注:添括号时,若括号前是“+”,添括号后,括号里的各项都不改变符号;若括号前是“-”,添括号后,括号里的各项都改变符号.2、数学家华罗庚曾经说过:“数形结合百般好,隔裂分家万事休”.如图,将一个边长为1的正方形纸板等分成两个面积为12的长方形,接着把面积为12的长方形分成两个面积为14的长方形,如此继续进行下去,根据图形的规律计算:12+(12)2+(12)3+⋯+(12)10的值为( )A .(12)10B .1-(12)10C .(12)11D .1-(12)11答案:B分析:分析数据和图象可知,利用正方形的面积减去最后的一个小长方形的面积来求解面积和即可. 解:分析数据和图象可知,利用正方形的面积减去最后的一个小长方形的面积来求解面积和即为所求.最后一个小长方形的面积= (12)n故12+(12)2+(12)3+⋯+(12)n=1−(12)n即12+(12)2+(12)3+⋯+(12)10=1−(12)10故选B.小提示:本题主要考查了学生的分析、总结、归纳能力,通过数形结合看出前面所有小长方形的面积等于总面积减去最后一个空白的小长方形的面积是解答此题的关键.3、下列各式书写符合要求的是()A.a−1÷−b B.312xy C.ab×5D.−x2y2答案:D分析:根据代数式的书写要求判断各项即可.解:A、原书写不规范,应写为a−1−b,故此选项不符合题意;B,原书写不规范,应写为72xy,故此选项不符合题意;C、书写不规范,应写为5ab,故本选项不符合题意;D、书写规范,故此选项符合题意.故选:D.小提示:本题考查了代数式,解题的关键是掌握代数式的书写要求:(l)在代数式中出现的乘号,通常简写成“·”或者简略不写;(2)数字与字母相乘时,数字要写在字母的前面;(3)在代数式中出现的除法运算,一般按照分数的写法来写,而分数要写成假分数的形式.4、已知a+b=3,c−d=2,则(a+c)−(−b+d)的值是()A.5B.-5C.1D.-1答案:A根据整式的加减运算法则即可求出答案.分析:解:原式=a+c+b﹣d=a+b+c﹣d,当a+b=3,c﹣d=2时,∴原式=3+2=5,故选:A.小提示:本题考查整式的加减中的化简求值,解题的关键是熟练运用整式的运算法则,本题属于基础题型.5、某地居民生活用水收费标准:每月用水量不超过17立方米,每立方米a元;超过部分每立方米(a+1.2)元.该地区某用户上月用水量为20立方米,则应缴水费为()A.20a元B.(20a+24)元C.(17a+3.6)元D.(20a+3.6)元答案:D分析:分两部分求水费,一部分是前面17立方米的水费,另一部分是剩下的3立方米的水费,最后相加即可.解:∵20立方米中,前17立方米单价为a元,后面3立方米单价为(a+1.2)元,∴应缴水费为17a+3(a+1.2)=20a+3.6(元),故选:D.小提示:本题考查的是阶梯水费的问题,解决本题的关键是理解其收费方式,能求出不同段的水费,本题较基础,重点考查了学生对该种计费方式的理解与计算方法等.6、在下列各式子中:π,x2+2x+1,x+xy,3x2+5x+4,−x,3,5xy,yx,整式共有()A.7个B.6个C.5个D.4个答案:B分析:根据多项式与单项式统称为整式,判断即可.解:在代数式π(单项式),x2+2x+1(分式),x+xy(多项式),3x2+5x+4(多项式),−x(单项式),3(单项式),5xy(单项式),yx(分式)中,整式共有6个,故选:B.小提示:此题考查了整式,解题的关键是弄清整式的概念.7、如果单项式2a2m−5b n+2与ab3n−2可以合并同类项,那么m和n的值分别为()A.2,3B.3,2C.-3,2D.3,-2答案:B分析:根据同类项的定义,所含字母相同,相同字母的指数也相同,进行计算即可.解:由题意得:2m-5=1,n+2=3n-2,∴m=3,n=2,故选:B.小提示:本题考查了合并同类项,熟练掌握同类项的定义是解题的关键.8、下列说法正确的是()A.23πa3的次数是4B.mn-12不是整式C.3x2y与−2yx2是同类项D.y−2x2+3xy2是二次三项式答案:C分析:根据单项式,整式,同类项及多项式的有关定义分析四个选项,即可得出结论解:A. 23πa3的次数是3次,故本选项错误,不符合题意;B.mn-12是整式,故本选项错误,不符合题意;C. 3x2y与−2yx2是同类项,故本选项正确,符合题意;D. y−2x2+3xy2是关于x,y的三次三项式;故本选项错误,不符合题意;故选择:C小提示:本题考查了整式,同类项,单项式,多项式的有关定义的问题,解题的关键是牢记这些定义.9、下列各式符合代数式书写规范的是()A.18×b B.114x C.−ba2D.m÷2n答案:C分析:根据代数式的书写规则,数字与字母之间的乘号应省略,分数不能为带分数,不能出现除号,对各项的代数式进行判定,即可求出答案.解:A、正确书写格式为18b,故此选项不符合题意;B、正确书写格式为54x,故此选项不符合题意;C、是正确的书写格式,故此选项符合题意;D、正确书写格式为m2n,故此选项不符合题意.故选:C.小提示:本题考查了代数式的书写规则,能够根据代数式书写的标准规则对各项进行分析,得出答案是解题的关键.10、已知单项式3a m+1b与−b n−1a3可以合并同类项,则m,n分别为()A.2,2B.3,2C.2,0D.3,0答案:A分析:根据同类项的定义得出关于m,n的式子,计算求出m,n即可.解:∵单项式3a m+1b与−b n−1a3可以合并同类项,∴m+1=3,n-1=1,∴m=2,n=2,故选:A.小提示:本题考查了合并同类项及同类项的定义,如果两个单项式,他们所含的字母相同,并且相同字母的指数也分别相同,那么就称这两个单项式为同类项.11、单项式mxy3与x n+2y3的和是5xy3,则m−n(()A.﹣4B.3C.4D.5答案:D分析:根据单项式的和是单项式,可得两个单项式是同类项,根据同类项是字母相同且相同字母的指数也相同,可得m、n的值,再代入计算可得答案.解:解:∵单项式mxy3与x n+2y3的和是5xy3,∴单项式mxy3与x n+2y3是同类项,∴n+2=1,m+1=5,解得n=−1,m=4,∴m−n=4−(−1)=5,故选:D.小提示:本题考查了同类项的概念,同类项定义中的两个“相同”:字母相同,相同字母的指数相同,是易混点,因此成了中考的常考点.12、下列算式中正确的是()A.4x−3x=1B.2x+3y=3xyC.3x2+2x3=5x5D.x2−3x2=−2x2答案:D分析:根据合并同类项的法则计算即可得出正确结论.解:A. 4x−3x=x,故本选项错误,不符合题意;B. 2x与3y不是同类项,不能合并运算,故本选项故本选项错误,不符合题意;C. 3x2与2x3不是同类项,不能合并运算,故本选项故本选项错误,不符合题意;D. x2−3x2=−2x2,本选项正确,符合题意;故选:D小提示:本题主要考查了合并同类项,熟记同类项的概念是解题的关键.13、若|a−2|+|b+3|=0,则b a的值为()A.1B.﹣1C.﹣6D.9答案:D分析:根据绝对值的非负性得到a与b的值,代入求值即可.解:∵|a−2|≥0,|b+3|≥0,∴当|a−2|+|b+3|=0时,∴a﹣2=0,b+3=0,解得a=2,b=﹣3,∴b a=(−3)2=9,故选:D.小提示:本题考查代数式求值,涉及到绝对值的非负性及幂的运算,熟练掌握非负式的和为零的条件是解决问题的关键.14、若多项式 36x2-3x+5 与 3x3+12mx2-5x相加后不含二次项,则常数m的值是( )A.-3B.-2C.2D.3答案:A分析:对两个多项式的二次项进行合并,再根据二次项系数为0建立关于m的方程求解,即可解答.解:两个多项式的二次项分别为:36x2和12mx2,则有:36x2+12mx2=(36+12m)x2,令36+12m=0,解得m=−3.故选:A.小提示:本题考查了多项式合并和无关项问题,特别是掌握无关项问题的解答方法是解答本题的关键.15、为落实“双减”政策,某校利用课后服务开展了主题为“书香满校园”的读书活动.现需购买甲,乙两种读本共100本供学生阅读,其中甲种读本的单价为10元/本,乙种读本的单价为8元/本,设购买甲种读本x本,则购买乙种读本的费用为()A.8x元B.10(100−x)元C.8(100−x)元D.(100−8x)元答案:C分析:根据题意列求得购买乙种读本(100−x)本,根据单价乘以数量即可求解.解:设购买甲种读本x本,则购买乙种读本(100−x)本,乙种读本的单价为8元/本,则则购买乙种读本的费用为8(100−x)元故选C小提示:本题考查了列代数式,理解题意是解题的关键.填空题16、张老师带了100元钱去给学生买笔记本和笔,已知一本笔记本3元,一支笔2元,张老师买了a本笔记本,b支笔,她还剩___________________元钱(用含a,b的代数式表示).答案:(100-3a-2b)分析:根据题意表示出a本笔记本的钱,b支笔的钱,用总钱数-笔记本和笔的钱即可.解:由题意得:100-3a-2b,所以答案是:(100-3a-2b).小提示:此题主要考查了列代数式,关键是根据题意表示出a本笔记本的钱,b支笔的钱.17、关于整式4x3﹣3x3y+3x3﹣(7x3﹣3x3y)的值有下列几个结论:(1)与x,y有关(2)与x有关(3)与y有关(4)与x,y无关其中说法正确的结论是______.(直接填写序号)答案:(4)分析:把整式进行化简,再判断即可.4x3﹣3x3y+3x3﹣(7x3﹣3x3y)=4x3﹣3x3y+3x3﹣7x3+3x3y=0.则整式的值与x,y无关.所以答案是:(4).小提示:本题主要考查整式的加减,解答的关键是对相应的运算法则的掌握.18、一列有规律的数:−1,−4,7,10,−13,−16,19,22,⋯.这列数的第100个数为____.答案:298分析:观察发现,连续的两个数的绝对值相差3,符号为4次一循环,据此即可求解.解:观察一列有规律的数:−1,−4,7,10,−13,−16,19,22,⋯.第一个数为:−1=−[3×(1−1)+1],第二个数为:−4=−[3×(2−1)+1],第三个数为:+7=+[3×(3−1)+1],第四个数为:+10=+[3×(4−1)+1],……连续的两个数的绝对值相差3,符号为4次一循环,100÷4=25,第100个数为第25组第4个,符号为正,第100个数为3×(100−1)+1=298所以答案是:298小提示:本题是一道找规律问题,此类问题通常会按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律,而揭示的规律,常常包含着事物的序列号. 所以解决此类问题的关键,可以把变量和序列号放在一起加以比较,从而快速找到规律.19、已知a2−2a=1,则3a2−6a−4的值为________答案:−1分析:将a2−2a=1作为整体代入计算即可得.解:∵a2−2a=1,∴3a2−6a−4=3(a2−2a)−4=3×1−4=−1,所以答案是:−1.小提示:本题考查了代数式求值,熟练掌握整体代入思想是解题关键.20、观察下列一组数:2,12,27,…,它们按一定规律排列,第n 个数记为a n ,且满足1a n +1a n+2=2a n+1.则a 4=________,a 2022=________.答案: 15 13032分析:由题意推导可得an =23(n−1)+1,即可求解.解:由题意可得:a 1=2=21,a 2=12=24,a 3=27,∵1a 2+1a 4=2a 3, ∴2+1a 4=7, ∴a 4=15=210, ∵1a 3+1a 5=2a 4, ∴a 5=213,同理可求a 6=18=216,⋯∴an =23(n−1)+1, ∴a 2022=26064=13032,所以答案是:15,13032.小提示:本题考查了数字的变化类,找出数字的变化规律是解题的关键.。
河南省七年级数学上册第二章整式的加减重点易错题单选题1、将字母“C”,“H”按照如图所示的规律摆放,依次下去,则第4个图形中字母“H”的个数是()A.9B.10C.11D.12答案:B分析:列举每个图形中H的个数,找到规律即可得出答案.解:第1个图中H的个数为4,第2个图中H的个数为4+2,第3个图中H的个数为4+2×2,第4个图中H的个数为4+2×3=10,故选:B.小提示:本题考查了规律型:图形的变化类,通过列举每个图形中H的个数,找到规律:每个图形比上一个图形多2个H是解题的关键.2、下列各选项中,不是同类项的是()A.3a2b和−5ba2B.12x2y和12xy2C.6和23D.5x n和−3x n4答案:B分析:根据同类项的概念求解即可.同类项:如果两个单项式,他们所含的字母相同,并且相同字母的指数也分别相同,那么就称这两个单项式为同类项.解:A、3a2b和−5ba2是同类项,不符合题意;B、12x2y和12xy2不是同类项,符合题意;C、6和23是同类项,不符合题意;D、5x n和−3x n是同类项,不符合题意.4故选:B.小提示:此题考查了同类项的概念,解题的关键是熟练掌握同类项的概念.同类项:如果两个单项式,他们所含的字母相同,并且相同字母的指数也分别相同,那么就称这两个单项式为同类项.3、下列整式与ab2为同类项的是()A.a2b B.−2ab2C.ab D.ab2c答案:B分析:根据同类项的定义:所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项,结合选项求解.解:由同类项的定义可知,a的指数是1,b的指数是2.A、a的指数是2,b的指数是1,与ab2不是同类项,故选项不符合题意;B、a的指数是1,b的指数是2,与ab2是同类项,故选项符合题意;C、a的指数是1,b的指数是1,与ab2不是同类项,故选项不符合题意;D、a的指数是1,b的指数是2,c的指数是1,与ab2不是同类项,故选项不符合题意.故选:B.小提示:此题考查了同类项,判断同类项只要两看,即一看所含有的字母是否相同,二看相同字母的指数是否相同.4、若单项式2xy3−b是三次单项式,则()A.b=0B.b=1C.b=2D.b=3答案:B分析:根据单项式次数的概念列式计算即可解:若单项式2xy3−b是三次单项式,则3-b=2,解得:b=1,故选:B.小提示:本题考查了单项式,单项式是数与字母的乘积,单独一个数或一个字母也是单项式,单项式的次数是字母指数和,单项式的系数是数字因数.y+3)等于()5、去括号x−(−13A.x−13y−3B.x+13y−3C.x−13y+3D.x+13y+3答案:B分析:利用去括号法则解答即可.解:x−(−13y+3)=x+13y−3故选:B.小提示:此题考查去括号,解题的关键是熟练掌握去括号法则.注意括号前是“+”,去括号后,括号里的各项都不改变符号;括号前是“﹣”,去括号后,括号里的各项都改变符号.运用这一法则去掉括号.6、单项式−3xy34的系数是()A.3B.4C.−3D.−34答案:D分析:根据单项式的系数的概念解答即可.解:单项式-3xy 34的系数是-34.故选:D.小提示:本题考查的是单项式的系数的概念,单项式中的数字因数叫做单项式的系数,理解单项式的系数的概念是解答关键.7、“x的平方与5的和的相反数减去x的差”用代数式表示为()A.−(x2+5)−x B.−(x+5)2−xC.x2−5−x D.x2+5−x答案:A分析:根据“x的平方与5的和”为x2+5,在用相反数的定义,最后计算的是差;解:由题意得:−(x2+5)−x,故选:A.小提示:本题考查列代数式,解题关键弄清运算顺序,注意x的平方与5的和与x与5的和的平方之间的区别.8、如图,小明在3×3的方格纸上写了九个式子(其中的n是正整数),每行的三个式子的和自上而下分别记为B1,B2,B3,每列的三个式子的和自左至右分别记为A1,A2,A3,其中值可以等于732的是()A.A1B.B1C.A2D.B3答案:D分析:将A1,A2,B1,B3的式子表示出来,使其等于732,求出相应的n的数值即可判断答案.解:A1=2n−2+2n−4+2n−6=732,整理可得:2n=248,n不为整数;故选项A不符合题意;A2=2n−8+2n−10+2n−12=732,整理可得:2n=254,n不为整数;故选项B不符合题意;B1=2n−2+2n−8+2n−14=732,整理可得:2n=252,n不为整数;故选项C不符合题意;B3=2n−6+2n−12+2n−18=732,整理可得:2n=256,n=8;故选项D不符合题意;故选:D.小提示:本题主要考查规律型的数字变化问题,解答本题的关键是能够理解题意,写出相对应的式子并进行求解.9、若﹣2xm+7y4与3x4y2n是同类项,则mn的值为()A.1B.5C.6D.﹣6答案:D分析:根据同类项的定义,得到关于m、n的等式,然后求出m、n的值并计算即可得到答案.解:由同类项的概念可知:m+7=4,2n=4,解得:m=﹣3,n=2,∴mn=(﹣3)×2=﹣6,故选D.小提示:本题考查了同类项的定义,掌握相关知识并熟练使用,是解题关键.10、下面是小芳做的一道多项式的加减运算题,但她不小心把一滴墨水滴在了上面:(−x2+3xy−12y2)−2(−52x2+4xy−32y2)=−5xy+52y2,阴影部分即为被墨迹弄污的部分.那么被墨汁遮住的一项应是()A.4x2−5y B.2y−x C.5x D.4x2答案:D分析:根据题意易得(−x2+3xy−12y2)−2(−52x2+4xy−32y2)+5xy−52y2,然后进行求解即可.解:由题意得:(−x2+3xy−12y2)−2(−52x2+4xy−32y2)+5xy−52y2=−x2+3xy−12y2+5x2−8xy+3y2+5xy−52y2 =4x2故选:D.小提示:本题主要考查整式的加减,熟练掌握整式的加减运算是解题的关键.11、已知整数a1,a2,a3,a4,…满足下列条件:a1=0,a2=-|a1+1|,a3=-|a2+2|,a4=-|a3+3|,…,依此类推,则a2022的值为()A.-1010B.-1011C.-1012D.-2022答案:B分析:分别求得a1,a2,a3,a4,…找到规律,当下标为偶数时,其值等于下标的一半的相反数,据此即可求解.解:∵a1=0,a2=-|a1+1|=-1,a3=-|a2+2|=-1,a4=-|a3+3|=-2,a5=−|−a4+4|=−2,a6=−|−a5+5|=−3…,当下标为偶数时,其值等于下标的一半的相反数,∴a2022的值为-1011.故选B.小提示:本题考查了数字类规律,找到规律是解题的关键.12、一个矩形的周长为l,若矩形的长为a,则该矩形的宽为( )A.l2−a B.l−a2C.l−a D.l2a答案:A分析:根据矩形的周长公式进行计算即可.解:∵矩形的周长为l,矩形的长为a,∴矩形的宽为l2−a.故选A.小提示:本题考查列代数式,解题的关键是熟记矩形的周长=2(长+宽).13、如图所示的图案是用长度相同的木条按一定规律摆成的.摆第1个图案需8根木条,摆第2个图案需15根木条,摆第3个图案需22根木条,…,按此规律摆第n个图案需要木条( )A.(6n+2)根B.(7n+1)根C.(7n−1)根D.8n根答案:B分析:根据图形可以写出前几个图案需要的小木棒的数量,即可发现小木棒数量的变化规律,从而可以解答本题.解:由图可得,图案①有:1+7=8根小木棒,图案②有:1+7×2=15根小木棒,图案③有:1+7×3=22根小木棒,…则第n个图案有:(7n+1)根小木棒,故选:B.小提示:本题考查图形的变化类、列代数式,解答本题的关键是明确题意,利用数形结合的思想解答.14、用正方形按如图所示的规律拼图案,其中第①个图案中有5个正方形,第②个图案中有9个正方形,第③个图案中有13个正方形,第④个图案中有17个正方形,此规律排列下去,则第⑨个图案中正方形的个数为()A.32B.34C.37D.41答案:C分析:第1个图中有5个正方形,第2个图中有9个正方形,第3个图中有13个正方形,……,由此可得:每增加1个图形,就会增加4个正方形,由此找到规律,列出第n个图形的算式,然后再解答即可.解:第1个图中有5个正方形;第2个图中有9个正方形,可以写成:5+4=5+4×1;第3个图中有13个正方形,可以写成:5+4+4=5+4×2;第4个图中有17个正方形,可以写成:5+4+4+4=5+4×3;...第n个图中有正方形,可以写成:5+4(n-1)=4n+1;当n=9时,代入4n+1得:4×9+1=37.故选:C.小提示:本题主要考查了图形的变化规律以及数字规律,通过归纳与总结结合图形得出数字之间的规律是解决问题的关键.15、下列关于“代数式4x+2y”的意义叙述正确的有()个.①x的4倍与y的2倍的和是4x+2y;②小明以x米/分钟的速度跑了4分钟,再以y米/分钟的速度步行了2分钟,小明一共走了(4x+2y)米;③苹果每千克x元,橘子每千克y元,买4千克橘子、2千克苹果一共花费(4x+2y)元.A.3B.2C.1D.0答案:B分析:根据代数式4x+2y的意义分别对三个叙述进行判断即可.解:①x的4倍与y的2倍的和是4x+2y,正确;②小明以x米/分钟的速度跑了4分钟,再以y米/分钟的速度步行了2分钟,小明一共走了(4x+2y)米,正确;③苹果每千克x元,橘子每千克y元,买4千克橘子、2千克苹果一共花费(2x+4y)元,错误;故正确的有2个故选:B.小提示:此题考查了代数式的问题,解题的关键是掌握代数式的意义以及性质.填空题16、实数a、b、c在数轴上的位置如图所示,√a2+|a−c|−|c−b|化简的结果是______.答案:-b分析:根据数轴上点的位置得到c<a<0<b,得到a-c>0,c-b<0,由此化简绝对值及算术平方根,再计算即可.解:由数轴得c<a<0<b,∴a-c>0,c-b<0,∴√a2+|a−c|−|c−b|=-a+a-c-(b-c)=-c-b+c=-b,所以答案是:-b.小提示:此题考查了根据数轴上点的位置判断式子的符号,化简绝对值,计算算术平方根,正确理解数轴上点的位置得到式子的符号是解题的关键.17、按照列代数式的规范要求重新书写:a×a×2−b÷3,应写成_________.答案:2a2-b3分析:根据代数式的书写要求填空..解:应写成:2a2-b3.所以答案是:2a2-b3小提示:本题考查了代数式的书写要求.解题的关键是掌握代数式的书写要求:(1)在代数式中出现的乘号,通常简写成“•”或者省略不写;(2)数字与字母相乘时,数字要写在字母的前面;(3)在代数式中出现的除法运算,一般按照分数的写法来写.带分数要写成假分数的形式.18、若m+2n=1,则3m2+6mn+6n的值为______.答案:3分析:根据m+2n=1,将式子3m2+6mn+6n进行变形,然后代入求出值即可.∵m+2n=1,∴3m2+6mn+6n=3m(m+2n)+6n=3m+6n=3(m+2n)=3.所以答案是:3.小提示:本题考查了代数式的求值,解题的关键是利用已知代数式求值.19、如图,在长为m,宽为n的长方形中,沿它的一个角剪去一个小长方形,则剩下图形的周长为______.答案:2(m+n)(或2m+2n)分析:长方形一角剪去一个小长方形,剩下图形的周长与原长方形周长相等.解:根据题意,长方形一角剪去一个小长方形,剩下图形的周长与原长方形周长相等;∴剩下图形的周长为:2(m+n);所以答案是:2(m+n).小提示:本题考查了整式的加减混合运算.关键是根据图形列出算式.20、已知x2−3x+1=0,则3x2−9x+5=_________.答案:2分析:将3x2−9x+5变形为3(x2−3x+1)+2即可计算出答案.3x2−9x+5=3x2−9x+3+2=3(x2−3x+1)+2∵x2−3x+1=0∴3x2−9x+5=0+2=2所以答案是:2.小提示:本题考查代数式的性质,解题的关键是熟练掌握代数式的相关知识.。
1.若8m x y 与36n x y 的和是单项式,则()3m n +的平方根为( ).A .4B .8C .±4D .±8D解析:D【分析】根据单项式的定义可得8m x y 和36n x y 是同类项,因此可得参数m 、n ,代入计算即可. 【详解】解:由8mx y 与36n x y 的和是单项式,得 3,1m n ==.()()333164m n +=+=,64的平方根为8±. 故选D .【点睛】本题主要考查单项式的定义,关键在于识别同类项,根据同类项计算参数.2.在代数式a 2+1,﹣3,x 2﹣2x ,π,1x 中,是整式的有( ) A .2个B .3个C .4个D .5个C 解析:C【分析】单项式和多项式统称为整式,分母中含有字母的不是整式.【详解】解:a 2+1和 x 2﹣2x 是多项式,-3和π是单项式,1x 不是整式,∵单项式和多项式统称为整式,∴整式有4个.故选择C.【点睛】本题考查了整式的定义.3.点 1A 、 2A 、 3A 、…… 、 n A (n 为正整数)都在数轴上.点 1A 在原点 O 的左边,且 1A O 1=;点 2A 在点 1A 的右边,且 21A A 2=;点 3A 在点 2A 的左边,且 32A A 3=;点 4A 在点 3A 的右边,且 43A A 4=;……,依照上述规律,点 2008A 、 2009A 所表示的数分别为( )A .2008 、 2009-B .2008- 、 2009C .1004 、 1005-D .1004 、 1004- C解析:C【分析】先找到特殊点,根据特殊点的下标与数值的关系找到规律,数较大时,利用规律解答.【详解】解:根据题意分析可得:点A₁, A₂,A₃, .. A n 表示的数为-1,1,-2,2,-3,3,...依照上述规律,可得出结论:点的下标为奇数时,点在原点的左侧,且为下标加1除以2的相反数;点的下标为偶数时,点在原点的右侧且表示的数为点的下标数除以2;即:当n 为奇数时,n 1A 2n +=-, 当n 为偶数时,2n n A = 所以点A 2008表示的数为: 2008÷2= 1004A 2009表示的数为:- (2009+1) ÷2=-1005故选: C .【点睛】本题考查探索与表达规律.这类题型在中考中经常出现,对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的,然后找到规律.4.下列代数式的书写,正确的是( )A .5nB .n5C .1500÷tD .114x 2y A 解析:A【分析】直接利用代数式书写方法分析得出答案.【详解】解:A 、5n ,书写正确,符合题意;B 、n5,书写错误,不合题意;C 、1500÷t ,应为1500t ,故书写错误,不合题意; D 、114x 2y=54x 2y ,故书写错误,不合题意; 故选:A .【点睛】此题主要考查了代数式,正确把握代数式的书写方式是解题关键.5.已知2a ﹣b =3,则代数式3b ﹣6a+5的值为( )A .﹣4B .﹣5C .﹣6D .﹣7A解析:A【分析】由已知可得3b ﹣6a+5=-3(2a ﹣b )+5,把2a ﹣b =3代入即可.【详解】3b ﹣6a+5=-3(2a ﹣b )+5=-9+5=-4.故选:A【点睛】利用乘法分配律,将代数式变形.6.如图,用若干大小相同的黑白两种颜色的长方形瓷砖,按下列规律铺成一列图案,则第7个图案中黑色瓷砖的个数是( )A .19B .20C .21D .22D解析:D【分析】观察图形,发现:黑色纸片在4的基础上,依次多3个;根据其中的规律,用字母表示即可.【详解】第个图案中有黑色纸片3×1+1=4张第2个图案中有黑色纸片3×2+1=7张,第3图案中有黑色纸片3×3+1=10张,…第n 个图案中有黑色纸片=3n+1张.当n=7时,3n+1=3×7+1=22.故选D.【点睛】此题考查规律型:图形的变化类,解题关键在于观察图形找到规律.7.单项式21412n a b --与83m ab 是同类项,则57(1)(1)n m +-=( ) A .14 B .14- C .4 D .-4B解析:B【分析】直接利用同类项的概念得出n ,m 的值,即可求出答案.【详解】21412n a b --与83m ab 是同类项, ∴21184n m -=⎧⎨=⎩解得:121m n ⎧=⎪⎨⎪=⎩ 则()()5711n m +-=14- 故答案选B.【点睛】本题考查的知识点是同类项,解题的关键是熟练的掌握数轴同类项.8.已知有理数1a ≠,我们把11a -称为a 的差倒数,如:2的差倒数是1112=--,1-的差倒数是()11112=--.如果12a =-,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数…依此类推,那么2020a 的值是( )A .2-B .13C .23D .32A 解析:A【分析】求出数列的前4个数,从而得出这个数列以-2,13,32依次循环,用2020除以3,再根据余数可求a 2020的值.【详解】 ∵a 1=-2, ∴2111(3)3a ==--,3131213a ==-, 412312a ==-- ∴每3个结果为一个循环周期∵2020÷3=673⋯⋯1,∴202012a a ==-故选:A.【点睛】本题考查了规律型:数字的变化类:通过从一些特殊的数字变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.9.一个多项式与²21x x -+的和是32x -,则这个多项式为( )A .253x x -+B .21x x -+-C .253x x -+-D .2513x x -- C解析:C【分析】根据题意列出关系式,去括号合并即可得到结果.【详解】∵一个多项式与x 2-2x+1的和是3x-2,∴这个多项式=(3x-2)-(x 2-2x+1)=3x-2-x 2+2x-1=253x x -+-.故选:C .【点睛】本题考查的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键.10.下面去括号正确的是( )A .2()2y x y y x y +--=+-B .2(35)610a a a a --=-+C .()y x y y x y ---=+-D .222()2x x y x x y +-+=-+ B 解析:B【分析】根据去括号法则对四个选项逐一进行分析,要注意括号前面的符号,以选用合适的法则.【详解】A. 2()2y x y y x y +--=--,故错误;B. 2(35)610a a a a --=-+,故正确;C. ()y x y y x y ---=++,故错误;D. 222()22x x y x x y +-+=-+,故错误;故选:B【点睛】本题考查去括号的方法:去括号时,运用乘法的分配律,先把括号前的数字与括号里各项相乘;括号前是“+”,去括号后,括号里的各项都不改变符号;括号前是“一”,去括号后,括号里的各项都改变符号.11.下列式子中,是整式的是( )A .1x +B .11x +C .1÷xD .1x x + A 解析:A【分析】根据整式的定义即单项式和多项式统称为整式,找出其中的单项式和多项式即可.【详解】解:A. 1x +是整式,故正确; B. 11x +是分式,故错误; C. 1÷x 是分式,故错误; D.1x x+是分式,故错误. 故选A.【点睛】 本题主要考查了整式,关键是掌握整式的概念.12.把一个大正方形和四个相同的小正方形按图①、②两种方式摆放,则大正方形的周长与小正方形的周长的差是( )A .2+a bB .+a bC .3a b +D .3a b + D解析:D【分析】 利用大正方形的周长减去4个小正方形的周长即可求解.【详解】 解:根据图示可得:大正方形的边长为2a b +,小正方形边长为4a b -, ∴大正方形的周长与小正方形的周长的差是:2a b +×4-4a b -×4=a+3b. 故选;D.【点睛】本题考查了列代数式,正确求出大小正方形的边长列代数式,以及整式的化简,正确对整式进行化简是关键.13.点O ,A ,B ,C 在数轴上的位置如图所示,其中O 为原点,2BC =,OA OB =,若C 点所表示的数为x ,则A 点所表示的数为( )A .2x -+B .2x --C .2x +D .-2A解析:A【分析】由BC=2,C 点所表示的数为x ,求出B 表示的数,然后根据OA=OB ,得到点A 、B 表示的数互为相反数,则问题可解.【详解】解:∵BC=2,C 点所表示的数为x ,∴B 点表示的数是x-2,又∵OA=OB ,∴B 点和A 点表示的数互为相反数,∴A 点所表示的数是-(x-2),即-x+2.故选:A .【点睛】此题考查用数轴上的点表示数的方法和数轴上两点间的距离以及相反数的性质,解答关键是应用数形结合思想解决问题.14.探索规律:根据下图中箭头指向的规律,从2013到2014再到2015,箭头的方向是( )A.B.C.D. D解析:D【分析】根据图中规律可得,每4个数为一个循环组依次循环,用2013除以4,根据商和余数的情况解答即可.【详解】解:由图可知,每4个数为一个循环组依次循环,2013÷4=503余1,即0到2011共2012个数,构成前面503个循环,∴2012是第504个循环的第1个数,2013是第504个循环组的第2个数,∴从2013到2014再到2015,箭头的方向是.故选:D.【点睛】本题考查了数字变化规律,仔细观察图形,发现每4个数为一个循环组依次循环是解题的关键.15.代数式21ab-的正确解释是()A.a与b的倒数的差的平方B.a与b的差的平方的倒数C.a的平方与b的差的倒数D.a的平方与b的倒数的差D解析:D【分析】说出代数式的意义,实际上就是把代数式用语言叙述出来.叙述时,要求既要表明运算的顺序,又要说出运算的最终结果.【详解】解:代数式21ab-的正确解释是a的平方与b的倒数的差.故选:D.【点睛】用语言表达代数式的意义,一定要理清代数式中含有的各种运算及其顺序.具体说法没有统一规定,以简明而不引起误会为出发点.1.如图是用棋子摆成的“上”字:如果按照以下规律继续摆下去,第n个“上”字需用______枚棋子.(4n+2)【分析】先数出前三个上字各所需棋子数然后规律即可解答【详解】解:∵第一个上字需用6枚棋子第二个上字需用10枚棋子第三个上字需用14枚棋子∴依次多4个∴第n 个上字需用(4n+2)枚棋子故答解析:(4n+2).【分析】先数出前三个“上”字各所需棋子数,然后规律即可解答.【详解】解:∵第一个“上”字需用6枚棋子,第二个“上”字需用10枚棋子,第三个“上”字需用14枚棋子,∴依次多4个∴第n 个“上”字需用(4n+2)枚棋子.故答案为:(4n+2).【点睛】本题主要考查了图形的变化规律,观察出哪些部分发生了变化、是按照什么规律变化的是解答本题的关键.2.已知等式:222 2233+=⨯,233 3388+=⨯,244 441515+=⨯,…,2a a 1010b b+=⨯(a ,b 均为正整数),则 a b += ___.【分析】先根据已知代数式归纳出(n 为正整数)然后令n=10求得ab 最后求和即可【详解】解:由已知代数式可归纳出(n 为正整数)令n=10则b=102-1=99a=10∴a+b=10+99=109故答案 解析:109【分析】 先根据已知代数式归纳出22211+=⨯--n n n n n n (n 为正整数),然后令n=10,求得a 、b ,最后求和即可.【详解】 解:由已知代数式可归纳出22211+=⨯--n n n n n n (n 为正整数), 令n=10,则b=102-1=99,a=10∴a+b=10+99=109.故答案为109.【点睛】 本题考查数字类规律探索,根据已有等式总结出22211+=⨯--n n n n n n 是解答本题的关键.3.m,n互为相反数,则(3m–2n)–(2m–3n)=__________.0【解析】由题意m+n=0所以(3m-2n)-(2m-3n)=3m-2n-2m+3n=m+n=0【点睛】本题考查相反数去括号法则等解题的关键是根据题意得出m+n=0然后再对所求的式子进行去括号合并同解析:0【解析】由题意m+n=0,所以(3m-2n)-(2m-3n)=3m-2n-2m+3n=m+n=0.【点睛】本题考查相反数、去括号法则等,解题的关键是根据题意得出m+n=0,然后再对所求的式子进行去括号,合并同类项,整体代入数值即可.4.为庆祝“六一”儿童节,某幼儿园举行用火柴棒摆“金鱼”比赛.如图所示,按照这样的规律,摆第n个图,需用火柴棒的根数为_______________.6n+2【解析】寻找规律:不难发现后一个图形比前一个图形多6根火柴棒即:第1个图形有8根火柴棒第2个图形有14=6×1+8根火柴棒第3个图形有20=6×2+8根火柴棒……第n个图形有6n+2根火柴棒解析:6n+2.【解析】寻找规律:不难发现,后一个图形比前一个图形多6根火柴棒,即:第1个图形有8根火柴棒,第2个图形有14=6×1+8根火柴棒,第3个图形有20=6×2+8根火柴棒,……,第n个图形有6n+2根火柴棒.5.将代数式4a2b+3ab2﹣2b3+a3按a的升幂排列的是_____.﹣2b3+3ab2+4a2b+a3【分析】找出a的次数的高低后由低到高排列即可得出答案【详解】可得出﹣2b3+3ab2+4a2b+a3【点睛】本题考查了代数式中的次数熟悉掌握次数的概念和细心是解决本解析:﹣2b3+3ab2+4a2b+a3.【分析】找出a的次数的高低后,由低到高排列即可得出答案.【详解】可得出﹣2b3+3ab2+4a2b+a3.【点睛】本题考查了代数式中的次数,熟悉掌握次数的概念和细心是解决本题的关键.6.观察下列各等式中的数字特征:53-58=53×58,92-911=92×911,107-1017=107×1017,…将所发现的规律用含字母a ,b 的等式表示出来是_____.-=×【分析】从大的方面看两个数的差等于两个数的积从小的方面看所有的分子都相同可设两个分母分别为ab 分子用ab 表示即可【详解】观察发现都是两个分数的差等于两个分数的积设第一个分式为则第二个分式的分子 解析:a b -a a b +=a b ×a a b+ 【分析】 从大的方面看,两个数的差等于两个数的积.从小的方面看,所有的分子都相同,可设两个分母分别为a ,b ,分子用a ,b 表示即可.【详解】观察发现,都是两个分数的差等于两个分数的积. 设第一个分式为a b,则第二个分式的分子与第一个分式的分子相同,而分母恰好是a b +,∴用含字母a b ,的等式表示出来是a b -a a b +=a b ×a a b +. 故答案为:a b -a a b +=a b ×a a b +. 【点睛】本题考查了数字类规律的探索,解决此类探究性问题,关键在观察、分析已知数据,寻找它们之间的相互联系,探寻其规律.7.在迎新春活动中,三位同学玩抢2018游戏,甲、乙、丙围成一圈依序报数,规定:甲、乙、丙首次报的数依次为1、2、3,接着甲报4、乙报5…按此规律,后一位同学报的数比前一位同学报的数大1,当报的数是2018时,报数结束;按此规则,最后能抢到2018的同学是______.乙【分析】由题意可得甲乙丙报的数字顺序规律为从1起三个数字为一个循环即丙报的数字规律为3的倍数将2018除以3余数为2即2018为一个循环的第2个数字即可判断为乙报的数字【详解】解:∵2018÷3= 解析:乙【分析】由题意可得甲、乙、丙报的数字顺序规律为,从1起三个数字为一个循环,即丙报的数字规律为3的倍数,将2018除以3余数为2,即2018为一个循环的第2个数字,即可判断为乙报的数字.【详解】解:∵2018÷3=672 (2)∴最后能抢到2018的同学是乙.故答案为:乙【点睛】本题考查数字规律,读懂题意,找到数字循环规律是解答此题的关键.8.多项式234324x x x -+-按x 的降幂排列为______.【分析】先分清多项式的各项然后按多项式降幂排列的定义排列【详解】多项式的各项是3x2−2x3−4x4按x 降幂排列为故答案为:【点睛】本题考查了多项式我们把一个多项式的各项按照某个字母的指数从大到小或解析:432432x x x -++-【分析】先分清多项式的各项,然后按多项式降幂排列的定义排列.【详解】多项式234324x x x -+-的各项是3x 2,−2,x 3,−4x 4,按x 降幂排列为432432x x x -++-.故答案为:432432x x x -++-.【点睛】本题考查了多项式.我们把一个多项式的各项按照某个字母的指数从大到小或从小到大的顺序排列,称为按这个字母的降幂或升幂排列.要注意,在排列多项式各项时,要保持其原有的符号.9.观察单项式:x -,22x ,33x -,44x ,…,1919x -,2020x , …,则第2019个单项式为______.【分析】根据题目内容找到单项是的系数规律和字母的指数规律从而求解【详解】解:由题意可知:第一个单项式为;第二个单项式为;第三个单项式为…∴第n 个单项式为即第2019个单项式为故答案为:【点睛】本题考 解析:20192019x -【分析】根据题目内容找到单项是的系数规律和字母的指数规律,从而求解.【详解】解:由题意可知:第一个单项式为11(1)1x -⨯⨯;第二个单项式为22(1)2x -⨯⨯;第三个单项式为33(1)3x -⨯⨯… ∴第n 个单项式为(1)n n n x -⨯⨯即第2019个单项式为201920192019(1)20192019x x -⨯⨯=-故答案为:20192019x -【点睛】本题考查数的规律探索,找到单项式的系数规律和字母指数规律是本题的解题关键. 10.关于a ,b 的多项式-7ab-5a 4b+2ab 3+9为______次_______项式.其次数最高项的系数是__________.五四-5【分析】多项式共有四项其最高次项的次数为5次系数为-5由此可以确定多项式的项数次数及次数最高项的系数【详解】∵该多项式共有四项其最高次项是为5次∴该多项式为五次四项式∵次数最高项为∴它的系数 解析:五 四 -5【分析】多项式共有四项437,5,2,9ab a b ab --,其最高次项45a b -的次数为5次,系数为-5,由此可以确定多项式的项数、次数及次数最高项的系数.【详解】∵该多项式共有四项437,5,2,9ab a b ab --,其最高次项是45a b -,为5次∴该多项式为五次四项式∵次数最高项为45a b -∴它的系数为-5故填:五,四,-5.【点睛】本题考查了多项式的项数,次数和系数的求解.多项式中含有单项式的个数即为多项式的项数,包含的单项式中未知数的次数总和的最大值即为多项式的次数.11.请根据给出的x ,-2,y 2组成一个单项式和一个多项式________________-2xy2;-2x+y2;【分析】根据单项式的定义和多项式的定义即可得出答案单项式的定义:数或字母的积组成的式子叫做单项式单独的一个数或字母也是单项式几个单项式的和叫做多项式每个单项式叫做多项式的项解析:-2xy 2;-2x+y 2;【分析】根据单项式的定义和多项式的定义即可得出答案.单项式的定义:数或字母的积组成的式子叫做单项式,单独的一个数或字母也是单项式.几个单项式的和叫做多项式,每个单项式叫做多项式的项,其中不含字母的项叫做常数项.多项式中次数最高的项的次数叫做多项式的次数.【详解】由x 、-2、y 2组成一个单项式,这个单项式可以为-2xy 2,由x 、-2、y 2组成一个二项式,这个二次项式可以为-2x+y 2.故答案为:-2xy 2;-2x+y 2;【点睛】此题考查单项式,多项式,解题关键在于掌握其定义.1.观察下列式子:0×2+1=12……①1×3+1=22……②2×4+1=32……③3×5+1=42……④……(1)第⑤个式子____,第⑩个式子_____;(2)请用含n(n 为正整数)的式子表示上述的规律,并证明.解析:(1)4×6+1=52,9×11+1=102;(2)(n ﹣1)(n+1)+1=n 2;证明见解析.【分析】(1)根据已知等式中的规律即可得;(2)根据整数的平方等于前一个整数与后一个整数乘积与1的和可得,利用整理的运算法则即可验证.【详解】(1)第⑤个式子为4×6+1=52,第⑩个式子9×11+1=102;故答案为4×6+1=52,9×11+1=102;(2)第n个式子为(n﹣1)(n+1)+1=n2,证明:左边=n2﹣1+1=n2,右边=n2,∴左边=右边,即(n﹣1)(n+1)+1=n2.【点睛】本题主要考查数字的变化规律,解题的关键是根据已知等式得出(n﹣1)(n+1)+1=n2的规律,并熟练加以运用.2.观察下列单项式-2x,4x2,-8x3,16x4,-32x5,64x6,…(1)分别指出单项式的系数和指数是怎样变化的?(2)写出第10个单项式;(3)写出第n个单项式.解析:(1)见解析;(2)(-2)10x10=1024x10;(3)(-2)n x n.【分析】(1)根据单项式的次数与系数定义得出即可;(2)根据单项式系数与次数的变化得出一般性规律得出第10个单项式;(3)根据单项式系数与次数的变化得出一般性规律,进而得出第n个单项式.【详解】(1)通过观察,系数为:-2,4=(-2)2,-8=(-2)3,16=(-2)4,-32=(-2)5指数分别是:1,2,3,4,5,6(2)第10个单项式为:(-2)10x10=1024x10;(3)第n个单项式为:(-2)n x n.【点睛】本题考查了单项式的系数、次数以及数字变化规律,根据已知得出数字变化规律是解题关键.3.国庆期间,广场上设置了一个庆祝国庆70周年的造型(如图所示).造型平面呈轴对称,其正中间为一个半径为b的半圆,摆放花草,其余部分为展板.求:(1)展板的面积是.(用含a,b的代数式表示)(2)若a=0.5米,b=2米,求展板的面积.(3)在(2)的条件下,已知摆放花草部分造价为450元/平方米,展板部分造价为80元/平方米,求制作整个造型的造价(π取3).解析:(1)12ab 平方米;(2)12 (平方米);(3)3660元.【分析】(1)利用分割法求解即可.(2)把a ,b 的值代入(1)中代数式求值即可.(3)分别求出摆放花草部分造价,展板部分造价即可解决问题.【详解】(1)由题意:展板的面积=12a •b (平方米).故答案为:12ab (平方米).(2)当a =0.5米,b =2米时,展板的面积=12×0.5×2=12(平方米).(3)制作整个造型的造价=12×8012+π×4×450=3660(元). 【点睛】本题考查轴对称图形,矩形的性质,圆的面积等知识,解题的关键是熟练掌握基本知识. 4.化简下列各式:(1)32476x y y -+--+;(2)4(32)3(52)x y y x ----.解析:(1)352x y --+;(2)67x y --【分析】(1)根据合并同类项的法则解答即可;(2)先去括号,再合并同类项.【详解】解:(1)原式3(27)(46)352x y x y =-+-+-+=--+;(2)原式12815667x y y x x y =-+-+=--.【点睛】本题考查了整式的加减运算,属于基础题型,熟练掌握整式加减运算的法则是关键.。
七年级数学上册 期末复习 整式的加减知识点+易错题整式的加减知识点整式知识点1.单项式:在代数式中,若只含有乘法(包括乘方)运算。
或虽含有除法运算,但除式中不含字母的一类代数式叫单项式.2.单项式的系数与次数:单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;系数不为零时,单项式中所有字母指数的和,叫单项式的次数.3.多项式:几个单项式的和叫多项式.4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数;注意:(若a 、b 、c 、p 、q 是常数)ax 2+bx+c 和x 2+px+q 是常见的两个二次三项式.5.整式:凡不含有除法运算,或虽含有除法运算但除式中不含字母的代数式叫整式.整式分类为:⎩⎨⎧多项式单项式整式 .6.同类项:所含字母相同,并且相同字母的指数也相同的单项式是同类项.7.合并同类项法则:系数相加,字母与字母的指数不变.8.去(添)括号法则:去(添)括号时,若括号前边是“+”号,括号里的各项都不变号;若括号前边是“-”号,括号里的各项都要变号.9.整式的加减:整式的加减,实际上是在去括号的基础上,把多项式的同类项合并.10.多项式的升幂和降幂排列:把一个多项式的各项按某个字母的指数从小到大(或从大到小)排列起来,叫做按这个字母的升幂排列(或降幂排列).注意:多项式计算的最后结果一般应该进行升幂(或降幂)排列.11. 列代数式列代数式首先要确定数量与数量的运算关系,其次应抓住题中的一些关键词语,如和、差、积、商、平方、倒数以及几分之几、几成、倍等等.抓住这些关键词语,反复咀嚼,认真推敲,列好一般的代数式就不太难了.12.代数式的值根据问题的需要,用具体数值代替代数式中的字母,按照代数式中的运算关系计算,所得的结果是代数式的值.13. 列代数式要注意①数字与字母、字母与字母相乘,要把乘号省略;②数字与字母、字母与字母相除,要把它写成分数的形式;③如果字母前面的数字是带分数,要把它写成假分数。
(名师选题)七年级数学上册第二章整式的加减易错知识点总结单选题1、小李今年a岁,小王今年(a-15)岁,过n+1年后,他们相差()岁A.15B.n+1C.n+16D.16答案:A分析:用大李今年的年龄减去小王今年的年龄,即可求出两人的年龄差,再根据年龄差不会随着时间的变化而改变,由此即可确定再过n+1年后,大李和小王的年龄差仍然不变.解:a﹣(a﹣15)=15(岁)答:他们相差15岁.故选:A.小提示:此题考查了列代数式及年龄问题,要注意:两个人的年龄差是一个永远也不变的数值.2、已知有2个完全相同的边长为a、b的小长方形和1个边长为m、n的大长方形,小明把这2个小长方形按如图所示放置在大长方形中,小明经过推事得知,要求出图中阴影部分的周长之和,只需知道a、b、m、n中的一个量即可,则要知道的那个量是()A.a B.b C.m D.n答案:D分析:先用含a、b、m、n的代数式表示出阴影矩形的长宽,再求阴影矩形的周长和即可.解:如图,由图和已知条件可知:AB=a,EF=b,AC=n﹣b,GE=n﹣a.阴影部分的周长为:2(AB+AC)+2(GE+EF)=2(a+n﹣b)+2(n﹣a+b)=2a+2n﹣2b+2n﹣2a+2b=4n.∴求图中阴影部分的周长之和,只需知道n一个量即可.故选:D.小提示:本题主要考查了整式的加减,能用含a、b、m、n的代数式表示出阴影矩形的长宽是解决本题的关键.3、下列计算正确的是()A.2a2b+3a2b=5a2b B.2a2+3a2=5a4C.2a+3b=5ab D.2a2−3a2=−a答案:A分析:根据合并同类项法则计算即可判断.解:A、2a2b+3a2b=5a2b,故正确;B、2a2+3a2=5a2,故错误;C、2a+3b不能合并,故错误;D、2a2−3a2=−a2,故错误;故选A.小提示:本题考查了合并同类项,属于基础题,解答本题的关键是掌握合并同类项的法则.4、若多项式 36x2-3x+5 与 3x3+12mx2-5x相加后不含二次项,则常数m的值是( )A.-3B.-2C.2D.3答案:A分析:对两个多项式的二次项进行合并,再根据二次项系数为0建立关于m的方程求解,即可解答.解:两个多项式的二次项分别为:36x2和12mx2,则有:36x2+12mx2=(36+12m)x2,令36+12m=0,解得m=−3.故选:A.小提示:本题考查了多项式合并和无关项问题,特别是掌握无关项问题的解答方法是解答本题的关键.5、将正整数按如图所示的规律排列,若用有序数对(a,b)表示第a行,从左至右第b个数,例如(4,3)表示的数是9,则(15,10)表示的数是()A.115B.114C.113D.112答案:A分析:观察图形可知,每一行的第一个数字都等于前面数字的个数再加1,即可得出(15,1)表示的数,然后得出(15,10)表示的数即可.解:因为(1,1)表示的数是:1,(2,1)表示的数是:1+1=2,(3,1)表示的数是:1+1+2=4,(4,1)表示的数是:1+1+2+3=7,(5,1)表示的数是:1+1+2+3+4=11,……所以(a,1)表示的数是:1+1+2+3+4+⋯…+(a−1)=1+[1+(a−1)](a−1)2=1+a(a−1)2=a2−a+22,所以(15,1)表示的数是:a 2−a+22=152−15+22=106,所以(15,10)表示的数是:106+10-1=115,故选A.小提示:本题考查了找图形和数字规律,从题目分析发现每一行的第一个数字都等于前面数字的个数再加1是本题的关键.6、下列计算结果为5的是()A.−(+5)B.+(−5)C.−(−5)D.−|−5|答案:C分析:根据去括号法则及绝对值化简依次计算判断即可.解:A、-(+5)=-5,不符合题意;B、+(-5)=-5,不符合题意;C、-(-5)=5,符合题意;D、−|−5|=−5,不符合题意;故选:C.小提示:题目主要考查去括号法则及化简绝对值,熟练掌握去括号法则是解题关键.7、如图,用相同的圆点按照一定的规律拼出图形.第一幅图4个圆点,第二幅图7个圆点,第三幅图10个圆点,第四幅图13个圆点……按照此规律,第一百幅图中圆点的个数是()A.297B.301C.303D.400答案:B分析:首先根据前几个图形圆点的个数规律即可发现规律,从而得到第100个图摆放圆点的个数.解:观察图形可知:第1幅图案需要4个圆点,即4+3×0,第2幅图7个圆点,即4+3=4+3×1;第3幅图10个圆点,即4+3+3=4+3×2;第4幅图13个圆点,即4+3+3+3=4+3×3;第n幅图中,圆点的个数为:4+3(n-1)=3n+1,……,第100幅图,圆中点的个数为:3×100+1=301.故选:B.小提示:本题主要考查了图形的变化规律,解答的关键是由所给的图形总结出存在的规律.8、下列说法正确的是()A.23πa3的次数是4B.mn-12不是整式C.3x2y与−2yx2是同类项D.y−2x2+3xy2是二次三项式答案:C分析:根据单项式,整式,同类项及多项式的有关定义分析四个选项,即可得出结论解:A. 23πa3的次数是3次,故本选项错误,不符合题意;B.mn-12是整式,故本选项错误,不符合题意;C. 3x2y与−2yx2是同类项,故本选项正确,符合题意;D. y−2x2+3xy2是关于x,y的三次三项式;故本选项错误,不符合题意;故选择:C小提示:本题考查了整式,同类项,单项式,多项式的有关定义的问题,解题的关键是牢记这些定义.9、下列去括号正确的是( )A.a2−(2a−b2)=a2−2a−b2B.−(2x−y)−(−x2+y2)=−2x−y+x2−y2C.2x2−3(x−5)=2x2−3x+5D.−a3−[−4a2+(1−3a)]=−a3+4a2−1+3a答案:D分析:根据去括号法则进行判断即可.解:A.a2−(2a−b2)=a2−2a+b2,故A错误,不符合题意;B.−(2x−y)−(−x2+y2)=−2x+y+x2−y2,故B错误,不符合题意;C.2x2−3(x−5)=2x2−3x+15,故C错误,不符合题意;D.−a3−[−4a2+(1−3a)]=−a3+4a2−1+3a,故D正确,符合题意.故选:D.小提示:本题主要考查了去括号法则,解题的关键是熟练掌握去括号法则,注意括号前面为负号的的将负号和括号去掉后,括号里面的每一项符号要发生改变.10、不改变代数式a2+2a−b+c的值,下列添括号错误的是()A.a2+(2a−b+c)B.a2−(−2a+b−c)C.a2−(2a−b+c)D.a2+2a+(−b+c)答案:C分析:将各选项代数式去括号,再与已知代数式比较即可.解:A、a2+(2a-b+c)=a2+2a-b+c,正确,此选项不符合题意;B、a2-(-2a+b-c)=a2+2a-b+c,正确,此选项不符合题意;C、a2-(2a-b+c)=a2-2a+b-c,错误,此选项符合题意;D、a2+2a+(-b+c)=a2+2a-b+c,正确,此选项不符合题意;故选:C.小提示:本题主要考查整式的加减,将各选项去括号,与题干整式比较是否一致是解题的关键.填空题11、一列有规律的数:−1,−4,7,10,−13,−16,19,22,⋯.这列数的第100个数为____.答案:298分析:观察发现,连续的两个数的绝对值相差3,符号为4次一循环,据此即可求解.解:观察一列有规律的数:−1,−4,7,10,−13,−16,19,22,⋯.第一个数为:−1=−[3×(1−1)+1],第二个数为:−4=−[3×(2−1)+1],第三个数为:+7=+[3×(3−1)+1],第四个数为:+10=+[3×(4−1)+1],……连续的两个数的绝对值相差3,符号为4次一循环,100÷4=25,第100个数为第25组第4个,符号为正,第100个数为3×(100−1)+1=298所以答案是:298小提示:本题是一道找规律问题,此类问题通常会按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律,而揭示的规律,常常包含着事物的序列号. 所以解决此类问题的关键,可以把变量和序列号放在一起加以比较,从而快速找到规律.12、观察下列图形规律,当图形中的“○”的个数和“.”个数差为2022时,n的值为____________.答案:不存在分析:首先根据n=1、2、3、4时,“•”的个数分别是3、6、9、12,判断出第n个图形中“•”的个数是3n;然;最后根据图形中的后根据n=1、2、3、4,“○”的个数分别是1、3、6、10,判断出第n个“○”的个数是n(n+1)2“○”的个数和“.”个数差为2022,列出方程,解方程即可求出n的值是多少即可.解:∵n=1时,“•”的个数是3=3×1;n=2时,“•”的个数是6=3×2;n=3时,“•”的个数是9=3×3;n=4时,“•”的个数是12=3×4;……∴第n个图形中“•”的个数是3n;又∵n=1时,“○”的个数是1=1×(1+1);2n=2时,“○”的个数是3=2×(2+1),2n=3时,“○”的个数是6=3×(3+1),2n=4时,“○”的个数是10=4×(4+1),2……∴第n个“○”的个数是n(n+1),2由图形中的“○”的个数和“.”个数差为2022∴3n−n(n+1)2=2022①,n(n+1)2−3n=2022②解①得:无解解②得:n1=5+√162012,n2=5−√162012所以答案是:不存在小提示:本题考查了图形类规律,解一元二次方程,找到规律是解题的关键.13、将从1开始的连续自然数按以下规律排列:若有序数对(n,m)表示第n行,从左到右第m个数,如(3,2)表示6,则表示99的有序数对是_______.答案:(10,18)分析:分析每一行的第一个数字的规律,得出第n行的第一个数字为1+(n−1)2,从而求得最终的答案.第1行的第一个数字:1=1+(1−1)2第2行的第一个数字:2=1+(2−1)2第3行的第一个数字:5=1+(3−1)2第4行的第一个数字:10=1+(4−1)2第5行的第一个数字:17=1+(5−1)2…..,设第n行的第一个数字为x,得x=1+(n−1)2设第n+1行的第一个数字为z,得z=1+n2设第n行,从左到右第m个数为y当y=99时1+(n−1)2≤99<1+n2∴(n−1)2≤98<n2∵n为整数∴n=10∴x=1+(n−1)2=82∴m=99−82+1=18所以答案是:(10,18).小提示:本题考查数字规律的性质,解题的关键是熟练掌握数字规律的相关性质.14、若关于x、y的多项式27x2y−9mxy−38y3−3xy+2化简后不含二次项.则m=________.答案:−13分析:首先合并同类项,不含二次项,说明xy项的系数是0,由此进一步计算得出结果即可.解:27x2y−9mxy−38y3−3xy+2=2 7x2y−38y3−(9m+3)xy+2,∵化简后不含二次项,∴9m+3=0,解得m=−13,所以答案是:−13.小提示:此题考查并同类项的方法,明确没有某一项的含义,就是这一项的系数为0.15、在代数式3xy2,m,6a2−a+3,12,4x2yzx−15xy2,23ab中,单项式有___________个.答案:3分析:根据单项式的定义,进行逐一判断即可.解:在3xy2,m,6a2−a+3,12,4x2yzx−15xy2,23ab中,单项式有3xy2,m,12,一共3个,所以答案是:3.小提示:本题主要考查了单项式的定义,解题的关键在于能够熟知相关定义:表示数或字母的积的式子叫做单项式,单独的一个数或一个字母也是单项式,单项式中数字因数叫做这个单项式的系数,所有字母的指数之和叫做单项式的次数.解答题16、化简:(9x−3)−2(x+1)(1)13(2)(3a2b−ab2)−(ab2+3a2b)答案:(1)x−3;(2)−2ab2分析:(1)先去括号,再合并同类项即可得到答案;(2)先去括号,再合并同类项即可得到答案.解:(1)原式=3x−1−2x−2=3x−2x−2−1=x−3(2)原式=3a2b−ab2−ab2−3a2b=3a2b−3a2b−ab2−ab2=−2ab2小提示:本题考查的整式的加减运算,掌握去括号,合并同类项是解题的关键.17、已知多项式A=2x2+my−12,B=nx2−3y+6.(1)若(m+2)2+|n−3|=0,化简A−B;(2)若A+B的结果中不含有x2项以及y项,求m+n+mn的值.答案:(1)−x2+y−18,(2)-5分析:(1)根据非负数的性质求出m、n,再计算A-B即可;(2)先计算A+B,再根据不含x2项以及y项,得出m、n的值,代入即可.解:(1)∵(m+2)2+|n−3|=0,∴m+2=0,n−3=0,解得,m=−2,n=3,∴A=2x2−2y−12,B=3x2−3y+6,A−B=2x2−2y−12−(3x2−3y+6),=2x 2−2y −12−3x 2+3y −6,=−x 2+y −18.(2)A +B =2x 2+my −12+(nx 2−3y +6),=(2+n)x 2+(m −3)y −6,∵结果中不含有x 2项以及y 项,∴2+n =0,m −3=0,解得,n =−2,m =3,把n =−2,m =3代入,m +n +mn =3−2+3×(−2)=−5.小提示:本题考查了非负数的性质和整式的加减以及代数式求值,解题关键是能够根据非负数的性质或多项式不含某一项确定字母系数的值,并能熟练应用整式加减的法则进行计算.18、如图,一个点从数轴上的原点开始,先向左移动3cm 到达A 点,再向右移动4cm 到达B 点,然后再向右移动72cm 到达C 点,数轴上一个单位长度表示1cm .(1)请你在数轴上表示出A ,B ,C 三点的位置;(2)把点C 到点A 的距离记为CA ,则CA =______cm .(3)若点A 沿数轴以每秒3cm 匀速向右运动,经过多少秒后点A 到点C 的距离为3cm ?(4)若点A 以每秒1cm 的速度匀速向左移动,同时点B 、点C 分别以每秒4cm 、9cm 的速度匀速向右移动.设移动时间为t 秒,试探索:BA −CB 的值是否会随着t 的变化而改变?若变化,请说明理由,若无变化,请直接写出BA −CB 的值.答案:(1)见解析(2)152(3)经过32或72秒后点A 到点C 的距离为3cm(4)BA −CB 的值不会随着t 的变化而变化,BA −CB =12分析:(1)根据题意,在数轴上表示点A 、B 、C 的位置即可;(2)利用数轴上两点间的距离公式解题;(3)分两种情况讨论:点A 在点C 的左侧或点A 在点C 的右侧;(4)表示出BA 、CB ,再相减即可解题.(1)解:由题意得:A 点对应的数为−3,B 点对应的数为1,点C 对应的数为92, 点A ,B ,C 在数轴上表示如图:(2)解:设原点为O ,如图,∴OA =3,OC =92,∴AC =OA +OC =152. 所以答案是:152.(3)解:①当点A 在点C 的左侧时,设经过x 秒后点A 到点C 的距离为3cm ,由题意得:152−3x =3,解得:x =32.②当点A 在点C 的右侧时,设经过x 秒后点A 到点C 的距离为3cm ,由题意得:3x −152=3,解得:x =72. 综上,经过32或72秒后点A 到点C 的距离为3cm .(4)解:BA −CB 的值不会随着t 的变化而变化,BA −CB =12. 由题意:AB =4cm ,CB =72cm , ∵移动t 秒后,AB =4+t +4t =(4+5t )cm ,CB =9t −4t +72=(5t +72)cm ,∴BA −CB =(4+5t )−(5t +72)=12.∴BA −CB 的值不会随着t 的变化而变化,BA −CB =12.小提示:本题考查数轴、数轴上两点间的距离等知识,是重要考点,掌握相关知识是解题关键.。
一、解答题1.数a 、b 、c 在数轴上对应的位置如图所示,化简a c c b a b +-++-.解析:0;【分析】由数轴可得a >0>b >c ,并从数轴上可得出a ,b ,c 绝对值的大小,从而可以得出各项式子的正负,去绝对值可得出答案. 【详解】解:由数轴得,c b 0a <<<,且c a b >>,a c cb a b +-++-a c cb a b =--+++-0=.【点睛】本题考查了数轴上数的大小,去绝对值,熟悉掌握定义是解决本题的关键. 2.如图,将面积为2a 的小正方形和面积为2b 的大正方形放在同一水平面上(0b a >>)(1)用a 、b 表示阴影部分的面积;(2)计算当3a =,5b =时,阴影部分的面积.解析:(1)22111222a ab b ++;(2)492 【分析】(1)阴影部分为两个直角三角形,根据面积公式即可计算得到答案;(2)将3a =,5b =代入求值即可.【详解】(1)()21122a ab b ⨯++, 22111222a ab b =++; (2)当3a =,5b =时,原式221113355222=⨯+⨯⨯+⨯492=. 【点睛】 此题考察列式计算,根据图形边长正确列式表示图形的面积即可.3.化简:(1)()()22224232a b ab ab a b ---;(2)2237(43)2x x x x ⎡⎤----⎣⎦.解析:(1)22105a b ab -;(2)2533x x --【分析】(1)先去括号,再合并同类项即可得到答案;(2)先去括号,再合并同类项即可得到答案.【详解】(1)()()22224232a b ab ab a b ---22224236a b ab ab a b =--+22105a b ab =-.(2)2237(43)2x x x x ⎡⎤----⎣⎦2237(43)2x x x x =-+-+2237432x x x x =-+-+2533x x =--.【点睛】本题主要考查了整式的加减,整式加减的实质就是去括号,合并同类项,一般步骤是:先去括号,然后再合并同类项.4.有理数,,a b c 在数轴上的位置如图所示,化简代数式||||||||a c b b a b a ----++.解析:3a b c --+【分析】首先判断出a c -,b b a b a -+,,的正负,再去掉绝对值符号,然后合并同类项即可.【详解】由题意可知0a c -<,0b >,0b a ->,0b a +<,||||||||a c b b a b a ----++3a c b b a b a a b c =-+--+--=--+.故答案为:3a b c --+.【点睛】本题主要考查了整式的化简求值,数轴,绝对值,熟练掌握运算法则以及数轴上右边的数总比左边的数大是解答本题的关键.5.已知一个多项式加上223x y xy -得222x y xy -,求这个多项式.佳佳的解题过程如下:解:222223x y xy x y xy ---①224x y xy =-②请问佳佳的解题过程是从哪一步开始出错的?并写出正确的解题过程.解析:是从第①步开始出错的,见解析【分析】根据多项式的加减运算法则进行运算即可求解.【详解】解:佳佳是从第①步开始出错的,正确的解题过程如下:根据题意,得:()()222223x y xy x y xy ---222223x y xy x y xy =--+222x y xy =+,∴这个多项式为222x y xy +.故答案为222x y xy +.【点睛】本题考查了多项式的加减混合运算,注意:只有同类项才能进行加减运算.6.观察下列等式.第1个等式:a 1=113⨯=12×113⎛⎫- ⎪⎝⎭; 第2个等式:a 2=135⨯=12×1135⎛⎫- ⎪⎝⎭; 第3个等式:a 3=157⨯=12×1157⎛⎫- ⎪⎝⎭; 第4个等式:a 4=179⨯=12×1179⎛⎫- ⎪⎝⎭; …请解答下列问题.(1)按以上规律列出第5个等式:a 5=____=____;(2)求a 1+a 2+a 3+a 4+…+a 100的值.解析:(1)1911⨯;12×11911⎛⎫- ⎪⎝⎭;(2)100201. 【分析】(1)根据连续奇数乘积的倒数等于这两个奇数的倒数差的一半列式可得;(2)根据以上所得规律列式111111111111232352572199201⎛⎫⎛⎫⎛⎫⎛⎫⨯-+⨯-+⨯-++⨯- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,再进一步计算可得. 【详解】(1)由观察知, 左边:分子不变,为1;分母是两个连续奇数的乘积,它们与式子序号之间的关系为序号的2倍减1和序号的2倍加1,右边:这两个奇数的倒数差的一半,∴第5个式子是:()()111115215219112911⎛⎫==⨯- ⎪⨯-⨯-⨯⎝⎭; 故答案为:1911⨯;12×11911⎛⎫- ⎪⎝⎭; (2)a 1+a 2+a 3+a 4+…+a 100 111111111111232352572199201⎛⎫⎛⎫⎛⎫⎛⎫=⨯-+⨯-+⨯-++⨯- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 111111111233557199201⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=⨯-+-+-++- ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦ 111111111233557199201⎛⎫=⨯-+-+-++- ⎪⎝⎭1112201⎛⎫=⨯- ⎪⎝⎭ 12002201=⨯ 100201=. 【点睛】 本题主要考查了数字的变化规律,解题的关键是根据已知等式得出规律:连续奇数乘积的倒数等于这两个奇数的倒数差的一半.7.观察由“※”组成的图案和算式,解答问题(1)请猜想1+3+5+7+9+…+19= ;(2)请猜想1+3+5+7+9+…+(2n-1)+(2n+1)+(2n+3)= ;(3)请用上述计算103+105+107+…+2015+2017的值.解析:(1)102;(2)()22n + ;(3)1015480.【分析】(1)由等式可知左边是连续奇数的和,右边是数的个数的平方,由此规律解答即可,此题中一共有10个连续奇数相加,所以结果应为102;(2)一共有(n+2)个连续奇数相加,所以结果应为n 2;(3)让从1加到2005这些连续奇数的和,减去从1加到101这些连续奇数的和即可.【详解】(1)由图片知:第1个图案所代表的算式为:1=21;第2个图案所代表的算式为:1+3=4=22;第3个图案所代表的算式为:1+3+5=9=23;…依次类推:第n 个图案所代表的算式为:1+3+5+…+(2n-1)=2n ;1+3+5+…+19的个数为:191102+=, ∴1+3+5+…+19=210;故答案为:210;(2)1+3+5+7+9+…+(2n-1)+(2n+1)+(2n+3)的个数为:23122n n ++=+, ∴1+3+5+7+9+…+(2n-1)+(2n+1)+(2n+3)=()22n +, 故答案为:()22n +;(3)103+105+107+…+2015+2017=(1+3+…+2015+2017)-(1+3+…+99+101)=21009-251=1015480.【点睛】本题考查了数字的变化规律的应用;判断出有几个奇数相加是解决本题的易错点;得到从1开始连续奇数的和的规律是解决本题的关键.8.将一个长方形纸片连续对折,对折的次数越多,折痕的条数也就越多,如第一次对折后,有1条折痕,第2次对折后,共有3条折痕.(1)第3次对折后共有多少条折痕?第4次对折后呢?(2)对折多少次后折痕会超过100条?(3)请找出折痕条数与对折次数的对应规律,写出对折n 次后,折痕有多少条?解析:(1)第3次对折后共有7条折痕,第4次对折后有15条折痕;(2)对折7次后折痕会超过100条;(3)对折n 次后,折痕有21n -条.【分析】(1)动手操作即可得出第3次、第4次对折后的折痕条数;(2)在(1)的基础上,归纳类推出一般规律,再结合67264,2128==即可得出答案;(3)由题(2)已求得.【详解】(1)动手操作可知,第3次对折后的折痕条数为7条,第4次对折后的折痕条数为15条;(2)观察可知,第1次对折后的折痕条数为1121=-条,第2次对折后的折痕条数为2321=-条,第3次对折后的折痕条数为3721=-条,第4次对折后的折痕条数为41521=-条,归纳类推得:第n 次对折后的折痕条数为21n -条,因为67264,2128==,所以对折7次后折痕会超过100条;(3)由(2)已得:对折n 次后的折痕条数为21n -条.【点睛】本题考查了有理数乘方的应用,依据题意,根据前4次对折后的结果,正确归纳类推出一般规律是解题关键.9. 1+2+3++100⋯=?经过研究,这个问题的一般性结论是()1123n n n 12+++⋯+=+,其中n 是正整数.现在我们来研究一个类似的问题:()122334n n 1⨯+⨯+⨯+⋯+=?观察下面三个特殊的等式:()1121230123⨯=⨯⨯-⨯⨯ ()1232341233⨯=⨯⨯-⨯⨯ ()1343452343⨯=⨯⨯-⨯⨯ 将这三个等式的两边相加,可以得到1122334345203⨯+⨯+⨯=⨯⨯⨯=.读完这段材料,请你思考后回答:(1)直接写出下列各式的计算结果:1223341011⨯+⨯+⨯+⋯⨯=① ______()122334n n 1⨯+⨯+⨯+⋯+=② ______(2)探究并计算:()()123234345n n 1n 2⨯⨯+⨯⨯+⨯⨯+⋯+++= ______ (3)请利用(2)的探究结果,直接写出下式的计算结果:123234345101112⨯⨯+⨯⨯+⨯⨯+⋯+⨯⨯= ______ .解析:(1)①440,②()()1n n 1n 23++;(2)()()()1n n 1n 2n 34+++;(3)4290 【分析】(1)①根据阅读材料的结论计算即可;②根据阅读材料的结论进行总结;(2)仿照(1)的计算方法进行归纳即可;(3)代入(2)总结的规律进行计算即可.【详解】解:(1)①1×2+2×3+3×4+…10×11=13×10×11×12=440,②1×2+2×3+3×4+…+n(n+1)=13n(n+1)(n+2),(2)1×2×3=14(1×2×3×4-0×1×2×3),2×3×4=14(2×3×4×5-1×2×3×4),3×4×5=14(3×4×5×6-2×3×4×5),则1×2×3+2×3×4+3×4×5+…+n(n+1)(n+2)=14n(n+1)(n+2)(n+3);(3)123234345101112⨯⨯+⨯⨯+⨯⨯++⨯⨯=14×10×11×12×13=4290.【点睛】本题考查了有理数的混合运算、规律型-数字的变化类,弄清题意,得出一般性的规律是解本题的关键.10.一种商品每件成本a元,原来按成本增加22%定出价格.(1)请问每件售价多少元?(2)现在由于库存积压减价,按售价的85%出售,请问每件还能盈利多少元?解析:(1)每件售价1.22a元;(2)每件盈利0.037a元.【分析】(1)根据每件成本a元,原来按成本增加22%定出价格,列出代数式,再进行整理即可;(2)用原价的85%减去成本a元,列出代数式,即可得出答案.【详解】(1)根据题意,得:(1+22%)a=1.22a(元),答:每件售价1.22a元;(2)根据题意,得:1.22a×85%-a=0.037a(元).答:每件盈利0.037a元.【点睛】本题考查了列代数式,解决问题的关键是读懂题意,找到所求的量的等量关系,注意把列出的式子进行整理.11.图①是一个三角形,分别连接这个三角形三边的中点得到图②;再分别连接图②中间小三角形三边的中点,得到图③.(1) 图②有 个三角形;图③有 个三角形;(2) 按上面的方法继续下去,第n 个图形中有多少个三角形(用n 的代数式表示结论).解析:(1)5,9 ;(2)43n -【分析】(1)由图形即可数得答案;(2)发现每个图形都比起前一个图形多4个,所以第n 个图形中有14(1)43n n +⨯-=-个三角形.【详解】解:(1)根据图形可得:5,9;(2)发现每个图形都比起前一个图形多 4 个,∴第n 个图形中有14(1)43n n +⨯-=-个三角形.【点睛】本题考查图形的特征,根据图形的特征找出规律,属于一般题型.12.国庆期间,广场上设置了一个庆祝国庆70周年的造型(如图所示).造型平面呈轴对称,其正中间为一个半径为b 的半圆,摆放花草,其余部分为展板.求:(1)展板的面积是 .(用含a ,b 的代数式表示)(2)若a =0.5米,b =2米,求展板的面积.(3)在(2)的条件下,已知摆放花草部分造价为450元/平方米,展板部分造价为80元/平方米,求制作整个造型的造价(π取3).解析:(1)12ab 平方米;(2)12 (平方米);(3)3660元.【分析】(1)利用分割法求解即可.(2)把a ,b 的值代入(1)中代数式求值即可.(3)分别求出摆放花草部分造价,展板部分造价即可解决问题.【详解】(1)由题意:展板的面积=12a •b (平方米).故答案为:12ab (平方米).(2)当a =0.5米,b =2米时,展板的面积=12×0.5×2=12(平方米).(3)制作整个造型的造价=12×8012+π×4×450=3660(元). 【点睛】本题考查轴对称图形,矩形的性质,圆的面积等知识,解题的关键是熟练掌握基本知识. 13.让我们规定一种运算a bad cb c d =-, 如232534245=⨯-⨯=-. 再如14224x x =-. 按照这种运算规定,请解答下列问题,(1)计算60.5142= ;-3-245= ;2-335xx =-(2)当x=-1时,求223212232x x x x -++-+---的值(要求写出计算过程). 解析:(1)1;-7;-x ;(2)-7【分析】(1)根据新运算的定义式,代入数据求出结果即可;(2)根据新运算的定义式将原式化简为-x-8,代入x=-1即可得出结论.【详解】解:(1)60.5160.543211242=⨯-⨯=-=; -3-23524158745=-⨯--⨯=---=-()(); 2-3253310935x x x x x x x=⨯---⨯=---=--()()(). 故答案为:1;-7;-x .(2)原式=(-3x 2+2x+1)×(-2)-(-2x 2+x-2)×(-3),=(6x 2-4x-2)-(6x 2-3x+6),=-x-8,当x=-1时,原式=-x-8=-(-1)-8=-7.∴当x=-1时,223212232x x x x -++-+---的值为-7. 【点睛】本题考查了整式的化简求值以及有理数的混合运算,读懂题意掌握新运算并能用其将整式进行化简是解题的关键.14.化简与求值:(1)若1a =-,则式子21a -的值为______;(2)若1a b +=,则式子12a b ++的值为______; (3)若534a b +=-,请你仿照以上求式子值的方法求出()()2422a b a b +++-的值. 解析:(1)0;(2)32;(3)-10. 【分析】(1)把a 的值代入计算即可;(2)把a+b 的值代入计算即可;(3)原式去括号转化为含有(5a+3b)的式子,然后代入5a+3b 的值计算即可.【详解】解:(1)()221110a -=--=;(2)1311222a b ++=+=; (3)()()()()24221062253224210a b a b a b a b +++-=+-=+-=⨯--=-.【点睛】本题考查的是整式的化简求值和整体代换的思想.只要原式化简出含有已知的式子,再代入求值即可.15.历史上的数学巨人欧拉最先把关于x 的多项式用记号f (x )的形式来表示,把x 等于某数a 时的多项式的值用f (a )来表示,例如x=﹣1时,多项式f (x )=x 2+3x ﹣5的值记为f (﹣1),则f (﹣1)=﹣7.已知f (x )=ax 5+bx 3+3x+c ,且f (0)=﹣1(1)c=_____.(2)若f (1)=2,求a+b 的值;(3)若f (2)=9,求f (﹣2)的值.解析:(1)-1;(2)0;(3)-11.【解析】分析:(1)把x=0,代入f (x )=ax 5+bx 3+3x+c ,即可解决问题;(2)把x=1,代入f (x )=ax 5+bx 3+3x+c ,即可解决问题;(3)把x=2,代入f (x )=ax 5+bx 3+3x+c ,利用整体代入的思想即可解决问题;详解:(1)∵f (x )=ax 5+bx 3+3x+c ,且f (0)=-1,∴c=-1,故答案为-1.(2)∵f (1)=2,c=-1∴a+b+3-1=2,∴a+b=0(3)∵f (2)=9,c=-1,∴32a+8b+6-1=9,∴32a+8b=4,∴f (-2)=-32a-8b-6-1=-4-6-1=-11.点睛:本题考查的多项式代数式求值,解题的关键是理解题意,灵活运用所学知识解决问题.16.已知A=3a 2b ﹣2ab 2+abc ,小明同学错将“2A ﹣B”看成“2A+B”,算得结果为4a 2b ﹣3ab 2+4abc .(1)计算B 的表达式;(2)求出2A ﹣B 的结果;(3)小强同学说(2)中的结果的大小与c 的取值无关,对吗?若a=18,b=15,求(2)中式子的值.解析:(1)﹣2a 2b+ab 2+2abc ;(2) 8a 2b ﹣5ab 2;(3)对,0.【分析】(1)根据B =4a 2b ﹣3ab 2+4abc -2A 列出关系式,去括号合并即可得到B ;(2)把A 与B 代入2A-B 中,去括号合并即可得到结果;(3)把a 与b 的值代入计算即可求出值.【详解】解:(1)∵2A +B =4a 2b ﹣3ab 2+4abc ,∴B =4a 2b ﹣3ab 2+4abc -2A=4a 2b -3ab 2+4abc -2(3a 2b -2ab 2+abc)=4a 2b -3ab 2+4abc -6a 2b +4ab 2-2abc=-2a 2b +ab 2+2abc ;(2)2A -B =2(3a 2b -2ab 2+abc)-(-2a 2b +ab 2+2abc)=6a 2b -4ab 2+2abc +2a 2b -ab 2-2abc=8a 2b -5ab 2;(3)对,由(2)化简的结果可知与c 无关,将a =18,b =15代入,得 8a 2b -5ab 2=8×218⎛⎫ ⎪⎝⎭×15-5×18×21()5=0. 【点睛】本题考查了整式的加减,整式加减的运算法则:一般地,几个整式相加减,如果有括号先去括号,然后再合并同类项.17.已知a+b =2,ab =2,求32231122a b a b ab ++的值. 解析:4【分析】根据因式分解,首先将整式提取公因式12ab,在采用完全平方公式合,在代入计算即可.【详解】解:原式=12a3b+a2b2+12ab3=12ab(a2+2ab+b2)=12ab(a+b)2,∵a+b=2,ab=2,∴原式=12×2×4=4.【点睛】本题主要考查因式分解的代数计算,关键在于整式的因式分解.18.已知有理数a和b满足多项式A,且A=(a﹣1)x5+x|b+2|﹣2x2+bx+b(b≠﹣2)是关于x 的二次三项式,求(a﹣b)2的值.解析:16或25【解析】试题分析:根据有理数a和b满足多项式A.A=(a﹣1)x5+x|b+2|﹣2x2+bx+b是关于x的二次三项式,求得a、b的值,然后分别代入计算可得.试题解:∵有理数a和b满足多项式A.A=(a﹣1)x5+x|b+2|﹣2x2+bx+b是关于x的二次三项式,∴a﹣1=0,解得:a=1.(1)当|b+2|=2时,解得:b=0或b=4.①当b=0时,此时A不是二次三项式;②当b=﹣4时,此时A是关于x的二次三项式.(2)当|b+2|=1时,解得:b=﹣1(舍)或b=﹣3.(3)当|b+2|=0时,解得:b=﹣2(舍)∴a=1,b=﹣4或a=1,b=﹣3.当a=1,b=﹣4时,(a﹣b)2=25;当a=1,b=﹣3时,(a﹣b)2=16.点睛:本题考查了多项式的知识,解题的关键是根据题意求得a、b的值,题目中重点渗透了分类讨论思想.19.已知A=2a2+3ab﹣2a﹣1,B=﹣a2+12 23 ab(1)当a=﹣1,b=﹣2时,求4A﹣(3A﹣2B)的值;(2)若(1)中式子的值与a的取值无关,求b的值.解析:(1)4ab﹣2a+13;(2)b=12【分析】(1)将a=﹣1,b=﹣2代入A=2a 2+3ab ﹣2a ﹣1,B=﹣a 2+12ab+23,求出A 、B 的值,再计算4A ﹣(3A ﹣2B )的值即可; (2)把(1)结果变形,根据结果与a 的值无关求出b 的值即可.【详解】(1)4A ﹣(3A ﹣2B )=4A ﹣3A+2B=A+2B ,∵A=2a 2+3ab ﹣2a ﹣1,B=﹣a 2+12ab+23, ∴A+2B=2a 2+3ab ﹣2a ﹣1+2(﹣a 2+12ab+23) =2a 2+3ab ﹣2a ﹣1﹣2a 2+ab+43 =4ab ﹣2a+13; (2)因为4ab ﹣2a+13 =(4b ﹣2)a+13, 又因为4ab ﹣2a+13的值与a 的取值无关, 所以4b ﹣2=0,所以b=12. 【点睛】本题考查了整式的加减、化简求值,熟练掌握运算法则是解答本题的关键.20.一个三位数M ,百位数字为a ,十位数字为b ,个位数字是c .(1)请用含,,a b c 的式子表示这个数M ;(2)现在交换百位数字和个位数字,得到一个新的三位数N ,请用含,,a b c 的式子表示N ;(3)请用含,,a b c 的式子表示N M -,并回答N M -能被11整除吗?解析:(1)10010M c b a =++;(2) 10010N c b a =++;(3) N-M ()99c a =-,能被11整除【分析】(1)根据百位数字为a ,十位数字为b ,个位数字是c 表示出M 即可;(2)根据百位数字为c ,十位数字为b ,个位数字是a 表示出N 即可;(3)列出整式相加减的式子,再合并同类项即可.【详解】解:()1 ∵百位数字为a ,十位数字为b ,个位数字是c ,∴10010M c b a =++;()2百位数字为c ,十位数字为b ,个位数字是a ,∴10010N c b a =++;()3()()1001010010N M c b a a b c -=++-++9999c a =-()99c a =-. 99是11的9倍,,c a 为整数,N M ∴-能被11整除.【点睛】本题考查的是整式加减的实际应用题,数字问题,掌握数字的表示方法及整式的加减法法则是解答此题的关键.21.已知:A=2x 2+ax ﹣5y+b ,B=bx 2﹣32x ﹣52y ﹣3. (1)求3A ﹣(4A ﹣2B )的值;(2)当x 取任意数值,A ﹣2B 的值是一个定值时,求(a+314A )﹣(2b+37B )的值. 解析:(1)(2b ﹣2)x 2﹣(a+3)x ﹣(b+6);(2)﹣312. 【分析】(1)先化简原式,再分别代入A 和B 的表达式,去括号并合并类项即可;(2)先代入A 和B 的表达式并去括号并合并类项,由题意可令x 和x 2项的系数为零,求解出a 和b 的数值,再化简原式后代入相关数值即可求解.【详解】解:(1)∵A=2x 2+ax ﹣5y+b ,B=bx 2﹣32x ﹣52y ﹣3, ∴原式=3A ﹣4A+2B=﹣A+2B=﹣2x 2﹣ax+5y ﹣b+2bx 2﹣3x ﹣5y ﹣6=(2b ﹣2)x 2﹣(a+3)x ﹣(b+6);(2)∵A=2x 2+ax ﹣5y+b ,B=bx 2﹣32x ﹣52y ﹣3, ∴A ﹣2B=2x 2+ax ﹣5y+b ﹣2bx 2+3x+5y+6=(2﹣2b )x 2+(a+3)x+(b+6),由x 取任意数值时,A ﹣2B 的值是一个定值,得到2﹣2b=0,a+3=0,解得:a=﹣3,b=1,则原式=a ﹣2b+314(A ﹣2B )=﹣3﹣2+32=﹣312. 【点睛】理解本题中x 取任意数值时A ﹣2B 的值均是一个定值的意思是整式化简后的x 和x 2项的系数均为零是解题关键.22.老师在黑板上书写了一个正确的演算过程,随后用一张纸挡住了一个二次三项式,形式如下:+3(x ﹣1)=x 2﹣5x +1.(1)求所挡的二次三项式;(2)若x =﹣2,求所挡的二次三项式的值.解析:(1)x 2﹣8x +4;(2)24【分析】(1)根据“已知两个加数的和与其中的一个加数,求另一个加数用减法”,列出代数式并合并即可;(2)把x=-2代入(1)的结果,计算即可.【详解】(1)x 2﹣5x +1﹣3(x ﹣1)=x 2﹣5x +1﹣3x +3=x 2﹣8x +4;∴所挡的二次三项式为x 2﹣8x +4.(2)当x =﹣2时,x 2﹣8x +4=(﹣2)2﹣8×(﹣2)+4=4+16+4=24.【点睛】本题考查了整式的加减.根据加数与和的关系,列出求挡住的二次三项式的式子是解决本题的关键.23.先化简,再求值: ()()()()24222x x y x y x y x y -++---,其中2x =-, 12y . 解析:132【解析】试题分析:原式利用平方差公式,完全平方公式,以及单项式乘以多项式法则计算,去括号合并得到最简结果,把x 与y 的值代入计算即可求出值.试题原式222222244442x xy x y x xy y x y =-+--+-=-, 当12,2x y =-=-时,原式174.22=-= 24.已知22134,2313P x mx y Q x y nx =+-+=-+-, (1)关于,x y 的式子2P Q -的取值与字母x 的取值无关,求式子(3)(3)m n m n +--的值;(2)当0x ≠且0y ≠时,若135333P Q -=恒成立,求,m n 的值。
一、解答题1.观察下列单项式-2x,4x2,-8x3,16x4,-32x5,64x6,…(1)分别指出单项式的系数和指数是怎样变化的?(2)写出第10个单项式;(3)写出第n个单项式.解析:(1)见解析;(2)(-2)10x10=1024x10;(3)(-2)n x n.【分析】(1)根据单项式的次数与系数定义得出即可;(2)根据单项式系数与次数的变化得出一般性规律得出第10个单项式;(3)根据单项式系数与次数的变化得出一般性规律,进而得出第n个单项式.【详解】(1)通过观察,系数为:-2,4=(-2)2,-8=(-2)3,16=(-2)4,-32=(-2)5指数分别是:1,2,3,4,5,6(2)第10个单项式为:(-2)10x10=1024x10;(3)第n个单项式为:(-2)n x n.【点睛】本题考查了单项式的系数、次数以及数字变化规律,根据已知得出数字变化规律是解题关键.2.古人云:凡事宜先预后立.我们做任何事情都要先想清楚,然后再动手去做,才能避免盲目从事.一天,需要小亮计算一个L形的花坛的面积,在动手测量前,小亮依花坛形状画出示意图,并用字母表示出了将要测量的边长(如图所示),小亮在列式进行面积计算时,发现还需要再测量一条边的长度,你认为他还需要测量哪条边的长度?请你在图中用字母n表示出来,然后求出它的面积.+-解析:图详见解析,am bn mn【分析】由图可知花坛是由两块矩形组成,若想求解矩形面积就必需知道矩形的长和宽,而图中少了左边矩形的宽.【详解】解:需要测量的边如图所示(或测量剩下的那条边的长度).+-.图形的面积为am bn mn【点睛】不规则的几何图形的面积的计算要转化为规则的几何图形面积的和差.3.化简并求值:已知2232A a b ab abc =-+,小明错将“2A B -”看成“2A B +”,算得结果22434C a b ab abc =-+.(1)计算B 的表达式;(2)小强说正确结果的大小与c 的取值无关,对吗?请说明理由.(3)若18a =,15b = ,求正确结果的代数式的值. 解析:(1)2222a b ab abc -++;(2)小强的说法对,正确结果的取值与c 无关,理由见解析;(3)0.【分析】(1)由2A+B=C 得B=C-2A ,将C 、A 代入根据整式的乘法计算可得B ;(2)将A 、B 代入2A-B ,根据整式的加减运算法则进行化简,由化简后的代数式中无字母c 可知其值与c 无关;(3)将a 、b 的值代入计算即可.【详解】解:(1)∵2A B C +=,∴2B C A =-.B 22224342(32)a b ab abc a b ab abc =-+--+2222434642a b ab abc a b ab abc =-+-+-2222a b ab abc =-++;(2)222222(32)(22)A B a b ab abc a b ab abc -=-+--++222264222a b ab abc a b ab abc =-++--2285a b ab =-.因正确结果中不含c ,所以小强的说法对,正确结果的取值与c 无关;(3)将18a =, 15b =代入(2)中的代数式,得: 22221111858()5()8585a b ab -=⨯⨯-⨯⨯0= . 【点睛】本题主要考查整式的乘法,熟练掌握整式的乘法法则是解题的关键.4.当0.2x =-时,求代数式22235735x x x x -+-+-的值。
第二章《整式的加减》易错题训练 (1) 一、选择题(本大题共15小题,共45.0分)1.在下列式子中:3xy−2、3÷a、12(a+b)、a⋅5、−314abc中,符合代数式书写要求的有()A. 1个B. 2个C. 3个D. 4个2.若单项式a m−2b2与−3ab n的和仍是单项式,则n m的值是()A. 3B. 9C. 6D. 83.下列选项中的整式,次数是5的是()A. x4+x2y3B. x5+x3y3C. x5yD. 5x4.下列选项中,不是单项式的式子是A. −3B. 12x3y C. 2a3−1 D. m5.已知下列各式:mn−15,−3,−π2,2m3−7n,4m2n,π+x6,其中是单项式的是()A. 2个B. 3个C. 4个D. 5个6.已知下列各式:mn−15,−3,−π2,2m3−7n,4m2n,π+x6,其中是单项式的是()A. 2个B. 3个C. 4个D. 5个7.在代数式3x2y4、7(x+1)8、13(2n+1)、y2+y+1y中,多项式的个数是()A. 1B. 2C. 3D. 48.已知下列各式:5abf,1π,x+3y,6,x−y5,5b,其中是单项式的有()A. 2个B. 5个C. 3个D. 4个9.在代数式:34x2,3ab,x+5,y5x,−1,y3,a2−b2,a中,整式有()A. 5个B. 6个C. 7个D. 8个10.已知:2xy23,1x,−a,0,4x+1,1+x2,中单项式有()A. 6个B. 5个C. 4个D. 3个11.在式子:2xy,−12ab,x+y2,1,2x2y3,1x,x2+2xy+y2中,整式的个数是()A. 3B. 4C. 5D. 612.已知正方形的边长为a,若边长增加50%,则它的面积增加()A. 0.5a2B. 1.5a2C. 1.25a2D. 0.25a213.代数式12a ,4xy,a+b3,a,2014,12a2bc,−3mn4中单项式的个数有()A. 3个B. 4个C. 5个D. 6个14.下列式子中代数式的个数有()个.−2a−5,−3,2a+1=4,b,x+y>2,1y,3x3+2x2y4A. 2B. 3C. 4D. 515.一个长20分米的方木的横截面是边长为m分米的正方形,将它锯掉8分米后,方木的体积比原来减少()。
一、解答题1.先化简,再求值:-2x 2-2[3y 2-2(x 2-y 2)+6],其中x =-1,y =-2.解析:2221012x y --,-50.【分析】根据整式的加减及合并同类项先对原式进行化简,得到2221012x y --,再将1,2x y =-=-代入即可求解,需要注意本题中两次遇到去括号,注意符号的改变.【详解】原式=2222223226x y x y ⎡⎤---++⎣⎦=2222264412x y x y --+--=2222246412x x y y -+---=2221012x y --,当1,2x y =-=-时,原式=222(1)10(2)1250⨯--⨯--=-.【点睛】本题主要考查了去括号,整式的加减,合并同类项,乘法的分配律等相关内容,熟练掌握各项计算法则是解决本题的关键,注意去括号中符号的改变原则.2.已知22332A x y xy =+-,2222B xy y x =--.(1)求23A B -.(2)若|23|1x -=,29y =,且||x y y x -=-,求23A B -的值.解析:(1)2212127x y xy +-;(2)114或99. 【分析】(1)把22332A x y xy =+-,2222B xy y x =--代入23A B -计算即可;(2)根据|23|1x -=,29y =,且||x y y x -=-求出x 和y 的值,然后代入(1)中化简的结果计算即可.【详解】解:(1)()()2222232332322A B x y xy xy y x -=+----2222664366x y xy xy y x =+--++2212127x y xy =+-;(2)由题意可知:231x -=±,3=±y ,∴2x =或1,3=±y ,由于||x y y x -=-,∴2x =,3y =或1x =,3y =.当2x =,3y =时,23114A B -=.当1x =,3y =时,2399A B -=.所以,23A B -的值为114或99.【点睛】本题考查了整式的加减运算,绝对值的意义,以及分类讨论的数学思想,熟练掌握整式的加减运算法则是解(1)的关键,分类讨论是解(2)的关键.3.已知多项式﹣x 2y 2m +1+xy ﹣6x 3﹣1是五次四项式,且单项式πx n y 4m ﹣3与多项式的次数相同,求m ,n 的值.解析:m =1,n =4.【分析】根据多项式的次数是多项式中次数最高的单项式的次数,可得m 的值,根据单项式的次数是单项式中所有字母指数和,可得n 的值.【详解】∵多项式﹣x 2y 2m +1+xy ﹣6x 3﹣1是五次四项式,且单项式πx n y 4m ﹣3与多项式的次数相同, ∴2+2m +1=5,n +4m ﹣3=5,解得m =1,n =4.【点睛】本题考查了多项式,利用多项式的次数是多项式中次数最高的单项式的次数,单项式的次数是单项式中所有字母指数和得出m 、n 的值是解题关键.4.计算:(1)()223537a ab a ab -+-++;(2)()222312424a a a a ⎛⎫+--- ⎪⎝⎭. 解析:(1)62ab --;(2)2321a a --+【分析】先去括号,然后合并同类项即可.【详解】解:(1)()223537a ab a ab -+-++ 223537a ab a ab =-+---2ab =-6-;(2)()222312424a a a a ⎛⎫+--- ⎪⎝⎭ 2222261a a a a =+--+2321a a =--+.【点睛】本题考查了整式的加减运算,熟记去括号法则和合并同类项的法则是解决此题的关键. 5.有这样一道题,计算()()4322433222422x x y x y x x y y x y -----+的值,其中0.25x =,1y =-;甲同学把“0.25x =”,错抄成“0.25x =-”,但他的计算结果也是正确的,你说这是为什么?解析:化简后为32y ,与x 无关.【分析】原式去括号合并得到最简结果中不含x ,可得出x 的取值对结果没有影响.【详解】解:()()4322433222422x x y x y x x y y x y -----+=43224332224242x x y x y x x y y x y ---+++=32y ,原式化简后为32y ,跟x 的取值没有关系.因此不会影响计算结果.【点睛】本题考查了整式的加减——化简求值,正确的将原式去括号合并同类项是解决此题的关键.6.化简下列各式:(1)32476x y y -+--+;(2)4(32)3(52)x y y x ----.解析:(1)352x y --+;(2)67x y --【分析】(1)根据合并同类项的法则解答即可;(2)先去括号,再合并同类项.【详解】解:(1)原式3(27)(46)352x y x y =-+-+-+=--+;(2)原式12815667x y y x x y =-+-+=--.【点睛】本题考查了整式的加减运算,属于基础题型,熟练掌握整式加减运算的法则是关键. 7.日历上的规律:下图是2020年元月的日历,图中的阴影区域是在日历中选取的一块九宫格.(1)九宫格中,四个角上的四个数之和与九宫格中央这个数有什么关系?(2)请你自选一块九宫格进行计算,观察四个角上的四个数之和与九宫格中央那个数是否还有这种关系.(3)试说明原理.解析:(1)四个角上的四个数之和等于九宫格中央这个数的4倍;(2)四个角上的四个数之和等于九宫格中央这个数的4倍,选取九宫格见解析;(3)见解析.【分析】(1)求出四个角上的四个数之和与九宫格中央这个数,从而验证它们的关系.(2)选择如下图的九宫格,验证他们的关系即可.(3)设九宫格中央这个数为a ,列等式进行验证即可.【详解】(1)四个角上的四个数之和等于九宫格中央这个数的4倍.理由如下:6228202828414+++=+=⨯.(2)如图,9112325174+++=⨯,所以四个角上的四个数之和等于九宫格中央这个数的4倍.(选取的九宫格不唯一).(3)设九宫格中央这个数为a ,那么左上角的数为71a --,右上角的数为71a -+,左下角的数为71a +-,右下角的数为71a ++,四个数的和为(71)(71)(71)(71)4a a a a a --+-+++-+++=.即四个角上的四个数之和等于九宫格中央这个数的4倍.【点睛】本题考查了整式的加减应用,掌握整式的加减运算法则是解题的关键.8.已知222242,325A ab b a B b a ab =--=-+,当11.5,2a b ==-时,求34B A -的值. 解析:12【分析】根据题意,先根据整式的混合运算法则化简34B A -,再将a ,b 的值代入即可.【详解】()()2222222234332544296151684B A b a ab ab b a b a ab ab b a -=-+---=-+-++=22172b a ab --, 当11.5,2a b ==-时,原式22111931172 1.5 1.517224242⎛⎫⎛⎫=⨯--⨯-⨯-=⨯-+= ⎪ ⎪⎝⎭⎝⎭.本题主要考查了整式的化简求值,熟练掌握整式的混合运算法则以及有理数的运算是解决本题的关键.9.已知,,a b c 在数轴上的位置如图所示,解答下列问题.(1)化简:||||||a b c b b a +--+-;(2)若a 的绝对值的相反数是2,b --的倒数是它本身,24c =,求2()a b c a b c -++-+-的值.解析:(1)2a b c -+;(2)-9【分析】(1)由数轴上的位置,先判断0,0,0+>-<-<a b c b b a ,再根据绝对值的意义进行化简,即可得到答案.(2)由绝对值的意义,倒数的定义,平方根的定义,先求出a 、b 、c 的值,再代入计算,即可得到答案.【详解】解:(1)由数轴可得:0c b a <<<,∴0,0,0+>-<-<a b c b b a ,∴原式2a b c b b a a b c =++--+=-+.(2)由题意,∵若a 的绝对值的相反数是2,b --的倒数是它本身,24c =,∴2,1,2a b c ==-=-,∴2()2a b c a b c a b c a b c -++-+-=-++--+=224149a b c -++=---=-.【点睛】本题考查了数轴的定义,绝对值的意义,倒数的定义,平方根的定义等知识,解题的关键是利用数轴正确判断0c b a <<<,从而进行解题.10.(规律探究题)用计算器计算下列各式,将结果填写在横线上.99999×11=__________;99999×12=__________;99999×13=__________;99999×14=__________.(1)你发现了什么?(2)不用计算器,你能直接写出99999×19的结果吗?解析:1099989;1199988;1299987;1399986;(1)如果n 是11,12,13,…,20中的任何一个数,则:99999×n =(n -1)9998(20-n ),其中(n -1)9998(20-n )是1个7位数,前2位是n -1,个位是20-n ,中间4个数字总是9998;(2)99999×19=1899981【分析】用计算器分别进行计算,再根据结果找出规律,最后根据规律即可直接写出99999×19的结果.解:99999×11=1099989;99999×12=1199988;99999×13=1299987;99999×14=1399986.故答案为:1099989;1199988;1299987;1399986.(1)通过计算观察可发现以下规律:如果n是11,12,13,…,20中的任何一个数,则:99999×n=(n-1)9998(20-n),其中(n-1)9998(20-n)是1个7位数,前2位是n-1,个位是20-n,中间4个数字总是9998.(2)根据以上规律可直接写出:99999×19=1899981.【点睛】此题考查了计算器−有理数,解题的关键是通过用计算器计算,找出规律,通过规律进行解答.11.观察由“※”组成的图案和算式,解答问题(1)请猜想1+3+5+7+9+…+19=;(2)请猜想1+3+5+7+9+…+(2n-1)+(2n+1)+(2n+3)= ;(3)请用上述计算103+105+107+…+2015+2017的值.解析:(1)102;(2)()22n+;(3)1015480.【分析】(1)由等式可知左边是连续奇数的和,右边是数的个数的平方,由此规律解答即可,此题中一共有10个连续奇数相加,所以结果应为102;(2)一共有(n+2)个连续奇数相加,所以结果应为n2;(3)让从1加到2005这些连续奇数的和,减去从1加到101这些连续奇数的和即可.【详解】(1)由图片知:第1个图案所代表的算式为:1=21;第2个图案所代表的算式为:1+3=4=22;第3个图案所代表的算式为:1+3+5=9=23;…依次类推:第n个图案所代表的算式为:1+3+5+…+(2n-1)=2n;1+3+5+…+19的个数为:191102+=,∴1+3+5+…+19=210;故答案为:210;(2)1+3+5+7+9+…+(2n-1)+(2n+1)+(2n+3)的个数为:23122nn++=+,∴1+3+5+7+9+…+(2n-1)+(2n+1)+(2n+3)=()22n+,故答案为:()22n+;(3)103+105+107+…+2015+2017=(1+3+…+2015+2017)-(1+3+…+99+101)=21009-251=1015480.【点睛】本题考查了数字的变化规律的应用;判断出有几个奇数相加是解决本题的易错点;得到从1开始连续奇数的和的规律是解决本题的关键.12.试写出一个含a的代数式,使a不论取何值,这个代数式的值不大于1.解析:所写代数式为:﹣a2+1【分析】从平方数非负数的角度考虑解答.【详解】解:所写代数式可以为:- a2+1.(答案不唯一)【点睛】本题考查了代数式,平方数非负数,考虑利用非负数是解题的关键.13.用代数式表示:(1)比x的平方的5倍少2的数;(2)x的相反数与y的倒数的和;(3)x与y的差的平方;(4)某商品的原价是a元,提价15%后的价格;(5)有一个三位数,个位数字比十位数字少4,百位数字是个位数字的2倍,设x表示十位上的数字,用代数式表示这个三位数.解析:(1)5x2-2;(2)-x+1y;(3)(x-y)2;(4)(1+15%)a;(5)200(x-4)+10x+(x-4).【分析】(1)明确是x的平方的5倍与2的差;(2)先求出x的相反数与y的倒数,然后相加即可;(3)注意是先做差后平方;(4)注意是提价后的价格而非所提的价格;(5)注意正确表示百位,十位,个位上的数.【详解】(1)5x2-2;(2)-x +1y; (3)(x -y )2; (4)(1+15%)a ;(5)200(x -4)+10x +(x -4) .【点睛】 本题考查了列代数式,能够根据运算顺序正确书写,同时注意数位的意义,注意“多,少,积,差”等关键字的把握.14.如图,已知等腰直角三角形ACB 的边AC BC a ==,等腰直角三角形BED 的边BE DE b ==,且a b <,点C 、B 、E 放置在一条直线上,联结AD .(1)求三角形ABD 的面积; (2)如果点P 是线段CE 的中点,联结AP 、DP 得到三角形APD ,求三角形APD 的面积;(3)第(2)小题中的三角形APD 与三角形ABD 面积哪个较大?大多少?(结果都可用a 、b 代数式表示,并化简)解析:(1)ab (2)()24a b +(3)三角形APD 的面积比三角形ABD 的面积大,大()24b a -.【分析】(1)由题意知//AC DE (同旁内角互补,两条直线平行),所以四边形ACED 是梯形,再由梯形面积减去两个等腰直角三角形面积即可求得;(2)与题(1)思路完全一样,由梯形面积减去两个直角三角形面积即可求得; (3)将所求的两个面积作差,化简并与0比较大小即可.【详解】(1)()()22111222ABD ABC BDE ACED S S S S a b a b a b ab ∆∆∆=--=++--=四边形 (2)()()()2111222224APD APC PDE ACED a b a b a b S S S S a b a b a b ∆∆∆+++=--=++-⨯-⨯=四边形(3)()()2244APD ABDa b b a S S ab ∆∆+--=-=,∵b a >,∴()204APD ABD b a S S ∆∆--=>,即三角形APD 的面积比三角形ABD 的面积大,大()24b a -.【点睛】本题是一道综合题,考查了三角形的面积公式12S =⨯底⨯高,多项式的化简. 15.图①是一个三角形,分别连接这个三角形三边的中点得到图②;再分别连接图②中间小三角形三边的中点,得到图③.(1) 图②有 个三角形;图③有 个三角形;(2) 按上面的方法继续下去,第n 个图形中有多少个三角形(用n 的代数式表示结论).解析:(1)5,9 ;(2)43n -【分析】(1)由图形即可数得答案;(2)发现每个图形都比起前一个图形多4个,所以第n 个图形中有14(1)43n n +⨯-=-个三角形.【详解】解:(1)根据图形可得:5,9;(2)发现每个图形都比起前一个图形多 4 个,∴第n 个图形中有14(1)43n n +⨯-=-个三角形.【点睛】本题考查图形的特征,根据图形的特征找出规律,属于一般题型.16.如图所示,一个点从数轴上的原点开始,先向右移动3单位长度,再向左移动5个单位长度,可以看到终点表示的数是﹣2,已知点A ,B 是数轴上的点,请参照下图并思考,完成下列各题.(1)如果点A 表示数-3,将A 点向右移动7个单位长度,那么终点B 表示的数是 ,A ,B 两点间的距离为 .(2)如果点A 表示数3,将A 点向左移动7个单位长度,再向右移动5个单位长度,那么终点B 表示的数是 ,A ,B 两点间的距离为 .(3)如果点A 表示数4-,将A 点向右移动168个单位长度,再向左移动256个单位长度,那么终点B 表示的数是 ,A ,B 两点间的距离是 .(4)一般地,如果A 点表示数为m ,将A 点向右移动n 个单位长度,再向左移动P 个单位长度,那么,请你猜想终点B 表示什么数?A ,B 两点间的距离为多少?解析:(1)4,7;(2) 1,2;(3) -92,88;(4)m+n-p ,|n-p|【分析】(1)根据数轴上的点向右平移加,向左平移减,可得B 点表示的数为-3+7=4,根据数轴上两点间的距离是大数减小数,可得答案;(2)根据数轴上的点向右平移加,向左平移减,可得B 点表示的数3-7+5=1,根据数轴上两点间的距离是大数减小数,可得答案;(3)根据数轴上的点向右平移加,向左平移减,可得B 点表示的数-4+168-256=-92,根据数轴上两点间的距离是大数减小数,可得答案;(4)按照(1)(2)(3)中的方法讨论更加一般的情况即可求解.【详解】解:(1)∵点A 表示数-3,∴将A 点向右移动7个单位长度,那么终点B 表示的数是-3+7=4,A ,B 两点间的距离为4-(-3)=7,故答案为:4,7;(2)∵点A 表示数3,∴将A 点向左移动7个单位长度,再向右移动5个单位长度,那么终点B 表示的数是3-7+5=1,A ,B 两点间的距离为3-1=2,故答案为:1,2;(3)∵点A 表示数-4,将A 点向右移动168个单位长度,再向左移动256个单位长度,那么终点B 表示的数是-4+168-256=-92,A ,B 两点间的距离是-4-(-92)=88,故答案为:-92,88;(4)∵A 点表示的数为m ,∴将A 点向右移动n 个单位长度,再向左移动p 个单位长度, 那么点B 表示的数为m+n-p ,A ,B 两点间的距离为|m-(m+n-p)|=|n-p|.故答案为:m+n-p ,|n-p|.【点睛】本题考查的是数轴上点的平移规律及数轴上两点之间的距离公式,点在数轴上平移遵循“左减右加”原则;注意数轴上两点之间的距离为大数减小数,当不确定谁大谁小时记得加绝对值符号;正确利用数形结合分析是解题关键.17.已知多项式234212553x x x x ++-- (1)把这个多项式按x 的降冥重新排列; (2)请指出该多项式的次数,并写出它的二次项和常规项.解析:(1)432215253x x x x -+++-;(2)该多项式的次数为4,二次项是22x ,常数项是13-.(1)按照x 的指数从大到小的顺序把各项重新排列即可;(2)根据多项式的次数的定义找出次数最高的项即是该多项式的次数,再找出次数是2的项和不含字母的项即可得二次项和常数项.【详解】(1)按的降幂排列为原式432215253x x x x -+++-. (2)∵234212553x x x x ++--中次数最高的项是-5x 4, ∴该多项式的次数为4,它的二次项是22x ,常数项是13-. 【点睛】 本题考查多项式的定义,正确掌握多项式次数及各项的判定方法及多项式升幂、降幂排列方法是解题关键.18.先化简,再求值:()()22222322a b ab a b ab a b -+---,其中1a =,2b =-. 解析:2ab -,4-.【分析】先去括号,再合并同类项,再将1a =,2b =-代入原式求值即可.【详解】原式22222423a b ab a b ab a b +=-+-- 22(112)(34)a b ab =--++-2ab =-,当1a =,2b =-时,原式21(2)4=-⨯-=-【点睛】本题考查了整式的化简求值问题,掌握整式化简的方法、合并同类项的方法是解题的关键.19.已知多项式2x 2+4xy ﹣3y 2+x 2+kxy+5y 2,当k 为何值时,它与多项式3x 2+6xy+2y 2是相等的多项式.解析:k=2.【分析】根据两个多项式是相同的多项式,可以直接列等式根据各项前对应系数相等直接列式计算.【详解】解:2x 2+4xy ﹣3y 2+x 2+kxy+5y 2,=3x 2+(4+k )xy+2y 2,因为它与多项式3x 2+6xy+2y 2是相等的多项式,所以4+k=6,解得:k=2.本题考查了带系数多项式与已知多项式相等求未知系数,掌握多项式的概念是解决此题的关键.20.数a 、b 、c 在数轴上对应的位置如图所示,化简a c c b a b +-++-.解析:0;【分析】由数轴可得a >0>b >c ,并从数轴上可得出a ,b ,c 绝对值的大小,从而可以得出各项式子的正负,去绝对值可得出答案. 【详解】 解:由数轴得,c b 0a <<<,且c a b >>,a c cb a b +-++-a c cb a b =--+++-0=.【点睛】 本题考查了数轴上数的大小,去绝对值,熟悉掌握定义是解决本题的关键.21.已知a+b =2,ab =2,求32231122a b a b ab ++的值. 解析:4【分析】根据因式分解,首先将整式提取公因式12ab ,在采用完全平方公式合,在代入计算即可. 【详解】解:原式=12a 3b +a 2b 2+12ab 3 =12ab (a 2+2ab +b 2) =12ab (a +b )2, ∵a +b =2,ab =2, ∴原式=12×2×4=4. 【点睛】本题主要考查因式分解的代数计算,关键在于整式的因式分解.22.观察下列单项式:x -,23x ,35x -,47x ,…1937x -,2039x ,…写出第n 个单项式,为了解这个问题,特提供下面的解题思路.()1这组单项式的系数的符号,绝对值规律是什么?()2这组单项式的次数的规律是什么?()3根据上面的归纳,你可以猜想出第n 个单项式是什么?()4请你根据猜想,请写出第2014个,第2015个单项式.解析:()1 (1)n -(或:负号正号依次出现;),21n -(或:从1开始的连续奇数);()2从1开始的连续自然数;()3第n 个单项式是:()(1)21n n n x --;()4?2014个单项式是20144027x ;第2015个单项式是20154029x -.【分析】(1)根据已知数据得出单项式的系数的符号规律和系数的绝对值规律;(2)根据已知数据次数得出变化规律;(3)根据(1)和(2)中数据规律得出即可;(4)利用(3)中所求即可得出答案.【详解】()1数字为1-,3,5-,7,9-,11,…,为奇数且奇次项为负数,可得规律:()(1)21n n --;故单项式的系数的符号是:(1)n-(或:负号正号依次出现;),绝对值规律是:21n -(或:从1开始的连续奇数); ()2字母因数为:x ,2x ,3x ,4x ,5x ,6x ,…,可得规律:n x ,这组单项式的次数的规律是从1开始的连续自然数.()3第n 个单项式是:()(1)21n n n x --.()4把2014n =、2015n =直接代入解析式即可得到:第2014个单项式是20144027x ;第2015个单项式是20154029x -.【点睛】此题主要考查了数字变化规律,得出次数与系数的变化规律是解题关键.23.计算:7ab-3a 2b 2+7+8ab 2+3a 2b 2-3-7ab .解析:8ab 2+4.【分析】原式合并同类项即可得到结果.【详解】原式=(7﹣7)ab +(﹣3+3)a 2b 2+8ab 2+(7﹣3)=8ab 2+4.【点睛】本题考查了合并同类项得法则.即系数相加作为系数,字母和字母的指数不变. 24.国庆期间,王老师计划组织朋友去晋西北游览两日.经了解,现有甲、乙两家旅行社针对组团两日游的游客报价均为每人500元,且提供的服务完全相同.甲旅行社表示,每人都按八五折收费;乙旅行社表示,若人数不超过20人,每人都按九折收费,超过20人,则超出部分每人按八折收费.假设组团参加甲、乙两家旅行社两日游的人数均为x 人. (1)请列式表示甲、乙两家旅行社收取组团两日游的总费用;(2)若王老师组团参加两日游的人数共有30人,请你通过计算,在甲、乙两家旅行社中,帮助王老师选择收取总费用较少的一家.解析:(1)甲旅行社收取组团两日游的总费用为425x 元;若人数不超过20人时,乙旅行社收取组团两日游的总费用为450x 元;若人数超过20人时,乙旅行社收取组团两日游的总费用为(4001000x +)元;(2)王老师应选择甲旅行社.【分析】(1)根据总费用等于人数乘以打折后的单价,易得甲旅行社的费用=500 x×0.85,对于乙家旅行社的总费用,应分类讨论:当0≤x≤20时,乙旅行社的费用=500 x×0.9;当x >20时,乙旅行社的费用=500×20×0.9+500(x-20)×0.8;(2)把x=30分别代入(1)中对应关系计算甲旅行社的费用和乙旅行社的费用的值,然后比较大小即可.【详解】(1)甲旅行社收取组团两日游的总费用为:5000.85425x x ⨯=元若人数不超过20人时,乙旅行社收取组团两日游的总费用为:5000.9450x x ⨯=元 若人数超过20人时,乙旅行社收取组团两日游的总费用为:()500(20)0.8500200.94001000-⨯+⨯⨯=+x x 元(2)因为王老师组团参加两日游的人数共有30人,所以甲旅行社收取组团两日游的总费用为:4253012750⨯=元乙旅行社收取组团两日游的总费用为40030100013000⨯+=元1275013000<,王老师应选择甲旅行社.【点睛】本题考查了代数式,能根据具体情境列代数式并求代数式的值是关键.25.将正整数1,2,3,4,5,……排列成如图所示的数阵:(1)十字框中五个数的和与框正中心的数11有什么关系?(2)若将十字框上下、左右平移,可框住另外五个数,这五个数的和与框正中心的数还有这种规律吗?请说明理由;(3)十字框中五个数的和能等于180吗?若能,请写出这五个数;若不能,请说明理由; (4)十字框中五个数的和能等于2020吗?若能,请写出这五个数;若不能,请说明理由.解析:(1)十字框中五个数的和是正中心数的5倍;(2)十字框中五个数的和是正中心数的5倍,理由见解析;(3)不能,理由见解析;(4)这五个数是404,403,405,397,411.【分析】(1)把框住的数相加即可求解;(2)设中心的数为a ,则其余4个数分别为1a -,1a +,7a -,7a +,相加即可得到规律;(3)由(2)得五个数的和为5a ,令5a=180,根据解得情况即可求解;(4)由(2)得五个数的和为5a ,令5a=2020,根据解得情况即可求解;【详解】解:(1)十字框中五个数的和是正中心数的5倍.∵十字框中五个数的和41011121855511=++++==⨯,∴十字框中五个数的和是正中心数的5倍.(2)五个数的和与框正中心的数还有这种规律.设中心的数为a ,则其余4个数分别为1a -,1a +,7a -,7a +.11775a a a a a a +-+++-++=,∴十字框中五个数的和是正中心数的5倍.(3)十字框中五个数的和不能等于180.∵当5180a =时,解得36a =,36751÷=,36在数阵中位于第6排的第1个数,其前面无数字,∴十字框中五个数的和不能等于180.(4)十字框中五个数的和能等于2020.∵当52020a =时,解得404a =,4047575÷=,404在数阵中位于第58排的第5个数,∴十字框中五个数的和能等于2020,这五个数是404,403,405,397,411.【点睛】此题主要考查一元一次方程的应用,解题的关键是设中心的数为a ,求出十字框中五个数的和为5a.26.已知31A B x ,且3223A x x ,求代数式B .解析:2322x x -++【分析】将A 代入A-B=x 3+1中计算即可求出B .【详解】解:∵A-B=x 3+1,且A=-2x 3+2x+3,∴B=A-(x 3+1)=-2x 3+2x+3-x 3-1=-3x 3+2x+2.【点睛】本题考查了整式的加减,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握法则是解题的关键.27.老师在黑板上书写了一个正确的演算过程,随后用一张纸挡住了一个二次三项式,形式如下:+3(x ﹣1)=x 2﹣5x +1.(1)求所挡的二次三项式;(2)若x =﹣2,求所挡的二次三项式的值.解析:(1)x 2﹣8x +4;(2)24【分析】(1)根据“已知两个加数的和与其中的一个加数,求另一个加数用减法”,列出代数式并合并即可;(2)把x=-2代入(1)的结果,计算即可.【详解】(1)x 2﹣5x +1﹣3(x ﹣1)=x 2﹣5x +1﹣3x +3=x 2﹣8x +4;∴所挡的二次三项式为x 2﹣8x +4.(2)当x =﹣2时,x 2﹣8x +4=(﹣2)2﹣8×(﹣2)+4=4+16+4=24.【点睛】本题考查了整式的加减.根据加数与和的关系,列出求挡住的二次三项式的式子是解决本题的关键.28.已知22134,2313P x mx y Q x y nx =+-+=-+-, (1)关于,x y 的式子2P Q -的取值与字母x 的取值无关,求式子(3)(3)m n m n +--的值;(2)当0x ≠且0y ≠时,若135333P Q -=恒成立,求,m n 的值。
一、选择题1.在《九章算术》方田章“圆田术”中指出:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”,这里所用的割圆术所体现的是一种无限与有限的转化的思想,比如在234111112222+++++…中,“…”代表按规律不断求和,设234111112222x +++++⋅⋅⋅=.则有112x x =+,解得2x =,故2341111122222+++++⋅⋅⋅=.类似地2461111333++++⋅⋅⋅的结果为( ) A .43 B .98 C .65 D .22.已知下列四个应用题:①现有60个零件的加工任务,甲单独每小时可以加工4个零件,乙单独每小时可以加工6个零件.现甲乙两人合作,问两人开始工作几小时后还有20个零件没有加工?②甲乙两人从相距60km 的两地同时出发,相向面行,甲的速度是4/km h ,乙的速度是6/km h ,问经过几小时后两人相遇后又相距20km ?③甲乙两人从相距60km 的两地相向面行,甲的速度是4/km h ,乙的速度是6/km h ,如果甲先走了20km 后,乙再出发,问乙出发后几小时两人相遇?④甲乙两人从相距20km 的两地同时出发,背向而行,甲的速度是4/km h ,乙的速度是6/km h ,问经过几小时后两人相距60km ?其中,可以用方程462060x x ++=表述题目中对应数量关系的应用题序号是( )A .①②③④B .①③④C .②③④D .①② 3.如果x =2是方程12x +a =﹣1的解,那么a 的值是( ) A .0B .2C .﹣2D .﹣6 4.已知5x =是关于x 的方程4231x m x +=+的解,则方程3261x m x +=+的解是_________.A .53B .53-C .-2D .15.下列方程变形一定正确的是( )A .由x +3=-1,得x =-1+3B .由7x =-2,得x =-74C .由12x =0,得x =2D .由2=x -1,得x =1+26.某种商品的标价为120元,若以九折降价出售,相对于进价仍获利20%,则该商品的进价是( ).A .95元B .90元C .85元D .80元 7.若“△”是新规定的某种运算符号,设x △y=xy+x+y ,则2△m=﹣16中,m 的值为( )A .8B .﹣8C .6D .﹣6 8.若4a ﹣9与3a ﹣5互为相反数,则a 2﹣2a+1的值为( ) A .1B .﹣1C .2D .0 9.将方程2152132x x -+=-去分母,得( ) A .()()211352x x -=-+ B .416152x x -=-+C .416152x x -=--D .()()2216352x x -=-+ 10.两年前,李叔叔在银行存了一笔两年的定期存款,年利率是2.75%.到期后取出,得到本金和利息总共21100元.设李叔叔存入的本金为x 元,则下列方程正确的是( ) A .2 2.75%21100x ⨯=B . 2.75%21100x x +=C .2 2.75%21100x x +⨯=D .2( 2.75%)21100x x +=11.宜宾某机械厂加工车间有34名工人,平均每名工人每天加工小齿轮20个或大齿轮15个.已知3个小齿轮和2个大齿轮配成一套,问分别安排多少名工人加工大、小齿轮,才能使每天生产的齿轮刚好配套?若设加工小齿轮的工人有x 名,则可列方程为( ) A .2015(34)x x =-B .220315(34)x x ⨯=⨯-C .320215(34)x x ⨯=⨯-D .320(34)215x x ⨯-=⨯ 12.把方程112x =变形为2x =,其依据是( ) A .等式的性质1B .等式的性质2C .乘法结合律D .乘法分配律 二、填空题13.某学校8个班级进行足球友谊赛,比赛采用单循环赛制(参加比赛的队,每两队之间进行一场比赛),胜一场得3分,平一场得1分,负一场得0分,某班共得15分,并以不败成绩获得冠军,那么该班共胜______场比赛.14.已知方程2224m x m +-+=是关于x 的一元一次方程,则方程的解是________. 15.若有a ,b 两个数满足关系式:1a b ab +=-,则称a ,b 为“共生数对”,记作(),a b .例如:当2,3满足23231+=⨯-时,则()23,是“共生数对”.若()2x -,是“共生数对”,则x =__________.16.在等式“2×( )-3×( )= -15”的括号中分别填入一个数,使这两个数满足:互为相反数.则这两个数依次是______,____________.17.小明说小红的年龄比他大两岁,他们的年龄和为18岁,两人年龄各是多少岁?若设小明x 岁,则小红的年龄为__________岁.根据题意,列出的方程是______________________. 18.(1)由等式325x x =+的两边都________,得到等式5x =,这是根据____________;(2)由等式1338x -=的两边都______,得到等式x=_____,这是根据__________________. 19.一群学生参加夏令营活动,男生戴白色帽子,女生戴红色帽子,休息时他们坐在一起,大家发现了一个有趣的现象:每位男生看到的白色与红色的帽子一样多,而每位女生看到的白色帽子数量是红色的2倍.根据信息,这群学生共有______人.20.某商品按标价八折出售仍能盈利b元,若此商品的进价为a元,则该商品的标价为_________元.(用含a,b的代数式表示).三、解答题21.青岛市某实验学校举办一年一届的科技文化艺术节活动,需制作一块活动展板,请来两名工人.已知师傅单独完成需4天,徒弟单独完成需6天.(1)两个人合作需要多少天完成?(2)现由徒弟先做1天,再两人合作,问:还需几天可以完成这项工作?22.某校开展校园艺术节系列活动,派小明到文体超市购买若干个文具袋作为奖品.这种文具袋标价每个10元,请认真阅读结账时老板与小明的对话图片,解决下面两个问题:()1求小明原计划购买文具袋多少个?()2学校决定,再次购买钢笔和签字笔共50支作为补充奖品,其中钢笔标价每支8元,签字笔标价每支6元.经过沟通,这次老板给予8折优惠,合计272元.问小明购买了钢笔和签字笔各多少支?23.图1为全体奇数排成的数表,用十字框任意框出5个数,记框内中间这个数为 a(如图2).(1)请用含a的代数式表示框内的其余4个数;(2)框内的5个数之和能等于 2015,2020 吗?若不能,请说明理由;若能,请求出这5个数中最小的一个数,并写出最小的这个数在图1数表中的位置.(自上往下第几行,自左往右的第几个)24.利用等式的性质解下列方程:(1)x-2=5;(2)-23x =6; (3)3x =x +6. 25.一批皮鞋,按成本加5成作为售价,后因季节性原因,按原售价的七五折降低价格出售,降价后的新售价是每双63元,问这批皮鞋每双的成本价是多少元按降价后的新售价每双还可赚多少元?26.解方程:(1)3x ﹣4=2x +5;(2)253164x x --+=.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】 设2461111333x ++++⋅⋅⋅=,仿照例题进行求解. 【详解】 设2461111333x ++++⋅⋅⋅=, 则246224611111111113333333⎛⎫++++⋅⋅⋅=+++++⋅⋅⋅ ⎪⎝⎭, 2113x x ∴=+, 解得,98x =, 故选B .【点睛】 本题考查类比推理,一元一次方程的应用,理解题意,正确列出方程是解题的关键. 2.B解析:B【分析】①根据甲的工作量+乙的工作量+未完成的工作量=总的工作量,设x 小时后还有20个零件没有加工,据此列方程解答;②根据甲行驶的路程+乙行驶的路程=总路程+相遇后相距的路程,设x 小时后相遇后相距20km ,据此列方程解答;③依据甲乙行驶的路程和+甲先走的路程=总路程,设x 小时后相遇后,据此列方程解答; ④根据甲乙两人的距离+甲乙各自行驶的路程=总路程,设行驶x 小时,据此列方程解答即可.【详解】①设x 小时后还有20个零件没有加工,根据题意得,462060x x ++=,故①正确; ②设x 小时后相遇后相距20km ,根据题意得,466020x x +=+,故②错误; ③甲先走了20km 后,乙再出发,设乙出发后x 小时两人相遇,根据题意得,462060x x ++=,故③正确;④经过x 小时后两人相距60km ,根据题意得,462060x x ++=,故④正确. 因此,正确的是①③④.故选:B.【点睛】此题考查了一元一次方程的应用,关键是读懂题意,找出题目中的等量关系,列出方程. 3.C解析:C【分析】将x =2代入方程12x +a =-1可求得. 【详解】解:将x =2代入方程12x +a =﹣1得1+a =﹣1, 解得:a =﹣2.故选C .【点睛】本题是一道求方程待定字母值的试题,把方程的解代入原方程是求待定字母的值的常用方法,平时应多注意领会和掌握. 4.B解析:B【分析】根据方程的解求得m 的值,然后将m 的值代入方程3261x m x +=+求解x 的值即可.【详解】解:∵x=5是关于x 的方程4x+2m=3x+1的解,∴20+2m=15+1,解得:m=-2,∴方程变为3x-4=6x+1,解得:x=53-. 故选B.本题考查了二元一次方程的解的知识,解题的关键是根据方程的解求得m的值,难度不大.5.D解析:D【分析】根据等式的性质,可得答案.【详解】解:由x+3=-1,得x=-1-3,所以A选项错误;由7x=-2,得x=-27,所以B选项错误;由12x=0,得x=0,所以C选项错误;由2=x-1,得x=1+2,所以D选项正确.故选D.【点睛】本题考查了等式的性质,熟记等式的性质是解题关键.6.B解析:B【解析】解:设商品的进价为x元,则:x(1+20%)=120×0.9,解得:x =90.故选B.点睛:本题考查了一元一次方程的实际应用,解决本题的关键是根据题目给出的条件,找出合适的等量关系,列出方程,再求解.亦可根据利润=售价一进价列方程求解.7.D解析:D【详解】因为xΔy=xy+x+y,且2Δm=-16,所以2m+2+m=-16,解得m=- 6,故选D.考点:1.新定义题2.一元一次方程.8.A解析:A【解析】试题分析:∵4a-9与3a-5互为相反数,∴4a-9+3a-5=0,解得:a=2,∴=1,故选A.考点:1.解一元一次方程;2.相反数;3.代数式求值.9.D解析:D方程两边每一项都乘以6即可得.【详解】方程两边都乘以6,得:2(2x-1)=6-3(5x+2),故选D .【点睛】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解.10.C解析:C【分析】根据“利息=本金×利率×时间”(利率和时间应对应),列出方程,即可得出结论.【详解】解:根据题意得:x+2×2.75%x=21100;故选:C .【点睛】此题主要考查了一元一次方程的应用,计算的关键是掌握根据利息、利率、时间和本金的等量关系,列出方程.11.B解析:B【分析】设加工小齿轮的工人有x 名,则加工大齿轮的工人有(34)x -名,根据生产的小齿轮的数量:生产的大齿轮的数量=3:2即可列出方程,进而可得答案.【详解】解:设加工小齿轮的工人有x 名,则加工大齿轮的工人有(34)x -名.根据题意,得220315(34)x x ⨯=⨯-.故选:B .【点睛】本题考查了一元一次方程的应用,属于常考题型,正确理解题意、找准相等关系是解题的关键.12.B解析:B【分析】根据等式的基本性质,对原式进行分析即可.【详解】将原方程两边都乘2,得2x =,这是依据等式的性质2.故选B .本题主要考查了等式的基本性质,等式性质:1、等式的两边同时加上或减去同一个数或字母,等式仍成立;2、等式的两边同时乘以或除以同一个不为0数或字母,等式仍成立.二、填空题13.4【解析】8个班进行友谊赛也就是说每个班级要和其余7个班级比赛根据总比赛场数为7设赢了x 场则3x+(7-x)=15解得x=4故答案为:4解析:4【解析】8个班进行友谊赛,也就是说每个班级要和其余7个班级比赛,根据总比赛场数为7,设赢了x 场,则3x +(7-x )=15,解得x =4,故答案为:4.14.【分析】先求出m 的值再代入求出x 的值即可【详解】因为原方程是关于x 的一元一次方程所以移项得合并同类项得把代入原方程得移项得合并同类项得系数化为1得故答案为:【点睛】本题考查了解一元一次方程的问题掌握 解析:3x =-【分析】先求出m 的值,再代入求出x 的值即可.【详解】因为原方程是关于x 的一元一次方程,所以21+=m ,移项,得12m =-.合并同类项,得1m =-.把1m =-代入原方程,得224x --=.移项,得242x -=+.合并同类项,得26x -=.系数化为1,得3x =-.故答案为:3x =-.【点睛】本题考查了解一元一次方程的问题,掌握解一元一次方程的方法是解题的关键. 15.【分析】根据共生数对的定义进行分析列式求解即可【详解】由已知可得解得x=故答案为:【点睛】考核知识点:解一元一次方程理解题意是关键 解析:13【分析】根据共生数对的定义进行分析,列式,求解即可.【详解】由已知可得221x x -=--解得x=13故答案为:13 【点睛】考核知识点:解一元一次方程.理解题意是关键.16.-33【分析】先设第一个空填m 则第二个空就填-m 最后形成一个方程接着解出方程进一步求出答案即可【详解】设第一个空填m 则第二个空就填-m ∴解得:∴故答案为:3【点睛】本题主要考查了一元一次方程的运用熟解析:-3, 3【分析】先设第一个空填m ,则第二个空就填-m ,最后形成一个方程,接着解出方程进一步求出答案即可.【详解】设第一个空填m ,则第二个空就填-m ,∴2315m m +=-,解得:3m =-,∴3m -=.故答案为:3-,3.【点睛】本题主要考查了一元一次方程的运用,熟练掌握根据题意设出未知数求解是解题关键. 17.【解析】【分析】若设小明x 岁则小红的年龄(x+2)岁根据小明和小红的年龄和为18岁可列一元一次方程求解【详解】(1)根据题意设小明岁则小红的年龄为(2)设小明x 岁则可列方程:【点睛】本题考查一元一次解析:(2)x +, (2)18x x ++=【解析】【分析】若设小明x 岁,则小红的年龄 (x+2)岁,根据小明和小红的年龄和为18岁,可列一元一次方程求解.【详解】(1)根据题意,设小明x 岁,则小红的年龄为(2)x +(2)设小明x 岁,则可列方程:(2)18x x ++=【点睛】本题考查一元一次方程的应用,根据题意列出正确的一元一次方程是解题关键. 18.减去2x 等式的性质1;除以等式的性质2【解析】【分析】根据等式的性质即可作答等式的性质1等式两边加同一个数(或式子)结果仍得等式;性质2等式两边乘同一个数或除以一个不为零的数结果仍得等式【详解】(1解析:减去2x ,等式的性质1;除以13-,98-,等式的性质2. 【解析】【分析】 根据等式的性质即可作答.等式的性质1、等式两边加同一个数(或式子)结果仍得等式;性质2、等式两边乘同一个数或除以一个不为零的数,结果仍得等式.【详解】(1)由等式325x x =+的两边都减去2x ,得到等式5x =,这是根据等式的性质1; (2)由等式1338x -=的两边都除以13-,得到等式x=98-,这是根据等式的性质2; 故答案为:减去2x ,等式的性质1;除以13-,98-,等式的性质2. 【点睛】 本题考查了等式的性质.遇到此类题目要先确定等式变形前后用的是性质1还是2,再用相应的方法求解.19.7【解析】【分析】设其中的男生有x 人根据每位男生看到白色与红色的安全帽一样多可以表示出女生有(x-1)人再根据每位女生看到白色的安全帽是红色的2倍列方程求解【详解】设男生有x 人则女生有(x−1)人根解析:7【解析】【分析】设其中的男生有x 人,根据每位男生看到白色与红色的安全帽一样多,可以表示出女生有(x-1)人.再根据每位女生看到白色的安全帽是红色的2倍列方程求解.【详解】设男生有x 人,则女生有(x−1)人,根据题意得x=2(x−1−1)解得x=4x−1=3.4+3=7人.故答案为:7.【点睛】此题考查一元一次方程的应用,解题关键在于列出方程.20.【解析】【分析】首先设标价x 元由题意得等量关系:标价×打折﹣利润=进价代入相应数值再求出x 的值【详解】设标价x 元由题意得:80x ﹣b=a 解得:x=故答案为:【点睛】此题主要考查了列代数式解决问题的关 解析:5()4a b + 【解析】【分析】首先设标价x元,由题意得等量关系:标价×打折﹣利润=进价,代入相应数值,再求出x 的值.【详解】设标价x元,由题意得:80%x﹣b=a,解得:x=5()4a b+,故答案为:5()4a b+.【点睛】此题主要考查了列代数式,解决问题的关键是读懂题意,找到所求的量的等量关系,标价×打折﹣利润=进价.三、解答题21.(1)2.4天(2)2天【分析】(1)完成工作的工作量为1,根据工作时间=工作总量÷工作效率和,列式即可求解.(2)设徒弟先做1天,再两人合作还需x天完成,根据等量关系:完成工作的工作总量为1,列出方程即可求解.【详解】解:(1)11511=2.44612⎛⎫÷+=÷⎪⎝⎭(天).答:两个人合作需要2.4天完成.(2)设还需x天可以完成这项工作,根据题意,得11 64x x++=.解得=2x.答:还需2天可以完成这项工作.【点睛】本题考查一元一次方程的应用,根据题意列出方程并解答是解题关键22.(1)小明原计划购买文具袋17个;(2)小明购买了钢笔20支,签字笔30支.【分析】(1)设未知数后可以根据等量关系“实际购买文具袋(比原计划多1个)的花费×0.85=原计划购买文具袋的花费-17”列方程求解;(2)设未知数后可以根据等量关系“钢笔和签字笔的总价×0.8(或80%)=272”列方程求解.【详解】解:()1设小明原计划购买文具袋x 个,则实际购买了()x 1+个,由题意得:()10x 108510x 17+⨯=-.. 解得:x 17=;答:小明原计划购买文具袋17个;()2设小明购买了钢笔y 支,则购买签字笔()50y -支,由题意得:()8y 650y 80%272⎡⎤+-⨯=⎣⎦,解得:y 20=,则:50y 30-=.答:小明购买了钢笔20支,签字笔30支.【点睛】本题考查一元一次方程的应用,根据题目中的等量关系设未知数列方程求解是解题关键. 23.(1)详见解析;(2)详见解析.【分析】(1)上下相邻的数相差18,左右相邻的数相差是2,所以可用a 表示;(2)根据等量关系:框内的5个数之和能等于2015,2020,分别列方程分析求解.【详解】(1)设中间的数是a ,则a 的上一个数为a−18,下一个数为a +18,前一个数为a−2,后一个数为a +2;(2)设中间的数是a ,依题意有5a =2015,a =403,符合题意,这5个数中最小的一个数是a−18=403−18=385,2n−1=385,解得n =193,193÷9=21…4,最小的这个数在图1数表中的位置第22排第4列.5a =2020,a =404,404是偶数,不合题意舍去;即十字框中的五数之和不能等于2020,能等于2015.【点睛】本题考查一元一次方程的应用,关键是看到表格中中间位置的数和四周数的关系,最后可列出方程求解.24.(1)x =7;(2)x =-9;(3)x =3【分析】(1)两边同时加上2即可求解;(2)两边同时乘-32即可求解;(3)两边同时减x ,然后同时除以2即可求解.【详解】解:(1)等式两边加2,得x -2+2=5+2,即x =7.(2)等式两边乘-32,得x =6×(-32), 即x =-9.(3)等式两边减x ,得2x =6.两边除以2,得x =3.【点睛】本题主要考查了等式的基本性质.等式性质:1、等式的两边同时加上或减去同一个数或字母,等式仍成立;2、等式的两边同时乘以或除以同一个不为0数或字母,等式仍成立. 25.成本价是56元,按降价后的新售价每双还可赚7元.【分析】若设成本价为x 元,则成本加5成后的售价为(1+50%)x 元,再按七五折后的售价为0.75(1+50%)x 元,根据降价后的新售价是每双63元即可得方程0.75(1+50%)x=63,解方程求得x 的值,根据盈利=售价-进价即可求得答案.【详解】设成本价为x 元,则成本加5成后的售价为(1+50%)x 元,再按七五折后的售价为0.75(1+50%)x 元.根据题意得:0.75(1+50%)x=63,解得:x=56,所以成本价是56元,按降价后的新售价每双还可赚7元.【点睛】本题考查了一元一次方程的应用,解决问题时弄清加五成和七五折这些概念.26.(1)9x = ;(2)13x =【分析】(1)通过移项,合并同类项,便可得解;(2)通过去分母,去括号,移项,合并同类项,进行解答便可.【详解】(1)3x ﹣2x =5+4,解得:x =9;(2)去分母得:2(2x ﹣5)+3(3﹣x )=12,去括号得:4x ﹣10+9﹣3x =12,移项得:4x ﹣3x =12+10﹣9,合并同类项得:x =13.【点睛】本题主要考查了解一元一次方程,熟记解一元一次方程的一般步骤是解题的关键.。
整式的加减复习题
一、选择题
1.对于单项式22r π-的系数、次数分别为( )
A.-2,2
B.-2,3
C.2,2π-
D.3,2π-
2. 下列说法正确的是( )
A .单项式23
x -的系数是3- B .单项式324
2π2ab -的指数是7 C .1x
是单项式 D .单项式可能不含有字母 3.)]([n m ---去括号得 ( )
A 、n m -
B 、n m --
C 、n m +-
D 、n m +
4.减去m 3-等于5352--m m 的式子是( )
A 、)1(52-m
B 、5652--m m
C 、)1(52+m
D 、
)565(2-+-m m 5.若A 和B 都是五次多项式,则( )
A .A
B +一定是多项式 B .A B -一定是单项式
C .A B -是次数不高于5的整式
D .A B +是次数不低于5的整式
6.若m 、n 都是自然数,多项式222m n m n a b ++- 的次数是( )
A .m
B .2n
C .2m n +
D .m 、2n 中较大的数
7. 把(x-3)2 -2(x-3)-5(x-3)2 +(x-3) 中的(x-3)看成一个因式合并同类项,结果应是( )
A. -4(x-3)2+(x-3)
B. 4(x-3)2-x (x-3)
C. 4(x-3)2-(x-3)
D. -4(x-3)2-(x-3)
二、填空题
1. 多项式65243525343245--+-+-x y y x y x xy y x 最高次项系数是 ,按字母
x 升幂排列为 。
2.单项式b a 25102.1π⨯-的系数是 ,次数是 。
3.若
5233m n x y x y -与的和是单项式,则n m = 。
4.3116x ax bx =-++=若时,代数式,3
11x ax bx =++=则时,_________. 5.已知532++x x 的值为3,则代数式1932-+x x 的值为
6.如果225a ab +=,222ab b +=-,则224a b -= 22252a ab b ++=
7.若y x z y ==22,,则x y z ++=
8.已知一个三位数的个位数字是a, 十位数字比个位数字大3,百位数字是个位数字的2倍,这个三位数可表示为________________.
9. 已知实数b a 、与c 的大小关系如图所示: 求c b a c b a ---+-2)(32= 10.某书每本定价8元,若购书不超过10本,按原价付款;若一次购书10本以上,超过10本部分打八折.设一次购书数量为x 本,付款金额为y 元,请填写下表:
11.长方形的一条边长为3a+2b,另一条边比它小b-2a.则这个长方形的周长是 12.下面的一列单项式:x ,-2x 2,4x 3,-8x 4,…根据你发现的规律,第7个单项式为______;第n 个单项式为______.
13.如图,每一幅图中均含有若干个正方形,第1幅图中有1个正方形;第2幅图中有5个正方形;…按这样的规律下去,第6幅图中有( )个正方形.
三、解答题
1.已知()0522=++++b a a ,求()[]
ab a b a ab b a b a -----22224223的值.
2.有这样一道题“当22a b ==-,时,求多项式()()
22233322a ab b a ab b -----+的值”,马小虎做题时把2a =错抄成2a =-时,王小明没抄错题,但他们做出的结果却都一样,你知道这是怎么回事吗?说明理由。
3.已知M=2x²+3kx-2x +6,N=-x²+kx +2,且3M +6N 的值与x 的值无关,求k 的值。