整式的加减【易错点整理】
- 格式:pdf
- 大小:93.07 KB
- 文档页数:1
整式的加减全章知识点总结一、整式的基本概念1、单项式由数与字母的积组成的代数式叫做单项式,单独的一个数或一个字母也叫做单项式。
例如,5、x、2xy 等都是单项式。
单项式中的数字因数叫做这个单项式的系数,一个单项式中,所有字母的指数的和叫做这个单项式的次数。
比如单项式 3x²y 的系数是 3,次数是 3(2 + 1 =3)。
2、多项式几个单项式的和叫做多项式。
在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫做常数项。
多项式里次数最高项的次数,叫做这个多项式的次数。
例如,多项式 2x³+ 3x² 5 中,有三项,分别是 2x³、3x²、-5,其中-5 是常数项,次数最高项是 2x³,次数为 3,所以这个多项式的次数是 3。
3、整式单项式和多项式统称为整式。
二、整式的加减运算1、同类项所含字母相同,并且相同字母的指数也相同的项叫做同类项。
几个常数项也是同类项。
例如,2x²y 和5x²y 是同类项,3 和-7 是同类项。
2、合并同类项把多项式中的同类项合并成一项,叫做合并同类项。
合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母连同它的指数不变。
例如,计算 3x²+ 2x²=(3 + 2)x²= 5x²。
3、去括号法则(1)括号前是“+”号,把括号和它前面的“+”号去掉后,原括号里各项的符号都不改变。
例如,a +(b c)= a + b c 。
(2)括号前是“ ”号,把括号和它前面的“ ”号去掉后,原括号里各项的符号都要改变。
例如,a (b c)= a b + c 。
4、整式的加减运算整式的加减运算实际上就是合并同类项和去括号。
一般步骤是:(1)如果有括号,先去括号;(2)然后合并同类项。
例如,计算(2x² 3x + 1)(3x²+ 5x 2)= 2x² 3x + 1 3x² 5x + 2=(2x² 3x²)+( 3x 5x)+(1 + 2)= x² 8x + 3三、整式加减运算的应用1、化简求值先将整式进行化简,然后代入给定的值进行计算。
初中数学整式的加减法运算的错误分析是什么整式的加减法运算是初中数学中的重要知识点,但是在学习过程中,学生常常会犯错。
这些错误可能是因为对概念理解不清,计算粗心或缺乏练习等原因造成的。
本文将针对初中数学中整式的加减法运算常见的错误进行分析,并提供纠正错误的方法,帮助初中生更好地掌握这一知识点。
错误一:未识别同类项同类项是指变量和变量的指数相同的项。
在整式加减法运算中,同类项是必须要进行合并的。
例如:2x + 3y + 4z+ 5x + 2y - 3z如果没有识别同类项,可能会直接将两个整式相加,得到:2x + 3y + 4z + 5x + 2y - 3z = 7x + 5y + z这个结果是错误的,因为同类项没有合并。
正确的做法是按照相同的变量进行合并,得到:(2x + 5x) + (3y + 2y) + (4z - 3z) = 7x + 5y + z解决这个错误的方法是加强对同类项的识别和区分,将相同变量的项画上相同的颜色或符号,以便更好地进行合并。
错误二:忽略括号运算在整式的加减法运算中,括号内的整式是必须要进行运算的。
例如:3x + 2y+ (4x - y)如果忽略括号运算,直接将两个整式相加,得到:3x + 2y + 4x - y = 7x + y这个结果是错误的,因为括号内的整式没有进行运算。
正确的做法是先计算括号内的整式,得到:3x + 2y + 4x - y = 7x + y解决这个错误的方法是加强对括号运算的理解和掌握,将括号内的整式看作一个整体,先计算括号内的整式,然后再进行合并。
错误三:减法运算错误在整式的减法运算中,要注意被减数中每一项都要乘以-1。
例如:3x + 2y - 4z- (5x + 3y - z)如果没有将被减数中的每一项乘以-1,直接将两个整式相加,得到:3x + 2y - 4z - 5x - 3y + z = -2x - y - 3z这个结果是错误的,因为没有进行减法运算。
“整式的加减”易错点剖析作者:邹兴平来源:《语数外学习·上旬》2013年第10期同学们在学习整式的加减时,由于对所学的知识理解得不透彻,计算不仔细,常常在解题中出现一些错误.现将常见的错误归纳如下,以引起同学们的重视.易错点一:对有关概念理解出现错误同学们如果对单项式的概念、系数和次数,多项式的概念和次数,同类项的概念不善辨别,就不容易理解这些概念的内涵.正解:选B.点评:单项式是只含有数与字母的积,其含义解析:①不含加减运算;②字母不出现在分母里;③单独的一个数或字母也是单项式.易错点二:在项的移动过程中,项动符号不动而出错同类项应为所含字母相同,并且相同字母的指数分别相同的项叫做同类项.同类项必须同时具备两个条件:(1)所含字母相同;(2)相同字母的指数分别相同.两个条件缺一不可.几个常数项也叫同类项.同类项与系数无关,与字母的排列顺序无关.合并同类项时,系数相加是关键,字母及其指数都不变.例2 计算:2x2+4y3-y3-5-3y3-4x2+3.错解:原式=(2x2+4x2)+(4y3-y3+3y3)+(5+3)=6x2+6y3+8.诊断:此题解法的错误在于移动项时没有把该项前面的符号一起移动,特别是“-”号.正解:原式=(2x2-4x2)+(4y3-y3-3y3)+(-5+3)=-2x2-2.点评:整式的加减实质上是合并同类项.移动项时,要将项的符号一起移动,项的系数是“-”号时,一定不要遗漏“-”号.易错点三:去括号时,照顾不全而符号出错例3 化简:-3(a2b+2b2)+(3a2b-13b2).错解:原式=-3a2b+2b2+3a2b-13b2=-11b2.诊断:错误的原因在于第一步应用乘法分配律时,2b2这一项漏乘了-3.正解:原式=-3a2b-6b2+3a2b-13b2=-19b2.点评:整式的加减中去括号是至关重要的一环.去括号的法则是:括号前是“+”号时,把括号和它前面的“+”号去掉,括号里各项都不变符号;括号前是“-”号,把括号和它前面的“-”号去掉,括号里各项都要改变符号,不能漏掉任何一项.易错点四:忽略分数线的作用点评:分数线不但具有除号的作用,而且还有括号的作用.。
河南省七年级数学上册第二章整式的加减易错知识点总结单选题1、按如图所示程序计算,若开始输入的x值是正整数,最后输出的结果是32,则满足条件的x值为()A.11B.4C.11或4D.无法确定答案:C分析:根据题意列出等式,进而可以求解.解:由题意可得,当输入x时,3x-1=32,解得:x=11,即输入x=11,输出结果为32;当输入x满足3x-1=11时,解得x=4,即输入x=4,结果为11,再输入11可得结果为32,故选:C.小提示:本题考查了程序流程图与代数式求值,根据题意列出等式是解决本题的关键.2、生物学中,描述、解释和预测种群数量的变化,常常需要建立数学模型.在营养和生存空间没有限制的情况下,某种细胞可通过分裂来繁殖后代,我们就用数学模型2n来表示.即:21=2,22=4,23=8,24=16,25=32,……,请你推算22022的个位数字是()A.8B.6C.4D.2答案:C分析:利用已知得出数字个位数的变化规律进而得出答案.解:∵21=2,22=4,23=8,24=16,25=32,…,∴尾数每4个一循环,∵2022÷4=505……2,∴22022的个位数字应该是:4.故选:C.小提示:此题主要考查了尾数特征,根据题意得出数字变化规律是解题关键.3、下列说法正确的是()A.3πxy的系数是3B.3πxy的次数是3C.−23xy2的系数是−23D.−23xy2的次数是2答案:C分析:分析各选项中的单项式的系数或者次数,即可得出正确选项.A.π是数字,3πxy的系数是3π,不符题意;B.3πxy的次数是2,x,y指数都为1,不符题意;C.−23xy2的系数是−23,符合题意;D.−23xy2的次数是3 ,x,y指数分别为1和2,不符题意.故选C.小提示:本题考查了单项式的系数:单项式的系数是单项式字母前的数字因数,单项式的次数是单项式所有字母指数的和,正确理解和运用该知识是解题的关键.4、一台饮水机成本价为a元,销售价比成本价高22%,因库存积压需降价促销,按销售价的80%出售,则每台实际售价为( )A.(1+22%)(1+80%)a元B.(1+22%)a·80%元C.(1+22%)(1-80%)a元D.(1+22%+80%)a元答案:B分析:先表示出销售价为(1+22%)a,再根据按销售价的80%出售可得实际售价.解:由题意得,实际售价为:(1+22%)a·80%元.故选:B.小提示:本题考查了列代数式,解题的关键是读懂题意,找到关键描述语列出代数式.5、用同样大小的黑色棋子按如图所示的规律摆放,第1个图形有6颗棋子,第2个图形有9颗棋子,第3个图形有12颗棋子,第4个图形有15颗棋子……,以此类推,第()个图形有2022颗棋子.A.672B.673C.674D.675答案:B分析:观察图形,根据给定图形中棋子颗数的变化,找出变化规律:第n个图形有(3n+3)颗棋子,然后计算即可.解:观察图形,可知:第1个图形有6=3×2颗棋子,第2个图形有9=3×3颗棋子,第3个图形有12=3×4颗棋子,第4个图形有15=3×5颗棋子,……,∴第n个图形有3×(n+1)=(3n+3)颗棋子,当3n+3=2022时,解得:n=673,故选:B.小提示:本题考查了规律型:图形的变化类,根据给定图形中棋子颗数的变化情况,找出变化规律是解题的关键.6、小李今年a岁,小王今年(a-15)岁,过n+1年后,他们相差()岁A.15B.n+1C.n+16D.16答案:A分析:用大李今年的年龄减去小王今年的年龄,即可求出两人的年龄差,再根据年龄差不会随着时间的变化而改变,由此即可确定再过n+1年后,大李和小王的年龄差仍然不变.解:a﹣(a﹣15)=15(岁)答:他们相差15岁.故选:A.小提示:此题考查了列代数式及年龄问题,要注意:两个人的年龄差是一个永远也不变的数值.7、若|a−2|+|b+3|=0,则b a的值为()A.1B.﹣1C.﹣6D.9答案:D分析:根据绝对值的非负性得到a与b的值,代入求值即可.解:∵|a−2|≥0,|b+3|≥0,∴当|a−2|+|b+3|=0时,∴a﹣2=0,b+3=0,解得a=2,b=﹣3,∴b a=(−3)2=9,故选:D.小提示:本题考查代数式求值,涉及到绝对值的非负性及幂的运算,熟练掌握非负式的和为零的条件是解决问题的关键.8、下列各组数中,是同类项的是()A.−2x2y与13yx2B.−0.5xy2与0.5x2y C.xyz与xyc D.3x与2y答案:A分析:根据同类项的概念求解.解:A.−2x2y与13yx2,字母相同,相同字母的指数也相同,是同类项,符合题意;B.−0.5xy2与0.5x2y,字母相同,相同字母的指数不相同,不是同类项不符合题意;C.xyz与xyc,字母不同,不是同类项,不符合题意;D. 3x与2y,字母不同,不是同类项,不符合题意;故选A.小提示:本题考查了同类项的知识,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同.9、下列各式中,不是..整式的是()A.1x B.x-y C.xy6D.4x答案:A分析:利用整式的定义逐项判断即可得出答案.解:A.1x既不是单项式,又不是多项式,不是整式,故本选项符合题意;B.x-y,是多项式,是整式,故本选项不符合题意;C.xy6,是单项式,是整式,故本选项不符合题意;D.4x,是单项式,是整式,故本选项不符合题意;故选A.小提示:本题考查整式的定义,整式为单项式和多项式的统称,是有理式的一部分,在有理式中可以包含加,减,乘,除、乘方五种运算,但在整式中除数不能含有字母.10、古希腊毕达哥拉斯学派的“三角形数”是一列点(或圆球)在等距的排列下可以形成正三角形的数,如1,3,6,10,15,….我国宋元时期数学家朱世杰在《四元玉鉴》中所记载的“垛积术”其中的“落一形”堆垛就是每层为“三角形数”的三角锥的锥垛(如图所示顶上一层1个球,下一层3个球,再下一层6个球),若一个“落一形”三角锥垛有10层,则该堆垛球的总个数为()A.55B.220C.285D.385答案:B分析:“三角形数”可以写为:1,3=1+2,6=1+2+3,10=1+2+3+4,15=1+2+3+4+5,所以第n层“三角形数”为n(n+1)2,再把n=10代入计算即可.解:∵“三角形数”可以写为:第1层:1,第2层:3=1+2,第3层:6=1+2+3,第4层:10=1+2+3+4,第5层:15=1+2+3+4+5,∴第n层“三角形数”为n(n+1)2,n层时,垛球的总个数为:12+22+⋯+n22+1+2+⋯+n2=n(n+1)(2n+1)12+n(n+1)4∴若一个“落一形”三角锥垛有10层,则该堆垛球的总个数为10×11×2112+10×114=220故选:B.小提示:本题考查了等腰三角形的性质以及数字变化规律,得出第n层“三角形数”为n(n+1)2是解答本题的关键.11、如图,将图1中的长方形纸片前成①号、②号、③号、④号正方形和⑤号长方形,并将它们按图2的方式无重叠地放入另一个大长方形中,若需求出没有覆盖的阴影部分的周长,则下列说法中错误的是()A.只需知道图1中大长方形的周长即可B.只需知道图2中大长方形的周长即可C.只需知道③号正方形的周长即可D.只需知道⑤号长方形的周长即可答案:B分析:先设①号正方形的边长为a,②号正方形的边长为b,则③号正方形的边长为a+b,④号正方形的边长为2a+b,⑤号长方形的长为3a+b,宽为b-a,再求出阴影图形的周长6(a+b),然后分别求出图1、图2,③,⑤的周长看是否能求出a+b即可解:设①号正方形的边长为a,②号正方形的边长为b,则③号正方形的边长为a+b,④号正方形的边长为2a+b,⑤号长方形的长为3a+b,宽为b-a,如图,AD=b-a+b+a=2b,AB=a+b+2a+b-b=3a+b∴矩形ABCD的周长为2(AB+AD)=2(3a+b+2b)=6(a+b) ,∴阴影部分图形的周长=6(a+b)A.图1中大长方形的周长为:2(b+a+b+a+b+2a+b)=8(a+b),只需知道图1中大长方形的周长,可求a+b,便可求出阴影部分图形的周长=6(a+b) ,故选项A正确,不合题意;B.图2中大长方形的周长为2(b-a+b+2a+b+3a+2b)=2(4a+5b) ,只需知道图2中大长方形的周长,无法求出a+b,故选项B不正确,符合题意;C.③号正方形周长为:4(a+b),只需知道③号正方形的周长可求a+b,便可求出阴影部分图形的周长=6(a+b) ,故选项C正确,不合题意;D.⑤号正方形周长为:2(3a+b+b-a)=4(a+b),只需知道⑤号长方形的周长可求a+b,便可求出阴影部分图形的周长=6(a+b) ,故选项D正确,不合题意;所以答案是:B.小提示:此题考查整式加减的应用,解题的关键是设出未知数,列代数式表示各线段进而解决问题.12、下面是小芳做的一道多项式的加减运算题,但她不小心把一滴墨水滴在了上面:(−x2+3xy−12y2)−2(−52x2+4xy−32y2)=−5xy+52y2,阴影部分即为被墨迹弄污的部分.那么被墨汁遮住的一项应是()A.4x2−5y B.2y−x C.5x D.4x2答案:D分析:根据题意易得(−x2+3xy−12y2)−2(−52x2+4xy−32y2)+5xy−52y2,然后进行求解即可.解:由题意得:(−x2+3xy−12y2)−2(−52x2+4xy−32y2)+5xy−52y2=−x2+3xy−12y2+5x2−8xy+3y2+5xy−52y2 =4x2故选:D.小提示:本题主要考查整式的加减,熟练掌握整式的加减运算是解题的关键.13、下列去括号或添括号的变形中,正确的是()A.2a-(3b-c)=2a-3b-c B.3a+2(2b-1)=3a+4b-1C.a+2b-3c=a+(2b-3c)D.m-n+a-b=m-(n+a-b)答案:C分析:由去括号和添括号的法则可直接判断各个选项的正误,进而得到答案.解:2a−(3b−c)=2a−3b+c,故选项A错误,不符合题意;3a+2(2b−1)=3a+4b−2,故选项B错误,不符合题意;a+2b−3c=a+(2b−3c),故选项C正确,符合题意;m−n+a−b=m−(n−a+b),故选项D错误,不符合题意;故选:C.小提示:本题考查去括号和添括号,熟练掌握相关知识是解题的关键.14、若x+y=2,z−y=−3,则x+z的值等于()A.5B.1C.-1D.-5答案:C分析:将两整式相加即可得出答案.∵x+y=2,z−y=−3,∴(x+y)+(z−y)=x+z=−1,∴x+z的值等于−1,故选:C.小提示:本题考查了整式的加减,熟练掌握运算法则是解本题的关键.15、下列去括号变形正确的是()A.a+(b−c)=ab−c B.3a−(b+c−d)=3a−b+c−dC.m+4(p+q)=m+4p+q D.12(−x+4y−6z)=−12x+2y−3z答案:D分析:根据去括号法则对四个选项逐一进行分析,要注意括号前面的符号,以便于选用合适的法则.解:a+(b−c)=a+b−c,故A不符合题意;3a−(b+c−d)=3a−b−c+d,故B不符合题意;m+4(p+q)=m+4p+4q,故C不符合题意;1 2(−x+4y−6z)=−12x+2y−3z,故D符合题意;故选D小提示:本题考查去括号的方法:去括号时,运用乘法的分配律,先把括号前的数字与括号里各项相乘,再运用括号前是“+”,去括号后,括号里的各项都不改变符号;括号前是“-”,去括号后,括号里的各项都改变符号.运用这一法则去掉括号.填空题16、观察下列等式:(x2−1)÷(x−1)=x+1;(x3−1)÷(x−1)=x2+x+1;(x4−1)÷(x−1)=x3+x2+x+1;(x5−1)÷(x−1)=x4+x3+x2+x+1;(x7−1)÷(x−1)=x6+x5+x4+x3+x2+x+1;根据以上等式总结规律并计算,则1+2+22+23+24+25+26+27=______.答案:255分析:根据所给出的等式找到规律,再利用式子的规律进行逆用即可求解.解:由给出等式可知,(x n−1)÷(x−1)=x n−1+x n−2+...+x2+x+1,∴1+2+22+23+24+25+26+27=(28−1)÷(2−1)=255所以答案是:255.小提示:本题考查数字的变化规律,能够根据题中所给式子探索出式子的规律是解题的关键.17、如图,圆的周长为4个单位长度.在该圆周上4等分点处分别标上数字0、1、2、3,让圆周上表示数字0的点与数轴上表示−1的点重合,将该圆沿着数轴的负方向滚动,则数轴上表示数−2022的点对应圆周上的数字是__________.答案:3分析:由于圆的周长为4个单位长度,所以只需先求出此圆在数轴上环绕的距离,再用这个距离除以4,如果余数分别是0,1,2,3,则分别与圆周上表示数字0,3,2,1的点重合.解:∵-1-(-2022)=2021,2021÷4=505…1,∴数轴上表示数-2022的点与圆周上的数字3重合,所以答案是:3.小提示:本题找到表示数-2022的点与圆周上起点处表示的数字重合,是解题的关键. 18、多项式4x 3y 3−5x 4y 3−3x 2−y 2+5x +2的次数是________次. 答案:七分析:根据多项式的次数的定义解答即可.解:根据多项式以及次数的定义,多项式4x 3y 3−5x 4y 3−3x 2−y 2+5x +2含4x 3y 3,−5x 4y 3,−3x 2,−y 2,5x ,2这六项,次数分别为6、7、2、2、1、0,∴多项式4x 3y 3−5x 4y 3−3x 2−y 2+5x +2的次数是七次. 所以答案是:七.小提示:本题主要考查多项式的次数的定义.几个单项式的和叫做多项式,每个单项式叫做多项式的项,其中不含字母的项叫做常数项,多项式中次数最高的项的次数叫做多项式的次数.熟练掌握多项式的次数的定义是解题的关键.19、在代数式a ,π,43ab ,a ﹣b ,a+b 2,x 2+x +1,5,2a ,1+x x中,整式有__个;单项式有__个,次数为2的单项式是_;系数为1的单项式是_. 答案: 8 5 43ab a分析:解决本题关键是搞清整式、单项式、多项式的概念,紧扣概念作出判断; 解:整式有a ,π,43ab ,a ﹣b ,a+b 2,x 2+x +1,5,2a ,共8个;单项式有a ,π,43 ab ,5,2a 共5个,次数为2的单项式是43ab ; 系数为1的单项式是a . 所以答案是:8;5;43ab ;a .小提示:本题考查了整式、单项式的有关概念,注意单个字母与数字也是单项式,单项式的系数是其数字因数,单项式的次数是所有字母指数的和. 20、将黑色圆点按如图所示的规律进行排列:图中黑色圆点的个数依次为:1,3,6,10,…,将其中所有能被3整除的数按从小到大的顺序重新排列成一组新数据,则新数据中的第67个数为______.答案:5151分析:首先得到前n个图形中每个图形中的黑色圆点的个数,得到第n个图形中的黑色圆点的个数再判断其中能被3整除的数,得到每3个数中,都有2个能被3整除,再计算出第67个能被3整除的数所在组,为原数列中第101个数,解:第①个图形中的黑色圆点的个数为1;=3;第②个图形中的黑色圆点的个数为(1+2)×22=6;第③个图形中的黑色圆点的个数为(1+3)×32=10;第④个图形中的黑色圆点的个数为(1+4)×42……;由此发现,第n个图形中的黑色圆点的个数为n(1+n)2∴这列数为1,3,6,10,15,21,28,36,45,55,66,78,91,……,其中每3个数中,都有2个能被3整除,∵67÷2=33…1,33×3+2=101.=5151.则第67个被3整除的数为原数列中第101个数,即101×1022所以答案是:5151小提示:本题主要考查了图形类规律题,明确题意,准确得到规律是解题的关键.11。
代数式中的错解示例一、例1 用代数式表示:(1) x 除以y 的3倍的商的平方;(2) x 与y 的倒数的和;(3) a 与b 的平方的和除c ;(4) a 的立方与b 平方的倒数的差.错解:(3×x y )2;(2)1x +1y ;(3)a 2+b 2c ;(4)1a 3-1b 2. 错解分析:(1)把“y 的3倍”误认为“3倍的商”;(2)混淆了“x 与y 的倒数的和”与”x 与y 的倒数和”不同的意义,前者是x +1y ;而后者是1x +1y. (3)错误有两点,其一没有把“a 与b 的平方的和”与“a 与b 的平方和”区别开来,前者是a +b 2,而后者是a 2+b 2;其二混淆了“除以”与“除”的不同意义,“a 与b 的平方的和除c ”,其c 应该是被除式.(4)未能正确理解文字语言中的三层关系:第一是“a 的立方”,即a 3,第二是“b 平方的倒数”,应为1b 2;第三是第一部分的结果与第二部分结果的差.正解:(1)(x 3y )2; (2)x +1y ;(3)c a +b 2;(4)a 3-1b 2. 二、例2 用语言叙述下列代数式:(1)3(x +y);(2)ab-c ;(3)a bc ;(4)x -y m;(5)a(x-y)2. 错解:(1) 3乘以x 加y ;(2) a 乘以b 与c 的差;(3) a 除以b 乘以c ;(4) x 减去y 除以m 的商;(5)a 乘以x 减去y 的平方.错解分析:(1) “3乘以x 加y ”,其意义不明确,未能准确表述其运算顺序.正确的说法是“3与x +y 的积”,或“x 与y 的和的3倍”.(2)“a 乘以b 与c 的差”容易使人误解为a(b-c).正确的说法是“ab 与c 的差”或“a 乘以b 的积与c 的差”.(3)“a 除以b 乘以c ”所表示的代数式为a b·c ,显然与题意不符.正确说法应为“a 除以bc 的商”或“a 比bc ”.(4)“x 减去y 除以m 的商”容易使人误解为x-y m.因此,这种说法不妥.正确的说法是“x-y 除以m 的商”或“x 减去y 的差除以m”.(5) “a 乘以x 减去y 的平方”容易误解为(ax -y)2或[a(x -y)]2或ax - y 2.因此这种语言表述不清.正确的说法是“x 减去y 的差的平方与a 的积”.列代数式和说出代数式的意义是用数字、字母表示的符号语言与文字语言之间的互译的两种情况.三.识别单项式、多项式出错例3下列式子中,哪些是单项式?哪些是多项式?0,133,6x -,25m n -,1y -,2ab ,5210.218x x ++. 错解:6x -,25m n -,1y -,2ab 是单项式;0,133,5210.218x x ++是多项式. 错解分析:25m n -包含加减运算,它应该是多项式;1y-的分母中含有字母,所以它既不是单项式,也不是多项式;0和133都是数字,应是单项式.正解: .(请自己填上答案)点拨:判断一个式子是不是单项式,要严格依据定义进行判断,同时注意以下三点:①单独的一个数或一个字母是单项式;②单项式中数与字母只能是相乘的关系;③若分母中出现含字母的式子,则不是整式,而是将来我们要学习的“分式”,如1就是-1与y的商,所以不是单项式.y四、识别单项式的系数和次数出错例4请指出单项式x5y3z的系数和次数.错解:单项式x5y3z的系数是0,次数是8.错解分析:对于单项式x5y3z,系数为省略了的1,而不是0;计算次数时错解误将字母z的指数当成0,实际上是1.正解: .(请自己填上答案)点拨:单项式的系数是指单项式中的数字因数;单项式的次数指单项式中所有字母的指数和.要注意系数和次数中省略的1.五.识别多项式的项和次数出错例5 指出多项式3xy2-2xy+x-5是几次几项式,并指出这个多项式的各项.错解:这个多项式是六次四项式,各项分别为:三次项3xy2,二次项2xy,一次项x,常数项5.错解分析:错解是把多项式中所有字母的指数和当成了多项式的次数,而且在写多项式的项时忽略了符号.正解: .(请自己填上答案)点拨:多项式中每一个单项式称为多项式的项,这里要注意的是每一项都包括前面的符号.在多项式里,次数最高的项的次数是多项式的次数,也就是说多项式的次数实际上是用一个次数最高的单项式的次数来代表的.整式易错点示例一、对概念理解不透例1 指出单项式3xy ,221b -,a ,42z xy -的系数和次数. 错解: 3xy 的系数是1,次数是1; 221b -的系数是21,次数是2; a 的系数是0,次数是0;42z xy -的系数是0,次数是4.错解分析: 错误的原因是不理解什么是单项式的系数和次数,当系数和指数为1时,在单项式中省略不写,因而误认为这时的系数和指数为O ,单项式的系数包括它前面的符号.正解: 3xy 的系数是31,次数是2; 221b -的系数是-21,次数是2; a 的系数是1,次数是1;42z xy -的系数是-1,次数是7.注:单项式和多项式中的“+”和“-”号在确定系数时不能遗漏.例2 试指出下列说法的错误:y x 34,b a 34,32ab -,3yx 是同类项;3a -,331b 为同类项.错解分析: 由于同类项必须同时满足:①项中所含字母相同;②相同字母的次数分别相同.而本题中y x 34与b a 34由于字母不同,因此它们不是同类项;b a 34与32ab -虽然所含字母相同,但由于相同的字母的次数不相同,因此,它们也不是同类项.同样地,3a -与331b ,y x 34与32ab -也都不是同类项.正确答案是只有y x 34与3yx 是同类项.例3 多项式abc c b a 3333+--由哪几项组成?错解:多项式abc c b a 3333+--是由3a ,3b ,3c ,abc 3四项组成. 错解分析:此解漏掉了各项的符号,必须注意,多项式的项都包括它前面的符号,正确答案是由3a ,3b -,3c -,abc 3四项组成.例4 整式32+-a 是几次几项式?错解: 32+-a 是三次二项式.错解分析:这里第一项a -的次数是l ,系数是-1,后面一项32的指数虽然是3,但底数不含有字母,因而仍是常数项.所以这个整式是一次二项式.例5 多项式522+-b ab 是几次式?错解: 522+-b ab 是二次式.错解分析: 这个多项式中,次数最高的项是第一项,它的次数为1十2=3,所以多项式522+-b ab 是三次式.例6 在代数式m ,-2,24ab ,x 1,5y x +中,单项式有( ). A.2个 B.3个 C.4个 D.5个错解:选C .单项式有m ,24ab ,x 1,5y x +. 错因分析:因为单独的一个数字和一个字母也是单项式,所以-2是单项式;x 1表示l 与x 的商,它不是单项式;5y x +表示51与y x +的积,它应当属于多项式.正解:选 B .单项式有m ,-2,24ab .点拨:单项式中数字与字母之间都是乘积关系,所以包含其他的运算形式的代数式就不是单项式,应严格按照单项式的概念判断.二、判断单项式系数、次数出错例7 单项式332xy π-的系数是________,次数是________.错解:-3,6或31-,6.错因分析:此题中出现了π,因圆周率π是常数,当单项式中出现π时,应将其看作数字系数,所以系数为32π-;数字的指数不能加在字母的指数上算作单项式的次数,所以单项式的次数为x ,y 的指数的和.正解:系数是32-,次数是4.点拨:在解答此类问题时经常由于未分清字母与数字导致出错,应正确理解与分析单项式的系数与次数.三、判断多项式项数、次数出错例8 已知m ,n 都是正整数,多项式n m n m y x +-+32的次数是( )A.mB.n m +C.n m 22+D.不能确定错解:B .错因分析:题中多项式各项次数最高的是n m +3,但由于底数为3,所以此项为常数项.应比较含有字母的单项式的次数,所以主要分析m ,n 的大小.题目已知条件没有给出m ,n 的大小关系,所以无法确定.正解:D .点拨:在比较各项次数时,一定要分清数字的指数,还是字母的指数,把每项的次数都写出来,再进行选择即可.四、对同类项概念理解出错例9 已知单项式b a b a y x +--43与3261x y 是同类项,则代数式2 011()a b -的值为( ) A.1 B.-1 C.0 D.±1错解: B .错因分析:根据同类项的定义可知,相同字母的指数应对应相等,由于题目中x ,y 的先后位置不同,致使出现24=-b a ,3=+b a 的错误等式,通过仔细观察可得34=-b a ,2=+b a ,解得1=a ,1=b ,所以代数式 2 011()a b -的值为0.正解: C .点拨:通过对定义分析可知,两个式子若是同类项,所含的字母和指数必须对应相等.五、合并同类项出错例10 下列运算中,正确的是( )A.m n mn 77=-B.ab b a 1046=+C.633523a a a =+D.022=-ba b a错解:C .错因分析:在给出的选项中,mn 7和n ,a 6和b 4都不是同类项,所以不能合并;33a 和32a 是同类项,但是结果中的字母指数发生了变化,结果应为35a ;b a 2和2ba 都包含着字母a ,b ,且对应的指数也都相等,所以应选D .正解: D .点拨:合并同类项的前提首先是几个单项式必须是同类项,其次是将同类项的系数相加作为结果的系数,字母和字母的指数保持不变.若两项不是同类项,就不能进行合并,应保留原来形式.六、应用去括号法则出错例11 化简:)]3(2)25([52222a a a a a a ---+-.错解:原式=)3(2)25(52222a a a a a a ---+-=2224a 5a 2a 2a 6a +--+=27a a.+4错因分析:题中的错误主要是去掉中括号时,括号内的每项都要变号,特别是带有小括号的项.先去中括号时,要把每个小括号看作一个整体,作为一项,一般是先去小括号,再去中括号.正解:原式=]6225[52222a a a a a a +--+-=a a a a a a 622552222-++--=a a 42-.点拨:将代数式中的括号去掉时,应注意变号.去括号的法则是:括号前面是正号,去掉括号和前面的符号,括号内每项都不变号;括号前面是负号,去掉括号和前面的符号,括号内每项都变号.去括号时要由内到外或由外到内依次进行,以免出错.例12 去括号:)32(523--+x y x .错解:)32(523--+x y x =32523--x y x .错解分析:在去括号时,如果括号前面是“+”号,只需要去掉括号和这前面的“+”号,把括号中每一项照抄下来就行了.但由于原括号中第一项的“+”号省略,因此,在去掉括号后应把它补上.正确答案是:32523--+x y x .例13 计算:)21(3)325(22x x x x +--+-.错解:原式=2223325x x x x +--+-=x x 462-.错解分析:上述解法错误有:(l)根据去括号法则,括号前面是“-”号,把括号和它前面的“-”号去掉,括号里各项都变号,而不能单改变第一项的符号或其中部分项的符号,错解中只改变了第一项的符号,其余各项的符号均未改变;(2)去括号时,括号前面的系数应乘以括号内的每一项,错解中仅用括号前面的系数去乘括号内的第一项,其余各项均未乘以括号前面的系数.正解:原式=22363325x x x x -+-+-=x x 422+.例14 不改变多项式3334723d c b a -++的值,把它后面三项括在前面带有“-”号的括号内.错解:3334723d c b a -++=)472(3333d c b a +--.错解分析:根据添括号法则,如果添上的括号的前面是“-”号,那么括到括号里的每一项的符号都要改变.上述解法虽然括起来的后面两项都改变了符号,但由于括到括号里的第一项没有改变符号,因此是错误的.正确答案应是:)472(3333d c b a +---.七、整式加减运算过程出错例15 先化简再求值.当27=a ,21=-b 时,求代数式)2(3)2(32222b b a b b a +--的值. 错解:①原式=063632222=+--b b a b b a .②原式=222223a b 6b 3a b 2b 8b =----,把21=-b 代入上式,原式=-2.错因分析:此题既要应用乘法的分配律,又要去括号和合并同类项,是一道典型的整式运算.特别要注意在去括号时括号内每一项都要变号,和应用乘法分配律时数字因数要乘以括号内的每一项,要细心、认真,不能马虎.正解:原式=22222126363b b b a b b a =----, 把21=-b 代入上式,原式=-3.点拨:在遇到求代数式的值时,一般是先化简,再代入,运算简便.应重点注意去括号法则的应用和乘法分配律的应用.八、考虑问题不全面,造成漏解例16.如果二次三项式22(1)16x m x -++是一个完全平方式,那么m 的值是____.错解:由题意知2(1)8m +=,解得3m =.错解分析:忽视了222()2a b a ab b ±=±+而导致错误.正解:由题意知2(1)8m +=±,解得3m =或5-.。
洛阳市七年级数学上册第二章整式的加减易错题集锦单选题1、下列去括号或添括号不正确的是( )A .a −b +c =a −(b −c )B .a −b +c =a +(c −b )C .a −2(b −c )=a −2b +2cD .a −2(b −c )=a −2b +c答案:D分析:根据去括号法则:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.添括号法则:添括号时,如果括号前面是正号,括到括号里的各项都不变号,如果括号前面是负号,括到括号里的各项都改变符号.进行分析即可. 解:A. a −b +c =a −(b −c ),正确,故A 不符合题意;B. a −b +c =a +(c −b ),正确,故B 不符合题意;C. a −2(b −c )=a −2b +2c ,正确,故C 不符合题意;D. a −2(b −c )=a −2b +c ,∵a −2(b −c )=a −2b +2c ,∴计算不正确,故D 符合题意;故选:D小提示:本题考查了去括号和添括号的方法,注:添括号时,若括号前是“+”,添括号后,括号里的各项都不改变符号;若括号前是“-”,添括号后,括号里的各项都改变符号.2、数学家华罗庚曾经说过:“数形结合百般好,隔裂分家万事休”.如图,将一个边长为1的正方形纸板等分成两个面积为12的长方形,接着把面积为12的长方形分成两个面积为14的长方形,如此继续进行下去,根据图形的规律计算:12+(12)2+(12)3+⋯+(12)10的值为( )A .(12)10B .1-(12)10C .(12)11D .1-(12)11答案:B分析:分析数据和图象可知,利用正方形的面积减去最后的一个小长方形的面积来求解面积和即可. 解:分析数据和图象可知,利用正方形的面积减去最后的一个小长方形的面积来求解面积和即为所求.最后一个小长方形的面积= (12)n故12+(12)2+(12)3+⋯+(12)n=1−(12)n即12+(12)2+(12)3+⋯+(12)10=1−(12)10故选B.小提示:本题主要考查了学生的分析、总结、归纳能力,通过数形结合看出前面所有小长方形的面积等于总面积减去最后一个空白的小长方形的面积是解答此题的关键.3、下列各式书写符合要求的是()A.a−1÷−b B.312xy C.ab×5D.−x2y2答案:D分析:根据代数式的书写要求判断各项即可.解:A、原书写不规范,应写为a−1−b,故此选项不符合题意;B,原书写不规范,应写为72xy,故此选项不符合题意;C、书写不规范,应写为5ab,故本选项不符合题意;D、书写规范,故此选项符合题意.故选:D.小提示:本题考查了代数式,解题的关键是掌握代数式的书写要求:(l)在代数式中出现的乘号,通常简写成“·”或者简略不写;(2)数字与字母相乘时,数字要写在字母的前面;(3)在代数式中出现的除法运算,一般按照分数的写法来写,而分数要写成假分数的形式.4、已知a+b=3,c−d=2,则(a+c)−(−b+d)的值是()A.5B.-5C.1D.-1答案:A根据整式的加减运算法则即可求出答案.分析:解:原式=a+c+b﹣d=a+b+c﹣d,当a+b=3,c﹣d=2时,∴原式=3+2=5,故选:A.小提示:本题考查整式的加减中的化简求值,解题的关键是熟练运用整式的运算法则,本题属于基础题型.5、某地居民生活用水收费标准:每月用水量不超过17立方米,每立方米a元;超过部分每立方米(a+1.2)元.该地区某用户上月用水量为20立方米,则应缴水费为()A.20a元B.(20a+24)元C.(17a+3.6)元D.(20a+3.6)元答案:D分析:分两部分求水费,一部分是前面17立方米的水费,另一部分是剩下的3立方米的水费,最后相加即可.解:∵20立方米中,前17立方米单价为a元,后面3立方米单价为(a+1.2)元,∴应缴水费为17a+3(a+1.2)=20a+3.6(元),故选:D.小提示:本题考查的是阶梯水费的问题,解决本题的关键是理解其收费方式,能求出不同段的水费,本题较基础,重点考查了学生对该种计费方式的理解与计算方法等.6、在下列各式子中:π,x2+2x+1,x+xy,3x2+5x+4,−x,3,5xy,yx,整式共有()A.7个B.6个C.5个D.4个答案:B分析:根据多项式与单项式统称为整式,判断即可.解:在代数式π(单项式),x2+2x+1(分式),x+xy(多项式),3x2+5x+4(多项式),−x(单项式),3(单项式),5xy(单项式),yx(分式)中,整式共有6个,故选:B.小提示:此题考查了整式,解题的关键是弄清整式的概念.7、如果单项式2a2m−5b n+2与ab3n−2可以合并同类项,那么m和n的值分别为()A.2,3B.3,2C.-3,2D.3,-2答案:B分析:根据同类项的定义,所含字母相同,相同字母的指数也相同,进行计算即可.解:由题意得:2m-5=1,n+2=3n-2,∴m=3,n=2,故选:B.小提示:本题考查了合并同类项,熟练掌握同类项的定义是解题的关键.8、下列说法正确的是()A.23πa3的次数是4B.mn-12不是整式C.3x2y与−2yx2是同类项D.y−2x2+3xy2是二次三项式答案:C分析:根据单项式,整式,同类项及多项式的有关定义分析四个选项,即可得出结论解:A. 23πa3的次数是3次,故本选项错误,不符合题意;B.mn-12是整式,故本选项错误,不符合题意;C. 3x2y与−2yx2是同类项,故本选项正确,符合题意;D. y−2x2+3xy2是关于x,y的三次三项式;故本选项错误,不符合题意;故选择:C小提示:本题考查了整式,同类项,单项式,多项式的有关定义的问题,解题的关键是牢记这些定义.9、下列各式符合代数式书写规范的是()A.18×b B.114x C.−ba2D.m÷2n答案:C分析:根据代数式的书写规则,数字与字母之间的乘号应省略,分数不能为带分数,不能出现除号,对各项的代数式进行判定,即可求出答案.解:A、正确书写格式为18b,故此选项不符合题意;B、正确书写格式为54x,故此选项不符合题意;C、是正确的书写格式,故此选项符合题意;D、正确书写格式为m2n,故此选项不符合题意.故选:C.小提示:本题考查了代数式的书写规则,能够根据代数式书写的标准规则对各项进行分析,得出答案是解题的关键.10、已知单项式3a m+1b与−b n−1a3可以合并同类项,则m,n分别为()A.2,2B.3,2C.2,0D.3,0答案:A分析:根据同类项的定义得出关于m,n的式子,计算求出m,n即可.解:∵单项式3a m+1b与−b n−1a3可以合并同类项,∴m+1=3,n-1=1,∴m=2,n=2,故选:A.小提示:本题考查了合并同类项及同类项的定义,如果两个单项式,他们所含的字母相同,并且相同字母的指数也分别相同,那么就称这两个单项式为同类项.11、单项式mxy3与x n+2y3的和是5xy3,则m−n(()A.﹣4B.3C.4D.5答案:D分析:根据单项式的和是单项式,可得两个单项式是同类项,根据同类项是字母相同且相同字母的指数也相同,可得m、n的值,再代入计算可得答案.解:解:∵单项式mxy3与x n+2y3的和是5xy3,∴单项式mxy3与x n+2y3是同类项,∴n+2=1,m+1=5,解得n=−1,m=4,∴m−n=4−(−1)=5,故选:D.小提示:本题考查了同类项的概念,同类项定义中的两个“相同”:字母相同,相同字母的指数相同,是易混点,因此成了中考的常考点.12、下列算式中正确的是()A.4x−3x=1B.2x+3y=3xyC.3x2+2x3=5x5D.x2−3x2=−2x2答案:D分析:根据合并同类项的法则计算即可得出正确结论.解:A. 4x−3x=x,故本选项错误,不符合题意;B. 2x与3y不是同类项,不能合并运算,故本选项故本选项错误,不符合题意;C. 3x2与2x3不是同类项,不能合并运算,故本选项故本选项错误,不符合题意;D. x2−3x2=−2x2,本选项正确,符合题意;故选:D小提示:本题主要考查了合并同类项,熟记同类项的概念是解题的关键.13、若|a−2|+|b+3|=0,则b a的值为()A.1B.﹣1C.﹣6D.9答案:D分析:根据绝对值的非负性得到a与b的值,代入求值即可.解:∵|a−2|≥0,|b+3|≥0,∴当|a−2|+|b+3|=0时,∴a﹣2=0,b+3=0,解得a=2,b=﹣3,∴b a=(−3)2=9,故选:D.小提示:本题考查代数式求值,涉及到绝对值的非负性及幂的运算,熟练掌握非负式的和为零的条件是解决问题的关键.14、若多项式 36x2-3x+5 与 3x3+12mx2-5x相加后不含二次项,则常数m的值是( )A.-3B.-2C.2D.3答案:A分析:对两个多项式的二次项进行合并,再根据二次项系数为0建立关于m的方程求解,即可解答.解:两个多项式的二次项分别为:36x2和12mx2,则有:36x2+12mx2=(36+12m)x2,令36+12m=0,解得m=−3.故选:A.小提示:本题考查了多项式合并和无关项问题,特别是掌握无关项问题的解答方法是解答本题的关键.15、为落实“双减”政策,某校利用课后服务开展了主题为“书香满校园”的读书活动.现需购买甲,乙两种读本共100本供学生阅读,其中甲种读本的单价为10元/本,乙种读本的单价为8元/本,设购买甲种读本x本,则购买乙种读本的费用为()A.8x元B.10(100−x)元C.8(100−x)元D.(100−8x)元答案:C分析:根据题意列求得购买乙种读本(100−x)本,根据单价乘以数量即可求解.解:设购买甲种读本x本,则购买乙种读本(100−x)本,乙种读本的单价为8元/本,则则购买乙种读本的费用为8(100−x)元故选C小提示:本题考查了列代数式,理解题意是解题的关键.填空题16、张老师带了100元钱去给学生买笔记本和笔,已知一本笔记本3元,一支笔2元,张老师买了a本笔记本,b支笔,她还剩___________________元钱(用含a,b的代数式表示).答案:(100-3a-2b)分析:根据题意表示出a本笔记本的钱,b支笔的钱,用总钱数-笔记本和笔的钱即可.解:由题意得:100-3a-2b,所以答案是:(100-3a-2b).小提示:此题主要考查了列代数式,关键是根据题意表示出a本笔记本的钱,b支笔的钱.17、关于整式4x3﹣3x3y+3x3﹣(7x3﹣3x3y)的值有下列几个结论:(1)与x,y有关(2)与x有关(3)与y有关(4)与x,y无关其中说法正确的结论是______.(直接填写序号)答案:(4)分析:把整式进行化简,再判断即可.4x3﹣3x3y+3x3﹣(7x3﹣3x3y)=4x3﹣3x3y+3x3﹣7x3+3x3y=0.则整式的值与x,y无关.所以答案是:(4).小提示:本题主要考查整式的加减,解答的关键是对相应的运算法则的掌握.18、一列有规律的数:−1,−4,7,10,−13,−16,19,22,⋯.这列数的第100个数为____.答案:298分析:观察发现,连续的两个数的绝对值相差3,符号为4次一循环,据此即可求解.解:观察一列有规律的数:−1,−4,7,10,−13,−16,19,22,⋯.第一个数为:−1=−[3×(1−1)+1],第二个数为:−4=−[3×(2−1)+1],第三个数为:+7=+[3×(3−1)+1],第四个数为:+10=+[3×(4−1)+1],……连续的两个数的绝对值相差3,符号为4次一循环,100÷4=25,第100个数为第25组第4个,符号为正,第100个数为3×(100−1)+1=298所以答案是:298小提示:本题是一道找规律问题,此类问题通常会按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律,而揭示的规律,常常包含着事物的序列号. 所以解决此类问题的关键,可以把变量和序列号放在一起加以比较,从而快速找到规律.19、已知a2−2a=1,则3a2−6a−4的值为________答案:−1分析:将a2−2a=1作为整体代入计算即可得.解:∵a2−2a=1,∴3a2−6a−4=3(a2−2a)−4=3×1−4=−1,所以答案是:−1.小提示:本题考查了代数式求值,熟练掌握整体代入思想是解题关键.20、观察下列一组数:2,12,27,…,它们按一定规律排列,第n 个数记为a n ,且满足1a n +1a n+2=2a n+1.则a 4=________,a 2022=________.答案: 15 13032分析:由题意推导可得an =23(n−1)+1,即可求解.解:由题意可得:a 1=2=21,a 2=12=24,a 3=27,∵1a 2+1a 4=2a 3, ∴2+1a 4=7, ∴a 4=15=210, ∵1a 3+1a 5=2a 4, ∴a 5=213,同理可求a 6=18=216,⋯∴an =23(n−1)+1, ∴a 2022=26064=13032,所以答案是:15,13032.小提示:本题考查了数字的变化类,找出数字的变化规律是解题的关键.。
整式的加减重难点和易错点一、选择题1、整式-(a-(b-c))去括号为()A。
-a-b+cB。
-a+b-cC。
-a+b+cD。
-a-b-c2、在(a-b+c)(a+b-c)=[a+(b-c)][a-(b-c)]的括号内填入的代数式分别()A。
c-b,c-bB。
b+c,b+cC。
b+c,b-cD。
c-b,c+b3、当k取1/3时,多项式x^2-3kxy-3y^2+xy-8中不含xy 项。
A。
0B。
1C。
1/9D。
-1/34、如果多项式(a+1)x^4-bx-3x-5是关于x的四次三项式,则ab的值是()A、4B、-4C、5D、-55、若|a|=2,|b|=3,且a>b,则|a-b|的值是()A、-5或-1B、1或-1C、5或3D、5或16、若|m|=3,|n|=7.且m-n>0,则m+n的值()A、10B、4C、-10或-4D、4或-47、若M=3x^2-5x-2,N=3x^2-4x-2,则M,N的大小关系()A、M>NB、M=NC、M<ND、以上都有可能8、设a是最小的自然数,b是最大的负整数,c,d分别是单项式-xy^2的系数和次数,则a,b,c,d四个数的和是()A、-1B、0C、1D、39、若多项式y^2+(m-3)xy+2x|m|是三次三项式,则m的值为()A、-3B、3C、3或-3D、210、如果a是最小的正整数,b是绝对值最小的数,c与a^2互为相反数,那么(a+b)^2009-c^2009=11、当a<3时,|a-3|+a=12、有理数a,b满足a|b|,则代数式|a+b|+|2a-b|化简后结果为___________13、去括号a-b)-(-c-d)a-b)+(c-d)________________14、化简(x+2)-(x-3x)4x-(-6x)+(-9x)=15、化简3-5x-4(x-x+3x)/22=16、当a^2+b^2=1时,(a+b)^2的最小值为__________17、计算m+n-(m-n)的结果为2n。
七年级数学上册期末复习整式的加减知识点+易错题整式的加减知识点整式知识点1.单项式:在代数式中,若只含有乘法(包括乘方)运算。
或虽含有除法运算,但除式中不含字母的一类代数式叫单项式.2.单项式的系数与次数:单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;系数不为零时,单项式中所有字母指数的和,叫单项式的次数.3.多项式:几个单项式的和叫多项式.4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数;注意:(若a、b、c、p、q是常数)ax2+bx+c和x2+px+q是常见的两个二次三项式.5.整式:凡不含有除法运算,或虽含有除法运算但除式中不含字母的代数式叫整式.整式分类为:错误!未找到引用源。
.6.同类项:所含字母相同,并且相同字母的指数也相同的单项式是同类项.7.合并同类项法则:系数相加,字母与字母的指数不变.8.去(添)括号法则:去(添)括号时,若括号前边是“+”号,括号里的各项都不变号;若括号前边是“-”号,括号里的各项都要变号.9.整式的加减:整式的加减,实际上是在去括号的基础上,把多项式的同类项合并.10.多项式的升幂和降幂排列:把一个多项式的各项按某个字母的指数从小到大(或从大到小)排列起来,叫做按这个字母的升幂排列(或降幂排列).注意:多项式计算的最后结果一般应该进行升幂(或降幂)排列.11. 列代数式列代数式首先要确定数量与数量的运算关系,其次应抓住题中的一些关键词语,如和、差、积、商、平方、倒数以及几分之几、几成、倍等等.抓住这些关键词语,反复咀嚼,认真推敲,列好一般的代数式就不太难了.12.代数式的值根据问题的需要,用具体数值代替代数式中的字母,按照代数式中的运算关系计算,所得的结果是代数式的值.13. 列代数式要注意①数字与字母、字母与字母相乘,要把乘号省略;②数字与字母、字母与字母相除,要把它写成分数的形式;③如果字母前面的数字是带分数,要把它写成假分数。
代数式中的错解示例一、例1 用代数式表示:(1) x 除以y 的3倍的商的平方;(2) x 与y 的倒数的和;(3) a 与b 的平方的和除c ;(4) a 的立方与b 平方的倒数的差.错解:(3×x y )2;(2)1x +1y ;(3)a 2+b 2c ;(4)1a 3-1b 2. 错解分析:(1)把“y 的3倍”误认为“3倍的商”;(2)混淆了“x 与y 的倒数的和”与”x 与y 的倒数和”不同的意义,前者是x +1y ;而后者是1x +1y. (3)错误有两点,其一没有把“a 与b 的平方的和”与“a 与b 的平方和”区别开来,前者是a +b 2,而后者是a 2+b 2;其二混淆了“除以”与“除”的不同意义,“a 与b 的平方的和除c ”,其c 应该是被除式.(4)未能正确理解文字语言中的三层关系:第一是“a 的立方”,即a 3,第二是“b 平方的倒数”,应为1b 2;第三是第一部分的结果与第二部分结果的差.正解:(1)(x 3y )2; (2)x +1y ;(3)c a +b 2;(4)a 3-1b 2. 二、例2 用语言叙述下列代数式:(1)3(x +y);(2)ab-c ;(3)a bc ;(4)x -y m;(5)a(x-y)2. 错解:(1) 3乘以x 加y ;(2) a 乘以b 与c 的差;(3) a 除以b 乘以c ;(4) x 减去y 除以m 的商;(5)a 乘以x 减去y 的平方.错解分析:(1) “3乘以x 加y ”,其意义不明确,未能准确表述其运算顺序.正确的说法是“3与x +y 的积”,或“x 与y 的和的3倍”.(2)“a 乘以b 与c 的差”容易使人误解为a(b-c).正确的说法是“ab 与c 的差”或“a 乘以b 的积与c 的差”.(3)“a 除以b 乘以c ”所表示的代数式为a b·c ,显然与题意不符.正确说法应为“a 除以bc 的商”或“a 比bc ”.(4)“x 减去y 除以m 的商”容易使人误解为x-y m.因此,这种说法不妥.正确的说法是“x-y 除以m 的商”或“x 减去y 的差除以m”.(5) “a 乘以x 减去y 的平方”容易误解为(ax -y)2或[a(x -y)]2或ax - y 2.因此这种语言表述不清.正确的说法是“x 减去y 的差的平方与a 的积”.列代数式和说出代数式的意义是用数字、字母表示的符号语言与文字语言之间的互译的两种情况.三.识别单项式、多项式出错例3下列式子中,哪些是单项式?哪些是多项式?0,133,6x -,25m n -,1y -,2ab ,5210.218x x ++. 错解:6x -,25m n -,1y -,2ab 是单项式;0,133,5210.218x x ++是多项式. 错解分析:25m n -包含加减运算,它应该是多项式;1y-的分母中含有字母,所以它既不是单项式,也不是多项式;0和133都是数字,应是单项式.正解: .(请自己填上答案)点拨:判断一个式子是不是单项式,要严格依据定义进行判断,同时注意以下三点:①单独的一个数或一个字母是单项式;②单项式中数与字母只能是相乘的关系;③若分母中出现含字母的式子,则不是整式,而是将来我们要学习的“分式”,如1就是-1与y的商,所以不是单项式.y四、识别单项式的系数和次数出错例4请指出单项式x5y3z的系数和次数.错解:单项式x5y3z的系数是0,次数是8.错解分析:对于单项式x5y3z,系数为省略了的1,而不是0;计算次数时错解误将字母z的指数当成0,实际上是1.正解: .(请自己填上答案)点拨:单项式的系数是指单项式中的数字因数;单项式的次数指单项式中所有字母的指数和.要注意系数和次数中省略的1.五.识别多项式的项和次数出错例5 指出多项式3xy2-2xy+x-5是几次几项式,并指出这个多项式的各项.错解:这个多项式是六次四项式,各项分别为:三次项3xy2,二次项2xy,一次项x,常数项5.错解分析:错解是把多项式中所有字母的指数和当成了多项式的次数,而且在写多项式的项时忽略了符号.正解: .(请自己填上答案)点拨:多项式中每一个单项式称为多项式的项,这里要注意的是每一项都包括前面的符号.在多项式里,次数最高的项的次数是多项式的次数,也就是说多项式的次数实际上是用一个次数最高的单项式的次数来代表的.整式易错点示例一、对概念理解不透例1 指出单项式3xy ,221b -,a ,42z xy -的系数和次数. 错解: 3xy 的系数是1,次数是1; 221b -的系数是21,次数是2; a 的系数是0,次数是0;42z xy -的系数是0,次数是4.错解分析: 错误的原因是不理解什么是单项式的系数和次数,当系数和指数为1时,在单项式中省略不写,因而误认为这时的系数和指数为O ,单项式的系数包括它前面的符号.正解: 3xy 的系数是31,次数是2; 221b -的系数是-21,次数是2; a 的系数是1,次数是1;42z xy -的系数是-1,次数是7.注:单项式和多项式中的“+”和“-”号在确定系数时不能遗漏.例2 试指出下列说法的错误:y x 34,b a 34,32ab -,3yx 是同类项;3a -,331b 为同类项.错解分析: 由于同类项必须同时满足:①项中所含字母相同;②相同字母的次数分别相同.而本题中y x 34与b a 34由于字母不同,因此它们不是同类项;b a 34与32ab -虽然所含字母相同,但由于相同的字母的次数不相同,因此,它们也不是同类项.同样地,3a -与331b ,y x 34与32ab -也都不是同类项.正确答案是只有y x 34与3yx 是同类项.例3 多项式abc c b a 3333+--由哪几项组成?错解:多项式abc c b a 3333+--是由3a ,3b ,3c ,abc 3四项组成. 错解分析:此解漏掉了各项的符号,必须注意,多项式的项都包括它前面的符号,正确答案是由3a ,3b -,3c -,abc 3四项组成.例4 整式32+-a 是几次几项式?错解: 32+-a 是三次二项式.错解分析:这里第一项a -的次数是l ,系数是-1,后面一项32的指数虽然是3,但底数不含有字母,因而仍是常数项.所以这个整式是一次二项式.例5 多项式522+-b ab 是几次式?错解: 522+-b ab 是二次式.错解分析: 这个多项式中,次数最高的项是第一项,它的次数为1十2=3,所以多项式522+-b ab 是三次式.例6 在代数式m ,-2,24ab ,x 1,5y x +中,单项式有( ). A.2个 B.3个 C.4个 D.5个错解:选C .单项式有m ,24ab ,x 1,5y x +. 错因分析:因为单独的一个数字和一个字母也是单项式,所以-2是单项式;x 1表示l 与x 的商,它不是单项式;5y x +表示51与y x +的积,它应当属于多项式.正解:选 B .单项式有m ,-2,24ab .点拨:单项式中数字与字母之间都是乘积关系,所以包含其他的运算形式的代数式就不是单项式,应严格按照单项式的概念判断.二、判断单项式系数、次数出错例7 单项式332xy π-的系数是________,次数是________.错解:-3,6或31-,6.错因分析:此题中出现了π,因圆周率π是常数,当单项式中出现π时,应将其看作数字系数,所以系数为32π-;数字的指数不能加在字母的指数上算作单项式的次数,所以单项式的次数为x ,y 的指数的和.正解:系数是32-,次数是4.点拨:在解答此类问题时经常由于未分清字母与数字导致出错,应正确理解与分析单项式的系数与次数.三、判断多项式项数、次数出错例8 已知m ,n 都是正整数,多项式n m n m y x +-+32的次数是( )A.mB.n m +C.n m 22+D.不能确定错解:B .错因分析:题中多项式各项次数最高的是n m +3,但由于底数为3,所以此项为常数项.应比较含有字母的单项式的次数,所以主要分析m ,n 的大小.题目已知条件没有给出m ,n 的大小关系,所以无法确定.正解:D .点拨:在比较各项次数时,一定要分清数字的指数,还是字母的指数,把每项的次数都写出来,再进行选择即可.四、对同类项概念理解出错例9 已知单项式b a b a y x +--43与3261x y 是同类项,则代数式2 011()a b -的值为( ) A.1 B.-1 C.0 D.±1错解: B .错因分析:根据同类项的定义可知,相同字母的指数应对应相等,由于题目中x ,y 的先后位置不同,致使出现24=-b a ,3=+b a 的错误等式,通过仔细观察可得34=-b a ,2=+b a ,解得1=a ,1=b ,所以代数式 2 011()a b -的值为0.正解: C .点拨:通过对定义分析可知,两个式子若是同类项,所含的字母和指数必须对应相等.五、合并同类项出错例10 下列运算中,正确的是( )A.m n mn 77=-B.ab b a 1046=+C.633523a a a =+D.022=-ba b a错解:C .错因分析:在给出的选项中,mn 7和n ,a 6和b 4都不是同类项,所以不能合并;33a 和32a 是同类项,但是结果中的字母指数发生了变化,结果应为35a ;b a 2和2ba 都包含着字母a ,b ,且对应的指数也都相等,所以应选D .正解: D .点拨:合并同类项的前提首先是几个单项式必须是同类项,其次是将同类项的系数相加作为结果的系数,字母和字母的指数保持不变.若两项不是同类项,就不能进行合并,应保留原来形式.六、应用去括号法则出错例11 化简:)]3(2)25([52222a a a a a a ---+-.错解:原式=)3(2)25(52222a a a a a a ---+-=2224a 5a 2a 2a 6a +--+=27a a.+4错因分析:题中的错误主要是去掉中括号时,括号内的每项都要变号,特别是带有小括号的项.先去中括号时,要把每个小括号看作一个整体,作为一项,一般是先去小括号,再去中括号.正解:原式=]6225[52222a a a a a a +--+-=a a a a a a 622552222-++--=a a 42-.点拨:将代数式中的括号去掉时,应注意变号.去括号的法则是:括号前面是正号,去掉括号和前面的符号,括号内每项都不变号;括号前面是负号,去掉括号和前面的符号,括号内每项都变号.去括号时要由内到外或由外到内依次进行,以免出错.例12 去括号:)32(523--+x y x .错解:)32(523--+x y x =32523--x y x .错解分析:在去括号时,如果括号前面是“+”号,只需要去掉括号和这前面的“+”号,把括号中每一项照抄下来就行了.但由于原括号中第一项的“+”号省略,因此,在去掉括号后应把它补上.正确答案是:32523--+x y x .例13 计算:)21(3)325(22x x x x +--+-.错解:原式=2223325x x x x +--+-=x x 462-.错解分析:上述解法错误有:(l)根据去括号法则,括号前面是“-”号,把括号和它前面的“-”号去掉,括号里各项都变号,而不能单改变第一项的符号或其中部分项的符号,错解中只改变了第一项的符号,其余各项的符号均未改变;(2)去括号时,括号前面的系数应乘以括号内的每一项,错解中仅用括号前面的系数去乘括号内的第一项,其余各项均未乘以括号前面的系数.正解:原式=22363325x x x x -+-+-=x x 422+.例14 不改变多项式3334723d c b a -++的值,把它后面三项括在前面带有“-”号的括号内.错解:3334723d c b a -++=)472(3333d c b a +--.错解分析:根据添括号法则,如果添上的括号的前面是“-”号,那么括到括号里的每一项的符号都要改变.上述解法虽然括起来的后面两项都改变了符号,但由于括到括号里的第一项没有改变符号,因此是错误的.正确答案应是:)472(3333d c b a +---.七、整式加减运算过程出错例15 先化简再求值.当27=a ,21=-b 时,求代数式)2(3)2(32222b b a b b a +--的值. 错解:①原式=063632222=+--b b a b b a .②原式=222223a b 6b 3a b 2b 8b =----,把21=-b 代入上式,原式=-2.错因分析:此题既要应用乘法的分配律,又要去括号和合并同类项,是一道典型的整式运算.特别要注意在去括号时括号内每一项都要变号,和应用乘法分配律时数字因数要乘以括号内的每一项,要细心、认真,不能马虎.正解:原式=22222126363b b b a b b a =----, 把21=-b 代入上式,原式=-3.点拨:在遇到求代数式的值时,一般是先化简,再代入,运算简便.应重点注意去括号法则的应用和乘法分配律的应用.八、考虑问题不全面,造成漏解例16.如果二次三项式22(1)16x m x -++是一个完全平方式,那么m 的值是____.错解:由题意知2(1)8m +=,解得3m =.错解分析:忽视了222()2a b a ab b ±=±+而导致错误.正解:由题意知2(1)8m +=±,解得3m =或5-.。
整式的加减易错题大集合一:选择题1、若A是一个三次多项式,B是一个四次多项式,则A+B一定是()A、三次多项式B、四次多项式或单项式C、七次多项式D、四次七项式2、多项式2错误!未找到引用源。
-3×错误!未找到引用源。
x错误!未找到引用源。
+y的次数是()A、10次B、12次C、6次D、8次3、多项式2错误!未找到引用源。
-错误!未找到引用源。
+错误!未找到引用源。
+25的次数是()A、二次B、三次C、四次D、五次4、关于多项式错误!未找到引用源。
-3错误!未找到引用源。
+错误!未找到引用源。
+错误!未找到引用源。
+错误!未找到引用源。
+x的说法正确的是()A、是六次六项式B、是五次六项式C、是六次五项式D、是五次五项式5、如果多项式(a+1)错误!未找到引用源。
- 错误!未找到引用源。
-3x-54是关于x的四次三项式,则ab的值是()A、4B、-4C、5D、-56、若A与B都是二次多项式,则A-B:(1)一定是二次式;(2)可能是四次式;(3)可能是一次式;(4)可能是非零常数;(5)不可能是零.上述结论中,不正确的有()个.A、5B、4C、3D、27、x表示一个两位数,现将数字5放在x的左边,则组成的三位数是()A、5xB、10x+5C、100x+5D、5×100+x8、两列火车都从A地驶向B地.已知甲车的速度是x千米/时,乙车的速度是y 千米/时.经过3时,乙车距离B地5千米,此刻甲车距离B地()A、[3(-x+y)-5]千米B、[3(x+y)-5]千米C、[3(-x+y)+5]千米D、[3(x+y)+5]千米9、已知a+b+c=0,则代数式(a+b)(b+c)(c+a)+abc的值为()A、-1B、1C、0D、210、若|a|=2,|b|=3,且a>b,则|a-b|的值为()A、-5或-1B、1或-1C、5或3D、5或111、任选一个大于-4的负整数填在□里,任选一个小于3的正整数填在◇里,对于“□+◇”运算结果为负数的情况有()种.A、2种B、3种 C 、4种D、512、若|m|=3,|n|=7,且m-n>0,则m+n的值是()A、10B、4C、-10或-4D、4或-413、一个圆柱体的底面半径扩大为原来的3倍,高为原来的错误!未找到引用源。
第三章整式的加减一、基本概念中的易错题1,单项式的定义例1,下列各式子中,是单项式的有_________________ (填序号)1 2 x 1 x①可②2;③x y;④xy;⑤匚;⑥〒;⑦—;注意:1,单个的字母或数字也是单项式;2,用加减号把数字或字母连接在一起的式子不是单项式;3,只用乘号把数字或字母连接在一起的式子仍是单项式;4,当式子中出现分母时,要留意分母里有没有字母,有字母的就不是单项式,如果分母没有字母的仍有可能是单项式(注:n ”当作数字,而不是字母)2单项式的系数与次数例2指出下列单项式的系数和次数;3,多项式的项数与次数例3下列多项式次数为3的是()A. 5x2 6x 1B. x2 x 1C.a2b ab b2D.x2y2 2x3 1注意(1)多项式的次数不是所有项的次数的和,而是它的最高次项次数;(2)多项式的每一项都包含它前面的符号;(3)再强调一次,n”当作数字,而不是字母例4请说出下列各多项式是几次几项式,并写出多项式的最高次项和常数项;(1)25______________ x2y xy3是____________________________ 次项式,最高次项是 ____ ,常数项是_________________________ ;3 2 2 1(2)—U—1是次项式,最高次项是,常数项是34,书写格式中的易错点例5下列各个式子中,书写格式正确的是( )1A.a bB. 1 abC.a 32a2bD.a3 E . 1ab F .31、代数式中用到乘法时,若是数字与数字乘,要用’乂”若是数字与字母乘,乘号通常写成” •或省略不写,如3X y应写成3 y或3y,且数字与字母相乘时,字母与字母相乘,乘号通常写成“ •或省略不写;2、带分数与字母相乘,要写成假分数;3、代数式中出现除法运算时,一般用分数写,即用分数线代替除号;4、系数一般写在字母的前面,且系数“1往往会省略;例6王强班上有男生m人,女生比男生的一半多5人,王强班上的总人数(用m表示)为______ 人。
整式的加减易错点整理
1、写结果时,字母前的系数1通常要省略。
误:①3x+1y ②3x-1y 正: ③3x-y
2、有带分数的要写成假分数的形式。
误: ①224
xy ②137n m - 正:③167-ab 3、“÷”要写成分数的形式。
误:①3÷2xy 正:② 32xy
4、在交换位置时,一般把正的写在前面,负的写在后面,然后再结合,这样不容易出错。
误:①-3y+2y 正:②2y-3y
5、写结果时,有括号的要去掉括号,写成最简形式。
误:①232(7)x x ++- 正:②2637x x -+-
6、最后的结果要按升幂或者降幂的形式排列。
误: ①2673x x --+ 正:②2637x x -+-
7、合并同类项,只把系数相加减,字母及对应字母的指数不变。
误:①224
235x x x += 正:②222253x x x -=- 8、像25
m n -这样分子有两项时,要拆开来看它的项。
9、写整式时,数字要写在字母的前面。
正:①2a 误:②a3
10、求一个式子与另一个式子差的时候,第二个式子要加括号。
比如求272x x --与2241x x -+-的差。
误:①2272(2)41x x x x ----+-
正:②2272(241)x x x x ----+-。
《整式的加减》中的易错题知识结构:整式的加减整式的概念整式的计算整式的应用单项式多项式系数次数项,项数,常数项,最高次项次数同类项与合并同类项去括号化简求值用字母来表示生活中的量一、基本概念中的易错题二、运算过程中的易错题1,同类项的判定与合并同类项的法则:例1 判断下列各式是否是同类项?323232)3(xyyx与22102)2(与-2232)4(yxyx-与323222)1(yxba与点拨:对于(1)、(3),考察的是同类项的定义,所含字母相同,相同字母的指数也相同的称为同类项;所以(1)、(3)不是同类项;对于(2),虽然好像它们的次数不一样,但其实它们都是常数项,所以,它们都是同类项;对于(4),虽然它们的系数不同,字母的顺序也不同,但它依然满足同类项的定义,是同类项;答:(2)、(4)是同类项,(1)(3)不是同类项;练一练:)2(3)22)(2()3()123)(1(222222ab b a ab b a x x x x ---++--+-234)1(2--x x 原式=解:224)2(ab b a +-原式=1,化简下列各式:整式的加减一般步骤是(1)如果有括号就先去括号,(2)然后再合并同类项.4,多重括号化简的易错题]2)1(32[3,1222x x x x +---化简:]2332[3222x x x x ++--解:原式=22223323x x x x --+-=32)233(222---+x x x x =3242--x x =注意:有多重括号的,一般先去小括号,再去中括号,最后再去大括号;拓展练习 正式的应用中的易错题1,“A+2B ”类型的易错题:例1 若多项式计算多项式A -2B ;;12,12322++-=+-=x x B x x A )12(2)123(222++--+-=-x x x x B A 解:22412322--++-=x x x x 21224322-+--+=x x x x 1472--=x x 注意:列式时要先加上括号,再去括号;例2 一个多项式A 加上得,求这个多项式A ?2532+-x x 3422+-x x 342)253(22+-=+-+x x x xA 解:因为)253(34222+--+-=x x x x A 所以25334222-+-+-=x x x x A 23543222-++--=x x x x A 12++-=x x A 注意:我们在移项的时候是整体移项,不要漏了添上括号;例2 若长方形的一边长为a+2b,另一边长比它的3倍少a-b,求这个长方形的周长?分析:如果直接列式的话,非常麻烦,我们可以先求出另一边长,再求周长,这样就比较容易求出答案;解:一边长为:a+2b;另一边长为:3(a+2b)-(a-b)=3a+6b-a+b=3a-a+6b+b=2a+7b;周长为:2(a+2b+2a+7b)=2(a+2a+2b+7b)=2(3a+9b)=6a+18b;答:长方形的周长为6a+18b从错误中吸取教训,从失败中取得进步,胜利必将是你的!。
(名师选题)七年级数学上册第二章整式的加减易错知识点总结单选题1、小李今年a岁,小王今年(a-15)岁,过n+1年后,他们相差()岁A.15B.n+1C.n+16D.16答案:A分析:用大李今年的年龄减去小王今年的年龄,即可求出两人的年龄差,再根据年龄差不会随着时间的变化而改变,由此即可确定再过n+1年后,大李和小王的年龄差仍然不变.解:a﹣(a﹣15)=15(岁)答:他们相差15岁.故选:A.小提示:此题考查了列代数式及年龄问题,要注意:两个人的年龄差是一个永远也不变的数值.2、已知有2个完全相同的边长为a、b的小长方形和1个边长为m、n的大长方形,小明把这2个小长方形按如图所示放置在大长方形中,小明经过推事得知,要求出图中阴影部分的周长之和,只需知道a、b、m、n中的一个量即可,则要知道的那个量是()A.a B.b C.m D.n答案:D分析:先用含a、b、m、n的代数式表示出阴影矩形的长宽,再求阴影矩形的周长和即可.解:如图,由图和已知条件可知:AB=a,EF=b,AC=n﹣b,GE=n﹣a.阴影部分的周长为:2(AB+AC)+2(GE+EF)=2(a+n﹣b)+2(n﹣a+b)=2a+2n﹣2b+2n﹣2a+2b=4n.∴求图中阴影部分的周长之和,只需知道n一个量即可.故选:D.小提示:本题主要考查了整式的加减,能用含a、b、m、n的代数式表示出阴影矩形的长宽是解决本题的关键.3、下列计算正确的是()A.2a2b+3a2b=5a2b B.2a2+3a2=5a4C.2a+3b=5ab D.2a2−3a2=−a答案:A分析:根据合并同类项法则计算即可判断.解:A、2a2b+3a2b=5a2b,故正确;B、2a2+3a2=5a2,故错误;C、2a+3b不能合并,故错误;D、2a2−3a2=−a2,故错误;故选A.小提示:本题考查了合并同类项,属于基础题,解答本题的关键是掌握合并同类项的法则.4、若多项式 36x2-3x+5 与 3x3+12mx2-5x相加后不含二次项,则常数m的值是( )A.-3B.-2C.2D.3答案:A分析:对两个多项式的二次项进行合并,再根据二次项系数为0建立关于m的方程求解,即可解答.解:两个多项式的二次项分别为:36x2和12mx2,则有:36x2+12mx2=(36+12m)x2,令36+12m=0,解得m=−3.故选:A.小提示:本题考查了多项式合并和无关项问题,特别是掌握无关项问题的解答方法是解答本题的关键.5、将正整数按如图所示的规律排列,若用有序数对(a,b)表示第a行,从左至右第b个数,例如(4,3)表示的数是9,则(15,10)表示的数是()A.115B.114C.113D.112答案:A分析:观察图形可知,每一行的第一个数字都等于前面数字的个数再加1,即可得出(15,1)表示的数,然后得出(15,10)表示的数即可.解:因为(1,1)表示的数是:1,(2,1)表示的数是:1+1=2,(3,1)表示的数是:1+1+2=4,(4,1)表示的数是:1+1+2+3=7,(5,1)表示的数是:1+1+2+3+4=11,……所以(a,1)表示的数是:1+1+2+3+4+⋯…+(a−1)=1+[1+(a−1)](a−1)2=1+a(a−1)2=a2−a+22,所以(15,1)表示的数是:a 2−a+22=152−15+22=106,所以(15,10)表示的数是:106+10-1=115,故选A.小提示:本题考查了找图形和数字规律,从题目分析发现每一行的第一个数字都等于前面数字的个数再加1是本题的关键.6、下列计算结果为5的是()A.−(+5)B.+(−5)C.−(−5)D.−|−5|答案:C分析:根据去括号法则及绝对值化简依次计算判断即可.解:A、-(+5)=-5,不符合题意;B、+(-5)=-5,不符合题意;C、-(-5)=5,符合题意;D、−|−5|=−5,不符合题意;故选:C.小提示:题目主要考查去括号法则及化简绝对值,熟练掌握去括号法则是解题关键.7、如图,用相同的圆点按照一定的规律拼出图形.第一幅图4个圆点,第二幅图7个圆点,第三幅图10个圆点,第四幅图13个圆点……按照此规律,第一百幅图中圆点的个数是()A.297B.301C.303D.400答案:B分析:首先根据前几个图形圆点的个数规律即可发现规律,从而得到第100个图摆放圆点的个数.解:观察图形可知:第1幅图案需要4个圆点,即4+3×0,第2幅图7个圆点,即4+3=4+3×1;第3幅图10个圆点,即4+3+3=4+3×2;第4幅图13个圆点,即4+3+3+3=4+3×3;第n幅图中,圆点的个数为:4+3(n-1)=3n+1,……,第100幅图,圆中点的个数为:3×100+1=301.故选:B.小提示:本题主要考查了图形的变化规律,解答的关键是由所给的图形总结出存在的规律.8、下列说法正确的是()A.23πa3的次数是4B.mn-12不是整式C.3x2y与−2yx2是同类项D.y−2x2+3xy2是二次三项式答案:C分析:根据单项式,整式,同类项及多项式的有关定义分析四个选项,即可得出结论解:A. 23πa3的次数是3次,故本选项错误,不符合题意;B.mn-12是整式,故本选项错误,不符合题意;C. 3x2y与−2yx2是同类项,故本选项正确,符合题意;D. y−2x2+3xy2是关于x,y的三次三项式;故本选项错误,不符合题意;故选择:C小提示:本题考查了整式,同类项,单项式,多项式的有关定义的问题,解题的关键是牢记这些定义.9、下列去括号正确的是( )A.a2−(2a−b2)=a2−2a−b2B.−(2x−y)−(−x2+y2)=−2x−y+x2−y2C.2x2−3(x−5)=2x2−3x+5D.−a3−[−4a2+(1−3a)]=−a3+4a2−1+3a答案:D分析:根据去括号法则进行判断即可.解:A.a2−(2a−b2)=a2−2a+b2,故A错误,不符合题意;B.−(2x−y)−(−x2+y2)=−2x+y+x2−y2,故B错误,不符合题意;C.2x2−3(x−5)=2x2−3x+15,故C错误,不符合题意;D.−a3−[−4a2+(1−3a)]=−a3+4a2−1+3a,故D正确,符合题意.故选:D.小提示:本题主要考查了去括号法则,解题的关键是熟练掌握去括号法则,注意括号前面为负号的的将负号和括号去掉后,括号里面的每一项符号要发生改变.10、不改变代数式a2+2a−b+c的值,下列添括号错误的是()A.a2+(2a−b+c)B.a2−(−2a+b−c)C.a2−(2a−b+c)D.a2+2a+(−b+c)答案:C分析:将各选项代数式去括号,再与已知代数式比较即可.解:A、a2+(2a-b+c)=a2+2a-b+c,正确,此选项不符合题意;B、a2-(-2a+b-c)=a2+2a-b+c,正确,此选项不符合题意;C、a2-(2a-b+c)=a2-2a+b-c,错误,此选项符合题意;D、a2+2a+(-b+c)=a2+2a-b+c,正确,此选项不符合题意;故选:C.小提示:本题主要考查整式的加减,将各选项去括号,与题干整式比较是否一致是解题的关键.填空题11、一列有规律的数:−1,−4,7,10,−13,−16,19,22,⋯.这列数的第100个数为____.答案:298分析:观察发现,连续的两个数的绝对值相差3,符号为4次一循环,据此即可求解.解:观察一列有规律的数:−1,−4,7,10,−13,−16,19,22,⋯.第一个数为:−1=−[3×(1−1)+1],第二个数为:−4=−[3×(2−1)+1],第三个数为:+7=+[3×(3−1)+1],第四个数为:+10=+[3×(4−1)+1],……连续的两个数的绝对值相差3,符号为4次一循环,100÷4=25,第100个数为第25组第4个,符号为正,第100个数为3×(100−1)+1=298所以答案是:298小提示:本题是一道找规律问题,此类问题通常会按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律,而揭示的规律,常常包含着事物的序列号. 所以解决此类问题的关键,可以把变量和序列号放在一起加以比较,从而快速找到规律.12、观察下列图形规律,当图形中的“○”的个数和“.”个数差为2022时,n的值为____________.答案:不存在分析:首先根据n=1、2、3、4时,“•”的个数分别是3、6、9、12,判断出第n个图形中“•”的个数是3n;然;最后根据图形中的后根据n=1、2、3、4,“○”的个数分别是1、3、6、10,判断出第n个“○”的个数是n(n+1)2“○”的个数和“.”个数差为2022,列出方程,解方程即可求出n的值是多少即可.解:∵n=1时,“•”的个数是3=3×1;n=2时,“•”的个数是6=3×2;n=3时,“•”的个数是9=3×3;n=4时,“•”的个数是12=3×4;……∴第n个图形中“•”的个数是3n;又∵n=1时,“○”的个数是1=1×(1+1);2n=2时,“○”的个数是3=2×(2+1),2n=3时,“○”的个数是6=3×(3+1),2n=4时,“○”的个数是10=4×(4+1),2……∴第n个“○”的个数是n(n+1),2由图形中的“○”的个数和“.”个数差为2022∴3n−n(n+1)2=2022①,n(n+1)2−3n=2022②解①得:无解解②得:n1=5+√162012,n2=5−√162012所以答案是:不存在小提示:本题考查了图形类规律,解一元二次方程,找到规律是解题的关键.13、将从1开始的连续自然数按以下规律排列:若有序数对(n,m)表示第n行,从左到右第m个数,如(3,2)表示6,则表示99的有序数对是_______.答案:(10,18)分析:分析每一行的第一个数字的规律,得出第n行的第一个数字为1+(n−1)2,从而求得最终的答案.第1行的第一个数字:1=1+(1−1)2第2行的第一个数字:2=1+(2−1)2第3行的第一个数字:5=1+(3−1)2第4行的第一个数字:10=1+(4−1)2第5行的第一个数字:17=1+(5−1)2…..,设第n行的第一个数字为x,得x=1+(n−1)2设第n+1行的第一个数字为z,得z=1+n2设第n行,从左到右第m个数为y当y=99时1+(n−1)2≤99<1+n2∴(n−1)2≤98<n2∵n为整数∴n=10∴x=1+(n−1)2=82∴m=99−82+1=18所以答案是:(10,18).小提示:本题考查数字规律的性质,解题的关键是熟练掌握数字规律的相关性质.14、若关于x、y的多项式27x2y−9mxy−38y3−3xy+2化简后不含二次项.则m=________.答案:−13分析:首先合并同类项,不含二次项,说明xy项的系数是0,由此进一步计算得出结果即可.解:27x2y−9mxy−38y3−3xy+2=2 7x2y−38y3−(9m+3)xy+2,∵化简后不含二次项,∴9m+3=0,解得m=−13,所以答案是:−13.小提示:此题考查并同类项的方法,明确没有某一项的含义,就是这一项的系数为0.15、在代数式3xy2,m,6a2−a+3,12,4x2yzx−15xy2,23ab中,单项式有___________个.答案:3分析:根据单项式的定义,进行逐一判断即可.解:在3xy2,m,6a2−a+3,12,4x2yzx−15xy2,23ab中,单项式有3xy2,m,12,一共3个,所以答案是:3.小提示:本题主要考查了单项式的定义,解题的关键在于能够熟知相关定义:表示数或字母的积的式子叫做单项式,单独的一个数或一个字母也是单项式,单项式中数字因数叫做这个单项式的系数,所有字母的指数之和叫做单项式的次数.解答题16、化简:(9x−3)−2(x+1)(1)13(2)(3a2b−ab2)−(ab2+3a2b)答案:(1)x−3;(2)−2ab2分析:(1)先去括号,再合并同类项即可得到答案;(2)先去括号,再合并同类项即可得到答案.解:(1)原式=3x−1−2x−2=3x−2x−2−1=x−3(2)原式=3a2b−ab2−ab2−3a2b=3a2b−3a2b−ab2−ab2=−2ab2小提示:本题考查的整式的加减运算,掌握去括号,合并同类项是解题的关键.17、已知多项式A=2x2+my−12,B=nx2−3y+6.(1)若(m+2)2+|n−3|=0,化简A−B;(2)若A+B的结果中不含有x2项以及y项,求m+n+mn的值.答案:(1)−x2+y−18,(2)-5分析:(1)根据非负数的性质求出m、n,再计算A-B即可;(2)先计算A+B,再根据不含x2项以及y项,得出m、n的值,代入即可.解:(1)∵(m+2)2+|n−3|=0,∴m+2=0,n−3=0,解得,m=−2,n=3,∴A=2x2−2y−12,B=3x2−3y+6,A−B=2x2−2y−12−(3x2−3y+6),=2x 2−2y −12−3x 2+3y −6,=−x 2+y −18.(2)A +B =2x 2+my −12+(nx 2−3y +6),=(2+n)x 2+(m −3)y −6,∵结果中不含有x 2项以及y 项,∴2+n =0,m −3=0,解得,n =−2,m =3,把n =−2,m =3代入,m +n +mn =3−2+3×(−2)=−5.小提示:本题考查了非负数的性质和整式的加减以及代数式求值,解题关键是能够根据非负数的性质或多项式不含某一项确定字母系数的值,并能熟练应用整式加减的法则进行计算.18、如图,一个点从数轴上的原点开始,先向左移动3cm 到达A 点,再向右移动4cm 到达B 点,然后再向右移动72cm 到达C 点,数轴上一个单位长度表示1cm .(1)请你在数轴上表示出A ,B ,C 三点的位置;(2)把点C 到点A 的距离记为CA ,则CA =______cm .(3)若点A 沿数轴以每秒3cm 匀速向右运动,经过多少秒后点A 到点C 的距离为3cm ?(4)若点A 以每秒1cm 的速度匀速向左移动,同时点B 、点C 分别以每秒4cm 、9cm 的速度匀速向右移动.设移动时间为t 秒,试探索:BA −CB 的值是否会随着t 的变化而改变?若变化,请说明理由,若无变化,请直接写出BA −CB 的值.答案:(1)见解析(2)152(3)经过32或72秒后点A 到点C 的距离为3cm(4)BA −CB 的值不会随着t 的变化而变化,BA −CB =12分析:(1)根据题意,在数轴上表示点A 、B 、C 的位置即可;(2)利用数轴上两点间的距离公式解题;(3)分两种情况讨论:点A 在点C 的左侧或点A 在点C 的右侧;(4)表示出BA 、CB ,再相减即可解题.(1)解:由题意得:A 点对应的数为−3,B 点对应的数为1,点C 对应的数为92, 点A ,B ,C 在数轴上表示如图:(2)解:设原点为O ,如图,∴OA =3,OC =92,∴AC =OA +OC =152. 所以答案是:152.(3)解:①当点A 在点C 的左侧时,设经过x 秒后点A 到点C 的距离为3cm ,由题意得:152−3x =3,解得:x =32.②当点A 在点C 的右侧时,设经过x 秒后点A 到点C 的距离为3cm ,由题意得:3x −152=3,解得:x =72. 综上,经过32或72秒后点A 到点C 的距离为3cm .(4)解:BA −CB 的值不会随着t 的变化而变化,BA −CB =12. 由题意:AB =4cm ,CB =72cm , ∵移动t 秒后,AB =4+t +4t =(4+5t )cm ,CB =9t −4t +72=(5t +72)cm ,∴BA −CB =(4+5t )−(5t +72)=12.∴BA −CB 的值不会随着t 的变化而变化,BA −CB =12.小提示:本题考查数轴、数轴上两点间的距离等知识,是重要考点,掌握相关知识是解题关键.。
(名师选题)七年级数学上册第二章整式的加减重点易错题单选题1、已知:关于x,y的多项式ax2+2bxy+3x2−3x−4xy+2y不含二次项,则3a−4b的值是()A.-3B.2C.-17D.18答案:C分析:先对多项式ax2+2bxy+3x2−3x−4xy+2y进行合并同类项,然后再根据不含二次项可求解a、b 的值,进而代入求解即可.解:ax2+2bxy+3x2−3x−4xy+2y=(a+3)x2+(2b−4)xy−3x+2y,∵不含二次项,∴a+3=0,2b−4=0,∴a=-3,b=2,∴3a−4b=−9−8=−17.故选:C.小提示:本题主要考查整式加减中的无关型问题,熟练掌握整式的加减是解题的关键.2、若﹣2xm+7y4与3x4y2n是同类项,则mn的值为()A.1B.5C.6D.﹣6答案:D分析:根据同类项的定义,得到关于m、n的等式,然后求出m、n的值并计算即可得到答案.解:由同类项的概念可知:m+7=4,2n=4,解得:m=﹣3,n=2,∴mn=(﹣3)×2=﹣6,故选D.小提示:本题考查了同类项的定义,掌握相关知识并熟练使用,是解题关键.3、若|a−2|+|b+3|=0,则b a的值为()A.1B.﹣1C.﹣6D.9答案:D分析:根据绝对值的非负性得到a与b的值,代入求值即可.解:∵|a−2|≥0,|b+3|≥0,∴当|a−2|+|b+3|=0时,∴a﹣2=0,b+3=0,解得a=2,b=﹣3,∴b a=(−3)2=9,故选:D.小提示:本题考查代数式求值,涉及到绝对值的非负性及幂的运算,熟练掌握非负式的和为零的条件是解决问题的关键.4、下列添括号正确的是()A.−b−c=−(b−c)B.−2x+6y=−2(x−6y)C.x−y−1=x−(y−1)D.a−b=+(a−b)答案:D分析:根据添括号的法则即可进行解答.解:A、−b−c=−(b+c),故A不正确,不符合题意;B、−2x+6y=−2(x−3y),故B不正确,不符合题意;C、x−y−1=x−(y+1),故C不正确,不符合题意;D、a−b=+(a−b),故D正确,符合题意;故选:D.小提示:本题主要考查了添括号的法则,解题的关键是熟练掌握添加括号的法则,添加括号时,括号前是正号时,括号里面符号不改变;括号前是负号时,括号里面要变号.5、下列去括号或添括号的变形中,正确的是()A.2a-(3b-c)=2a-3b-c B.3a+2(2b-1)=3a+4b-1C.a+2b-3c=a+(2b-3c)D.m-n+a-b=m-(n+a-b)答案:C分析:由去括号和添括号的法则可直接判断各个选项的正误,进而得到答案.解:2a−(3b−c)=2a−3b+c,故选项A错误,不符合题意;3a+2(2b−1)=3a+4b−2,故选项B错误,不符合题意;a+2b−3c=a+(2b−3c),故选项C正确,符合题意;m−n+a−b=m−(n−a+b),故选项D错误,不符合题意;故选:C.小提示:本题考查去括号和添括号,熟练掌握相关知识是解题的关键.6、把菱形按照如图所示的规律拼图案,其中第①个图案中有1个菱形,第②个图案中有3个菱形,第③个图案中有5个菱形,…,按此规律排列下去,则第⑥个图案中菱形的个数为()A.15B.13C.11D.9答案:C分析:根据第①个图案中菱形的个数:1;第②个图案中菱形的个数:1+2=3;第③个图案中菱形的个数:1+2×2=5;…第n个图案中菱形的个数:1+2(n−1),算出第⑥个图案中菱形个数即可.解:∵第①个图案中菱形的个数:1;第②个图案中菱形的个数:1+2=3;第③个图案中菱形的个数:1+2×2=5;…第n个图案中菱形的个数:1+2(n−1),∴则第⑥个图案中菱形的个数为:1+2×(6−1)=11,故C正确.故选:C.小提示:本题主要考查的是图案的变化,解题的关键是根据已知图案归纳出图案个数的变化规律.7、多项式4x3−3x2y4+2m−7的项数和次数分别是()A.4,9B.4,6C.3,9D.3,6答案:B分析:由于组成该多项式的单项式(项)共有四个4x3,﹣3x2y4,2m,﹣7,然后根据多项式的项的定义,多项式的次数的定义即可确定其项数与次数.解:由于组成该多项式的单项式(项)共有四个4x3,﹣3x2y4,2m,﹣7,其中最高次数为2+4=6.故选:B.小提示:本题考查了对多项式的项和次数的掌握情况,难度不大.多项式的次数是多项式中最高次项的次数,多项式的项数为组成多项式的单项式的个数.8、已知关于x、y的多项式mx2+4xy−7x−3x2+2nxy−5y合并后不含有二次项,则m+n的值为()A.-5B.-1C.1D.5答案:C分析:先对多项式mx2+4xy−7x−3x2+2nxy−5y进行合并同类项,然后再根据不含二次项可求解m、n的值,进而代入求解即可.解:mx2+4xy−7x−3x2+2nxy−5y=(m−3)x2+(4+2n)xy−7x−5y,∵不含二次项,∴m−3=0,4+2n=0,∴m=3,n=−2,∴m+n=3−2=1.故选:C小提示:本题主要考查整式的加减,熟练掌握整式的加减是解题的关键.9、按一定规律排列的单项式:2x,-3x2,4x3,-5x4,6x5,-7x6,…第n个单项式是()A.(n+1)x n B.−(n+1)x n C.(−1)n(n+1)x n D.(−1)n+1(n+1)x n答案:D分析:通过观察题意可得:奇数项的系数为正,偶数项的系数为负,且系数的绝对值是从2开始的连续整数,次数是连续整数,由此可解出本题.解:第1个单项式是2x=(-1)1+1(1+1)x1,第2个单项式是-3x2=(-1)2+1(1+2)x2,第3个单项式是4x3=(-1)3+1(1+3)x3,•••,第n个单项式是(-1)n+1(n+1)xn.故选:D.小提示:本题考查单项式规律题,确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.分别找出单项式的系数和次数的规律也是解决此类问题的关键.10、下列各选项中,不是同类项的是()A.3a2b和−5ba2B.12x2y和12xy2C.6和23D.5x n和−3x n4答案:B分析:根据同类项的概念求解即可.同类项:如果两个单项式,他们所含的字母相同,并且相同字母的指数也分别相同,那么就称这两个单项式为同类项.解:A、3a2b和−5ba2是同类项,不符合题意;B、12x2y和12xy2不是同类项,符合题意;C、6和23是同类项,不符合题意;D、5x n和−3x n4是同类项,不符合题意.故选:B.小提示:此题考查了同类项的概念,解题的关键是熟练掌握同类项的概念.同类项:如果两个单项式,他们所含的字母相同,并且相同字母的指数也分别相同,那么就称这两个单项式为同类项.填空题11、计算4a+2a−a的结果等于_____.答案:5a分析:根据合并同类项的性质计算,即可得到答案.4a+2a−a=(4+2−1)a=5a所以答案是:5a.小提示:本题考查了整式加减的知识;解题的关键是熟练掌握合并同类项的性质,从而完成求解.12、计算:2a+3a=______.答案:5a分析:直接运用合并同类项法则进行计算即可得到答案.解:2a+3a=(2+3)a=5a.所以答案是:5a.小提示:本题主要考查了合并同类项,熟练掌握合并同类项法则是解答本题的关键.=﹣1,|c|=c,化简|a+b|﹣|a﹣c|﹣|b﹣c|=__.13、已知abc>0,|b|b答案:﹣2c分析:先根据已知条件确定a,b,c的符号,再化简绝对值即可.∵abc>0,|b|=−1,|c|=c,b∴a<0,b<0,c>0,∴a+b<0,a﹣c<0,b﹣c<0,∴|a+b|﹣|a−c|﹣|b−c|=﹣a﹣b+a﹣c+b﹣c=﹣2c.所以答案是:﹣2c.小提示:本题考查绝对值化简,合并同类项法则,解题关键是根据已知条件判断绝对值内的式子的正负性.14、立信初一年级周二体锻课站队时,有三个人数一样多的小组(假设人数足够多)分别记为A、B、C三个小组,依次完成以下三个步骤:第一步,A组二个人去B组;第二步,C组三个人去B组;第三步,A组还有几个人,B组就去多少人到A组.请你确定,最终B组人数为 _____人.答案:7分析:设A、B、C原来人数为a人,根据题意列出关系式,去括号合并即可得到结果.解:设A、B、C原来人数为a人,根据题意得:a+2+3﹣(a﹣2)=a+2+3﹣a+2=7(人),则最终B组人数为7人.所以答案是:7.小提示:此题考查了整式的加减,弄清题意是解本题的关键.15、实数a、b、c在数轴上的位置如图所示,√a2+|a−c|−|c−b|化简的结果是______.答案:-b分析:根据数轴上点的位置得到c<a<0<b,得到a-c>0,c-b<0,由此化简绝对值及算术平方根,再计算即可.解:由数轴得c<a<0<b,∴a-c>0,c-b<0,∴√a2+|a−c|−|c−b|=-a+a-c-(b-c)=-c-b+c=-b,所以答案是:-b.小提示:此题考查了根据数轴上点的位置判断式子的符号,化简绝对值,计算算术平方根,正确理解数轴上点的位置得到式子的符号是解题的关键.解答题16、已知m=4x2+10x+2y2,n=2x2−2y+y2,求:(1)m−2n;(2)当5x+2y=2时,求m−2n的值.答案:(1)10x+4y(2)4分析:(1)把m与n代入m−2n中,先去括号,再合并同类项即可得到结果;(2)将原式结果变形后,把已知等式整体代入计算即可求出值.解:(1)m−2n=4x2+10x+2y2−2(2x2−2y+y2)=4x2+10x+2y2−4x2+4y−2y2=10x+4y;(2)∵5x+2y=2∴原式=10x+4y=2(5x+2y)=2×2=4.小提示:此题考查了利用整式的加减化简求值,熟练掌握运算法则是解本题的关键.17、已知:A=3x2+2xy+3y−1,B=x2−xy.(1)计算:A-3B;(2)若(x+1)2+|y−2|=0,求A-3B的值;(3)若A-3B的值与y的取值无关,求x的值.答案:(1)5xy+3y-1(2)-5(3)x=−35分析:(1)把A和B代入计算即可;(2)利用非负数的性质求出x,y的值,代入计算即可;(3)A-3B变形后,其值与y的取值无关,确定出x的值即可.(1)解:A-3B=3x2+2xy+3y−1-3(x2−xy)=3x2+2xy+3y−1-3x2+3xy=5xy+3y-1(2)解:因为(x+1)2+|y−2|=0,(x+1)2≥0,|y−2|≥0,所以x+1=0,y-2=0,解得x=-1,y=2,把x=-1,y=2代入得,原式=5×(-1)×2+3×2-1=-5.(3)解:A-3B=5xy+3y-1=(5x+3)y-1,要使A-3B的值与y的取值无关,则5x+3=0,.所以x=−35小提示:本题考查整式的加减,整式的化简求值,非负数的性质,熟练掌握运算法则是解题的关键..18、先化简,再求值:a2b-[2a2-2(ab2-2a2b)-4]-2ab2,其中a=-2,b=12答案:−3a2b−2a2+4;-10分析:原式去括号合并得到最简结果,把a与b的值代入计算即可求出值.解:原式=a2b−(2a2−2ab2+4a2b−4)−2ab2=a2b−2a2+2ab2−4a2b+4−2ab2=−3a2b−2a2+4时,当a=-2,b=12−2×(−2)2+4原式=−3×(−2)2×12=−6−8+4=-10小提示:此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.。
整式的加减知识要点归纳一、基础知识:知识点一:用字母表示数用字母表示数就是用字母或含字母的式子表示数和数量关系,它是从算术到代数的重要转变。
而用字母表示数之后,有些数量之间的关系用含有字母的式子表示,看上去更加简明,更具有普遍意义了 .举例:如果用a、b表示任意两个有理数,那么加法交换律可以用字母表示为:a+ b = b + a.乘法交换律可以用字母表示为:ab =ba要点诠释:(1)当数字与字母相乘时,乘号通常省略不写或简写为“•且,1数字在前,字母在后,若数字是带分数,要化为假分数,如1:x a3 3写成;a或a;2 2(2)字母与字母相乘时,乘号通常省略不写或简写为“•'如,a xb 写成a b或ba;1(3)除法运算写成分数形式,如1勺通常写作—(a^0)a知识点二:单项式1由数与字母的积组成的式子叫做单项式,例如,r2h、二、abc、—3m都是单项式.其中,单项式中的数字因数叫做这个单项式的系数,所有字母的指数的和叫做这个单项式的次数。
1 1例如,—r2h的系数是—,次数是3; -疗的系数是",次数是3 31; abc的系数是1,次数是3; —m的系数是—1,次数是1.要点诠释:1、特别地,单独一个数或一个字母也是单项式.2、单项式的系数包括它前面的符号。
3、单项式的系数是1或—1时,通常1省略不写,如—k, pq21—等,单项式的系数是带分数时,通常化成假分数。
如-•写成4、单项式的次数仅仅与字母有关,是单项式中所有字母的指数的和。
特别地,单项式b的次数是1,常数—5的次数是0,而9X 103a2b3c的次数是6,与103无关。
5、要正确区分单项式的次数与单项式中字母的次数,如6p2q 的次数是3,其中字母p的次数是2。
6、圆周率n是常数。
知识点三:多项式几个单项式的和叫做多项式.在多项式中,每个单项式叫做多项式的项.其中,不含字母的项,叫做常数项.例如,多项式跻-加兀有三项,它们是新,—2x,5.其中5是常数项.多项式的项数与次数:一个多项式含有几项,就叫几项式.多项式里,次数最高项的次数,就是这个多项式的次数.例如,多项式-是一个二次三项式.要点诠释:1、多项式的每一项都包括它前面的符号。
整式的加减【易错点整理】
1、写结果时,字母前的系数1通常要省略。
①3x+1y ②3x-1y ③3x-y
2、有带分数的要写成假分数的形式。
① ② ③
3、 “÷”要写成分数的形式。
①3÷2xy ②
4、在交换位置时,一般把正的写在前面,负的写在后面,然后再结合,这样不容易出错。
①-3y+2y ②2y-3y
5、写结果时,有括号的要去掉括号,写成最简形式。
① ②
6、最后的结果要按升幂或者降幂的形式排列
① ②
7、合并同类项,只把系数相加减,字母及对应字母的指数不变。
① ②
8、像
这样分子有两项时,要拆开来看它的项。
9、写整式时,数字要写在字母的前面。
①2a ②a3
10、求一个式子与另一个式子差的时候,第二个式子要加括号。
比如求
①
②。