固体物理考题汇总 (无答案)
- 格式:docx
- 大小:128.37 KB
- 文档页数:15
一、名词解释:1、晶体 ;2、非晶体;3、点阵;4、晶格;5、格点;6、晶体的周期性;7、晶体的对称性8、密勒指数;9、倒格子;10、配位数;11、致密度;12、固体物理学元胞;13、结晶学元胞;14、布拉菲格子;15、复式格子;16、声子;17、布洛赫波 ;18、布里渊区;19、格波;20、电子的有效质量二、计算证明题1. 晶体点阵中的一个平面hkl ,试证:(1)晶格的两个相邻平行平面(这些平面通过格点)之间的距离为2||hkl d K π=此处123K hb kb lb =++;(2)利用上述关系证明,对于简单立方格子,22d l =+ a 为晶格常数;(3)说明什么样的晶面容易解理,为什么?2、金刚石晶胞的立方边长为m 101056.3-⨯,求最近邻原子间的距离、平均每立方厘米中的原子数和金刚石的密度。
(碳原子的重量为2310*99.1-g )3. 试证:在晶体中由于受到周期性的限制,只能有1、2、3、4、6重旋转对称轴,5重和大于6重的对称轴不存在。
4、晶体点阵中的一个平面.hkl(a )证明倒易点阵矢量321b l b k b h G ++=垂直于这个平面。
(b )证明正格子原胞体积与倒格子原胞体积互为倒数5. 证明体心立方格子和面心立方格子互为正、倒格子。
6. 在六角空间格子中选取一平行六面体为原胞,试求:(1)基矢321,,a a a的表示式;(2)原胞的体积;(3)倒格子基矢321,,b b b 。
7、氪原子组成惰性晶体为体心立方结构,其总势能可写为()⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=6612122R A R A N R U σσε,其中N 为氪原子数,R 为最近邻原子间距离,点阵和A 6=12.25,A 12=9.11;设雷纳德—琼斯系数ε=0.014eV ,σ=3.65。
求:(1)平衡时原子间最近距离R 0及点阵常数a ;(2)每个原子的结合能(eV )。
8. 设两原子间的互作用能可表示为()n m r r r u βα+-=式中,第一项为引力能;第二项为排斥能;βα,均为正常数。
第一章 晶体结构和X 射线1、试证体心立方和面心立方各自互为正、倒格子2、如果基矢a,b,c 构成正交关系,证明晶面族(h k l )的面间距满足: 222)()()(1c l b k a hd h k l ++=3、证明以下结构晶面族的面间距:(1) 立方晶系:d hkl =a [h 2+k 2+l 2]-1/2(2) 六角晶系:2/12222])()(34[-+++=c l ahk k h d hkl 4、等体积的硬球堆积成体心立方结构和面心立方结构,试求他们在这两种结构中的致密度分别为0.68和0.74。
5、试证密积六方结构中,c/a=1.633。
6、在立方晶胞中,画出(1 0 1),(0 2 1),(221)和(012)晶面。
7、如下图,B 和C 是面心立方晶胞上的两面心。
(1) 求ABC 面的密勒指数;(2) 求AC 晶列的指数,并求相应原胞坐标系中的指数。
8、六角晶胞的基矢为.,223,223k c c j a i a b j a i a a =+-=+= 求其倒格子基矢。
9、求晶格常数为a 的面心立方和体心立方晶体晶面族(h 1 h 2 h 3)之间的面间距(指导p30,10)。
10、讨论六角密积结构,X 光衍射的消光条件。
11、求出体心立方、面心立方的几何因子和消光条件。
12、原胞和晶胞的区别?13、倒空间的物理意义?14、布拉格衍射方程,原子和几何结构因子在确定晶格结构上分别起何作用?15、什么是布拉格简单格子,什么是复式格子?第二章 自由电子气1、设有一个长度为L 的一维金属线,它有N 个导电电子,若把这些导电电子看成自由电子气,试求:(1) 电子的状态密度(2) 绝对零度下的电子费米能级,以及费米能级随温度的变化关系。
(3) 电子的平均能量。
(4) 电子的比热。
2、二维电子气的能态密度2)( πm E N =,证明费米能 ]1ln[/2-=T m k n B F b eT k E π 3、求出一维金属中自由电子的能态密度、费米能级、电子的平均动能以及一个电子对于比热的贡献。
第一章晶体的结构简单回答下面的问题:1 a原胞与单胞有什么不同?何谓布拉菲格子?何谓倒格子?以一结点为顶点,以三个不同方向的周期为边长的平行六面体可作为晶格的一个重复单元.体积最小的重复单元,称为原胞或固体物理学原胞.它能反映晶格的周期性.原胞的选取不是惟一的,但它们的体积都相等.为了同时反映晶体对称的特征,结晶学上所取的重复单元,体积不一定最小,结点不仅在顶角上,还可以是体心或面心.这种重复单元称作晶胞、惯用晶胞或布喇菲原胞.晶体内部结构可以看成是由一些相同的点子在空间作规则的周期性无限分布,这些点子的总体称为布喇菲点阵。
布拉菲格子:由基元代表点(格点)在空间中的周期性排列所形成的晶格。
倒格子*(Reciprocal Lattice,Reciprocal有相互转换的含意)已知有正格子基矢,定义倒格矢基矢为:;; .其中为正格子原胞体积。
由平移操作所产生的格点叫倒格点:为倒格矢;倒格点的总体叫倒格子,叫一组倒格基矢。
由与所决定的点阵为互为倒格子b晶体的宏观对称性可以概括为多少点群?晶体中有几种基本对称素?多少个晶系?这些晶系分别包括哪些布拉菲格子?晶体学中共有32种点群八种基本对称素C1 (1)、C2 (2)、C3 (3)、C4 (4)、C6 (6)、Ci (i)、CS (m)和 S4七大晶系十四种布拉菲格子c什么是晶体、准晶体和非晶体?晶体:组成固体的原子(或离子)在微观上的排列具有长程周期性非晶体:组成固体的粒子只有短程序(在近邻或次近邻原子间的键合:如配位数、键长和键角等具有一定的规律性),无长程周期性准晶:有长程的取向序,沿取向序的对称轴方向有准周期性,但无长程周期性2试推导面心和体心立方点阵的x射线衍射的系统消光规律3多晶体与单晶体的x射线衍射图有什么区别?多晶(衍射环对应一个晶面);单晶(衍射点对应一个晶面)4a)何谓晶体、准晶体及非晶体?它们的x光或电子衍射有何区别?黄昆第45页晶体:衍射图样是一组组清晰的斑点非晶体:由于原子排列是长程无序的,衍射图样呈现为弥散的环,没有表征晶态的斑点准晶体:衍射图样具有五重对称的斑点分布,斑点的明锐程度不亚于晶体的情况(b)何谓布拉菲格子、晶体学点群、晶系和晶体学空间群?C1 (1)、C2 (2)、C3 (3)、C4 (4)、C6 (6)及S1,S2,S3,S4,S5这十种对称素组成32个不同的点群结晶学中把a, b, c满足同一类要求的一种或数种布喇菲格子称为一个晶系。
1. 设晶体中的每个振子的零点振动能.试用德拜模型求晶体的零点振动能.证明:根据量子力学零点能是谐振子所固有的,与温度无关,故T=0K 时振动能0E 就是各振动模零点能之和。
()()()000012mE E g d E ωωωωωω==⎰将和()22332s V g v ωωπ=代入积分有402339168m m s V E N v ωωπ==,由于098m B D B D k E Nk ωθθ==得 一股晶体德拜温度为~210K ,可见零点振动能是相当大的,其量值可与温升数百度所需热能相比拟.2. 试画出二维长方格子的第一、第二布里渊区.3. 证明:在磁场中运动的布洛赫电子,在K 空间中,轨迹面积A n 和在r 空间的轨迹面积S n之间的关系A n= (qB hc)2S n()d k d rc qv B q B dt dt⋅=-⨯=--⋅解: dk qB dr dt c dt∴=⋅ t k qBr c两边对积分,即 =22()()n n A r c S k qB∴== 4. 证明:面心立方晶格的倒格子为体心立方. 解:面心立方晶格的基矢为()()()a a aa j ,b ,c 222k i k i j =+=+=+ 则面心立方原胞体积3V []4a abc ⋅⨯==a 2bc V π*⨯=面心立方倒格矢 ()()2384a i k i j a π=⋅+⨯+()ai j k π-++2=()b a i j k π*=-+2同理: ,()ac i j k π*=+-2 a b c ***显然,,为体心立方原胞基矢,因此面心立方晶格倒格子为体心立方 5. 证明:根据倒格子的定义证明简单立方格子体积与其倒格子体积成反比解:设简单立方晶格常数为a ,则基矢为a ,b ,c ,V a ai a j ak ===3体积=其倒格矢2312b 2a a i V aππ⨯==,3122b 2a a j V a ππ⨯==,1232b 2a a k V a ππ⨯== 则倒格子体积()31232[]V b b b Vπ*=⋅⨯=6. 是否存在与库伦力无关的晶型,为什么?答:不存在与库仑力无关的晶型,因为①共价结合中电子虽不能脱离电负性 的原子,但靠近的两个原子各给出一个电子,形成电子共有的形状,位于两原子之间通过库仑力把两个原子结合起来。
1、解理面:矿物晶体在外力作用下严格沿着一定结晶方向破裂,并且能裂出光滑平面的性质称为解理,这些平面称为解理面。
性质:解理面一般光滑平整,一般平行于面间距最大,面网密度最大的晶面,因为面间距大,面间的引力小,这样就造成解理面一般的晶面指数较低,如Si的解理面为(111)。
晶体中原子的排列是长程有序的,这种现象称为晶体内部结构的周期性。
晶体内部结构的周期性可以用晶格来形象地描绘。
晶格是由无数个相同单元周期性地重复排列组成的。
2、晶格场中电子运动状态:在周期性势场中,属于某个原子的电子既可以在该原子附近运动,也可以在其它的原子附近运动,即可以在整个晶体中运动。
即局域化运动、共有化运动。
晶体中(也就是周期性势场中)的电子的运动是既有局域化的特征又有共有化特征。
3、固体热容组成:固体的热容是原子振动在宏观性质上的一个最直接的表现。
杜隆·伯替定律------在室温和更高的温度,几乎全部单原子固体的热容接近3NkB。
在低温热容与T3成正比。
(晶格热振动)晶格热容固体的热容(电子的热运动)电子热容每一个简谐振动的平均能量是kBT ,若固体中有N个原子,则有3N个简谐振动模,总的平均能量: E=3NkBT热容: Cv = 3NkB热容的本质:反映晶体受热后激发出的晶格波与温度的关系;对于N个原子构成的晶体,在热振动时形成3N个振子,各个振子的频率不同,激发出的声子能量也不同;温度升高,原子振动的振幅增大,该频率的声子数目也随着增大;温度升高,在宏观上表现为吸热或放热,实质上是各个频率声子数发生变化。
影响热容的因素:1. 温度对热容的影响高于德拜温度时,热容趋于常数,低于德拜温度时,与(T / D)3成正比。
2. 键强、弹性模量、熔点的影响德拜温度约为熔点的0.2—0.5倍。
3. 无机材料的热容对材料的结构不敏感混合物与同组成单一化合物的热容基本相同。
4. 相变时,由于热量不连续变化,热容出现突变。
5. 高温下,化合物的摩尔热容等于构成该化合物的各元素原子热容的总和(c=niCi)ni :化合物中i元素原子数;Ci:i元素的摩尔热容。
固体物理题目总汇填空题1、根据固体材料中原子排列的方式可以将固体材料分为晶体、非晶体和准晶体。
2、晶体结构=点阵+基元3、晶体的比热包括晶格比热和电子比热。
4、结晶学中,属于立方晶系的布拉维晶胞有简单立方、体心立方和面心立方三种。
5、密堆结构有两种:六方密堆积和立方密堆积。
6、原子电负性在一个周期内由左到右不断升高,周期表由上到下,负电性逐渐降低。
7、限定波矢q的取值范围在第一布里渊区8、金属的未满能带叫价带或导带。
1、人们利用某射线衍射测定晶体结构。
3、晶体的热学性质,如比热、热膨胀和热传导等就与晶格振动密切有关。
4、声子是一种准粒子,不具有通常意义下的动量,常把q称为声子的准动量。
5、根据晶体缺陷在空间延伸的线度晶体缺陷可分为点缺陷~线缺陷、面缺陷和体缺陷。
6、V心是F心的反型体。
1、晶体的基本结构单元称为基元2、面心立方晶胞的晶格常数为a,其倒格子原胞的体积等于323/a33、布拉维空间点阵共有14种,归为7种晶系。
5、一维双原子链的色散关系中频率较低的一支叫声学支(声频支),它很像单原子链中的声学支,;频率较高的一支则叫光学支(光频支)。
6、面缺陷有堆垛层错、小角晶界和晶粒间界三种主要形式。
8、一般情况下晶体电子的近似质量是张量,自由电子的惯性质量是标量。
9、对复式晶格,格波可分为声学波和光学波。
1、体心立方结构的第一布里渊区是菱形十二面体。
2、已知某晶体的基矢取为a1、a2、a3,某一晶面在三个基矢上的截距分别为3,2,-1,则该晶面的晶面指数为2363、倒格矢体现了晶面的面间距和法向。
8、晶体中的载流子是电子和空穴2、正格子原胞体积与倒格子原胞体积之积为233、金刚石晶体的基元含有2个原子,其晶胞含有8个碳原子。
6、准晶是介于周期性晶体和非晶玻璃之间的一种新的固体物质形态。
8、晶格振动的简化模型主要有爱因斯坦模型和德拜模型。
1、面心立方结构的第一布里渊区是十四面体。
2、代表基元中的几何点称为格点。
固体物理学题库.docx.一、填空1. 固体按其微结构的有序程度可分为、和准晶体。
2. 组成粒子在空间中周期性排列,具有长程有序的固体称为;组成粒子在空间中的分布完全无序或仅仅具有短程有序的固体称为。
3. 在晶体结构中,所有原子完全等价的晶格称为;而晶体结构中,存在两种或两种以上不等价的原子或离子的晶格称为。
4 晶体结构的最大配位数是____;具有最大配位数的晶体结构包括 ______________ 晶体结构和晶体结构。
5. 简单立方结构原子的配位数为______;体心立方结构原子的配位数为______。
6.NaCl 结构中存在_____个不等价原子,因此它是晶格,它是由氯离子和钠离子各自构成的格子套构而成的。
7. 金刚石结构中存在 ______个不等价原子,因此它是晶格,由两个结构的布拉维格子沿空间对角线位移1/4 的长度套构而成,晶胞中有 _____个碳原子。
8. 以结晶学元胞(单胞)的基矢为坐标轴来表示的晶面指数称为指数。
r r当 i时r rr2 ,9. 满足 a i b j 2ij,当i 时( i, j1,2,3) 关系的 b 1 ,b 2 , b 3 为基矢,由jrrr3r。
K h 1 13 构成的点阵,称为hb h 2b 2hb10. 晶格常数为 a 的一维单原子链,倒格子基矢的大小为。
11. 晶格常数为 a 的面心立方点阵初基元胞的体积为 _______;其第一布里渊区的体积为。
12. 晶格常数为 a 的体心立方点阵初基元胞的体积为 _______;其第一布里渊区的体积为。
13.晶格常数为 a 的简立方晶格的 ()面间距为 ________14.体心立方的倒点阵是点阵,面心立方的倒点阵是点阵,简单立方的倒点阵是。
15.一个二维晶格的第一布里渊区形状是。
16.若简单立方晶格的晶格常数由a 增大为2a,则第一布里渊区的体积变为原来的倍。
17.考虑到晶体的平移对称性后,晶体点群的独立对称素有种,分别是。
晶态,非晶态,准晶态在原子排列上各有什么特 点? 答:晶体是原子排列上长程有序)、非晶体(微米 量级内不具有长程有序)、准晶体(有长程取向性, 而没有长程的平移对称性) 晶体:长程有序,有固定的熔点 单晶体:分子在整个固体中排列有序。
多晶体: 分子在微米量级内排列有序 非晶体:多晶体:分子在微米量级内排列有序,整 个晶体是由这些排列有序的晶粒堆砌而成的。
准晶体:有长程取向性,而没有长程的平移对称 性。
长程有序:至少在微米量级以上原子、分子排列具 有周期性。
晶体结构周期性,晶体:基元+布拉维格子 实际的晶体结构与空间点阵之间有何关系? 晶体结构=空间点阵+基元。
原胞和晶胞的区别? 原胞是晶体的最小重复单元,它反映的是晶格的 周期性,原胞的选取不是唯一的,但是它们的体 积都是相等的,结点在原胞的顶角上,原胞只包 含 1 个格点;为了同时反映晶体的对称性,结晶 学上所取的重复单元,体积不一定最小,结点不 仅可以在顶角上,还可以在体心或者面心上,这 种重复单元称为晶胞。
掌握立方晶系 3 个布拉维格子的原胞、晶胞基失 导法。
简单立方晶胞基失:二者一样,因为格点均在立 方体顶角上。
原胞基失:a1=ai a2=bj=aj a3=ck=ak 体心立方除顶角格点外,还有一个格点在位于立 方体的中心。
晶胞基失 a=a b=aj c=ak 原胞基失:a1=a/2(-i+j+k) a2=a/2(i-j+k) a3=a/2(i+j-k) 面心立方除顶角格点外:B 面的中心还有 6 个格 点,(每个格点为相邻晶胞所共有) 原胞基失: a=ai b=aj c=ak 晶胞基失 a1=a/2(j+k)a2=a/2(k+i) a3=a/2(i+j) 常见实际晶体的结构 ①氯化钠的结构:由 Na+和 Cl-相间排列组成。
他 们各自构成面心立方分布拉维晶格沿对角线 位 移 1/2 的长度嵌套而成 基元由一个 Cl-和 Na+组成。
固体物理考试试卷一、选择题(每题3分,共30分)1. 固体物理中,描述原子间相互作用的势能函数通常采用:A. 谐振子势能函数B. 库伦势能函数C. 量子势能函数D. 线性势能函数2. 以下哪种晶体结构不属于立方晶系?A. 简单立方B. 体心立方C. 面心立方D. 六角密堆积3. 在固体中,电子的能带结构是由以下哪个因素决定的?A. 原子核的电荷B. 电子的自旋C. 原子的排列方式D. 外部磁场4. 金属导电性的微观机制是什么?A. 电子的热运动B. 电子的跃迁C. 自由电子的定向运动D. 电子的无规则热振动5. 半导体材料的导电性介于金属和绝缘体之间,这是因为:A. 半导体中没有自由电子B. 半导体中的电子被束缚在原子上C. 半导体中的电子能带结构具有特殊的能隙D. 半导体中的电子受到外部电场的影响6. 以下哪种材料不属于超导体?A. 汞B. 铅C. 铜D. 铝7. 固体物理中,声子是描述什么的量子?A. 电子的集体运动B. 原子的集体振动C. 光子的集体运动D. 磁子的集体运动8. 以下哪种晶体缺陷不会影响晶体的电导率?A. 位错B. 空位C. 杂质D. 晶界9. 固体物理中,费米能级是指:A. 电子能量分布的最低点B. 电子能量分布的最高点C. 电子能量分布的中点D. 电子能量分布的平均点10. 以下哪种材料具有顺磁性?A. 铁B. 铜C. 铝D. 氧二、填空题(每题2分,共20分)1. 在固体物理中,周期性边界条件可以用来描述原子在晶体中的排列,这种条件通常用______来表示。
2. 能带理论中,完全填充的能带称为______,未完全填充的能带称为______。
3. 金属的塑性变形通常与晶体中的______有关。
4. 半导体的掺杂可以改变其______,从而改变其电导率。
5. 超导体的临界温度与材料的______有关。
6. 声子是晶体中原子振动的量子化描述,其能量与______成正比。
7. 晶体缺陷中的位错可以分为______位错和______位错。
第一章晶体结构一、填空1、晶面有规则,对称配置的固体,具有长程有序特点的固体称为;在凝结过程中不经过结晶(即有序化)的阶段,原子的排列为长程无序的固体称为。
由晶粒组成的固体,称为。
2、化合物半导体材料GaAs晶体属于闪锌矿类结构,晶格常数为a,其配位数为。
一个惯用元胞(结晶学元胞)内的原子数,其布喇菲格子是。
其初基原胞(固体物理学原胞)包含原子数,体积为。
初基元胞的基矢为,,。
3、半导体材料Si具有金刚石型晶体结构,晶格常数为a,其配位数为。
一个惯用元胞(结晶学元胞)内的原子数。
属于布喇菲格子。
写出其初基元胞(固体物理学元胞)的基矢________,_______,_______。
晶格振动色散关系中支声学波,支光学波,其总的格波数。
4、简立方结构如果晶格常数为a,其倒格子元胞基矢为是_______,______,_________ 。
在倒格子空间中是结构,第一布里渊区的形状为______,体积为______ 。
5、某元素晶体的结构为体心立方布喇菲格子,其格点面密度最大的晶面的密勒指数____ ,并求出该晶面系相邻晶面的面间距________。
(设其晶胞参数为a )。
6、根据三个基矢的大小和夹角的不同,十四种布喇菲格子可归属于_____ 晶系,其中当 90,=====γβαc b a 时称为 _____类晶系,该晶系的布喇菲格子有 ______ 。
7、NaCl 晶体是由两个 _ 格子沿体对角线滑移1/4长度套构而成;设惯用原胞的体积为a 3,一个惯用元胞内的原子数 ;其配位数为 ,最近邻距离 ;初基原胞体积为 ,第一布里渊区体积为______;晶体中有 支声学波, 支光学波。
8、对晶格常数为a 的SC ,与倒格矢 242K i j k a a aπππ=+- 正交的晶面族的晶面指数为____,其面间距为 __ 。
9、半导体材料Si 具有金刚石型晶体结构,晶格常数为a ,一个惯用元胞内的原子数 ,一个固体物理学原胞内的原子数 ;固体物理学原胞的体积 ,倒格子原胞的体积 __ ,第一布里渊区的体积为 ;晶格振动色散关系中 支声学波,______ 支光学波。
10、已知有某晶体的固体物理学原胞基矢为1a ,2a ,3a ,若某晶面在这三个固体物理学原胞基矢上的截距分别为 -3, 2,-1,则该晶面指数为 ,晶向12332R a a a =-+的晶向指数为 。
11、某元素晶体的结构为体心立方布拉伐格子,其格点面密度最大的晶面的密勒指数为 __ ,该晶面系相邻晶面的面间距为______。
(设其晶胞参数为a )。
二、简答1、指出立方晶格(1 1 1)面与(0 1 0)面,(1 1 1)面与(1 0 1)面的交线的晶向。
2、在立方晶胞中,画出(101),)221(晶面及[121]晶向。
3、对于体心立方和面心立方结构中,指出最密原子排列的晶向,并求出最小的滑移间距。
4、画出以下晶向或晶面: ()[][]112011)111()211(2115、简述空间点阵学说。
按照空间点阵学说,指出如下的晶体结构的基元,画出所对应的空间点阵。
6、在立方晶胞中,画出 (111)面与(110)面,并指出两晶面交线的晶向。
7、在立方晶系中,画出 (021)面与(001)面,并指出两晶面交线的晶向指数。
三、综合应用1、对于六方密堆积结构,初基元胞基矢为:k c a j i a a j i a a=+-=+=321)3(2)3(2求:(1)倒格子基矢;(2)与晶面指数为(122)的晶面簇的面间距;(3)判明倒格子也是六方结构。
2、试证面心立方的倒格子为体心立方;如果正格子面心立方的晶格常数为a ,求出(1)倒格子体心立方的晶格常数;(2)面心立方第一布里渊区的体积。
3、某晶体的固体物理学元胞基矢为:k c a j i a a j i a a=+-=+=321)3(2)3(2求:倒格子基矢和晶面指数为(121)的晶面簇的面间距。
4、利用晶面面间距d hkl 与倒格矢K hkl 的关系2hkl hkld K π=,求晶格常数为a 的面心立方晶面族(h 1 h 2 h 3)的面间距。
5、已知CsCl 晶体中Cs 和Cl 两原子的最近距离为d ,试求: 1)晶格常数;2)固体物理学原胞基矢和倒格子原胞基矢; 3)晶面指数为(112)晶面族的法线方程和面间距。
6、用倒格子的概念证明:立方晶系晶向[hkl]与晶面(hkl)垂直。
7、求晶格常数为a 的体心立方晶体晶面族123()h h h 的面间距123h h h d ,并指出面间距最大的晶面族的晶面指数。
第二章晶体的结合一、填空1、在固体物理中,晶体中常见的化学键有__ ,__ ,__ ,____,____。
如果晶体中存在两种或两种以上的化学键,称为晶体。
二、简答1、是否有与库仑力无关的晶体结合类型? 请分析说明。
2、写出晶体结合的互作用势和互作用力的一般表达式,画出二者随粒子间距r的变化规律图,并解释之。
3、通过不同的结合力原子结合成晶体,试分析离子结合和共价结合的特点。
4、晶体有哪几种结合类型?并简述金属晶体和共价晶体的性能特点?5、简述金属性结合、离子结合和共价结合,试说明哪一种或哪几种结合最可能形成导体和半导体。
第三章晶格振动一、填空1、在低温下,对于三维晶体而言,声子比热与温度关系为,电子比热与温度关系为,金属的低温比热为。
二、简答1、在甚低温下, 德拜模型为什么与实验相符?2、在绝对零度时还有格波存在吗? 若存在, 格波间还有能量交换吗?3、温度一定时,一个光学波的声子数目多,还是声学波的声子数目多?4、什么是声子,简述其特点。
5、晶体热容理论中,爱因斯坦模型和德拜模型各采用了什么简化假设?得出的结果与实验是否符合?6、假设两维情形,考虑10000个原胞,若一个原胞中有6个原子,试求:晶格振动的波矢数目和格波振动模式数目。
7、对一维双原子晶格的振动,当q=0时,两支格波有何特性?8、晶格比热理论中德拜( Debye )近似在低温下与实验符合的很好,物理原因是什么?三、综合应用1、设三维晶格的光学振动在0=q 附近的长波极限有:20)(Aq q -=ωω证明:频率分布函数⎪⎩⎪⎨⎧><-=)(0)()0(2314)(002ωωωωωωπωAVf2、采用德拜模型。
三维布拉菲晶格是各向同性的连续介质,截至频率 D ω, ,格波的状态密度为()23p2v 2V3g ωπ=ω,试证明德拜T 3定律(可利用积分公式)3、晶体由N 个原子组成面积为S 的二维晶格,试求出在德拜模型下的格波态密度、并证明极低温时比热正比于T 24、设有一长度为L 的一价正负离子构成的一维晶格,正负离子间距为a ,正负离子的质量分别为m +和m -,最近两离子的互作用势为1)力常数β;2)一维晶格色散关系为 求q =0时光学波的频率ω0151403π=-⎰∞dx e x x 为德拜温度=kD D ωθ ()()[]⎭⎬⎫⎩⎨⎧-+±+=-+-+-+-+±21222sin 4qa m m m m m m m m βω3)长声学波的波速。
5、设有一长度为L 的一价正负离子构成的一维晶格,正负离子间距为a ,正负离子的质量分别为m +和 m —,力常数为β ,色散关系为其中光学支格波取“+”号,声学支格波取“—”号。
(1)粗略画出色散关系图;(2)求长波极限下, 长声学波的色散关系和波速;(3)假设对光学支格波采用爱因斯坦模型近似,对声学支格波采用徳拜模型近似,即晶格热容 v vo vA C C C =+。
求极低温下声学支格波对晶格热容v A C 与温度T 的关系。
22x ∞60~D ω范围内的声子数目,并分别7、对二维简单格子,按照德拜模型求晶格热容,并讨论高低温极限。
(已知:323116(1)x x n e x dx e n∞∞==-∑⎰)()()12222,4sin O Am m m m m m qa m m βω+-+-+-+-⎧⎫⎪⎪⎡⎤=+±+-⎨⎬⎣⎦⎪⎪⎩⎭8、一维双原子链。
链上最近邻原子间的力常数交错地等于β和10β,两种原子的质量m相等,近邻原子间距为a/2,只考虑临近的原子作用,其色散关系为1 22 11(10120cos)qam mββω=±+,(1)定性画出简约区的色散关系图;(2)讨论在布里渊区的边界处光学波和声学波的特点;(3)求出声学支格波对此双原子链热容的贡献的积分关系式。
第四章晶体缺陷一、填空1、晶体缺陷主要包括;,,四种类型,刃型位错的特征是位错线与滑移方向;螺旋型位错的特征是位错线与滑移矢量。
2、缺陷是指。
位错是晶体内部的一种___ 维缺陷,典型的位错有两种:____和_____。
二、简答1、简述晶体中的缺陷类型,并从中任选一种缺陷论述缺陷形态、产生的原因及其对晶体特性的影响。
第五章金属自由电子论一、填空1、金属电子论中,温度为0K时,自由电子气系统的费米能级为0E,Fk空间费米半径为,电子的平均能量为。
2、长度为L的金属链,一维运动的自由电子波函数,能量;金属晶体中自由电子遵从_____分布,自由电子费米能量为E F,如果把电子的费米能全部看做是电子的动能,则费米速度可表示为_____。
3、两种不同金属接触后,费米能级高的金属带电(“正”或“负”)。
4、金属的线度为L,一维运动的自由电子波函数为,能量为。
5、自由电子气系统的费米能级为0E,k空间费米半径,电F子的平均能量为。
6、金属电子论中,金属晶体中自由电子遵从,其能量波矢关系(E~k)为______.自由电子费米面指的是能量为的等能面,其费米半径K F为。
如果把电子的费米能全部看作是电子的动能,则费米速度可表示为。
7、A和B两种金属接触后,费米能级的A金属的电子流向费米能级的B金属,使A金属带____ 电。
两块金属达到平衡后,电子不再流动,此时A和B两种金属的费米能级。
二、简答1、为什么温度较高时可以不考虑电子对固体比热的贡献?2、简述金属中电子对固体热容的贡献。
3、自由电子的态密度为12D CE,这是否意味着高能态电子浓度比低能态电子浓度大,为什么?4、金属中虽然存在大量的自由电子,但是在通常温度下金属中的电子气对比热的贡献却很小,试说明其原因。
5、按近自由电子近似理论,分析在布里渊区边界上电子的能带有何特点?第六章固体的能带理论一、填空1、能带顶部电子的有效质量为(填正或者负);能带底部电子的有效质量为(填正或者负)。
2、电子占据一个能带中的所有状态,该能带称为 __;没有任何电子占据的能带,称为 __ ;最上面的一个满带为价带,价带之上的一个能带为导带;价带和导带之间区域,称为。
价带顶的电子有效质量为(正/负),导带底的电子有效质量为 _ (正/负)。