风力发电基础[1]
- 格式:pdf
- 大小:1.43 MB
- 文档页数:48
风⼒发电基础知识第⼀章风⼒发电机组结构1.8 控制系统控制系统利⽤微处理器、逻辑程序控制器或单⽚机通过对运⾏过程中输⼊信号的采集传输、分析,来控制风电机组的转速和功率;如发⽣故障或其他异常情况能⾃动地检测平分析确定原因,⾃动调整排除故障或进⼊保护状态。
控控制系统的主要任务就是⾃动控制风机组运⾏,依照其特性⾃动检测故障并根据情况采取相应的措施。
控制系统包括控制和检测两部分。
控制部分⼜设置了⼿动和⾃动两种模式,运⾏维护⼈员可在现场根据需要进⾏⼿动控制,⽽⾃动控制应在⽆⼈值班的条件下预先设置控制策略,保证机组正常安全运⾏。
检测部分将各传感器采集到的数据送到控制器,经过处理作为控制参数或作为原始记录储存起来,在机组控制器的显⽰屏上可以查询。
现场数据可通过⽹络或电信系统送到风电场中央控制室的电脑系统,还能传输到业主所在城市的总部办公室。
安全系统要保证机组在发⽣⾮常情况时⽴即停机,预防或减轻故障损失。
例如定桨距风电机组的叶尖制动⽚在运⾏时利⽤液压系统的⾼压油保持与叶⽚外形组合成⼀个整体,同时保持机械制动器的制动钳处于松开状态,⼀旦发⽣液压系统失灵或电⽹停电,叶尖制动⽚和制动钳将在弹簧作⽤下⽴即使叶尖制动⽚旋转约90°,制动钳变为夹紧状态,风轮被制动停⽌旋转。
根据风电机组的结构和载荷状态、风况、变桨变速特点及其他外部条件,将风电机组的运⾏情况主要分为以下⼏类:待机状态、发电状态、⼤风停机⽅式、故障停机⽅式、⼈⼯停机⽅式和紧急停机⽅式。
(1)待机状态风轮⾃由转动,机组不发电(风速为0~3m/s),刹车释放。
(2)发电状态发电状态Ⅰ:启动后,到额定风速前,刹车释放。
发电状态Ⅱ:额定风速到切出风速(风速12~25m/s),刹车释放。
(3)故障停机⽅式:故障停机⽅式分为:可⾃启动故障和不可⾃启动故障。
停机⽅式为正常刹车程序:即先叶⽚顺桨,党当发动机转速降⾄设定值后,启动机械刹车。
(4)⼈⼯停机⽅式:这⼀⽅式下的刹车为正常刹车,即先叶⽚顺桨,当发电机转速降⾄设定值后启动机械刹车。
风电基础知识引言:随着对可再生能源的需求不断增长,风电作为一种无污染、可持续的能源形式,越来越受到关注。
无论是面对日趋紧张的能源供应,还是追求绿色环保的发展,风能都成为了各国政府和企业的关注焦点。
本文将介绍风电的基础知识,包括风能的转化原理、组成结构以及风电发电技术的发展趋势等。
一、风能的转化原理风能是一种动能,可以通过风力发电机将其转化为电能。
风力发电机是利用风能使转子旋转,通过转子与发电机的直接耦合或通过齿轮箱连接,使发电机产生电力。
风力发电机的核心部分是转子,其外形类似于大风车。
当风力吹向转子时,转子的叶片受到推动,并开始旋转。
转子上设置的发电机可以将旋转转子的运动转化为电力。
二、风电的组成结构1.风力发电机组风力发电机组是风电站的核心设备。
它由塔筒、轮毂、叶片、发电机和变频器等组成。
塔筒是风力发电机组的支撑结构,通常采用钢铁或混凝土制成。
轮毂是连接塔筒和叶片的部分,其主要作用是使叶片能够转动。
叶片是风力发电机组的动力装置,一般由纤维复合材料制成,具有轻质、高强度的特点。
发电机是将机械能转化为电能的核心部件,通常采用异步发电机或同步发电机。
变频器是将风力发电机组产生的交流电转化为稳定的直流电的装置。
2.电网连接装置电网连接装置包括变电站和输电线路。
变电站将风力发电机组产生的电能转换为适于输送的电气能,并将其接入电力系统中。
输电线路用于将发电站产生的电能输送到用户端。
三、风电发电技术的发展趋势1.提高风能利用率目前风能的利用率还有很大的提升空间。
为了提高风能利用率,风力发电机组的设计和运行需要更加科学合理。
同时,需要对风力资源进行更加准确的评估,选择更加适合的风力发电机组。
2.增强风电系统的稳定性由于风力发电的波动性较大,风电系统的稳定性一直是亟待解决的问题。
在未来的发展中,需要进一步完善风电并网技术,提高系统的稳定性和可靠性。
3.发展离岸风电相比于陆地风电,离岸风电具有风能资源丰富、风速稳定等优势。
第一篇:风电基础技术知识第一章风能资源概述第一节:风向与风速风是大气的运动。
气象学上一般把垂直方向的大气运动称为气流,水平方向的大气运动称为风大气的运动本质上是由太阳热辐射引起的。
因此,风能是太阳能的一种表现形式。
地球表面上,受太阳加热的空气较轻,上升到高空;冷却的空气较重,倾向于去补充上升的空气。
这就导致了空气的流动——风。
全球性气流、海风与陆风、山谷风的形成大致都如此。
风向与风速是确定风况的两个重要参数一、风向风向——来风的方向。
通常说的西北风、南风等即表明的就是风向。
陆地上的风向一般用16个方位观测。
即以正北为零度,顺时针每转过22.5°为一个方位。
风向的方位图图示如下。
二、风速风速——风流动的速度,用空气在单位时间内流经的距离表示,单位:m/s或km/h。
风速是表示气流强度和风能的一个重要物理量。
风速和风向都是不断变化的。
瞬时风速——任意时刻风的速度。
——具有随机性因而不可控制。
——测量时选用极短的采样间隔,如<1s。
平均风速——某一时间段内各瞬时风速的平均值。
如日平均风速、月平均风速等。
1、风速的周期性变化风速的日变化:一天之中,风速的大小是不同的:——地面(或海拔较低处)一般是白天风速高,夜间风速较低。
——高空(或海拔较高处)则相反,夜间风强,白天风弱。
其逆转的临界高度约为100~150m。
风速的季节变化:一年之中,风的速度也有变化。
在我国,大部分地区风的季节性变化规律是:春季最强,冬季次之,夏季最弱。
2、影响风速的主要因素垂直高度:由于风与地表面摩擦的结果,越往高处风速越高。
定量关系常用实验式表示:V=V0(H/H0)nV—高度H处的风速。
V0—高度H0处的风速,测得。
n—地表摩擦系数,或地表面粗糙度。
取值范围:0.1(光滑)~0.4(粗糙)。
地理位置海面上的风比海岸大,沿海的风比内陆大得多。
障碍物风流经障碍物后,将产生不规则的涡流,使风速降低。
但随着远离物体,这种涡流逐渐消失。
风力发电基础知识在当今世界,随着对清洁能源的需求不断增长,风力发电作为一种可持续、无污染的能源获取方式,正逐渐发挥着越来越重要的作用。
接下来,让我们一起走进风力发电的世界,了解一下它的基础知识。
首先,我们来谈谈什么是风力发电。
简单来说,风力发电就是利用风的力量来驱动涡轮机旋转,从而将风能转化为电能。
风是由大气受热不均、气压差异等因素产生的空气流动现象。
当风吹过风力发电机的叶片时,叶片会带动发电机的转子旋转,通过电磁感应原理,产生电能。
那么,风力发电的原理是什么呢?风力发电机主要由叶片、轮毂、机舱、塔筒和基础等部分组成。
风的动能作用在叶片上,使叶片产生旋转力矩。
叶片通常采用特殊的设计形状,以提高风能的捕获效率。
当叶片旋转时,通过传动轴将旋转的机械能传递到发电机内部。
发电机内部的磁场和导体之间的相对运动产生感应电动势,进而输出电流。
要实现高效的风力发电,选择合适的风力发电机类型至关重要。
目前常见的风力发电机类型包括水平轴风力发电机和垂直轴风力发电机。
水平轴风力发电机是最常见的类型,其叶片与地面平行,随风旋转。
这种类型的风力发电机通常具有较高的发电效率,但对风向的要求相对较高。
垂直轴风力发电机的叶片与地面垂直,不需要对风向进行跟踪,但其发电效率相对较低,结构也相对复杂。
风力发电场的选址也是一个关键因素。
一个好的选址可以大大提高风力发电的效率和经济性。
一般来说,风力发电场会选择在风能资源丰富、地形开阔、障碍物少的地区。
比如海边、高山顶、草原等地。
同时,还需要考虑电网接入条件、土地使用政策、环境影响等多方面的因素。
在了解了风力发电的基本原理和相关设备后,我们来看看风力发电的优点。
首先,风力发电是一种清洁能源,不会产生温室气体排放和其他污染物,对环境友好。
其次,风能是一种可再生资源,取之不尽,用之不竭。
再者,风力发电的成本在不断降低,随着技术的进步和规模的扩大,其经济性逐渐提高。
此外,风力发电还可以分散分布,减少对大型集中式发电厂的依赖,提高能源供应的可靠性。