风力发电基础基础知识.
- 格式:ppt
- 大小:4.50 MB
- 文档页数:13
风电技术培训内容大全一、风力发电机组基础知识1. 风力发电概述:介绍风力发电的基本原理、风能的特点以及风力发电在全球范围内的应用情况。
2. 风力发电机组的基本构成:详细讲解风力发电机组的基本构成,包括风轮、发电机、塔筒等主要部件。
3. 风力发电机组的工作原理:阐述风力发电机组的工作原理,包括风能吸收、风轮转换、发电机发电等过程。
二、风力发电机组结构与原理1. 风轮结构与原理:详细介绍风轮的结构、特点、工作原理以及与发电机组的配合方式。
2. 发电机结构与原理:详细介绍发电机的结构、工作原理以及与风轮的配合方式。
3. 塔筒结构与原理:详细介绍塔筒的结构、特点、工作原理以及与风轮和发电机的配合方式。
三、风力发电机组控制系统1. 控制系统的基本组成:介绍控制系统的基本组成,包括传感器、控制系统硬件和软件等。
2. 控制系统的功能:阐述控制系统的功能,包括对风向、风速的监测和控制,对发电机组的启动、停止、调速等控制。
3. 控制系统的工作原理:详细介绍控制系统的工作原理,包括传感器的工作原理、控制算法的实现等。
四、风力发电机组维护与检修1. 维护与检修的基本知识:介绍维护与检修的基本概念和方法,包括定期维护、故障检修等。
2. 主要部件的维护与检修:详细介绍主要部件的维护与检修方法,包括风轮、发电机、塔筒等的维护与检修。
3. 维护与检修的安全措施:强调维护与检修过程中的安全措施和注意事项。
五、风力发电机组故障排除1. 故障排除的基本流程:介绍故障排除的基本流程,包括故障检测、故障定位、故障修复等。
2. 常见故障及排除方法:列举常见的风力发电机组故障及相应的排除方法。
3. 故障排除的安全措施:强调故障排除过程中的安全措施和注意事项。
六、风力发电机组安全知识1. 安全操作规程:介绍风力发电机组的安全操作规程,包括操作前的准备、操作过程中的注意事项等。
2. 安全防护措施:列举常见的安全防护措施,包括防护设备的使用、安全警示标识的设置等。
第一章风力发电机组结构1.8 控制系统控制系统利用微处理器、逻辑程序控制器或单片机通过对运行过程中输入信号的采集传输、分析,来控制风电机组的转速和功率;如发生故障或其他异常情况能自动地检测平分析确定原因,自动调整排除故障或进入保护状态。
控控制系统的主要任务就是自动控制风机组运行,依照其特性自动检测故障并根据情况采取相应的措施。
控制系统包括控制和检测两部分。
控制部分又设置了手动和自动两种模式,运行维护人员可在现场根据需要进行手动控制,而自动控制应在无人值班的条件下预先设置控制策略,保证机组正常安全运行。
检测部分将各传感器采集到的数据送到控制器,经过处理作为控制参数或作为原始记录储存起来,在机组控制器的显示屏上可以查询。
现场数据可通过网络或电信系统送到风电场中央控制室的电脑系统,还能传输到业主所在城市的总部办公室。
安全系统要保证机组在发生非常情况时立即停机,预防或减轻故障损失。
例如定桨距风电机组的叶尖制动片在运行时利用液压系统的高压油保持与叶片外形组合成一个整体,同时保持机械制动器的制动钳处于松开状态,一旦发生液压系统失灵或电网停电,叶尖制动片和制动钳将在弹簧作用下立即使叶尖制动片旋转约90°,制动钳变为夹紧状态,风轮被制动停止旋转。
根据风电机组的结构和载荷状态、风况、变桨变速特点及其他外部条件,将风电机组的运行情况主要分为以下几类:待机状态、发电状态、大风停机方式、故障停机方式、人工停机方式和紧急停机方式。
(1)待机状态风轮自由转动,机组不发电(风速为0~3m/s),刹车释放。
(2)发电状态发电状态Ⅰ:启动后,到额定风速前,刹车释放。
发电状态Ⅱ:额定风速到切出风速(风速12~25m/s),刹车释放。
(3)故障停机方式:故障停机方式分为:可自启动故障和不可自启动故障。
停机方式为正常刹车程序:即先叶片顺桨,党当发动机转速降至设定值后,启动机械刹车。
(4)人工停机方式:这一方式下的刹车为正常刹车,即先叶片顺桨,当发电机转速降至设定值后启动机械刹车。
风电基础知识引言:随着对可再生能源的需求不断增长,风电作为一种无污染、可持续的能源形式,越来越受到关注。
无论是面对日趋紧张的能源供应,还是追求绿色环保的发展,风能都成为了各国政府和企业的关注焦点。
本文将介绍风电的基础知识,包括风能的转化原理、组成结构以及风电发电技术的发展趋势等。
一、风能的转化原理风能是一种动能,可以通过风力发电机将其转化为电能。
风力发电机是利用风能使转子旋转,通过转子与发电机的直接耦合或通过齿轮箱连接,使发电机产生电力。
风力发电机的核心部分是转子,其外形类似于大风车。
当风力吹向转子时,转子的叶片受到推动,并开始旋转。
转子上设置的发电机可以将旋转转子的运动转化为电力。
二、风电的组成结构1.风力发电机组风力发电机组是风电站的核心设备。
它由塔筒、轮毂、叶片、发电机和变频器等组成。
塔筒是风力发电机组的支撑结构,通常采用钢铁或混凝土制成。
轮毂是连接塔筒和叶片的部分,其主要作用是使叶片能够转动。
叶片是风力发电机组的动力装置,一般由纤维复合材料制成,具有轻质、高强度的特点。
发电机是将机械能转化为电能的核心部件,通常采用异步发电机或同步发电机。
变频器是将风力发电机组产生的交流电转化为稳定的直流电的装置。
2.电网连接装置电网连接装置包括变电站和输电线路。
变电站将风力发电机组产生的电能转换为适于输送的电气能,并将其接入电力系统中。
输电线路用于将发电站产生的电能输送到用户端。
三、风电发电技术的发展趋势1.提高风能利用率目前风能的利用率还有很大的提升空间。
为了提高风能利用率,风力发电机组的设计和运行需要更加科学合理。
同时,需要对风力资源进行更加准确的评估,选择更加适合的风力发电机组。
2.增强风电系统的稳定性由于风力发电的波动性较大,风电系统的稳定性一直是亟待解决的问题。
在未来的发展中,需要进一步完善风电并网技术,提高系统的稳定性和可靠性。
3.发展离岸风电相比于陆地风电,离岸风电具有风能资源丰富、风速稳定等优势。
第一章风及风能资源一、风的形成及影响因素1.风的产生:是由地球外表大气层由于太阳的辐射而引起的空气流动,大气压差是风产生的根本原因2.特性:周期性、多样性、复杂性3.风的分类:季风、山谷风、海陆风、台风、龙卷风二、风的测量1.风的测量包括风向和风速两种2.风向测量:风向测量是指测量风的来向风向测量装置:1)风向标:是测量风向最通用的装置,有单翼型、双翼型、流线型2)风向杆(安装方位指向正南)、风速仪(可测风向和风速,一般安装在离地面10米的高度)3.风向表示法:风向一般用16个方位表示,静风记为C。
4.风能密度:单位截面积的风所含的能量称为风能密度,常以W/m2表示。
三、风资源分布1.我国风资分布可划分为:风能丰富区、风能较丰富区、风能可利用区、风能贫乏区1)风能丰富区:有效风能密度>200W/m2。
2)风能较丰富区:有效风能密度为150~200W/m2,3~20m/s风速出现的全年累计时间为4000~5000h。
3)风能可利用区:有效风能密度在50~150W/m2之间,3~20m/s风速出现时数约在2000~4000h之间。
4)风能贫乏区:该区风能密度低于50W/m2,全年时间低于2000h第二章风力机的理论基础一、贝兹理论二、翼型的几何参数三、风车理论四、叶素理论气动效率五、葛劳渥漩涡理论六、葛劳渥轴线推力和扭矩计算有限长的叶片,叶片的下游存在尾迹涡,主要有两个漩涡区:一个在轮毂附近,一个在叶尖。
漩涡诱导速度可看成以下三个漩涡系叠加的合速:①中心涡,集中在转轴上②每个叶片的边界涡③每个叶片尖部形成的螺旋涡七、风力机的相似特性相似准则:所谓模型与风力机实物相似是指风轮与空气的能量传递过程以及空气在风轮内向流动过程相似,或者说它们在任一对应点的同名物理量之比保持常数。
流过风力机的气流属于不可压缩流体,理论上应满足几何相似、运动相似和雷诺数相等。
对风力机而言,后一个条件实际做不到,故一般仅以前两个条件作为模型和风力机实物的相似准则,并计及雷诺数。
风力发电基础知识风力发电是将风能转换成电能,风能推动叶轮旋转,叶轮带动转动轴和增速机,增速机带动发电机,发电机通过输电电缆将电能输送地面控制系统和负荷。
风力发电技术是一项多学科的,可持续发展的,绿色环保的综合技术。
太阳能发电是指将太阳能转换成电能,即直接将太阳光能转换电能的发电方式,光伏发电是利用太阳电池这种半导体电子器件有效地吸收太阳光辅射能,并使之转变成电能的直接发电方式,是当今太阳光发电的主流。
风力发电存在着无风时(尤其是夏季白天长夜间短,太阳光强季节)不发电的问题,太阳能发电也存在着无阳光时(尤其是冬季白天短夜间长,北风大的季节)不发电的问题,如果能把风力发电、太阳能发电结合在一起互补发电就解决了这个问题,实现了365 天连续供电。
风能和太阳能的利用和发展已有三千多年的历史,是一门古老而又年青的科学、实用而又和生活关系密切的科学、可再生而又能保护环境的科学、现时而又可持续发展的科学、一次投资多年受益的项目。
在众多新能源领域中,风力发电和太阳能发电的开发和利用被首当其冲优先发展,是当今国际上的一大热点,因为风电和光电的利用,不用开采、不用运输、不用排放垃圾、没有环境污染的技术,是保护我们的地球,造福子孙后代的百年大计工程。
风力发电和太阳能发电从生产到回收处理的整个过程都不产生任何污染,它既可以增加电力供应,又可以减少燃料带来的环境污染,从而起到保护地球生态环境的作用,是真正的绿色能源。
以 2000年为例,我国年风力发电总量为7.0 1GW,代替火电可直接节约标准煤278800吨,减少SO2的排放MSO2为5668.5吨,减少CO2的排放MCO2为718653吨,减少NOX的排放MNOX为8986吨,减少飘尘排量MTSP为251吨,节水12.8亿吨。
而且由于其减少空气污染而带来的间接效益则更是巨大。
第一篇:风电基础技术知识第一章风能资源概述第一节:风向与风速风是大气的运动。
气象学上一般把垂直方向的大气运动称为气流,水平方向的大气运动称为风大气的运动本质上是由太阳热辐射引起的。
因此,风能是太阳能的一种表现形式。
地球表面上,受太阳加热的空气较轻,上升到高空;冷却的空气较重,倾向于去补充上升的空气。
这就导致了空气的流动——风。
全球性气流、海风与陆风、山谷风的形成大致都如此。
风向与风速是确定风况的两个重要参数一、风向风向——来风的方向。
通常说的西北风、南风等即表明的就是风向。
陆地上的风向一般用16个方位观测。
即以正北为零度,顺时针每转过22.5°为一个方位。
风向的方位图图示如下。
二、风速风速——风流动的速度,用空气在单位时间内流经的距离表示,单位:m/s或km/h。
风速是表示气流强度和风能的一个重要物理量。
风速和风向都是不断变化的。
瞬时风速——任意时刻风的速度。
——具有随机性因而不可控制。
——测量时选用极短的采样间隔,如<1s。
平均风速——某一时间段内各瞬时风速的平均值。
如日平均风速、月平均风速等。
1、风速的周期性变化风速的日变化:一天之中,风速的大小是不同的:——地面(或海拔较低处)一般是白天风速高,夜间风速较低。
——高空(或海拔较高处)则相反,夜间风强,白天风弱。
其逆转的临界高度约为100~150m。
风速的季节变化:一年之中,风的速度也有变化。
在我国,大部分地区风的季节性变化规律是:春季最强,冬季次之,夏季最弱。
2、影响风速的主要因素垂直高度:由于风与地表面摩擦的结果,越往高处风速越高。
定量关系常用实验式表示:V=V0(H/H0)nV—高度H处的风速。
V0—高度H0处的风速,测得。
n—地表摩擦系数,或地表面粗糙度。
取值范围:0.1(光滑)~0.4(粗糙)。
地理位置海面上的风比海岸大,沿海的风比内陆大得多。
障碍物风流经障碍物后,将产生不规则的涡流,使风速降低。
但随着远离物体,这种涡流逐渐消失。