A = 1 0 0 0 0 3 0 0 3 2 0 0 2 4 1 0 5 1 2 0 1 0 0 0 3 0 2 4 ≠0 1
至少有一个 3 阶子式不为零 即不为零 子式的最高阶数 是3, 而所有的 4 阶子式 全为零
∴r( A) = 3 .
10
P D F c re a te d w ith p d f F a c to r y tr ia l v e r s io n
例题与讲解
3 3 0 − 2 例2: 设 A = − 1 − 4 3 0 , 1 − 5 6 − 2
0 0 0 1 1 0 0 0 列向量组 : β 1 = 0 , β 2 = 0 , β 3 = 0 , β 4 = 1 , 0 0 0 0
行向量组为 :
α 1 = (1, 0, 0, 0) , α 2 = ( 0, 1, 0, 0 ) , α 3 = ( 0, 0, 0, 1) , α 4 = ( 0, 0, 0, 0 ) ,
α 1 , α 2 , α 3 , α 4 线性 相关, α 1 , α 2 , α 3 线性无关,
∴ r (α1 , α 2 , α 3 , α 4 ) = 3 , 即A的行秩是 3;
初等行变换
1 2 s 1 2 s
1
2
s
1
2
s
1
2
s
1
2
s
5
P D F c re a te d w ith p d f F a c to r y tr ia l v e r s io n
定理3 矩阵的行秩和列秩相等 . 证明: 当 A = O 时, 显然. 当 A ≠ O 时, 即A的元素不全为零 , 则