分块矩阵
- 格式:ppt
- 大小:1.47 MB
- 文档页数:1
第一章 矩阵的分块和分块矩阵的定义设A 是数域K 上的m n ⨯矩阵,B 是K 上n k ⨯矩阵,将A 的行分割r 段,每段分别包含12r m m m 个行,又将A 的列分割为s 段,每段包含12s n n n 个列。
A=111212122212s s r r rs A A A A A A A A A ⎛⎫ ⎪ ⎪⎪ ⎪⎝⎭于是A 可用小块矩阵表示如下:, 其中ij A 是i j m n ⨯矩阵。
对B 做类似的分割,只是要求它的行的分割法和A 的列的分割法一样。
于是B 可以表示为B=111212122212s s r r rs B B B B B B B B B ⎛⎫ ⎪ ⎪⎪ ⎪⎝⎭其中ij B 是i j n k ⨯的矩阵。
这种分割法称为矩阵的分块。
二.分块矩阵加法和乘法运算 设()ij m n A a ⨯=()ij m n B b ⨯=为同型矩阵(行和列数分别相等)。
若采用相同的分块法。
A=111212122212s s r r rs A A A A A A A A A ⎛⎫ ⎪ ⎪⎪ ⎪⎝⎭ B= 111212122212s s r r rs B B B B B B B B B ⎛⎫ ⎪ ⎪⎪ ⎪⎝⎭则可以直接相加 乘法:设,则C 有如下分块形式:C=111212122212s s r r rs C C C C C C C C C ⎛⎫⎪ ⎪⎪⎪⎝⎭, 其中ij C 是i j m k ⨯矩阵,且1nij ij iji C A B ==∑定义 称数域K 上的分块形式的n 阶方阵A=12S A A A ⎛⎫⎪⎪ ⎪ ⎪⎝⎭为准对角矩阵,其中为阶方阵(),其余位置全是小块零矩阵。
2、分块矩阵的一些简单基本性质命题 阶准对角矩阵有如下性质:(1)、对于两个同类型的n阶准对角矩阵(其中同为阶方阵), A=12S A A A ⎛⎫⎪⎪ ⎪ ⎪⎝⎭ B=12S B B B ⎛⎫⎪⎪ ⎪ ⎪⎝⎭,有; AB=1122S S A B A B A B ⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭(2)、;(3)、A 可逆等价于(1,2,)i A i n =可逆,且111121r A A A A ----⎛⎫⎪⎪= ⎪ ⎪ ⎪⎝⎭。
分块矩阵的知识点分块矩阵是线性代数中的一个重要概念,它在矩阵运算和矩阵分析中扮演着关键角色。
分块矩阵将一个大的矩阵划分为若干个小的子矩阵,从而简化了复杂的矩阵运算和计算过程。
本文将介绍分块矩阵的基本概念、构造方式以及在矩阵运算中的应用。
1.分块矩阵的定义分块矩阵是由若干个小的子矩阵组成的大矩阵。
这些子矩阵可以是任意大小和形状,而且它们可以是实数矩阵或复数矩阵。
分块矩阵可以表示为如下形式:A=[A11A12A21A22]其中A ij表示分块矩阵A的第i行第j列的子矩阵。
2.分块矩阵的构造方式分块矩阵的构造方式有多种,常见的有水平分块和垂直分块两种方式。
–水平分块:将大矩阵按行划分为若干个子矩阵。
例如,将一个m×n的矩阵划分为两个子矩阵A1和A2,则可以表示为:A=[A1A2]–垂直分块:将大矩阵按列划分为若干个子矩阵。
例如,将一个m×n的矩阵划分为两个子矩阵A1和A2,则可以表示为:A=[A1A2]分块矩阵的构造方式可以根据实际问题的需求选择,不同的构造方式对于矩阵运算的简化程度有所差异。
3.分块矩阵的运算分块矩阵的运算可以通过对子矩阵进行逐个操作来完成。
常见的分块矩阵运算包括矩阵的加法、乘法和转置。
–矩阵的加法:对应位置的子矩阵进行相加。
例如,对于两个分块矩阵A和B,其加法运算可以表示为:A+B=[A11+B11A12+B12A21+B21A22+B22]–矩阵的乘法:通过子矩阵的乘法和求和得到结果。
例如,对于两个分块矩阵A和B,其乘法运算可以表示为:AB=[A11B11+A12B21A11B12+A12B22 A21B11+A22B21A21B12+A22B22]–矩阵的转置:将子矩阵沿主对角线进行交换。
例如,对于一个分块矩阵A,其转置运算可以表示为:A T=[A11T A21TA12T A22T]通过分块矩阵的运算,可以简化矩阵运算的复杂度,提高计算效率。
4.分块矩阵的应用分块矩阵在各个领域中都有广泛的应用,特别是在数值计算和矩阵分析中。
分块矩阵的定义及应用分块矩阵,也称为块矩阵或子矩阵,是由多个小矩阵按照一定规则排列所组成的矩阵。
它的特点是矩阵中的各个元素被分成了若干个块,每个块是一个分离的矩阵。
分块矩阵的形式可以写为:A = [A11 A12 (1)A21 A22 (2)... ... ... ...An1 An2 ... Anm]其中,A11、A12、...、A1m是行向量组成的矩阵;A21、A22、...、A2m是行向量组成的矩阵;...;An1、An2、...、Anm是行向量组成的矩阵。
每一个Aij 都表示一个分块矩阵,大小及形状可以不同。
分块矩阵的应用非常广泛,主要体现在以下几个方面:1. 线性方程组求解:分块矩阵可以用于解决大规模线性方程组的求解问题。
通过将系数矩阵分块,可以降低计算复杂度,并且可以通过并行计算来提高求解效率。
2. 矩阵乘法加速:分块矩阵可以用于加速矩阵乘法运算。
将矩阵分块后,可以利用并行计算的优势,同时进行多个小矩阵的乘法运算,从而提高运算效率。
3. 特征值计算:分块矩阵可以用于求解大型矩阵的特征值和特征向量。
通过分块矩阵的分解,可以降低计算复杂度,并且可以采用迭代方法进行求解,从而提高求解效率。
4. 矩阵的逆和广义逆:分块矩阵可以用于求解矩阵的逆和广义逆。
通过分块矩阵的分解,可以减小计算量,并且可以采用迭代方法进行求解,从而提高求解效率。
5. 随机矩阵的分析:分块矩阵可以用于随机矩阵的分析。
通过分块矩阵的分解,可以对矩阵的结构和随机性进行分析,从而研究矩阵的统计特性和性质。
除了上述应用之外,分块矩阵还可以用于矩阵的分解、正交化、正则化等问题的求解。
分块矩阵的应用不仅仅局限于数学领域,也被广泛应用于工程、物理、计算机科学等领域。
总之,分块矩阵是将大型矩阵拆分为多个小矩阵,通过分块的方式来简化复杂的计算问题。
它在线性方程组求解、矩阵乘法加速、特征值计算、矩阵逆和广义逆求解、随机矩阵分析等方面有着广泛的应用。