2
O
1 11
2
2 2
M M
m
m
m
m
(2)以对角阵n右乘矩阵Amn时 把A按列分块 有
AAmmnnn n(a(a1,1a, a2,2,,a, an)n)1 12 2mm((1a1a1,1, 2a2a2,2,,, nanan)n)
例4 设ATAO 证明AO
证明 设A(aij)mn 把A用列向量表示为A(a1 a2 an) 则
例5 设4阶矩阵A α, γ2, γ3, γ4 , B β, γ2, γ3, γ4 ,其中
α, β, γ2, γ3, γ4均为4行1列的分块矩阵,已知 A 4, B 1,
则 AB
.
解 A B α, γ2, γ3, γ4 + β,γ2,γ3,γ4 =α+β, 2γ2, 2γ3, 2γ4
AT
A
a1T a2T
anT
(a1,
a2,
an
)
a1T a1 a2T a1
anT a1
a1T a2 a2T a2
anT a2
a1T an a2T an
anT an
因为ATAO 所以
aiT
ai
(ai1,
ai2,
,
ain)
ai1 ai2
ain
ai21 ai22 ai2n 0 (i1 2 n) 从而ai1ai2 ain0(i1 2 n) 即AO
A12 L A22 L
A1s
A
2s
M M M
Ar1 A r2 L Ars
AT
A1T1 A1T2 M
A
T 21
L
A
T 22
L
A
T