2020年全国3卷高考理科数学全真模拟冲刺试卷(三)
- 格式:docx
- 大小:104.41 KB
- 文档页数:5
备战2020高考全真模拟卷3数学(理)(本试卷满分150分,考试用时120分钟)2月14日第Ⅰ卷(选择题)一、单选题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合{|06}M x x =≤≤,{|232}x N x =≤,则M N ⋃=( ) A .(,6]-∞ B .(,5]-∞ C .[0,6] D .[0,5]【答案】A 【解析】分析:根据指数函数求解集合N ,再根据集合的交集运算,即可得到结果. 详解:由题意,集合{|06},{|232}{|5}xM x x N x x x =≤≤=≤=≤, 所以{|6}(,6]M N x x ⋃=≤=-∞,故选A.点睛:本题主要考查了集合的运算,其中正确求解集合N 是解答的关键,着重考查了推理与计算能力.2.若复数z 满足(34)43i z i -=+,则z 的虚部为( ) A .-4 B .45-C .4i -D .45i -【答案】B 【解析】 【分析】先根据已知求出复数z,再求z 及其虚部得解. 【详解】 由题得55(34)5(34)3434(34)(34)255i i iz i i i +++====--+, 所以3455z i =-,所以z 的虚部为45-. 故选B 【点睛】本题主要考查复数的除法运算,考查复数的模的计算和共轭复数的概念,考查复数的虚部的概念,意在考查学生对这些知识的理解掌握水平和分析推理计算能力.3.在ABC ∆中,1=3AD DC u u u r u u u r ,P 是直线BD 上的一点,若12AP mAB AC =+u u u r u u u r u u u r,则m =( )A .4-B .1-C .1D .4【答案】B 【解析】 【分析】先根据条件化以,AB AD u u u r u u u r为基底向量,再根据平面向量共线定理推论确定参数.【详解】114222AP mAB AC mAB AD mAB AD =+=+⨯=+u u u r u u u r u u u r u u u r u u u r u u u r u u u rQ ,又B P D 、、三点共线,所以21+=m ,得1m =-. 故选:B 【点睛】本题考查平面向量共线定理推论,考查基本分析求解能力,属基础题. 4.已知1127,4xyk x y ==-=,则k 的值是( ) A .42()7B .142()7C .145D .147()2【答案】B 【解析】试题分析:由题意27log ,log x k y k ==,所以144271111222log 2log 7log 4,,()log log 777k k k k k x y k k -=-=-====,故选B . 考点:对数的运算,换底公式.5.在ABC V 中,内角A B C ,,的对边分别为a b c ,,,且2223a b c ab +-==,则ABC V 的面积为()A.34B.34C.32D.32【答案】B【解析】【分析】利用余弦定理化简a2+b2-c2=ab=3得C=60°,即得△ABC的面积. 【详解】依题意得cos C=222122a b cab+-=,所以C=60°,因此△ABC的面积等于12absin C=12×3×32=34,故答案为B【点睛】本题主要考查余弦定理解三角形和三角形的面积的计算,意在考查学生对这些知识的掌握水平和分析推理能力.6.下表是考生甲、乙、丙填写的第一批A段3个平行志愿,而且均服从调剂,如果3人之前批次均未被录取,且3所学校天津大学、中山大学、厦门大学分别差1人、2人、2人未招满.已知平行志愿的录取规则是“分数优先,遵循志愿”,即按照分数从高到低的位次依次检索考生的院校志愿、、A B C,按照下面程序框图录取.执行如图的程序框图,则考生甲、乙、丙被录取院校分别是( )A.天津大学、中山大学、中山大学B.中山大学、天津大学、中山大学C.天津大学、厦门大学、中山大学D.中山大学、天津大学、厦门大学【答案】B【解析】乙的分最高,第一志愿是天津在,所以被天津大学录走。
绝密★启用前2020年普通高等学校招生全国统一考试仿真卷理科数学(三)答案第Ⅰ卷一、选择题:本大题共12小题,每小题5分一、选择题:本大题共12小题,每小题5分1.D 2.A 3.B 4.C 5.B 6.C 7.C8.C9.A10.B11.D12.D第Ⅱ卷本卷包括必考题和选考题两部分。
第(13)~(21)题为必考题,每个试题考生都必须作答。
第(22)~(23)题为选考题,考生根据要求作答。
二、填空题:本大题共4小题,每小题5分。
13.214.2015.32016.9π三、解答题:解答应写出文字说明、证明过程或演算步骤。
17.【答案】(1)2n a n =;(2)()1654209n nn S +-+=.【解析】(1)由题意得22228t t t t t -++==,所以2t =±,···········2分2t =时,12a =,公差2d =,所以2n a n =;···········4分2t =-时,16a =,公差2d =-,所以82n a n =-.···········6分(2)若数列{}n a 为递增数列,则2n a n =,所以2log 2n b n =,4n n b =,()()1214nn n a b n -=-⋅,···········8分所以()()231143454234214n nn S n n -=⋅+⋅+⋅++-⋅+-⋅ ,·········9分()()23414143454234214n n n S n n +=⋅+⋅+⋅++-⋅+-⋅ ,所以()23134242424214n n n S n +-=+⋅+⋅++⋅--⋅ ()()211414422143n n n -+-=+⨯---()1206543n n +---=,···········10分所以()1654209n nn S +-+=.···········12分18.【答案】(1)见解析;(2)4.【解析】(1)随机变量X 的可取值为0,1,2,3,4···········1分 (2) (3)分 (4) (5)分···········6分故随机变量X 的分布列为:X 01234P1708351835835170···········7分(2)随机变量X 服从超几何分布:()4428E x ⨯∴==,···········9分()1422E Y ∴=⨯=.···········11分()()224E X E Y ∴+=+=.···········12分19.【答案】(1)证明见解析;(2).【解析】(1)在半圆柱中,1BB ⊥平面11PA B ,所以1BB PA ⊥.···········2分因为11A B 是上底面对应圆的直径,所以11PA PB ⊥.···········4分因为111PB BB B = ,1PB ⊂平面1PBB ,11BB PBB ⊂,所以1PA ⊥平面1PBB .···········5分(2)以C 为坐标原点,以CA ,CB 为,y 轴,过C 作与平面ABC 垂直的直线为轴,建立空间直角坐标系C xyz -.如图所示,设1CB =,则()1,0,0B ,()0,1,0A,(1A,(1B,(P .···6分平面11PA B 的一个法向量()10,0,1=n .···········8分设平面11CA B 的一个法向量()2,,x y z =n ,则1z =···········10分···········11分由图可知二面角11P A B C --为钝角,所以所求二面角的余弦值为.···········12分20.【答案】(1)2214y x +=;(2)答案见解析.【解析】(1)取(0,F ',连结PF ',设动圆的圆心为M ,∵两圆相内切,∴122OM FP =-,又12OM PF =',∴4PF PF FF +=>='',···········3分∴点P 的轨迹是以F ,F '为焦点的椭圆,其中24a =,2c =,∴2a =,c =,∴2221b a c =-=,∴C 的轨迹方程为2214y x +=.···········5分(2)当AB x ⊥轴时,有12x x =,12y y =-,由⊥m n ,得112y x =,又221114y x +=,∴122x =,1y =,∴111121222AOB S x y ∆=⨯⨯=⨯=.···········7分当AB 与轴不垂直时,设直线AB 的方程为y kx m =+,()2224240k x kmx m +++-=,则12224kmx x k -+=+,212244m x x k -=+,···········9分由0⋅=m n ,得121240y y x x +=,∴()()121240kx m kx m x x +++=,整理得()()22121240k x x km x x m ++++=,···········10分∴2224m k =+,1221==,综上所述,AOB △的面积为定值.···········12分21.【答案】(1)见解析;(2)当1m <时,()g x 没有零点;1m =时,()g x 有一个零点;1m >时,()g x 有两个零点.【解析】(1)1m =时,()1e ln x f x x x -=-,()1'e ln 1x f x x -=--,········1分要证()f x 在()0+∞,上单调递增,只要证:()0f x '≥对0x >恒成立,令()1e x i x x -=-,则()1e 1x i x -'=-,当1x >时,()0i x '>,···········2分当1x <时,()0i x '<,故()i x 在()1-∞,上单调递减,在()1+∞,上单调递增,所以()()10i x i =≥,···········3分即1e x x -≥(当且仅当1x =时等号成立),令()()1ln 0j x x x x =-->当01x <<时,()'0j x <,当1x >时,()'0j x >,故()j x 在()0,1上单调递减,在()1+∞,上单调递增,所以()()10j x j =≥,即ln 1x x +≥(当且仅当1x =时取等号),()1e ln 1x f x x -'=--()ln 10x x -+≥≥(当且仅当1x =时等号成立),()f x 在()0+∞,上单调递增.···········5分(2)由()e ln x m g x x m -=--有,显然()g x '是增函数,令()00g x '=,00e e x m x =,00ln m x x =+,则(]00,x x ∈时,()0g x '≤,[)0,x x ∈+∞时,()0g x '≥,∴()g x 在(]00,x 上是减函数,在[)0,x +∞上是增函数,∴()g x ···········7分①当1m =时,01x =,()()=10g x g =极小值,()g x 有一个零点1;···········8分②当1m <时,001x <<02ln 0x <,001x <<,所以()0g x >0,()g x 没有零点;···········9分③当1m >时,01x >,()01010g x <--=,又()eee e e 0mmm mmg m m -----=+-=>,又对于函数e 1x y x =--,'e 10x y =-≥时0x ≥,∴当0x >时,1010y >--=,即e 1x x >+,∴()23e ln3m g m m m =-->21ln3m m m +--=1ln ln3m m +--,令()1ln ln3t m m m =+--,则()11'1m t m m m-=-=,∵1m >,∴()'0t m >,∴()()12ln30t m t >=->,∴()30g m >,又0e 1m x -<<,000333ln m x x x =+>,∴()g x 有两个零点,综上,当1m <时,()g x 没有零点;1m =时,()g x 有一个零点;1m >时,()g x 有两个零点.···········12分请考生在22、23题中任选一题作答,如果多做,则按所做的第一题计分。
2020年普通高招全国统一考试原创模拟卷-理数3第I 卷(选择题)请点击修改第I 卷的文字说明一、选择题(共12题,每题5分,共60分)1.已知集合A ={x |y =√1-2x },B ={x |log 2x <-2},则A ∪B =A.(0,14)B.(-∞,14)C.(14,12]D.(-∞,12]2.已知复数z 的共轭复数为z ¯,且z ¯-2=3+4i z,则|z |=A.√13B.√5C.5D.√23.已知α,β是两个不同的平面,a ,b 是两条不同的直线,且a ⊂α,b ⊂β,a ∥β,给出下列命题:①若a ∥b ,则α∥β;②若a ⊥b ,则α⊥β;③若α⊥β,则a ⊥b .其中错误命题的序号是A.①②B.②③C.①③D.①②③4.某省普通高校招生考试方案规定:每位考生必须在物理、化学、生物、政治、历史、地理6门学科中随机选3门参加选考科目的考试,假设每位考生选考任何3门科目的可能性相同,那么从该省的所有考生中,随机选取4人,他们的选考科目中都含有物理的概率为A.164B.364C.116D.145.若a =(√3)43,b =915,c =8710,则有A.a >b >cB.c >a >bC.c >b >aD.a >c >b6.若(ax−√x )6展开式中的常数项为60,则展开式中含x -3项的系数为 A.240B.120C.-240D.157.将函数f (x )=√3sin(2x +π4)的图象先向右平移π6个单位长度,再将所得图象上所有点的横坐标缩小为原来的12,得到函数g (x )的图象,则g (x )在[-π8,π3]上的最小值为A.0B.-12C.-√32D.-√38.运行如图所示的程序框图,则输出的S 的值为A.-115B.-35C.-37D.-99.已知经过坐标原点O 的直线与椭圆x 2a 2+y 2b 2=1(a >b >0)相交于M ,N 两点(M 在第二象限),A ,F 分别是该椭圆的右顶点和右焦点,若直线MF 平分线段AN ,且|AF |=4,则该椭圆的方程为A.x 29+y 25=1B.x 236+y 24=1C.x 236+y 232=1D.x 225+y 224=110.在一个半球内挖去一个圆锥,所得几何体的三视图如图所示,已知该几何体的正视图与侧视图完全相同,且图中的三角形为正三角形,三角形的底边在图中半圆的直径上,上顶点在半圆弧的中点.若该几何体的表面积为10π,则该几何体的体积为A.3√3πB.11√33π C.√3π D.5√33π11.已知函数f (x )=13x 3+12bx 2+cx +d (b ,c ,d 为实数),若f (x )在区间(0,2)内有两个不同的极值点x 1,x 2(x 1<x 2),则f '(0),f '(2)满足A.两个都小于1B.只有一个小于1C.两个都不小于1D.至少有一个小于112.在△ABC 中,A =120°,AC =2AB =6,点D 满足AD⃗⃗⃗⃗⃗ =2x x+y AB ⃗⃗⃗⃗⃗ +y2x+2y AC ⃗⃗⃗⃗⃗ ,则|AD ⃗⃗⃗⃗⃗ |的最小值为A.3√217B.3√7C.6√217D.3√2114第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题(共4题,每题5分,共20分)13.已知向量a =(1,2),b =(k ,-6),若a ⊥(b -a ),则k = . 14.已知α是第三象限角,且sin(α-π4)=-√55,则tan(α+π4)= .15.某图书出版公司到某中学开展奉献爱心图书捐赠活动,某班级获得了某品牌的图书共4本,其中数学、英语、物理、化学各一本.现将这4本书随机发给该班的甲、乙、丙、丁4个人,每人一本,并请这4个人在看自己得到的赠书之前进行预测,结果如下.甲说:乙或丙得到物理书;乙说:甲或丙得到英语书;丙说:数学书被甲得到;丁说:甲得到物理书.最终结果显示甲、乙、丙、丁4个人的预测均不正确,那么甲、乙、丙、丁4个人得到的书分别是 .16.已知双曲线C 经过点(2,3),且该双曲线的其中一条渐近线的方程为y =√3x ,F 1,F 2分别为该双曲线的左、右焦点,P 为该双曲线右支上一点,点A (6,8),则当|PA |+|PF 2|取最小值时,点P 的坐标为 .三、解答题(共7题,每题12分,共84分)17.已知数列{a n }为正项数列,且n a n+12-4(n +1)a n 2=0,令b n =n√n.(1)求证:{b n }为等比数列;(2)若a 1=1,求数列{a n 2}的前n 项和S n .18.如图,四棱锥P -ABCD 中,底面ABCD 是梯形,AD ∥BC 且AD ⊥AB ,AB =BC =2AD =4,△PAB 是等边三角形,且平面PAB ⊥平面ABCD ,E 是PB 的中点,点M 在棱PC 上.(1)求证:AE ⊥BM ;(2)若M 为PC 的中点,求平面DME 与平面PDC 所成锐二面角的余弦值.19.NBA 球员的比赛得分是反映球员能力和水平的重要数据之一,在2017-2018赛季NBA 常规赛中,球员J 和H 在某15场常规赛中的每场比赛得分如图所示.(1)试以此样本估计球员J 在本赛季的场均得分以及球员H 在本赛季参加的75场常规赛中,得分超过32分的场数.(2)对以上样本数据,从两个球员得分都超过35分的场次中各随机抽取2场,进一步研究两名球员的得分情况,求在恰有一名球员的2场比赛得分都超过37分的条件下,该球员是H 的概率.(3)效率值是更能反映球员能力和水平的一项指标,现统计了球员J 在上述15场比赛中部分场次的得分与效率值,如表所示:若球员J 每场比赛的效率值y 与得分x 具有线性相关关系,试用最小二乘法求出y 关于x 的回归直线方程(结果精确到0.001),并由此估计在上述15场比赛中,效率值超过31的场数.参考公式:b^=∑i=1n(x i −x-)(y i −y -)∑i=1nx i 2−nx-2=∑i=1nx i y i −nx -y -∑i=1nx i 2−nx-2,a ^=y -−b ^x -.参考数据:∑i=15x i y i =3 288.2,∑i=15x i 2=3 355.20.已知抛物线C 1:y 2=2px (p >0),圆C 2:(x -1)2+y 2=r 2(r >0),抛物线C 1上的点(1,y 0)到其焦点的距离为54.(1)求抛物线C 1的方程.(2)如图,已知点P 为抛物线C 1在第一象限内一点,且横坐标为2,过点P 作圆C 2的两条切线分别交抛物线C 1于点A ,B (A ,B 异于点P ),问是否存在圆C 2使得AB 恰为其切线?若存在,求出r ;若不存在,请说明理由.21.已知函数f (x )=e x (ax 2+x )+1,其中e 为自然对数的底数,a ∈R .(1)若函数f (x )在[1,2]上单调递减,求实数a 的取值范围; (2)若函数g (x )=f(x)xe x-1在(-∞,0)上有两个不同的零点x 1,x 2,求证:x 1+x 2+4<0.22.已知平面直角坐标系中,直线l 的参数方程为{x =1-35t,y =1+15t(t 为参数),椭圆C 的标准方程是x 29+y 2=1.(1)求直线l 的普通方程以及椭圆C 的参数方程;(2)若点M (2,2),点N 在椭圆C 上,求线段MN 的中点P 到直线l 的距离的最大值.23.已知函数f (x )=|1-4x |-|1+2x |.(1)解不等式f (x )≤4;(2)若不等式f (x )≤k -f (-x2)有解,求实数k 的取值范围.参考答案1.D【解析】本题考查集合的并运算以及函数的定义域等,考查的核心素养是数学运算. 先求出集合A ,B ,再结合数轴求并集.因为A ={x |y =√1-2x }={x |x ≤12},B ={x |log 2x <-2}={x |0<x <14},所以A ∪B =(-∞,12].【备注】无 2.B【解析】本题考查复数的模、共轭复数、复数的四则运算以及复数相等的充要条件,考查的核心素养是数学运算.设出复数z 的代数形式,然后利用复数相等的充要条件求出复数z ,最后求得|z |. 由z ¯-2=3+4i z可得z (z ¯-2)=3+4i.设z =x +y i(x ,y ∈R ),则(x +y i)(x -y i-2)=3+4i,整理得x 2+y 2-2x -2y i=3+4i,所以{x 2+y 2-2x =3,-2y =4,得{x =1,y =-2,则z =1-2i,|z |=√5.【备注】无 3.D【解析】本题考查空间中线线、线面、面面的位置关系,考查的核心素养是直观想象、逻辑推理.画出空间图形,考虑各种可能的情形,进行分析、判断.如图(1),虽然a ⊂α,b ⊂β,a ∥β,且a ∥b ,但是α与β相交,①错误;如图(2),虽然a ⊂α,b ⊂β,a ∥β,且a ⊥b ,但是α不垂直于β,②错误;如图(3),虽然a ⊂α,b ⊂β,a ∥β,且α⊥β,但是a ∥b ,③错误.故错误命题的序号为①②③.【备注】无 4.C【解析】本题考查古典概型、独立重复试验及其应用,考查的核心素养是逻辑推理、数据分析.首先求出任意一位考生的选考科目中含有物理的概率都为12,再利用独立重复试验的概率计算公式计算所求概率.依题意知,该省的任意一位考生的选考科目中含有物理的概率都为C 52C 63=12,故随机选取4人,他们的选考科目中都含有物理的概率为C 44·(12)4=116.【备注】无 5.B【解析】本题考查指数函数的性质及其应用,考查的核心素养是数学运算、逻辑推理. 先利用指数函数的性质比较a ,b 的大小,并确定它们的大致范围,再确定c 的大致范围,最后确定三者的大小关系. 因为a =(√3)43=323,b =915=325,且1>23>25,所以3>323>325,即3>a >b .又c =8710=22110>4,所以c >a >b . 【备注】无 6.A【解析】本题考查二项式定理的应用,考查的核心素养是数学运算.先根据二项展开式的通项公式及展开式中的常数项为60求得实数a 的值,再求出含x -3项的系数. (ax −√x )6的展开式的通项T r +1=C 6r (a x )6-r (-√x)r=(-1)r C 6r a 6-r ·x 32r-6,令32r -6=0,解得r =4,于是(-1)4C 64a 2=60,解得a =±2.再令32r -6=-3,解得r =2,故展开式中含x -3项的系数为(-1)2C 62a 4=240.【备注】无 7.D【解析】本题考查三角函数图象的变换以及三角函数的性质,考查的核心素养是直观想象、逻辑推理以及数学运算.首先求出g (x )的解析式,然后求g (x )在[-π8,π3]上的最小值.将函数f (x )=√3sin(2x +π4)的图象先向右平移π6个单位长度,得y =√3sin[2(x -π6)+π4]=√3sin(2x -π12)的图象,再将所得图象上所有点的横坐标缩小为原来的12,得g (x )=√3sin(4x -π12)的图象.当x ∈[-π8,π3]时,4x -π12∈[-7π12,5π4],因此当4x -π12=-π2,即x =-5π48时,g (x )在[-π8,π3]上取得最小值-√3.【备注】无 8.B【解析】本题考查“当型”循环结构的程序框图及其应用,考查的核心素养是逻辑推理、数学运算.运行该程序框图,k =1,S =1;S =3×1-2×1=1,k =2;S =3×1-2×2=-1,k =3;S =3×(-1)-2×3=-9,k =4;S =3×(-9)-2×4=-35,k =5.不满足k <5,故输出S =-35. 【备注】无 9.C【解析】本题考查椭圆的方程与几何性质,考查三角形的相似及其应用,考查逻辑推理能力和运算求解能力.试题的命制立足于基础知识,考生可以根据几何直观与椭圆的几何性质解题,突出对数学运算、直观想象、数学抽象等核心素养的考查.取AN 的中点P ,连接MA ,OP ,可证△OFP ∽△AFM ,从而可求得c 的值,进而求得a ,b 2的值,得到椭圆的方程.解法一 由|AF |=4得a -c =4,设线段AN 的中点为P ,M (m ,n ),则N (-m ,-n ),又A (a ,0),所以P (a-m 2,-n 2),F (a -4,0).因为点M ,F ,P 在一条直线上,所以k MF =k FP ,即n-0m-(a-4)=-n 2-0a-m2-(a-4),化简得a =6,所以c =2,b 2=62-22=32,故该椭圆的方程为x 236+y 232=1.解法二 如图,取AN 的中点P ,连接MA ,OP ,因为O 是MN 的中点,P 是AN 的中点,所以OP ∥MA ,且|OP |=12|MA |,因此△OFP ∽△AFM ,所以|OF||AF|=|OP||AM|=12,即c 4=12,因此c =2,从而a =c +|AF |=2+4=6,故b 2=62-22=32,故该椭圆的方程为x 236+y 232=1.【备注】无 10.D【解析】本题考查几何体的三视图,几何体表面积、体积的求法,球的体积、表面积公式等,考查空间想象能力和运算求解能力.试题通过三视图重点考查考生对空间几何体及“切割”问题的掌握情况,考查直观想象、数学运算等核心素养.利用三视图的性质及几何体的表面积求出半球的半径以及圆锥的底面半径、高和母线长,从而计算几何体的体积.设半球的半径为R ,圆锥的底面半径为r ,则圆锥的高为R ,母线长为2r ,因此2r ·√32=R ,即R =√3r .因为该几何体的表面积由圆锥的侧面积以及半球的表面积减去圆锥的底面积构成,所以12·4π·(√3r )2+π·(√3r )2-πr 2+π·r ·2r =10π,得r =1.因此该几何体的体积V =12×43π×(√3)3-13π×12×√3=5√33π. 【备注】对一个几何体进行挖切后,所得几何体与原几何体相比,所得几何体在减少一些面的同时,又会增加另外的一些面,在求解所得几何体的表面积时,不能忽视这一点. 11.D【解析】本题主要考查导数、函数的极值点、基本不等式的应用等,考查逻辑思维能力及分析问题、解决问题的能力.试题结合函数与导数知识命制发散性试题,对考生的创新意识要求较高,将要解决的问题转化为比较f '(0)·f '(2)与1的大小关系,体现了逻辑推理、数学运算等核心素养. 易得f '(x )=x 2+bx +c ,由f (x )在区间(0,2)内有两个不同的极值点x 1,x 2(x 1<x 2),可知方程x 2+bx +c =0有两个不同的实数根x 1,x 2,且0<x 1<x 2<2,则f '(x )=(x -x 1)(x -x 2),则f '(0)·f '(2)=(0-x 1)(0-x 2)(2-x 1)(2-x 2) =[(x 1-0)(2-x 1)]·[(x 2-0)(2-x 2)] ≤[(x 1-0)+(2-x 1)2]2·[(x 2-0)+(2-x 2)2]2=1, 当且仅当{x 1-0=2-x 1,x 2-0=2-x 2时取等号,但由x 1<x 2知,等号不成立,所以f '(0)·f '(2)<1,则f'(0), f '(2)中至少有一个小于1.【备注】无 12.A【解析】本题考查余弦定理、三角形面积公式的应用以及平面向量的相关知识,考查数形结合思想、逻辑推理能力和运算求解能力.试题用向量的几何性质创设解三角形的情境,注重通性通法,全面考查逻辑推理和数学运算等核心素养,为考生灵活运用数学知识、思想方法解决问题提供了空间.延长AB 至点M ,使得AB =BM ,取AC 的中点N ,连接MN ,M C.首先将已知向量表达式变形,据此推出点D 在直线MN 上,从而将问题转化为求A 点到直线MN 的距离问题,然后由余弦定理以及三角形面积公式通过等面积法求出|AD ⃗⃗⃗⃗⃗ |的最小值.解法一 延长AB 至点M ,使得AB =BM ,取AC 的中点N ,连接MN ,M C.则AM ⃗⃗⃗⃗⃗⃗ =2AB ⃗⃗⃗⃗⃗ ,AN ⃗⃗⃗⃗⃗⃗ =12AC⃗⃗⃗⃗⃗ , 所以AD ⃗⃗⃗⃗⃗ =2xx+y AB ⃗⃗⃗⃗⃗ +y 2x+2y AC ⃗⃗⃗⃗⃗ =x x+y AM ⃗⃗⃗⃗⃗⃗ +yx+y AN ⃗⃗⃗⃗⃗⃗ . 因为xx+y+yx+y =1,所以D ,M ,N 三点共线,即D 点在直线MN 上.因此|AD ⃗⃗⃗⃗⃗ |的最小值即A 点到直线MN 的距离,作AH ⊥MN ,垂足为H ,则AH 的长即|AD ⃗⃗⃗⃗⃗ |的最小值.易知△AMN ≌△ACB ,则S △AMN =S △ABC =12·AB ·AC ·sin A =12×3×6×sin 120°=9√32. 由余弦定理可得MN =BC =√32+62-2×3×6×cos120°=3√7, 因此有12×3√7×AH =9√32,解得AH =3√217.故|AD ⃗⃗⃗⃗⃗ |的最小值为3√217. 解法二 由AD ⃗⃗⃗⃗⃗ =2xx+y AB ⃗⃗⃗⃗⃗ +y2x+2yAC ⃗⃗⃗⃗⃗ ,得|AD ⃗⃗⃗⃗⃗ |2=(2x x+y )2|AB ⃗⃗⃗⃗⃗ |2+(y 2x+2y )2|AC ⃗⃗⃗⃗⃗ |2+2·2x x+y ·y 2x+2y AB ⃗⃗⃗⃗⃗ ·AC⃗⃗⃗⃗⃗ =36x 2(x+y)2+36y 2(2x+2y)2−18xy (x+y)2=9·4x 2-2xy+y 2x 2+2xy+y2.令4x 2-2xy+y 2x 2+2xy+y2=t ,则(4-t )x 2-(2+2t )xy +(1-t )y 2=0.易知|AD ⃗⃗⃗⃗⃗ |取得最小值时,y ≠0,所以当y ≠0时,令xy=m ,则(4-t )m 2-(2+2t )m +(1-t )=0,依题意有Δ=[-(2+2t )]2-4(4-t )(1-t )≥0,解得t ≥37,因此|AD ⃗⃗⃗⃗⃗ |2≥277,所以|AD ⃗⃗⃗⃗⃗ |≥3√217,故|AD ⃗⃗⃗⃗⃗ |的最小值为3√217. 【备注】【解后反思】本题给出了两种解法,其中解法二解题过程复杂繁琐,部分考生很难做出正确结果;解法一的解题过程相对简单,需要考生认真分析题目中给出的向量表达式,在原三角形的基础上,通过延长边AB 以及取边AC 的中点,结合三点共线的条件,确定D 点所在的直线,再利用余弦定理、三角形面积公式即可求得结果. 13.17【解析】本题考查向量的坐标表示、向量垂直等,考查考生对基础知识的掌握情况. 利用向量垂直得到相关等式,解出k 即可.由题意知,b -a =(k -1,-8),a ·(b -a )=0,即k -1+2×(-8)=0,解得k =17. 【备注】无 14.-2【解析】本题主要考查同角三角函数的基本关系、诱导公式,考查考生的化归与转化能力和运算求解能力.因为α是第三象限角,所以π+2k π<α<3π2+2k π,k ∈Z,所以3π4+2k π<α-π4<5π4+2k π,k ∈Z,所以cos(α-π4)<0,所以sin(α+π4)=sin[(α-π4)+π2]=cos(α-π4)=-√1-sin 2(α-π4)=-2√55,cos(α+π4)=cos[(α-π4)+π2]=-sin(α-π4)=√55, 所以tan(α+π4)=sin(α+π4)cos(α+π4)=-2. 【备注】无15.化学、英语、数学、物理【解析】本题考查推理的相关知识,考查的核心素养是逻辑推理.从4个人的预测结果均不正确入手,逐一分析,推断出甲、乙、丙、丁4个人得到的书. 由甲、丁的预测均不正确可知,丁得到的是物理书,结合乙的预测不正确可知,乙得到的是英语书,结合丙的预测不正确可知,甲得到的是化学书,故丙得到的是数学书. 【备注】无 16.(1+3√22,3+3√22) 【解析】本题主要考查双曲线的定义、几何性质,考查数形结合思想、化归与转化思想.由题意,可设双曲线C 的方程为y 2-3x 2=k ,将(2,3)代入,得32-3×22=k ,得k =-3,故双曲线C 的方程为x 2-y 23=1,作出双曲线C 如图所示,连接PF 1,AF 1.由双曲线的定义,得|PF 1|-|PF 2|=2,所以|PF 2|=|PF 1|-2,则|PA |+|PF 2|=|PA |+|PF 1|-2≥|AF 1|-2,当且仅当A ,P ,F 1三点共线时,等号成立.由A (6,8),F 1(-2,0),得直线AF 1的方程为y =x +2,由{y =x +2,x 2-y 23=1,得2x 2-4x -7=0,解得x =1±3√22,因为点P 在双曲线的右支上,所以点P 的坐标为(1+3√22,3+3√22). 【备注】无 17.解:(1)由n a n+12-4(n +1)a n 2=0,得a n+12n+1=4·a n 2n,因为a n >0,所以n+1√n+1=2·n√n.又b n =n√n,所以b n +1=2b n ,因此b n+1b n=2.故数列{b n }是公比为2的等比数列. (2)b 1=1√1=1,所以结合(1)得b n =2n -1,即n√n=2n -1,所以a n =√n ·2n -1,因此a n 2=n ·4n -1.于是S n =1+2×4+3×42+…+n ×4n -1,所以4S n =1×4+2×42+3×43+…+(n -1)×4n -1+n ×4n , 以上两式相减得,-3S n =1+4+42+…+4n -1-n ·4n=1-4n 1-4-n ·4n=(1-3n)·4n -13.故S n =(3n-1)·4n +19.【解析】本题考查等比数列的定义以及通项公式,考查用错位相减法求数列的前n 项和. 试题主要考查等比数列的概念和通项公式、错位相减法,引导考生培养提取有效信息的能力,用数学思想方法分析问题、解决问题的能力,较好地体现了数学运算、逻辑推理等核心素养.(1)将已知条件进行变形,可得到b n +1,b n 的关系,然后根据等比数列的定义即可证得结论;(2)结合(1)先求出数列{b n }的通项公式,再得到数列{a n 2}的通项公式,最后用错位相减法求前n项和. 【备注】无18.解:(1)因为AD ∥BC 且AD ⊥AB ,所以BC ⊥A B.又平面PAB ⊥平面ABCD ,且平面PAB ∩平面ABCD =AB ,BC ⊂平面ABCD ,所以BC ⊥平面PAB , 因此BC ⊥A E.因为△PAB 是等边三角形,E 是PB 的中点,所以AE ⊥P B. 又BC ∩PB =B ,所以AE ⊥平面PBC , 又BM ⊂平面PBC ,故AE ⊥BM .(2)解法一 如图,以AB 的中点O 为坐标原点,OB ,OP 所在直线分别为x 轴、z 轴,过点O 且平行于BC 的直线为y 轴,建立空间直角坐标系,则O (0,0,0),D (-2,2,0),P (0,0,2√3),C (2,4,0),所以PD ⃗⃗⃗⃗⃗ =(-2,2,-2√3),PC⃗⃗⃗⃗⃗ =(2,4,-2√3). 设平面PDC 的法向量为n 1=(x 1,y 1,z 1),则由{n 1·PD⃗⃗⃗⃗⃗ =0,n 1·PC ⃗⃗⃗⃗⃗ =0,可得{-2x 1+2y 1-2√3z 1=0,2x 1+4y 1-2√3z 1=0,取x 1=1,则y 1=-2,z 1=-√3,所以n 1=(1,-2,-√3)是平面PDC 的一个法向量. 因为B (2,0,0),E 是PB 的中点,所以E (1,0,√3). 因为M 为PC 的中点,所以M (1,2,√3), 于是DE ⃗⃗⃗⃗⃗ =(3,-2,√3),DM ⃗⃗⃗⃗⃗⃗ =(3,0,√3). 设平面DME 的法向量为n 2=(x 2,y 2,z 2),则由{n 2·DE ⃗⃗⃗⃗⃗ =0,n 2·DM ⃗⃗⃗⃗⃗⃗ =0,可得{3x 2-2y 2+√3z 2=0,3x 2+√3z 2=0,取x 2=1,则y 2=0,z 2=-√3,所以n 2=(1,0,-√3)是平面DME 的一个法向量. 所以|cos<n 1,n 2>|=|n 1·n 2||n 1||n 2|=2√2×2=√22. 故平面DME 与平面PDC 所成锐二面角的余弦值为√22. 解法二 因为M 为PC 的中点,E 是PB 的中点, 所以EM ∥BC ,EM =12BC =2,由题意易得AD ⊥AP ,所以PD =2+AP 2=√22+42=2√5, 因为PB ⊥BC ,所以PC =√PB 2+BC 2=√42+42=4√2, 又DC =√AB 2+(BC-AD)2=2√5,所以PD =DC ,又M 为PC 的中点,所以DM ⊥P C. 易知DM =AE =2√3,AD ⊥AE ,所以DE =√AD 2+AE 2=√22+(2√3)2=4, 所以DM 2+EM 2=DE 2,因此DM ⊥EM ,因此∠PME 就是平面DME 与平面PDC 所成锐二面角的平面角. 又EM ∥BC ,所以∠PME =∠PCB =45°,所以cos∠PME =√22.故平面DME 与平面PDC 所成锐二面角的余弦值为√22.【解析】本题考查空间中线线垂直的证明以及二面角余弦值的求解,考查逻辑推理能力、空间想象能力和运算求解能力.试题在全面考查考生立体几何基础知识的同时,通过问题的分层设计,使不同层次考生的水平都得以发挥,体现了《课程标准》对立体几何教学的知识要求和能力要求,使直观想象、逻辑推理、数学运算等核心素养得到了有效考查.(1)要证AE ⊥BM ,只需证明AE ⊥平面PBC ,而易知AE ⊥PB ,再通过BC ⊥平面PAB 证得BC ⊥AE ,即可使问题得证;(2)可建立空间直角坐标系利用空间向量法求解,也可利用几何法在图形中找到所求锐二面角的平面角,然后在三角形中求解. 【备注】无19.解:(1)由样本数据可得球员J 在15场比赛中的场均得分为115(15+18+21+22+22+24+27+30+32+33+36+37+38+39+41)=29(分),故球员J 在本赛季的场均得分约为29分.由样本数据可得球员H 在15场比赛中,得分超过32分的有6场,故球员H 在本赛季参加的75场常规赛中,得分超过32分的场数约为615×75=30.(2)设事件A :“恰有一名球员的2场比赛得分都超过37分”. 事件B :“2场比赛得分都超过37分的球员是H”.依题图知,球员J 得分超过35分的场数是5,球员H 得分超过35分的场数是4. 球员J 得分超过37分的场数是3,球员H 得分超过37分的场数是3. 所以P (A )=C 32·3+C 32·(C 21C 31+1)C 52C 42=12,P (AB )=C 32·(C 21C 31+1)C 52C 42=720,故P (B |A )=P(AB)P(A)=72012=710.故在恰有一名球员的2场比赛得分都超过37分的条件下,该球员是H 的概率为710.(3)由已知数据可得x ¯=18+21+27+30+315=25.4,y ¯=19+20.5+26.5+28.8+30.25=25,因为∑i=15x i y i =3 288.2,∑i=15x i 2=3 355,所以b ^=∑i=15x i y i -5x ¯ y¯∑i=15x i2-5x ¯2=3 288.2-5×25.4×253 355-5×25.42≈0.876于是a ^=y ¯−b ^x ¯≈25-0.876×25.4≈2.750,故回归直线方程为y =0.876x +2.750.由于y 与x 正相关,且当x =32时,y =0.876×32+2.750=30.782<31, 当x =33时,y =0.876×33+2.750=31.658>31,因此估计在15场比赛中,当球员J 的得分为33,36,37,38,39,41时,效率值超过31,共6场.【解析】本题考查茎叶图、样本的数字特征及其应用,考查条件概率的求解以及回归直线方程,考查的核心素养是数据分析、数学运算.(1)利用样本的数字特征估计总体的数字特征,运用相关公式计算即可;(2)设出相关事件,利用条件概率的计算公式进行计算;(3)代入相关数据,求出回归直线方程,并将样本数据代入进行判断.【备注】【解后反思】本题第(2)问是条件概率的计算问题,解决这类问题时,首先要用字母表示相关事件,然后利用条件概率的计算公式求解,其中要特别注意P (AB )是指事件A 和B 同时发生的概率.20.解:(1)由题意得,抛物线的焦点为(p2,0),1+p2=54,解得p =12,所以抛物线C 1的方程为y 2=x . (2)由(1)知,P (2,√2).假设存在圆C 2使得AB 恰为其切线,设A (y 12,y 1),B (y 22,y 2),则直线PA 的方程为y -√2=y 1-√2y 12-2·(x -2),即x -(y 1+√2)y +√2y 1=0.由点C 2(1,0)到PA 的距离为r ,得√2y 1√1+(y 1+√2)2=r ,化简,得(2-r 2)y 12+2√2(1-r 2)y 1+1-3r 2=0,同理,得(2-r 2)y 22+2√2(1-r 2)y 2+1-3r 2=0.所以y 1,y 2是方程(2-r 2)y 2+2√2(1-r 2)y +1-3r 2=0的两个不等实根, 故y 1+y 2=-2√2(1-r 2)2-r ,y 1y 2=1-3r 22-r. 易得直线AB 的方程为x -(y 1+y 2)y +y 1y 2=0, 由点C 2(1,0)到直线AB 的距离为r ,得12√1+(y 1+y 2)2=r ,所以(1+1-3r 22-r 2)2=r 2+r2[-2√2(1-r 2)2-r 2]2, 于是,(3-4r 2)2=r 2(2-r 2)2+8r 2(1-r 2)2,化简,得r 6-4r 4+4r 2-1=0,即(r 2-1)(r 4-3r 2+1)=0. 经分析知,0<r <1,因此r =√5-12, 所以存在圆C 2使得AB 恰为其切线,且r =√5-12. 【解析】本题主要考查抛物线的定义和几何性质,直线与圆、抛物线的位置关系等,考查运算求解能力、数形结合思想.试题以抛物线和圆为载体设题,求解时利用直线与圆、抛物线的位置关系列方程,彰显了直观想象、逻辑推理及数学运算等核心素养,考查考生思维的灵活性和综合应用知识解决问题的能力.(1)由抛物线的定义和几何性质列出方程,求出p 的值,进而可求出抛物线的方程;(2)设出A ,B 两点的坐标,得到直线PA ,PB ,AB 的方程,利用圆心到PA ,PB ,AB 的距离均为r 列出方程,结合题意,求出r 的值.【备注】【易错警示】本题在利用直线与圆相切得到关于r 的方程(r 2-1)(r 4-3r 2+1)=0后,可以求得6个r 的值,根据r >0可排除3个值,但很多考生不能分析出0<r <1,从而在另外3个值的取舍上出错21.解:(1)f '(x )=e x [ax 2+(2a +1)x +1],因为f (x )在[1,2]上单调递减,所以e x (ax 2+2ax +x +1)≤0在[1,2]上恒成立, 即ax 2+2ax +x +1≤0在[1,2]上恒成立,所以a ≤-x+1x 2+2x在[1,2]上恒成立.令p (x )=-x+1x 2+2x,则p'(x )=x 2+2x+2(x 2+2x)2>0,所以p (x )在[1,2]上单调递增,所以当x ∈[1,2]时,p (x )min =p (1)=-23,故实数a 的取值范围为(-∞,-23]. (2)g (x )=f(x)xex -1=ax +1xex =x (a +1x 2e x),令h (x )=a +1x 2ex ,则h'(x )=-(x+2)x 3e x.当x <-2时,h'(x )<0,h (x )单调递减; 当-2<x <0时,h'(x )>0,h (x )单调递增. 所以h (x )在x =-2处取得极小值a +e 24.依题意知h (x )在(-∞,0)上有两个不同的零点x 1,x 2,不妨设x 1<x 2, 则x 1<-2<x 2<0.令F (x )=h (-2+x )-h (-2-x ),-2<x <0, 则F (x )=a +1(x-2)e -a -1(x+2)e =e 2-x (x-2)−e 2+x(x+2),-2<x <0,F'(x )=xe 2-x (2-x)3−xe 2+x(x+2)3=x [e 2-x(2-x)3−e 2+x(x+2)3]. 令P (x )=e xx3,则P'(x )=e x (x-3)x 4,显然当0<x <3时,P'(x )<0,P (x )在(0,3)上单调递减,当x >3时,P'(x )>0,P (x )在(3,+∞)上单调递增.当-2<x <0时,2<2-x <4,0<2+x <2,因为P (2)-P (4)=e 28−e 464=e 2(8-e 2)64>0,所以P (2)>P (4),所以当-2<x <0时,P (2-x )<P (2+x ),即当-2<x <0时,e 2-x(2-x)−e 2+x(x+2)<0,于是F'(x )>0,所以F (x )在(-2,0)上单调递增,于是F (x )<F (0)=0,所以当-2<x <0时,h (-2+x )<h (-2-x ).又-2-x 2∈(-2,0),所以h [-2+(-2-x 2)]<h [-2-(-2-x 2)],即h (-4-x 2)<h (x 2)=h (x 1).因为-4-x 2<-2,x 1<-2,且h (x )在(-∞,-2)上单调递减,所以-4-x 2>x 1,故x 1+x 2+4<0.【解析】本题考查利用导数研究函数的单调性、极值以及函数的零点问题,考查考生分析问题、解决问题的能力.试题通过利用导数研究函数的单调性、极值等,体现对逻辑推理、直观想象、数学运算等核心素养的考查.【备注】无22.解:(1)由{x =1-35t,y =1+15t 消去参数得,x -1=-3(y -1),整理得直线l 的普通方程为x +3y -4=0. 因为椭圆C 的标准方程是x 29+y 2=1,所以椭圆C 的参数方程为{x =3cosθ,y =sinθ(θ为参数). (2)设N (3cos θ,sin θ),又M (2,2),所以点P 的坐标为(3cosθ+22,sinθ+22), 于是点P 到直线l 的距离d =|3cosθ+22+3·sinθ+22-4|√10=3√510|sin(θ+π4)|, 因此当|sin(θ+π4)|=1时,d max =3√510.故线段MN 的中点P 到直线l 的距离的最大值为3√510. 【解析】【考查目标】本题考查直线、椭圆的参数方程与普通方程的互化,考查的核心素养是数学抽象、数学运算.(1)消去参数t 即得直线l 的普通方程,引进参数θ即得椭圆C 的参数方程;(2)利用椭圆C 的参数方程设出N 点的坐标,然后根据中点坐标公式得到P 点坐标,利用点到直线的距离公式得到点P 到直线l 的距离关于θ的表达式,最后结合三角函数知识求得最大值.【备注】无23.解:(1)不等式f (x )≤4可化为不等式组:①{x ≥14,4x-1-(2x +1)≤4或②{-12<x <14,1-4x-(2x +1)≤4或③{x ≤-12,1-4x +(2x +1)≤4.解①得14≤x ≤3,解②得-12<x <14,解③得-1≤x ≤-12, 所以-1≤x ≤3,故不等式f (x )≤4的解集为{x |-1≤x ≤3}.(2)由f (x )≤k -f (-x 2)可得|1-4x |-|1+2x |≤k -(|1+2x |-|1-x |),整理得k ≥|1-4x |-|1-x |. 令g (x )=|1-4x |-|1-x |,则g (x )={3x,x ≥1,5x-2,14<x <1,-3x,x ≤14,因此当x =14时,g (x )取得最小值-34. 故当不等式f (x )≤k -f (-x 2)有解时,实数k 的取值范围是[-34,+∞). 【解析】本题考查绝对值不等式的解法、不等式有解,考查的核心素养是逻辑推理、数学运算.(1)利用零点分段法求解;(2)将原不等式整理成k ≥|1-4x |-|1-x |的形式,令g (x )=|1-4x |-|1-x |,将g (x )=|1-4x |-|1-x |化为分段函数,并求得其最小值,即得实数k 的取值范围.【备注】无。
绝密★启用前2020年普通高等学校招生全国统一考试仿真卷理科数学(三)本试题卷共8页,23题(含选考题)。
全卷满分150分。
考试用时120分钟。
★祝考试顺利★注意事项:1、答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。
2、选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。
答案写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
5、考试结束后,请将本试题卷和答题卡一并上交。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若集合{}|11A x x =-<<,{}|02B x x =<<,则A B = ()A .{}|11x x -<<B .{}|12x x -<<C .{}|02x x <<D .{}|01x x <<2.设复数12i z =+(是虚数单位),则在复平面内,复数2z 对应的点的坐标为()A .()3,4-B .()5,4C .()3,2-D .()3,43.()()6221x x -+的展开式中4x 的系数为()A .-160B .320C .480D .6404.某几何体的三视图如图所示,则该几何体的表面积为()A .52π+B .42π+C .44π+D .54π+5.过双曲线221916x y -=的右支上一点P ,分别向圆1C :()2254x y ++=和圆2C :()2225x y r -+=(0r >)作切线,切点分别为M ,N ,若22PM PN -的最小值为58,则r =()A .B .2C .3D .6.设函数()()3sin cos 0f x x x ωωω=+>,其图象的一条对称轴在区间,63ππ⎛⎫⎪⎝⎭内,且()f x 的最小正周期大于,则ω的取值范围为()A .1,12⎛⎫ ⎪⎝⎭B .()0,2C .()1,2D .[)1,27.在ABC △中,内角A ,B ,C 的对边分别为,,,若函数()()3222113f x x bx a c ac x =+++-+无极值点,则角B 的最大值是()A .6πB .4πC .3πD .2π8.公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”.利用“割圆术”,刘徽得到了圆周率精确到小数点后两位的近似值3.14,这就是著名的“徽率”.如图是利用刘徽的“割圆术”思想设计的一个程序框图,则输出的值为()(参考数据:sin150.2588≈ ,sin7.50.1305≈ )班级姓名准考证号考场号座位号此卷只装订不密封A .12B .20C .24D .489.设π02x <<,则“2cos x x <”是“cos x x <”的()A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件10.欧阳修的《卖油翁》中写道:“(翁)乃取一葫芦置于地,以钱覆盖其口,徐以杓酌油沥之,自钱孔入,而钱不湿”,可见“行行出状元”,卖油翁的技艺让人叹为观止.若铜钱是直径为3cm 的圆面,中间有边长为1cm 的正方形孔.现随机向铜钱上滴一滴油(油滴的大小忽略不计),则油滴落入孔中的概率为()A .14πB .49πC .19D .58π11.已知()cos23,cos67AB =︒︒ ,()2cos68,2cos22BC =︒︒,则ABC △的面积为()A .2B 2C .1D .2212.已知定义在R 上的可导函数()f x 的导函数为()f x ',对任意实数均有()()()10x f x xf x '-+>成立,且()1e y f x =+-是奇函数,则不等式()e 0x xf x ->的解集是()A .(),e -∞B .()e,+∞C .(),1-∞D .()1,+∞第Ⅱ卷本卷包括必考题和选考题两部分。
1第I 卷 选择题部分(共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{|22}A x x =∈-<<N ,{1,1,2,3}B =-,则A B =I ( ) A .{}1 B .{}0,1C .{}0,1,2D .{}0,1,2,3【答案】A 【解析】{}{|22}0,1A x x =∈-<<=Q N ,因此,{}1A B ⋂=.故选:A.2.设z =i(2+i),则z = A .1+2i B .–1+2i C .1–2i D .–1–2i【答案】D 【解析】2i(2i)2i i 12i z =+=+=-+,所以12z i =--,选D .3.《九章算术》中将底面为长方形,且有一条侧棱与底面垂直的四棱锥称之为“阳马”.现有一阳马,其正视图和侧视图是如图所示的直角三角形.若该阳马的顶点都在同一个球面上,则该球的表面积为A 6πB .2πC .6πD .24π【答案】C1【解析】如图所示,该几何体为四棱锥P ﹣ABCD .底面ABCD 为矩形, 其中PD ⊥底面ABCD . AB =1,AD =2,PD =1.则该阳马的外接球的直径为PB 1146=++=.∴该阳马的外接球的表面积:264()6ππ⨯=. 故选C .4.若3sin()25πα-=,则cos2α=( ) A .725 B .2425C .725-D .2425-【答案】C 【解析】 由条件得3sin cos 25παα⎛⎫-==⎪⎝⎭,∴2237cos22cos 121525αα⎛⎫=-=⨯-=- ⎪⎝⎭.故选C .5.二项式812x x ⎛⎫+ ⎪⎝⎭的展开式中,常数项等于( )A .448B .900C .1120D .1792【答案】C 【解析】该二项展开式通项为()888288122rrrr r rC C x x x ---⎛⎫= ⎪⎝⎭, 令820r -=,则4r =,常数项等于44821120C =.故选:C.6.已知点(,)P x y 是直线240x y -+=上一动点,直线,PA PB 是圆22:20C x y y ++=的两条切线,,A B为切点,C 为圆心,则四边形PACB 面积的最小值是( ) A .2 BC.D .4【答案】A 【解析】圆22:20C x y y ++=即22(y 1)1x ++=,表示以C (0,-1)为圆心,以1为半径的圆。
2020年全国高考预测卷理科数学(全国Ⅲ卷)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合A ={x |x 2≤x },B ={x |1x≥1},则A ∩B = A .(1]-∞, B .[01],C .(01],D .(1]-∞,∪(01],2.已知i 为虚数单位,则2i1i+-=A .31i 22-B .31i 22+C .13i 22-D .13i 22+3.“0<x <1”是“sin x 2<sin x ”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.运行如图所示的程序框图,设输出的数据构成集合A ,从集合A 中任取一个元素a ,则函数a y x =在(0,+∞)上是增函数的概率为A .12 B .35C .45 D .345.若函数()x f x a =(a >0,且a ≠1)在区间[2,4]上的最大值与最小值之差为2,则实数a =ABC .12D .26.我国古代木匠精于钻研,技艺精湛,常常设计出巧夺天工的建筑,如图.在一座宫殿中,有一件特别的“柱脚”的三视图如右图所示.则其体积为A .83+4πB .83+8πC .8+4πD .8+8π7.已知斜率为2的直线l 过抛物线C :y 2=2px (p >0)的焦点F ,且与抛物线交于A ,B 两点,若线段AB 的中点M 的纵坐标为1,则p = A .1BC .2D .48.将函数()sin 22f x x x =+的图象向右平移ϕ(ϕ>0)个单位,再向上平移1个单位,所得图象经过点(8π,1),则ϕ的最小值为 A .512πB .712π C .524πD .724π 9.已知双曲线22221x y a b -=(a >0,b >0)的左、右焦点分别为F 1,F 2,过F 1作x 2+y 2=a 2的切线,交双曲线右支于点M ,若∠F 1MF 2=45º,则双曲线的离心率为ABC .2D .3主视图左视图俯视图10.有一个长方体木块,三个侧面积分别为8,12,24,现将其削成一个正四面体模型,则该正四面体模型棱长的最大值为 A .2B. C .4 D.11.已知在平面直角坐标系xOy 中,O 为坐标原点,A (0,2),|OB |2+|OA |2=20,若平面内点P 满足3PB PA =u u u r u u u r,则|PO |的最大值为A .4B .5C .6D .712.已知A 、B 是函数2e ()e x a x x a f x x a--⎧≥⎪=⎨<⎪⎩,,,(其中a >0)图象上的两个动点,点P (a ,0),若PA PB ⋅u u u r u u u r 的最小值为0,则函数()f x 的最小值为A .21e - B .1e - C .21eD .1e二、填空题:本大题共4小题 每小题5分,共20分。
普通高等学校招生全国统一考试模拟试题理数(三)本试卷共6页,23题(含选考题)。
全卷满分150分。
考试用时120分钟。
注意事项:1、答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上.并将准考证号条形码粘贴在答题卡上的指定位置。
2、选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。
答案写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
5、考试结束后,请将本试题卷和答题卡一并上交。
第I 卷一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合(){}2ln 330A x x x =-->,集合{}231,B x x U R =->=,则()U C A B ⋂=A. ()2,+∞B. []2,4C. (]1,3D. (]2,42.设i 为虚数单位,给出下面四个命题:1:342p i i +>+;()()22:42p a a i a R -++∈为纯虚数的充要条件为2a =;()()23:112p z i i =++共轭复数对应的点为第三象限内的点; 41:2i p z i +=+的虚部为15i . 其中真命题的个数为A .1B .2C .3D .43.某同学从家到学校途经两个红绿灯,从家到学校预计走到第一个红绿灯路口遇到红灯的概率为0.75,两个红绿灯路口都遇到红灯的概率为0.60,则在第一个路口遇到红灯的前提下,第二个路口也遇到红灯的概率为A .0.85B .0.80C .0.60D .0.564.已知函数()f x =的值域为A ,且,a b A ∈,直线()()2212x y x a y b +=-+-=与圆有交点的概率为 A .18B .38C.78D.145.一条渐近线的方程为43y x =的双曲线与抛物线2:8C y x =的一个交点为A ,已知AF =(F 为抛物线C 的焦点),则双曲线的标准方程为A .2211832x y -=B .2213218y x -= C .221916x y -=D .2291805y x -= 6.如图,弧田由圆弧和其所对弦围成,《九章算术》中《方田》章给出计算弧田面积所用的经验公式为:以弦乘矢,矢又自乘,并之,二而一”,即弧田面积12=(弦×矢+矢2).公式中“弦”指圆弧所对的线段,“矢”等于半径长与圆心到弦的距离之差,按照上述的经验公式计算弧田面积与实际面积存在误差,则圆心角为3π,弦长为1的弧田的实际面积与经验公式算得的面积的差为 A .138-B .31168π+- C .123623π+- D .53325-7.已知()()32210012100223nn x dx x x a a x a x a x =+-=+++⋅⋅⋅+⎰,且,则12310012102310a a a a a a a a +++⋅⋅⋅++++⋅⋅⋅+的值为 A .823B .845C .965-D .8778.已知函数()()sin 2cos 2,0,66f x x x x f x k ππ⎛⎫⎡⎤=++∈= ⎪⎢⎥⎝⎭⎣⎦当时,有两个不同的根12,x x ,则()12f x x k ++的取值范围为A .)1,3⎡⎣B .)3,23⎡⎣C .33,12⎛⎫+ ⎪ ⎪⎭D .)3,2⎡⎣ 9.运行如图所示的程序框图,输出的S 值为 A .2018201722⨯- B .2018201822⨯+ C. 2019201822⨯-D .2019201722⨯+10.已知直线()()21350m x m y m +++--=过定点A ,该点也在抛物线()220x py p =>上,若抛物线与圆()()()222:120C x y rr -+-=>有公共点P ,且抛物线在P 点处的切线与圆C 也相切,则圆C 上的点到抛物线的准线的距离的最小值为 A .35-B. 33-C .3D .32-11.已知几何体的三视图如图所示,则该几何体的外接球的表面积为 A .2143π B .1273πC.1153π D .1243π12.已知函数()f x 的导函数为()'fx ,且满足()32123f x x ax bx =+++,()()''24f x f x +=-,若函数()6ln 2f x x x ≥+恒成立,则实数b 的取值范围为A .[)64ln3,++∞B .[)5ln5,++∞ C.[)66ln6,++∞ D .[)4ln 2,++∞第Ⅱ卷本卷包括必考题和选考题两部分。
1 2 2020 届全国高考模拟冲刺卷三数学(理)本试卷分第 I 卷(选择题)和第 II 卷(非选择题)两卷.满分 150 分,考试时间 120 分钟.第 I 卷(选择题 共 60 分)一、选择题:(本大题共 12 小题,每小题 5 分,共 60 分,在每小题给出的四个 选项中,只有一项是符合题目要求的)1、若集合 A = {1, 2, 3, 4, 5} ,集合 B = {x | x (4 - x ) < 0} ,则图中阴影部分表示( )A. {1, 2, 3, 4}B. {1, 2, 3}C. {4, 5}D. {1, 4}2、已知复数 z 满足(1 + i ) z = 2 ,则复数 z 的虚部为()A .1B .-1C .iD .-i3、函数 f ( x ) = + ln ( x +1)的定义域为( )A. [3, 0) U (0,3]B. (-1, 0) U (0,3]C. [-3,3]D. (-1,3]4、已知抛物线 y 2 = 2 px ( p > 0) 的焦点 F 到直线 3x - 4 y + 4 = 0 的距离等于 p ,则抛物线的准 2线方程为()A. x = 1B. x = 2C. x = -1D. x = -25、已知 (1 + λ x )n 的展开式中第三项的二项式系数与第四项的二项式系数相等,且(1 + λ x )n = a 0 + a 1 x + a 2 x +L + a n x,若 a 1 + a 2 + L a n = 242 ,则实数 λ = ( )A.3B.2C.1D.46、已知角 α 的顶点在坐标原点,始边与 x 轴非负半轴重合,终边经过点(-4,3) ,则sin 2α - cos 2α = ()7 1731 5 A.B. -C. -D. -5252539 - x 2 n3 ⎨⎝ ⎭ ⎩7、从 6 名大学生中选出队长 1 人,副队长 1 人,普通队员 2 人,组成 4 人知识竞赛代表队,则不 同的选法共有( ) A.15 种B.180 种C.360 种D.90 种8、如图所示,网格纸上的小正方形的边长为 1,粗线画出的是某几何体的三视图,则该几 何体的体积为()2 16 A.B.33⎧⎛ ⎫ xC.6D.419、已知 f ( x ) = ⎪ 2 ⎪,( x ≤ 1) ,若关 x 于的方程 a = f ( x ) 恰有两个不同实根, ⎪⎪-x 2+ 4x - 2, ( x > 1)则实数 a 的取值范围是()A. ⎛ -∞, 1⎫ U [1, 2) B. ⎛ 0, 1⎫ U [1, 2) C. (1, 2) D. [1, 2) 2 ⎪ 2 ⎪ ⎝⎭⎝ ⎭2210、已知 O 为坐标原点,过双曲线 x - ya 2b 2= 1(a > 0,b > 0) 右焦点 F 作倾斜角为 π 的直线 l ,3与该双曲线在第一象限交于点A ,且△OAF 是等腰三角形,则该双曲线的离心率为( )A.2B.3 +12C.7 + 13D. + 1o则异面直线 AB 与 BC11、已知直三棱柱 ABC - A 1 B 1C 1 ,∠ABC = 120 ,AB = 2, BC = CC 1 = 1 , 1所成角的余弦值为()A. 12、已知函数 f (x ) = 1sin 2x - a sin x ,且对于任意的 x , x ∈(-∞, +∞) ,x 1 ≠ x 2 3 , f (x 1 ) - f (x 2 ) x 1 - x 21 2< 1 成立,则实数a 的取值范围是()A. [- 1 , 1] 4 4B. [- 1 , 1] 3 3C. [- 1 , 1]2 2D. [-1,1]15 2 5 15 5B. 5C. 5D. 5第II 卷(非选择题共90 分)本卷包括必考题和选考题两部分,第13 题~第21 题为必考题,每个试题考生都必须做答.第22 题和第23 题为选考题,考生根据要求做答. 二、填空题:(本大题共4 小题,每小题5 分,共20 分)13、已知{a n }为等差数列,若a2= 2a3+1, a4= 2a3+ 7, 则a3=.14、设m, n 是两条不同的直线α ,β 是两个不同的平面,且直线m ⊂ 平面α 直线n ⊂ 平面β 给出下列说法:①” m ⊥ n ”是” n ⊥ α ”必要条件②“m / /n ”是”m / /β ”的必要条件③”m / /n ”是”α / / β ”充要条件④” m ⊥ n ”是” α ⊥ β ”的充分条件,其中所有正确说法的序号是.u uu r u uu r u u u r15、已知A(2,1, 3) ,B(-4, 2, x), C(1, -x, 2) ,若向量OA + OB 与OC 垂直(O 为坐标原点),则x 等于.x2 y216、设F1, F2 为椭圆C : + = 1的两个焦点,M 为C 上一点且在第一象限.若△MF1F236 20为等腰三角形,则M 的坐标为.三、解答题:(本大题共6 小题,共70 分,解答应写出文字说明、证明过程或演算步骤)17、已知△ABC 中,内角A, B, C的对应边分别为a,b,c , a cos C + c cos A = b sin B, b = 2c(1)求角C 的大小(2)点D 在与B 在AC 的两侧,且满足AD = 2,CD = 3 ,求四边形ABCD 面积的最大值. 18、为了推进产业转型升级,加强自主创新,发展高端创造、智能制造.把我国制造业和实体经济搞上去,推动我国经济由量大转向质强,许多企业致力于提升信息化管理水平,一些中小型工厂的规模不大,在选择管理软件时都要进行调查统计,某一小型工厂自己没有管理软件的高级技术员.欲购买管理软件服务公司的管理软件.并让其提供服务,某一管理软件服务公司有如下两种收费方案:方案一:管理软件服务公司每月收取工厂4800 元.对于提供的软件服务.每次另外收费200 元; 方案二:管理软件服务公司每月收取工厂7600 元.若每月提供的软件服务不超过15 次.不另外收费.若超过15 次,超过部分的软件服务每次另外收费500 元1 11(1)设管理软件服务公司月收费为y 元.每月提供的软件服务的次数为 x,试写出两种方案中 y 与 x 的函教关系式.(2)该工厂对该管理软件服务公司为另一个工厂过去 20 个月提供的软件服务的次数放进行了 统计,得到如图所示的条形统计图.该工厂要调查服务质量,.现从服务次放为 13 次和 14 次的月 份中任选 3 个月.求这 3 个月恰好是 1 个 13 次服务、2 个 14 次服务的概率.(3)依据条形统计图中的数据,把频率视为概率.从节约成本的角度考虑该工厂选择.种方案更 合适请说明理由.19、如图,在直四棱柱 ABCD - A 1B 1C 1D 1 中,底面 ABCD 为等腰梯形, AB = CD , AA = AD = 2BC , ∠DAB = 60o , M , N 分别为 A D , CD 的中点(1)证明 MN / / 平面 ABCD(2)求直线 MN 与平面 MCD 所成角的正弦值20、椭圆 C : x 2 y 2+ = 1(a > b > 0) , A , B 是椭圆与 x 轴的两个交点,P 为椭圆 C 的上顶点,a 2b 22设直线 PA 的斜率为 k 1 ,直线 PB 的斜率为 k 2 , k 1k 2 = - .3MDAOB xE Ny(1).求椭圆 C 的离心率;(2).若 a = 3 时,点 D 为 x 轴上一点,过 D 作 x 轴的垂线交椭圆 C 于不同的两点 M , N ,过 D 作 AM 的垂线交 BN 于点 E ,求△BDE 与△BDN 的面积之比.2x -121、已知 f (x ) = a ( x - ln x ) +(1)讨论 f (x ) 的单调性;, a ∈ R . x 2(2)当 a = 1时,证明 f (x )>f '( x ) + 3对于任意的 x ∈[1, 2]成立. 2 请考生在 22、23 两题中任选一题作答,如果多做,则按所做的第一题记分.做答时,用 2B 铅笔在答题卡把所选题目对应的标号涂黑.⎧x = 1 + 1 t ⎪⎪ 22、在平面直角坐标系 xOy 中,已知直线 l 的参数方程为 ⎨ 2⎪ y = 3 t ⎪⎩ 2 ( t 为参数),椭圆 C 的参⎧ x = cos θ 数方程为 ⎨ ⎩ y = 2sin θ(θ 为参数).设直线 l 与椭圆 C 相交于 A , B 两点,求线段 AB 的长.23、已知函数f (x ) = x + b + x - a (a > 0,b > 0) 的值域为[1, +∞) .(1)若 a = b ,求 a 的值;(2)证明: a 2 + b 2 - ab ≥ 1.4⎩ ⎩1 答案及解析: 答案:A答案以及解析解析:解:图中阴影部分表示的集合是 C A ( A I B ) ,∵ B = {x | (x 4 - x )<0} ,即 B = {x | x <0或x >4} ,∴ A I B = {5} ,∵集合 A = {1,2,3,4,5} ,∴C A ( A I B ) = {1, 2, 3, 4} .故选 A.2 答案及解析:答案:B解析: (1 + i ) z = 2 ,∴ z =2= 2(1 - i )= 1 - i . 1 + i (1 + i ) (1 - i )则复数 z 的虚部为−1.3 答案及解析: 答案:B⎧x +1 > 0 ⎧x > 1解析:由 ⎪ln ( x +1) ≠ 0 得 ⎪x ≠ 0 ⇒ -1 < x ≤ 3 且 x ≠ 0 ⎨ ⎪9 - x 2 ≥ 0 ⎨ ⎪-3 ≤ x ≤ 34 答案及解析: 答案:D解析:由题意,知抛物线的焦点F ⎛ p , 0 ⎫ ,则p ,解得 p = 4 ,所以抛物线的准 2⎪ = ⎝ ⎭ 2线方程为x = -2 ,故选 D.5 答案及解析: 答案:Bn n 6 4解析:由 (1 + λ x )n 得展开式中第三项的二项式系数与第四项的二项式系数相等,得 C 2 = C 3 解 得 n = 5 ,所以 (1 + λ x )5 = a + a x + a x 2 +L + a x 5 ,令 x = 0 得 a = 1 ,令 x = 1 ,得125(1 + λ x )5 = a 0 + a 1 + a 2 +L + a 5 = 243 ,所以1 + λ = 3 ,解得λ = 26 答案及解析: 答案:C解析:依题意s in α = 3 , cos α = - 4.所以 55sin 2α - cos 2α = 2sin α cos α -1 + 2sin 2α = 2 ⨯ 3 ⨯⎛ - 4 ⎫ -1+ 2 ⨯ ⎛ 3 ⎫ = - 31 . 55 ⎪ 5 ⎪ 25⎝ ⎭ ⎝ ⎭7 答案及解析: 答案:B解析:先从 6 名大学生中选出队长 1 人,副队长 1 人,再从剩下的 4 人选 2 人,故有 A 2C 2 = 180种。
备战2020高考全真模拟卷3数学(理)(本试卷满分150分,考试用时120分钟)注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。
用2B 铅笔将试卷类型(B )填涂在答题卡的相应位置上。
2.作答选择题时,选出每小题答案后,用2B 铅笔在答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其它答案。
答案不能答在试卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
4.考生必须保证答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
第Ⅰ卷(选择题)一、单选题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合{|06}M x x =≤≤,{|232}x N x =≤,则M N ⋃=( ) A .(,6]-∞ B .(,5]-∞ C .[0,6] D .[0,5]【答案】A 【解析】分析:根据指数函数求解集合N ,再根据集合的交集运算,即可得到结果.详解:由题意,集合{|06},{|232}{|5}xM x x N x x x =≤≤=≤=≤,所以{|6}(,6]M N x x ⋃=≤=-∞,故选A.点睛:本题主要考查了集合的运算,其中正确求解集合N 是解答的关键,着重考查了推理与计算能力.2.若复数z 满足(34)43i z i -=+,则z 的虚部为( ) A .-4 B .45-C .4i -D .45i -【答案】B【分析】先根据已知求出复数z,再求z 及其虚部得解. 【详解】 由题得55(34)5(34)3434(34)(34)255i i iz i i i +++====--+, 所以3455z i =-, 所以z 的虚部为45-.故选B 【点睛】本题主要考查复数的除法运算,考查复数的模的计算和共轭复数的概念,考查复数的虚部的概念,意在考查学生对这些知识的理解掌握水平和分析推理计算能力.3.在ABC ∆中,1=3AD DC u u u r u u u r ,P 是直线BD 上的一点,若12AP mAB AC =+u u u r u u u r u u u r,则m =( )A .4-B .1-C .1D .4【答案】B 【解析】 【分析】先根据条件化以,AB AD u u u r u u u r为基底向量,再根据平面向量共线定理推论确定参数. 【详解】114222AP mAB AC mAB AD mAB AD =+=+⨯=+u u u r u u u r u u u r u u u r u u u r u u u r u u u rQ ,又B P D 、、三点共线,所以21+=m ,得1m =-. 故选:B 【点睛】本题考查平面向量共线定理推论,考查基本分析求解能力,属基础题. 4.已知,,则的值是( )A .B .C .D .【答案】B试题分析:由题意,,所以,,,故选B .考点:对数的运算,换底公式.5.在ABC V 中,内角A B C ,,的对边分别为a b c ,,,且222a b c ab +-==则ABC V 的面积为( )A B .34C D .32【答案】B 【解析】 【分析】利用余弦定理化简a 2+b 2-c 2=ab C =60°,即得△ABC 的面积. 【详解】依题意得cos C =222122a b c ab +-=,所以C =60°,因此△ABC 的面积等于12absin C =12=34, 故答案为B 【点睛】本题主要考查余弦定理解三角形和三角形的面积的计算,意在考查学生对这些知识的掌握水平和分析推理能力.6.下表是考生甲、乙、丙填写的第一批A 段3个平行志愿,而且均服从调剂,如果3人之前批次均未被录取,且3所学校天津大学、中山大学、厦门大学分别差1人、2人、2人未招满.已知平行志愿的录取规则是“分数优先,遵循志愿”,即按照分数从高到低的位次依次检索考生的院校志愿、、A B C ,按照下面程序框图录取.执行如图的程序框图,则考生甲、乙、丙被录取院校分别是( )A .天津大学、中山大学、中山大学B .中山大学、天津大学、中山大学C .天津大学、厦门大学、中山大学D .中山大学、天津大学、厦门大学【答案】B 【解析】乙的分最高,第一志愿是天津在,所以被天津大学录走。
2020年全国3卷高考理科数学全真模拟冲刺试卷(三)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合A={x|x2−2x+1>0,B={y|y=√x2+14},则A∩B=()A.(1, +∞)B.[12,+∞)C.[12, 1)U(1, +∞) D.[12,1)2. 复数z满足(2+i)z=|3+4i|(i为虚数单位)则z对应的点所在象限为()A.第二象限B.第一象限C.第四象限D.第三象限3. 已知平面向量a→与b→满足:a→=(√3, −1),|b|→=3,|a→−2b→|=2√13,则向量a→与b→的夹角θ=()A.π3B.π6C.5π6D.2π34. 函数f(x)=e|x|−2√x2−1的大致图象为()A. B.C. D.5. 已知点A(−2, 3)在抛物线C:y2=2px(p>0)的准线上,记C的焦点为F,则以原点为圆心,且与直线AF相切的圆的半径为()A.2B.65C.5D.√136. 已知各项均为正数的等比数列{a n}满足2a1,12a3,a2成等差数列,若存在两项a m,a n,使得√a m a n=4a1,则2m +8n的最小值为()A.103B.3 C.18 D.927. 执行如图所示的程序框图,如果随机输入的m∈[−1, 1],则事件“输出的n∈[−1, 1]”发生的概率为()A.25B.15C.45D.358. 已知随机变量ξ的分布列为:若P(ξ2<x)=1112,则实数x的取值范围是()A.4≤x<9B.4<x≤9C.x≤4或x>9D.x<4或x≥99. 我国南北朝时期数学家、天文学家-祖暅,提出了著名的祖暅原理:“幂势既同,则积不容异也”“幂”是截面积,“势”是几何体的高,意思个是两等高几何体,若在每一等高处的两截面面积都相等,则两几何体体积相等.已知某不规则几何体与如图三视图所对应的几何体满足祖暅原理,则该不规则几何体的体积为()A.8−π3B.2π3C.8−2π3D.8−2π10. 已知函数f(x)=√3+2sinωxcosωx−2√3cos2ωx(ω>0)在区间(0, π)内有且只有一个极值点,则ω的取值范围为()A.(0,1112] B.(0,512] C.[512,1112] D.(512,1112]11. 已知F1,F2是双曲线C1:x2a2−y2b2=1(a>0b>0)与椭圆C2:x225+y29=1的公共焦点,点P,Q分别是曲线C1,C2在第一第三象限的交点,四边形PF1QF2的面积为6√6,设双曲线C1与椭圆C2的离心率依次为e1,e2,则e1+e2=()A.2√10+35B.2√10+45C.3√5+35D.3√5+4512. 已知偶函数f(x)的定义域是(−∞, 0)∪(0, +∞),其导函数为f(x),对定义城内的任意x,都有2f(x)+ xf′(x)>2成立,则不等式x2f(x)−4f(2)<x2−4的解集为()A.(−2, 0)∪(0, 2)B.{x|x≠0, ±2}C.(−∞, −2)∪(0, 2)D.(−∞, −2)∪(2, +∞)二、填空题:本题共4小题,每小题5分,共20分已知实数xy满足{2x−y≥0x−y≤0x+y−3≥0,则目标函数z=2x+y的最小值为________.若二项式(1+ax)n 的展开式中,x 3的二项式系数为10,该项系数为−80,则x 4的系数为________.已知四面体ABCD 中,AB =AD =2√6,BD =4√3,△BCD 为等边三角形,且平面ABD ⊥平面BCD ,则四面体ABCD 外接球的表面积为________.已知数列{a n }中,a 1=1,n(a n+1−a n )=a n +1,n ∈N ∗,若对任意的正整数n 及α∈[−32, 32],不等式2a n+1n+1≥t 2+2at −1总成立,则实数的取值范围为________.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17-21题为必考题每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.已知在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且cosBcosC =b2a−c .(1)求角B 的大小;(2)若b =√13,a +c =5,求△ABC 的面积.某医科大学实习小组为研究实习地昼夜温差与患感冒人数之间的关系,分别到当地气象部门和某医院抄录了1月份至3月份每月5日.20日的昼夜温差情况与因患感冒而就诊的人数,得到如表资料:该小组确定的研究方案是:先从这六组数据中随机选取4组数据求线性回归方程,再用剩余的2组数据进行检验(1)求剩余的2组数据中至少有一组是20日的概率;(2)若选取的是1月20日,2月5日,2月20日,3月5日四组数据. ①请根据这四组数据,求出y 关于x 的线性回归方程y ^=b ^x +a ^(a ^,b ^用分数表示); (2)若由线性回归方程得到的估计数据与剩余的检验数据的误差均不超过1人,则认为得到的线性回归方程是理想的,试问1中所得线性回归方程是否理想?附参考公式::b ^=∑−i=1n xiyi nxy ∑−i=1n xi 2nx 2=∑ n i=1(x i −x)(y i −y)∑ n i=1(x i −x)2,a ^=y −bx已知曲线C 上任意一点P(x, y)满足√x 2+y 2+2x +1+√x 2+y 2−2x +1=2√2,直线l 过点F(1, 0),且与曲线C 交于A ,B 两点. (1)求曲线C 的方程;(2)设点M(2, 0),直线AM 与BM 的斜率分别为k 1,k 2,试探求k 1与k 2的关系.如图所示的几何体中,ABCD 是菱形,∠ABC =60∘,PA ⊥平面ABCD ,AP // BF // DE ,AP =AB =2BF =2DE =2.(1)求证:平面PAC ⊥平面PCE ;(2)求平面PBC 与平面PCE 构成的二面角的正弦值.设a ∈R ,函数f(x)=alnx +12x 2+(a +1)x . (1)求函数f(x)的单调区间;(2)设ϕ(x)=f(x)−12x 2−(a +2)x 若(x)有两个相异零点x 1,x 2,且x 1<x 2,求证:lnx 1+lnx 2−2lna<0.选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.[选修44:坐标系与参数方程]已知直线C 1的参数方程为{x =2+ty =t (t 为参数),以平面直角坐标系xOy 的原点O 为极点,x 轴的正半轴为极轴建立极坐标系,椭圆C 2的极坐标方程为ρ2cos 2θ+9ρ2sin 2θ=9.(1)求直线C 1的普通方程(写成一般式)和椭圆C 2的直角坐标方程(写成标准方程);(2)若直线C 1与椭圆C 2相交于A ,B 两点,且与x 轴相交于点E ,求|EA +EB|的值. [选修45:不等式选讲]已知f(x)=|x +a|(a ∈R).(1)若f(x)≥|2x +3|的解集为[−3, −1],求a 的值;(2)若对任意x ∈R ,不等式f(x)+|x −a|≥a 2−2a 恒成立,求实数a 的取值范围.参考答案与试题解析2020年全国3卷高考理科数学全真模拟冲刺试卷(三)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.【答案】此题暂无答案【考点】交集根助运算【解析】此题暂无解析【解答】此题暂无解答2.【答案】此题暂无答案【考点】复数射代开表波法及酸几何意义【解析】此题暂无解析【解答】此题暂无解答3.【答案】此题暂无答案【考点】平面射量长量化的性置及其运算【解析】此题暂无解析【解答】此题暂无解答4.【答案】此题暂无答案【考点】函数常图陆变化【解析】此题暂无解析【解答】此题暂无解答5.【答案】此题暂无答案【考点】抛物使之性质【解析】此题暂无解析【解答】此题暂无解答6.【答案】此题暂无答案【考点】等比数表的弹项公式【解析】此题暂无解析【解答】此题暂无解答7.【答案】此题暂无答案【考点】程正然图【解析】此题暂无解析【解答】此题暂无解答8.【答案】此题暂无答案【考点】离散验他空变量截其分布列【解析】此题暂无解析【解答】此题暂无解答9.【答案】此题暂无答案【考点】由三都问求体积【解析】此题暂无解析【解答】此题暂无解答10.【答案】此题暂无答案【考点】两角和与表擦正弦公式正弦函射的单调长【解析】此题暂无解析【解答】此题暂无解答11.【答案】此题暂无答案【考点】圆锥曲三的综合度题【解析】此题暂无解析【解答】此题暂无解答12.【答案】此题暂无答案【考点】利用验我研究务能的单调性【解析】此题暂无解析【解答】此题暂无解答二、填空题:本题共4小题,每小题5分,共20分【答案】此题暂无答案【考点】简单因性规斯【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】二项式定因及京关概念【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】球的体都连表面积【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】数于术推式【解析】此题暂无解析【解答】此题暂无解答三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17-21题为必考题每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.【答案】此题暂无答案【考点】正因归理【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】求解线都接归方程【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】轨表方擦【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】平面因平面京直二面角的使面角及爱法【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】利用验我研究务能的单调性【解析】此题暂无解析【解答】此题暂无解答选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.[选修44:坐标系与参数方程]【答案】此题暂无答案【考点】参数较严与普码方脂的互化【解析】此题暂无解析【解答】此题暂无解答[选修45:不等式选讲]【答案】此题暂无答案【考点】绝对值射角不等开绝对常不等至的保法与目明【解析】此题暂无解析【解答】此题暂无解答。