2020届济南市高三二模考试(针对性训练)数学模拟试题(理)有答案(加精)
- 格式:doc
- 大小:7.12 MB
- 文档页数:11
山东省济南市第二高级中学2020年高三数学理月考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 已知,是虚数单位,若与互为共轭复数,则(A)(B)(C)(D)参考答案:D2. 已知集合,,则()A.B.C.D.参考答案:B3. 在△中,角的对边分别为,若,则的值为()A. B. C.D.参考答案:C略4. 复数(其中i为虚数单位)的虚部是A.B.C.D.参考答案:C略5.若函数y =的图像如图所示,则a的范围是()A.(-∞,-1) B.(0,3)C.(1,3) D.(2,3)参考答案:答案:C6. 已知函数的定义域为R,,对任意都有()A. B. C.D.参考答案:B由所以所以.7. 设F1, F2分别为双曲线(a>0,b>0)的左、右焦点,P为双曲线右支上任一点。
若的最小值为8a,则该双曲线的离心率的取值范围是 ( )A.(1,] B.(1,3)C.(1,3] D.[,3)参考答案:C略8. 若集合A={x|x2+x﹣2<0},集合,则A∩B=()A.(﹣1,2)B.(﹣∞,﹣1)∪(1,+∞)C.(﹣1,1)D.(﹣1,0)∪(0,1)参考答案:D【考点】交集及其运算.【分析】分别求出关于A、B的不等式,求出A、B的交集即可.【解答】解:A={x|x2+x﹣2<0}={x|(x+2)(x﹣1)<0}={x|﹣2<x<1},={x|﹣1<x<1且x≠0},则A∩B=(﹣1,0)∪(0,1),故选:D.9. 函数的定义域为A,的定义域为B,且,则实数的取值范围是()....参考答案:D10. 已知Ω={(x,y)|x+y≤6,x≥0,y≥0},E={(x,y)|x-2y≥0,x≤4,y≥0},若向区域Ω内随机投一点P,则点P落入区域E的概率为A. B. C. D.参考答案:B二、填空题:本大题共7小题,每小题4分,共28分11. 设变量x,y满足约束条件则的取值范围是.参考答案:12. 函数,若在区间上恒有解,则的取值范围为.参考答案:13. 某台风中心位于A港口东南方向的B处,且台风中心与A港口的距离为400千米.预计台风中心将以每小时40千米的速度向正北方向移动,离台风中心500千米的范围都会受到台风影响,则A港口从受到台风影响到影响结束,将持续小时.参考答案:15【考点】解三角形的实际应用.【分析】过A作AC垂直BC,垂足为点C,则BC=AC=400千米,在BC线上取点D使得AD=500千米进而根据勾股定理求得DC,进而乘以2,再除以速度即是 A港口受到台风影响的时间.【解答】解:由题意AB=400千米,过A作AC垂直BC,垂足为点C,则BC=AC=400千米台风中心500千米的范围都会受到台风影响所以在BC线上取点D使得AD=500千米因为AC=400千米,AD=500千米∠DCA是直角根据勾股定理 DC=300千米因为500千米的范围内都会受到台风影响所以影响距离是300×2=600千米T==15(小时)故答案为:15.14. 已知四面体ABCD的每个顶点都在球O的表面上,AB=AC=5,BC=8,AD⊥底面ABC,G为△ABC的重心,且直线DG与底面ABC所成角的正切值为,则球O的表面积为.参考答案:【考点】球的体积和表面积.【分析】求出△ABC外接圆的直径,利用勾股定理求出球O的半径,即可求出球O的表面积.【解答】解:由题意,AG=2,AD=1,cos∠BAC==﹣,∴sin∠BAC=,∴△ABC外接圆的直径为2r==,设球O的半径为R,∴R==∴球O的表面积为,故答案为.15. 已知P,Q为抛物线上两点,点P,Q的横坐标分别为4,2,过P、Q分别作抛物线的切线,两切线交于A,则点A的纵坐标为__________。
2021届高三数学教学测试〔二〕〔二模,扫描版〕理新人教A版2021年高三教学测试〔二〕创作人:历恰面日期:2020年1月1日理科数学参考答案1.A ; 2.A ; 3.D ; 4.B ; 5.C ; 6.D ;7.A ;8.D ;9.B ;10.C .第9题提示:考虑①:因为AD BC //,AD 与DF 相交不垂直,所以BC 与DF 不垂直,那么①不成立; 考虑②:设点D 的在平面BCF 上的射 影为点P ,当CF BP ⊥时就有FC BD ⊥,而4:3:2::=AB BC AD 可使条件满足,所以②正确;考虑③:当点P 落在BF 上时,⊂DP 平面BDF ,从而平面⊥BDF 平面BCF ,所以③正确.考虑④:因为点D 的射影不可能在FC 上,所以④不成立. 第10题提示:不等式组⎪⎩⎪⎨⎧≥++≤--≤0120121y x y x y 表示的平面区域是由)1,0(),1,1(),1,1(--C B A 围成的三角形区域〔包含边界〕.因为直线1=+by ax 与⎪⎩⎪⎨⎧≥++≤--≤0120121y x y x y 表示的平面区域无公一共点, 所以b a ,满足:⎪⎩⎪⎨⎧>-->-+->-+010101b b a b a 或者⎪⎩⎪⎨⎧<--<-+-<-+010101b b a b a .),(b a 在如下图的三角形区域〔除边界且除原点〕.所以b a 32+的取值范围是)3,7(-.BAC DEFP11.10; 12.512; 13.138+〔或者6562〕;14.38;15.]38,916[; 16.012=-±y x ; 17.14.第17题提示:集合A 中的方程表示圆心在直线x y =上的六个圆,由对称性只需考虑第一象限. 记3,2,1=a 对应的圆分别为⊙1C , ⊙2C ,⊙3C ,易知⊙1C 与⊙3C 外切⊙2C 与⊙1C , ⊙3C 相交, 且经过⊙1C 的圆心.3,2,1=b 对应的三条直线321,,l l l ,1l 与⊙1C 外切,2l 与⊙2C 外切且与⊙1C 相交,3l 与⊙1C 与⊙3C 的外公切线且与⊙2C 相交,由图知在第一象限一共有7个交点,故一共有14个交点.三、解答题〔本大题一一共5小题,一共72分〕 18.〔此题满分是14分〕在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,且A Ca b sin 2sin =. 〔Ⅰ〕假设π125=C ,求角B 的大小; 〔Ⅱ〕假设2=b ,23ππ<≤C ,求△ABC 面积的最小值.18.〔Ⅰ〕〔本小题7分〕由正弦定理,得A C AB a b sin 2sin sin sin ==. ∴2165sin 2sin sin ===πC B . ∴6π=B 〔65π=B 舍〕.〔Ⅱ〕〔本小题7分〕由〔Ⅰ〕中C B 2sin sin =可得C B 2=或者π=+C B 2.又 C B 2=时,23ππ<≤C ,π32≥B ,即π≥+C B ,矛盾.所以π=+C B 2,ππ=+--C C A 2,即C A =.所以3tan 21≥==∆C hb S ABC ,即当3π=C 时,ABC S ∆的最小值是3.19.〔此题满分是15分〕如图,四棱锥ABCD P -中,⊥PA 平面ABCD ,BC AD //,22====BC AD AB PA ,θ=∠BAD ,E 是棱PD 的中点.〔Ⅰ〕假设︒=60θ,求证:⊥AE 平面PCD ; 〔Ⅱ〕求θ的值,使二面角A CD P --的平面角最小. 19.〔Ⅰ〕〔本小题7分〕当︒=60θ时,∵BC AD //,22===BC AD AB . ∴AD CD ⊥.又⊥PA 平面ABCD ,∴CD PA ⊥. ∴⊥CD 平面PAD . 又⊂AE 平面PAD , ∴AE CD ⊥.又AD PA =,E 是棱PD 的中点, ∴AE PD ⊥. ∴⊥AE 平面PCD .〔第19题〕〔Ⅱ〕〔本小题8分〕如图,建立空间直角坐标系xyz A -,那么)2,0,0(P ,)0,cos 2,sin 2(θθB , )0,1cos 2,sin 2(+θθC ,)0,2,0(D .∴)2,2,0(-=DP 、)0,1cos 2,sin 2(-=θθDC . 设平面PCD 的法向量为),,(z y x n =,那么⎩⎨⎧=-+=+-⎪⎩⎪⎨⎧⇒⊥⊥0)1cos 2()sin 2(022y x z y DC n DP n θθ取1=y ,得)1,1,sin 21cos 2(θθ-=n .又易知平面ABCD 的法向量为)1,0,0(=m . 设二面角A CD P --的平面角为α,那么2)sin 21cos 2(1cos 2+-==θθαn m要使α最小,那么αcos 最大,即0sin 21cos 2=-θθ,∴21cos =θ,得3πθ=20.〔此题满分是14分〕有A 、B 、C 三个盒子,每个盒子中放有红、黄、蓝颜色的球各一个,所有的球仅有颜色上的区别.〔Ⅰ〕从每个盒子中任意取出一个球,记事件S 为“获得红色的三个球〞,事件T 为“获得颜色互不一样的三个球〞,求)(S P 和)(T P ;〔Ⅱ〕先从A 盒中任取一球放入B 盒,再从B 盒中任取一球放入C 盒,最后从C 盒中任取一球放入A 盒,设此时A 盒中红球的个数为ξ,求ξ的分布列与数学期望ξE .20.〔Ⅰ〕〔本小题6分〕271313131)(=⨯⨯=S P ,92)(131313111213==C C C C C C T P . 〔Ⅱ〕〔本小题8分〕ξ的可能值为2,1,0.①考虑0=ξ的情形,首先A 盒中必须取一个红球放入B 盒,相应概率为31,此时B 盒中有2红2非红;假设从B 盒中取一红球放入C 盒,相应概率为21,那么C 盒中有2红2非红,从C 盒中只能取一个非红球放入A 盒,相应概率为21;假设从B 盒中取一非红球放入C 盒,相应概率为21,那么C 盒中有1红3非红,从C 盒中只能取一个非红球放入A 盒,相应概率为43.故2454321212131)0(=⎥⎦⎤⎢⎣⎡⨯+⨯⨯==ξP .②考虑2=ξ的情形,首先A 盒中必须取一个非红球放入B 盒,相应概率为32,此时B 盒中有1红3非红;假设从B 盒中取一红球放入C 盒,相应概率为41,那么C 盒中有2红2非红,从C 盒中只能取一个红球放入A 盒,相应概率为21;假设从B 盒中取一非红球放入C盒,相应概率为43,那么C 盒中有1红3非红,从C 盒中只能取一个红球放入A 盒,相应概率为41.故2454143214132)2(=⎥⎦⎤⎢⎣⎡⨯+⨯⨯==ξP . ③1272452451)1(=--==ξP .所以ξ的分布列为ξ0 1 2 P245 127245ξ的数学期望1245212712450=⨯+⨯+⨯=ξE .21.〔此题满分是15分〕如图,设椭圆)0(12222>>=+b a b y a x 长轴的右端点为A ,短轴端点分别为B 、C ,另有抛物线b x y +=2.〔Ⅰ〕假设抛物线上存在点D ,使四边形ABCD 为菱形,求椭圆的方程;〔Ⅱ〕假设2=a ,过点B 作抛物线的切线,切点为P ,直线PB 与椭圆相交于另一点Q ,求||||QB PQ 的取值范围.21.〔Ⅰ〕〔本小题6分〕 由四边形ABCD 是菱形,得),(2b a a D +,且⎩⎨⎧=+=+b b a bb a 22222,解得33=a ,31=b , 所以椭圆方程为19322=+y x .〔Ⅱ〕〔本小题9分〕不妨设),(2b t t P +〔0≠t 〕,因为t x y t x t x 2|2|'====,所以PQ 的方程为b t t x t y ++-=2)(2,即b t tx y +-=22.又因为直线PQ 过点B ,所以b b t -=+-2,即22t b =. 所以PQ 的方程为222ttx y -=.联立方程组⎪⎪⎩⎪⎪⎨⎧=+-=144224222t y x t tx y ,消去y ,得032)64(22=-+tx x t .〔第21题〕所以点Q 的横坐标为64322+=t tx Q ,所以132||||22+=--=t x x x x QB PQ B Q Q P .又)4,0(22∈=b t ,所以||||QB PQ 的取值范围为)89,1(.22.〔此题满分是14分〕R ∈a ,函数2)(x x m =,)2ln()(+=x a x n .〔Ⅰ〕令⎩⎨⎧>≤=0,)(0,)()(x x n x x m x f ,假设函数)(x f 的图象上存在两点A 、B 满足OB OA ⊥〔O为坐标原点〕,且线段AB 的中点在y 轴上,求a 的取值集合;〔Ⅱ〕假设函数)()()(x n x m x g +=存在两个极值点1x 、2x ,求)()(21x g x g +的取值范围. 22.〔Ⅰ〕〔本小题6分〕由题意,不妨设))2ln(,(+t a t A ,),(2t t B -,且0>t , ∴0=⋅OB OA ,即0)2ln(22=++-t at t ,∴)2ln(1+=t a .∵),2(ln )2ln(+∞∈+t , ∴a 的取值集合是}2ln 10|{<<x x .〔Ⅱ〕〔本小题8分〕)2ln()(2++=x a x x g ,242)('2+++=x ax x x g .要使)(x g 存在两个极值点,那么0)('=x g 即0422=++a x x 在),2(+∞-上存在两不等的实根.令a x x x p ++=42)(2, ∵)(x p 的图象的对称轴为1-,∴0816>-=∆a 且0)2(>-p .∴20<<a .由上知⎪⎩⎪⎨⎧=⋅-=+222121a x x x x .∴)2ln()2ln()()(22212121+++++=+x a x x a x x g x g]4)(2ln[2)(212121221++++-+=x x x x a x x x x ]4)2(22ln[22)2(2+-⋅++⋅--=aa a42ln+-=a aa .令42ln)(+-=x xx x q ,)2,0(∈x , ∴02ln )('<=xx q ,)(x q 在)2,0(上单调递减, ∴442ln2<+-<a aa .故)()(21x g x g +的取值范围是)4,2(.。
山东省济南市2020届高三二模考试(针对性训练)物理试卷一、单项选择题:本题共6小题,每小题4分,共24分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1、下列说法正确的是()A.β射线是高速电子流,它的穿透能力比α射线和γ射线都弱B.在核反应中,比结合能小的原子核变成比结合能大的原子核时,会释放核能C.根据玻尔理论可知,氢原子辐射出一个光子后,核外电子的动能减小D.当紫外线照射到金属锌板表面时能发生光电效应,则当改为红光照射时,也能发生光电效应,但从锌板表面逸出的光电子的最大初动能减小2、如图为甲、乙两个物体同时从同一地点出发,沿同一直线运动的速度—时间图象。
则()A.在2~4 s内,甲处于静止状态B.在2 s时刻,甲在乙的正前方C.在0~6 s内,甲和乙相遇一次D.在0--6 s内,甲和乙的位移相同3、如图甲所示是法拉第制作的世界上最早的发电机的实验装置。
有一个可绕固定转轴转动的铜盘,铜盘的一部分处在蹄形磁体中实验时用导线连接铜盘的中心C。
用导线通过滑片与钢盘的边线D连接且按触良好,如图乙所示,若用外力转动手柄使圆盘转动起来,在CD两端会产生感应电动势()A.如图甲所示,产生感应电动势的原因是铜盘盘面上无数个以C为圆心的同心圆环中的磁通量发生了变化B.如图甲所示,因为铜盘转动过程中穿过铜盘的磁通量不变,所以没有感应电动势C.如图乙所示,用外力顺时针(从左边看)转动铜盘,电路中会产生感应电流,通过R的电流自下而上D.如图乙所示,用外力顺时针(从左边看)转动铜盘,电路中会产生感应电流,通过R的电流自上而下4、如图,容量足够大的圆筒竖直放置,水面高度为h,在圆筒侧壁开一个小孔P,筒内的水从小孔水平射出,设水到达地面时的落点距小孔的水平距离为x,小孔P到水面的距离为y。
短时间内可认为筒内水位不变,重力加速度为g,不计空气阻力,在这段时间内下列说法正确的是()A .水从小孔P 射出的速度大小为gy B.y 越小,则x 越大 C .x 与小孔的位置无关 D .当y =2h,时,x 最大,最大值为h 5、a 、b 是两种单色光,其频率分别为v a 、v b ,且bav k v =,则下列说法不正确的是( ) A .a 、b 光子动量之比为abp k p = B .若a 、b 光射到同一干涉装置上,则相邻条纹的间距之比为abx k x ∆=∆ C .若a 、b 都能使某种金属发生光电效应,则光子的最大初动能之差()ka kb b 1E E hv k -=- D .若a 、b 是处于同一激发态的原子跃迁到A 态和B 态产生的,则A 、B 两态的能级之差()A B b 1E E hv k -=-6、下列说法正确的是( ) A .库仑发现了电流的磁效应B .光电效应揭示了光的粒子性,而康普顿效应从动量方面进一步揭示了光的粒子性C .镭226变为氡222的半衰期是1620年,随着地球环境的不断变化,半衰期可能变短D .结合能越大表示原子核中的核子结合得越牢固二、多项选择题:本题共4小题,每小题5分,共20分。
2020年山东省泰安市高考数学二模试卷(一)一、选择题(本大题共12小题,共60.0分)1.若集合A={x|3-2x<1},B={x|4x-3x2≥0},则A∩B=()A. (1,2]B.C. [0,1)D. (1,+∞)2.已知i为虚数单位,若复数的实部与虚部相等,则a的值为()A. 2B.C.D. -23.函数的最小正周期为()A. 4πB.C. 2πD. π4.为比较甲、以两名篮球运动员的近期竞技状态,选取这两名球员最近五场比赛的得分制成如图所示的茎叶图,有以下结论:①甲最近五场比赛得分的中位数高于乙最近五场比赛得分的中位数;②甲最近五场比赛得分平均数低于乙最近五场比赛得分的平均数;③从最近五场比赛的得分看,乙比甲更稳定;④从最近五场比赛的得分看,甲比乙更稳定.其中所有正确结论的编号为()A. ①③B. ①④C. ②③D. ②④5.根据如下样本数据x34567y 4.0 2.5-0.50.5-2.0得到的回归方程为.若a=7.9,则x每增加1个单位,y就()A. 增加 1.4个单位B. 减少 1.4个单位C. 增加 1.2个单位D. 减少 1.2个单位6.已知x,y满足约束条件则z=2x+y的取值范围是()A. [2,4]B. [4,6]C. [2,6]D. (-∞,2]7.执行如图所示的程序框图,若输入的S=12,则输出的S=()A. -8B. -18C. 5D. 68.某简单几何体的三视图如图所示,若该几何体的所有顶点都在球O的球面上,则球O的表面积是()A. 8πB.C. 12πD. 48π9.设函数f′(x)为函数f(x)=xsinx的导函数,则函数f′(x)的图象大致为()A.B.C.D.10.设双曲线的左、右焦点分别为F1、F2,P是双曲线上一点,点P到坐标原点O的距离等于双曲线焦距的一半,且|PF1|+|PF2|=4a,则双曲线的离心率是()A. B. C. D.11.已知函数f(x)=,g(x)=f(x)-ax+a,若g(x)恰有1个零点,则a的取值范围是()A. [-1,0]∪[1,+∞)B. (-∞,-1]∪[0,1]C. [-1,1]D. (-∞,-1]∪[1,+∞)12.若函数上单调递增,则实数a的取值范围为()A. B. C. a≥1 D. 1<a<3二、填空题(本大题共4小题,共20.0分)13.如图,已知正方体ABCD-A1B1C1D1的棱长为1,点P为棱AA1上任意一点,则四棱锥P-BDD1B1的体积为______14.在△ABC中,内角A,B,C的对边分别为a,b,c,若=,则B=______.15.如图,在中,,是上一点,若,则实数的值为______.16.抛物线C:y2=4x的焦点为F,动点P在抛物线C上,点A(-1,0),当取得最小值时,直线AP的方程为______.三、解答题(本大题共7小题,共82.0分)17.已知公差不为0的等差数列{a n}的前n项和为S n,a2+a5=21,a1,a3,a9依次成等比数列.(1)求数列{a n}的通项公式;(2)求数列的前n项和T n.18.如图,在四棱锥P-ABCD中,∠PDA=90°,∠PDC=120°,AD∥BC,∠BCD=90,△ABD是等边三角形,E是PA的中点,.(1)求证:AD⊥BE;(2)求三棱锥P-ABD的体积.19.某社区为了解居民参加体育锻炼情况,随机抽取18名男性居民,12名女性居民对他们参加体育锻炼的情况进行问卷调查.现按参加体育锻炼的情况将居民分成3类:甲类(不参加体育锻炼),乙类(参加体育锻炼,但平均每周参加体育锻炼的时间不超过5个小时),丙类(参加体育锻炼,且平均每周参加体育锻炼的时间超过5个小时),调查结果如表:甲类乙类丙类男性居民3123女性居民633(1)根据表中的统计数据,完成下面列联表,并判断是否有90%的把握认为参加体育锻炼与否与性别有关?男性居民女性居民总计不参加体育锻炼参加体育锻炼总计(2)从抽出的女性居民中再随机抽取2人进一步了解情况,求所抽取的2人中乙类,丙类各有1人的概率.附:P(K2≥k0)0.100.050.01k0 2.706 3.841 6.63520.已知椭圆的右顶点为A,左焦点为F1,离心率,过点A的直线与椭圆交于另一个点B,且点B在x轴上的射影恰好为点F1,若.(1)求椭圆C的标准方程;(2)过圆E:x2+y2=4上任意一点P作圆E的切线l,l与椭圆交于M,N两点,以MN为直径的圆是否过定点,如过定点,求出该定点;若不过定点,请说明理由.21.已知函数f(x)=(x-m)lnx(m≤0).(1)若函数f(x)存在极小值点,求m的取值范围;(2)当m=0时,证明:f(x)<e x-1.22.在平面直角坐标系xOy中,直线l的方程为,以坐标原点O为极).点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=2(sinθ+cosθ(1)求曲线C的普通方程;(2)过点P(1,0)作直线l的垂线交曲线C于M,N两点,求的值.23.已知函数f(x)=|2x-a|(a∈R).(1)当a=4时,解不等式f(x)<8-|x-1|;(2)若不等式f(x)>8+|2x-1|有解,求a的取值范围.-------- 答案与解析 --------1.答案:B解析:【分析】本题考查交集的求法,考查交集定义、不等式性质等基础知识,考查运算求解能力,是基础题.先分别求出集合A,B,由此能求出A∩B.【解答】解:∵集合A={x|3-2x<1}={x|x>1},B={x|4x-3x2≥0}={x|0},∴A∩B={x|1<x}.故选:B.2.答案:C解析:解:∵的实部与虚部相等,∴4-a=2a+2,即a=.故选:C.利用复数代数形式的乘除运算化简,再由实部与虚部相等列式求得a值.本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题.3.答案:D解析:解:函数=sin2x+?=sin(2x+)+的最小正周期为=π,故选:D.利用三角恒等变换化简函数的解析式,再利用正弦函数的周期性,得出结论.本题主要考查三角恒等变换,正弦函数的周期性,属于基础题.4.答案:C解析:解:甲的中位数为29,乙的中位数为30,故①不正确;甲的平均数为29,乙的平均数为30,故②正确;从比分来看,乙的高分集中度比甲的高分集中度高,故③正确,④不正确.故选:C.根据中位数,平均数,方差的概念计算比较可得.本题考查了茎叶图,属基础题.5.答案:B解析:解:设变量x,y的平均值为:,,∴==5,=0.9,∴样本中心点(5,0.9),∴0.9=5×b+7.9∴b=-1.4,∴x每增加1个单位,y就减少 1.4.故选:B.首先,根据所给数据,计算样本中心点(5,0.9),然后,将改点代人回归方程,得到b=-1.4,从而得到答案.本题重点考查了回归直线方程的特征、回归直线方程中回归系数的意义等知识,属于中档题.6.答案:C解析:解:由x,y满足约束条件作出可行域如图,解得A(2,2),B(0,2),化目标函数z=2x+y为y=-2x+z,由图可知,当直线y=-2x+z过B时,直线在y轴上的截距最小,z有最小值为2;当直线y=-2x+z过A时,直线在y轴上的截距最大,z有最大值为6.∴z的取值范围是[2,6].故选:C.由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数得答案.本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.7.答案:A解析:解:模拟程序的运行,可得S=12,n=1执行循环体,S=10,n=2不满足条件S+n≤0,执行循环体,S=6,n=3不满足条件S+n≤0,执行循环体,S=0,n=4不满足条件S+n≤0,执行循环体,S=-8,n=5满足条件S+n≤0,退出循环,输出S的值为-8.故选:A.关键框图的流程依次计算程序运行的结果,直到满足条件跳出循环,确定输出S的值本题考查了循环结构的程序框图,关键框图的流程依次计算程序运行的结果是解答此类问题的常用方法,属于基础题.8.答案:C解析:解:由三视图还原原几何体如图,可知该几何体为直三棱柱,底面为等腰直角三角形,直角边长为2,侧棱长为2.把该三棱锥补形为正方体,则正方体对角线长为.∴该三棱柱外接球的半径为:.则球O的表面积是:4=12π.故选:C.由三视图还原原几何体,可知该几何体为直三棱柱,底面为等腰直角三角形,直角边长为2,侧棱长为2,然后利用分割补形法求解.本题考查空间几何体的三视图,考查多面体外接球表面积与体积的求法,是中档题.9.答案:B解析:【分析】求出函数f(x)的导数f′(x),结合函数的奇偶性,定义域,单调性的性质进行判断.本题主要考查函数导数的性质,以及函数图象的判断,求函数的导数,利用函数奇偶性的性质是解决本题的关键.【解答】解:f'(x)=sinx+xcosx,所以f'(x)为奇函数,故C错误,又f'(π)=-π,只有B符合,故选:B.10.答案:D解析:解:点P到坐标原点O的距离等于双曲线焦距的一半,可得PF1⊥PF2,可设P为双曲线右支上一点,可得|PF1|-|PF2|=2a,又|PF1|+|PF2|=4a,解得|PF1|=3a,|PF2|=a,可得|PF1|2+|PF2|2=|F1F2|2,即为9a2+a2=4c2,可得e==.故选:D.由题意可得PF1⊥PF2,可设P为双曲线右支上一点,可得|PF1|-|PF2|=2a,结合条件和勾股定理、以及离心率公式,计算可得所求值.本题考查双曲线的定义和性质,主要是离心率的求法,考查直角三角形的判断和勾股定理的运用,以及方程思想和化简能力,属于中档题.11.答案:A解析:【分析】本题主要考查函数与方程的应用,利用参数分离法,结合数形结合是解决本题的关键.综合性较强,属于较难题.根据条件先判断x=1是函数g(x)的一个零点,等价于当x≠1时,函数f(x)=a(x-1),没有其他根,利用参数分离法,利用数形结合进行求解即可.【解答】解:由g(x)=f(x)-ax+a=0得f(x)=a(x-1),∵f(1)=1-3+2=0,∴g(1)=f(1)-a+a=0,即x=1是g(x)的一个零点,若g(x)恰有1个零点,则当x≠1时,函数f(x)=a(x-1),没有其他根,即a=,没有根,当x<1时,设h(x)====x-2,此时函数h(x)为增函数,则h(1)→-1,即此时h(x)<-1,当x>1时,h(x)==,h′(x)=<0,此时h(x)为减函数,此时h(x)>0,且h(1)→1,即0<h(x)<1,作出函数h(x)的图象如图:则要使a=,没有根,则a≥1或-1≤a≤0,即实数a的取值范围是[-1,0]∪[1,+∞),故选:A.12.答案:A解析:解:函数f(x)=(cosx+sin x)(cosx-sin x-4a)+(4a-3)x=(cos2x-sin2x)-2a(cosx+sinx)+(4a-3)x,=cos2x-2a(cosx+sinx)+(4a-3)x,∴f′(x)=-sin2x-2a(-sin x+cosx)+(4a-3),设t=sin x-cosx=sin(x-),则x∈[0,]时,x-∈[-,],∴t∈[-1,1],且sin2x=1-t2,∴f′(x)化为g(t)=-(1-t2)+2at+(4a-3)=t2+2at+4a-4;由题意知g(t)=t2+2at+4a-4≥0恒成立,其中t∈[-1,1];当-a≤-1,即a≥1时,g(t)在[-1,1]上单调递增,∴g(t)的最小值为g(-1)=1-2a+4a-4≥0,解得a≥;当-1<-a<1,即-1<a<1时,g(t)在[-1,1]内先减后增,∴g(t)的最小值为g(-a)=a2-2a2+4a-4≥0,解得a=2,不合题意;当-a≥1,即a≤-1时,g(t)在[-1,1]上单调递减,∴g(t)的最小值为g(1)=1+2a+4a-4≥0,解得a≥,不合题意;综上所述,实数a的取值范围的a≥.故选:A.化简函数f(x)并求导数,利用导数判断函数单调递增时,导数大于或等于0,再求得a的取值范围.本题考查利用导数研究函数的单调性应用问题,也考查了转化法与分类讨论思想,是难题.13.答案:解析:【分析】四棱锥P-AA1C1C的体积等于三棱柱的体积减去两个三棱锥的体积.本题考查了正方体的结构特征,棱锥的体积计算,属于基本知识的考查.【解答】解:=V正方体=,==故答案为:.14.答案:解析:【分析】本题主要考查了正弦定理,余弦定理在解三角形中的综合应用,考查了计算能力和转化思想,属于基础题.由正弦定理化简已知等式可得a2+c2-b2=ac,利用余弦定理可求cosB=,结合范围B∈(0,π),可得B的值.【解答】解:在△ABC中,由=,及正弦定理得:,整理可得:a2+c2-b2=ac,所以,cosB===,所以,由B∈(0,π),可得:B=.故答案为:.15.答案:解析:【分析】本题主要考查了平面向量的基本定理的简单应用,属于基础试题.结合已知及向量的基本定理可得,结合已知,可求m,t.【解答】解:由题意及图,,又,∴,∴,又,∴,解得,.故答案为:.16.答案:x+y+1=0或x-y+1=0解析:解:设P点的坐标为(4t2,4t),∵F(1,0),A(-1,0)∴|PF|2=(4t2-1)2+16t2=16t4+8t2+1|PA|2=(4t2+1)2+16t2=16t4+24t2+1∴()2==1-=1-≥1-=1-=,当且仅当16t2=,即t=±时取等号,此时点P坐标为(1,2)或(1,-2),此时直线AP的方程为y=±(x+1),即x+y+1=0或x-y+1=0,故答案为:x+y+1=0或x-y+1=0,设P点的坐标为(4t2,4t),根据点与点的距离公式,可得()2==1-,再根据基本不等式求出t的值,即可求出直线AP的方程本题考察了抛物线的定义,转化为基本不等式求解,属于中档题.17.答案:解:(1)公差d不为0的等差数列{a n}的前n项和为S n,a2+a5=21,可得2a1+5d=21,a1,a3,a9依次成等比数列,可得a32=a1a9,即(a1+2d)2=a1(a1+8d),解得a1=d=3,则a n=3n;(2)S n=n(n+1),=?=(-),可得前n项和T n=(1-+-+…+-)=(1-)=.解析:(1)设公差为d,运用等差数列的通项公式和等比数列中项性质,解方程可得首项和公差,即可得到所求通项公式;(2)运用等差数列的求和公式,可得=?=(-),再由数列的裂项相消求和,化简可得所求和.本题考查等差数列的通项公式和求和公式,等比数列中项性质,以及数列的裂项相消求和,考查方程思想和运算能力,属于基础题.18.答案:(1)证明:取AD中点F,连接BF,EF,∵E,F分别为AP,AD的中点,AD⊥PD,∴AD⊥EF,又△ABC是正三角形,∴AD⊥BF,∵BF∩EF=F,∴AD⊥平面BEF,又BE?平面BEF,∴AD⊥BE;(2)解:∵AD∥BC,∠BCD=90°,∴AD⊥CD,又AD⊥PD,PD∩CD=D,∴AD⊥平面PCD,又AD?平面ABCD,∴平面ABCD⊥平面PCD,过点P作PH⊥CD,交CD的延长线于点H,则PH⊥平面ABCD,在直角三角形PDH中,∠PDH=60°,PD=2,∴PH=,∴.解析:(1)取AD中点F,连接BF,EF,结合已知证得AD⊥EF,又△ABC是正三角形,得AD⊥BF,由线面垂直的判定可得AD⊥平面BEF,进一步得到AD⊥BE;(2)由AD∥BC,∠BCD=90°,得AD⊥CD,再由AD⊥PD,得AD⊥平面PCD,可得平面ABCD⊥平面PCD,过点P作PH⊥CD,交CD的延长线于点H,则PH⊥平面ABCD,求解直角三角形PDH得PH=,再由棱锥体积公式求三棱锥P-ABD的体积.本题考查空间中直线与直线、直线与平面间位置关系的判定及其应用,考查空间想象能力与思维能力,训练了多面体体积的求法,是中档题.19.答案:解:(1)根据表中的统计数据,填写列联表如下;男性居民女性居民总计不参加体育锻炼369参加体育锻炼15621总计181230计算K2==3.81>2.706,所以有90%的把握认为参加体育锻炼与否与性别有关;(2)记三名乙类女性居民为A、B、C,三名丙类居民为d、e、f,从抽出的6名女性居民中随机抽取2人,基本事件为AB、AC、Ad、Ae、Af、BC、Bd、Be、Bf、Cd、Ce、Cf、de、df、ef共15个;抽出的两人中乙类、丙类各1人的基本事件为Ad、Ae、Af、Bd、Be、Bf、Cd、Ce、Cf共9种,所以所抽取的2人中乙类,丙类各有1人的概率为P==.解析:本题考查了列联表与独立性检验的应用问题,也考查了古典概型的概率计算问题,是基础题.(1)根据表中数据填写列联表,计算观测值,对照临界值得出结论;(2)用列举法计算基本事件数,求出对应的概率值;20.答案:解:(1)∵e==,∴a=c,b=c,设B(-c,y0)代入椭圆方程,可得|y0|=b,∴S△=|y0|?|F1A|=b2(1+),∴b2(1+)=3+,∴b2=6,a2=12,∴椭圆C的标准方程为+=1.(2):当切线l的斜率不存在时,以MN为直径的圆的圆心分别为(2,0),(-2,0),MN=4时,以MN为直径的圆的标准方程为(x+2)2+y2=4,(x-2)2+y2=4,易得两圆相切且切点为坐标原点,∴以MN为直径的圆过坐标原点,当切线l的斜率存在时,设M(x1,y1),N(x2,y2).设切线的方程为:y=kx+m,则d==2,即m2=4(1+k2).由,消y整理可得:(1+2k2)x2+4kmx+2m2-12=0,∴x1+x2=-,x1x2=.y1y2=(kx1+m)(kx2+m)=k2x1x2+km(x1+x2)+m2.∴?=x1x2+y1y2=x1x2+(kx1+m)(kx2+m)=(1+k2)x1x2+km(x1+x2)+m2=-+m2===0.∴OM⊥ON.∴以MN为直径的圆过定点原点O(0,0).综上所述MN为直径的圆恒过坐标原点.解析:(1)由三角形面积可得b2(1+)=3+,根据离心率可得b=c,结合隐含条件求出a,b,c的最值,则椭圆方程可求;(2)当切线的斜率不存在时,直接解出验证;当切线的斜率存在时,设M(x1,y1),N(x2,y2).设切线的方程为:y=kx+m,由圆心到直线的距离可得m2=2(1+k2).把切线方程代入椭圆方程可得:(1+2k2)x2+4kmx+2m2-12=0,利用根与系数的关系即可证明?=0,结论得证.本题考查了椭圆的标准方程及其性质、直线与圆相切及其直线与椭圆相交问题、一元二次方程的根与系数的关系、向量垂直与数量积的关系,考查了推理能力与计算能力,属于中档题.21.答案:解:(1)函数的定义域为(0,+∞),f′(x)=+ln x=1-+ln x,①当m=0时,f′(x)=0得x=,当x∈(0,)时,f'(x)<0,当x∈(,+∞)时,f'(x)>0,∴x=是函数f(x)的极小值点,满足题意②当m<0吋,令g(x)=f′(x),g'(x)=+=,令g′(x)=0,解得x=-m,当x∈(0,-m)时,g′(x)<0当x∈(-m,+∞)时,g'(x)>0∴g(x)min=g(-m)=2+ln(-m),若g(-m)≥0,即m≤-e-2时,f'(x)=g(x)≥0恒成立,∴f(x)在(0,+∞)上单调递增,无极值点,不满足题意.若g(-m)=2+ln(-m)<0,即-e-2<m<0时,g(1-m)=1-+ln(1-m)>0∴g(-m)?g(1-m)<0,又g(x)在(-m,+∞)上单调递增,∴g(x)在(-m,+∞)上恰有一个零点x1,当x∈(-m,x1)时,f'(x)=g(x)<0,当e∈(x1,+∞)时,f'(x)=g(x)>0,∴x1是f(x)的极小值点,满足题意,综上,-e-2<m≤0(2)当m=0时,f(x)=xlnx,,①当x∈(0,1],e x-1>0,xlnx≤0∴f(x)<e x-1,②当x∈(1,+∞)时.,令h(x)=e x-xlnx-1,h'(x)=e x-lnx-1,令φ(x)=h′(x),则φ′(x)=e x-,(x)>φ′(1)=e-1>0,(x)在(1,+∞)上是増函数,∴φ'∵φ'∴φ(x)在(1,+∞)上单调递增,h′(x)=φ(x)>φ(1)=e-1>0,∴h(x)在(1,+∞)上单调递增,∴h(x)>h(1)=e-1>0,∴x>1时,xlnx<e x-1成立,综上f(x)<e x-1.解析:(1)求函数的导数,结合函数极值和导数之间的关系进行讨论求解即可.(2)求函数的导数,讨论x的取值范围,结合函数单调性和最值之间的关系进行证明即可.本题主要考查导数的综合应用,结合函数的极值,单调性和导数之间的关系,转化为导数问题,以及构造函数研究函数的单调性是解决本题的关键.综合性较强,运算量较大,有一定的难度.22.答案:解(1)由题意知ρ2=2ρsinθ+2ρcosθ,所以曲线C的普通方程为:x2+y2-2x-2y=0.(2)∵直线l的斜率为,∴直线MN的斜率为:-,∴直线MN的参数方程为:(t为参数),代入曲线C的直角坐标方程得t2-t-1=0,设M,N对应的参数为t1,t2,则t1+t2=1,t1t2=-1,∴+==|t1-t2|===.,所以曲线C的普通方程为:x2+y2-2x-2y=0;解析:(1)由题意知ρ2=2ρsinθ+2ρcosθ(2)先求出直线MN的参数方程,再根据参数的几何意义可得.本题考查了简单曲线的极坐标方程,属中档题.23.答案:解:(1)a=4时,不等式f(x)<8-|x-1?|2x-4|+|x-1|<8?或或,解得-1<x<,综上,不等式的解集为(-1,).(2)原不等式有解,即不等式|2x-a|-|2x-1|>8有解,令g(x)=|2x-a|-|2x-1|,x-a-2x+1|=|a-1|,∵|2x-a|-|2x-1|≤|2∴g(x)max=|a-1|,∴|a-1|>8,解得a>9或a<-7.∴a的取值范围是a>9或a<-7.解析:(1)a=4时,分3段去绝对值解不等式组再相并;(2)原不等式有解,即不等式|2x-a|-|2x-1|>8有解,再构造函数利用绝对值不等式的性质求出最大值代入可解得.本题考查了绝对值不等式的解法,属中档题.。
2020届高三数学第三次质量检测(线下二模)试题理本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷4至6页.满分150分.注意事项:答题前,考生务必在试题卷、答题卡规定的地方填写自己的准考证号、姓名.考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名”与考生本人准考证号、姓名是否一致.第Ⅰ卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.第Ⅱ卷用毫米黑色签字笔在答题卡上书写作答.在试题卷上作答,答案无效.考试结束,考生必须将试题卷和答题卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.已知纯虚数满足,则实数等于A.B.C.D.已知集合,则A.B.C.D.执行右面的程序框图,则输出的A.1 B.2C.3 D.42020届高三数学第三次质量检测(线下二模)试题理本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷4至6页.满分150分.注意事项:答题前,考生务必在试题卷、答题卡规定的地方填写自己的准考证号、姓名.考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名”与考生本人准考证号、姓名是否一致.第Ⅰ卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.第Ⅱ卷用毫米黑色签字笔在答题卡上书写作答.在试题卷上作答,答案无效.考试结束,考生必须将试题卷和答题卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.已知纯虚数满足,则实数等于A.B.C.D.已知集合,则A.B.C.D.执行右面的程序框图,则输出的A.1 B.2C.3 D.4。
2024年5月济南市高三语文针对性模拟训练卷2024.05注意事项:1.答卷前,考生务必将自己的姓名、考号和座位号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,用0.5 毫米的黑色签字笔将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将答题卡交回。
一、现代文阅读(35 分)(一)现代文阅读Ⅰ(本题共5 小题,18分)阅读下面的文字,完成1~5题。
“从胸臆中流出”的性灵诗风至少有两个弊端,一是诗行一气直下,容易产生“滑俗”之弊;二是浅近,缺乏含蓄蕴藉的韵味。
对此,姚鼐有清楚的认识。
姚鼐虽未直接点名批评袁枚,实亦流露出不满。
他评白诗云:“香山以流易之体,极富瞻之思,非独俗士夺魄,亦使胜流倾心。
然滑俗之病,遂至滥恶,后皆以太傅为藉口矣。
”袁枚在六十岁生日诗中就有“想为香山作后身”之句,所以姚鼐所指后世“滑俗”之病,无疑是针对性灵诗风的弊端。
姚鼐明确指出,“欲作古贤辞,先弃凡俗语”,他批评其时两大诗派“浅易询灶妪,险怪趋虬户”,以“浅易”和“险怪”直指袁枚与厉鹗之失。
性灵诗派外,王士禛及其追随者追求神韵,然格局狭小,骨力不张,滑落为诗坛边缘性存在;宗宋诗风另一趋势是朝俚俗化方向发展,又暴露出“刻露之病”,缺少含蓄之韵味。
对于诗坛的流弊,如何力挽颓波?姚门弟子梅曾亮评其师之诗云:“以山谷之高奇,兼唐贤之蕴藉。
”桐城后学吴汝纶亦云:“先生诗勿问何体,罔不深古雅健,耐人寻绎。
”“山谷之高奇”与“深古雅健”是宋诗风格,“蕴藉”与“耐人寻绎”是唐诗含蓄蕴藉的传统,二者的结合,即“镕铸唐宋”。
姚鼐对于矫正香山“流易”之病的诗人都甚为看重,如选李商隐诗一卷,就是因为其诗“近掩刘白”。
尽管“矫敝流易”时“用思太过,而僻晦之敝又生”,但仍谓之为“诗中豪杰士”。
苏轼之诗,“用梦得、香山格调,其妙处岂刘白所能望哉”。
绝密★启用前山东省济南市普通高中2020届高三毕业班下学期针对性训练(高考三模)数学试题(解析版)2020年6月本试卷共4页,22题,全卷满分150分.考试用时120分钟.注意事项:1.答卷前,考生务必将自己的姓名,考生号等填写在答题卡和试卷指定位置上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回. 参考公式:锥体的体积公式:13V Sh =(其中S 为锥体的底面积,h 为锥体的高)―、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}12M x x =-<<,{N x y ==,则MN =( ) A. {}1x x >- B. {}02x x ≤< C. {}02x x << D. {}12x x ≤< 【答案】D【解析】【分析】先求出集合N ,然后进行交集的运算即可.【详解】由{{}|1N x y x x ===≥,{}12M x x =-<<所以[)1,2MN =故选:D 【点睛】考查描述法的定义,以及交集的运算,是基础题.2.函数()34f x x x =+-的零点所在的区间为( )A. 1,0B. 0,1C. 1,2D. ()2,3【答案】C【解析】【分析】直接利用零点存在定理计算得到答案.【详解】3()4f x x x =+-,易知函数单调递增,(0)40f =-<,(1)20f =-<,(2)20f =>,故函数在(1,2)上有唯一零点. 故选:C.【点睛】本题考查了零点存在定理的应用,意在考查学生的计算能力和应用能力.3.已知命题p ,x ∀∈R ,12x x e e +≥,则p ⌝为( ) A. x ∃∈R ,12x xe e +≥ B. x ∃∈R ,12x x e e +< C. x ∃∈R ,12x x e e +≤ D. x ∀∈R ,12x x e e +≤ 【答案】B【解析】【分析】全称命题:x A ∀∈,()P x 否定,是特称命题:x A ∃∈,()P x ⌝,结合已知中原命题x ∀∈R ,12x x e e+≥,可得到答案. 【详解】 原命题x R ∀∈,12xx e e +≥ ,∴ 命题x ∀∈R ,12x x e e+≥的否定是:x ∃∈R ,12x xe e +<. 故选:B .。
/-------/-/
/-------/-/
高三针对性训练
理科数学
本试卷分为第I卷(选择题)和第Ⅱ卷(非选择题)两部分,共6页,满分150分,考试时间120分钟。考
试结束后。将本试卷和答题卡一并交回.
注意事项:
1.答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号、县区和科类写在答题卡和
试卷规定的位置上.
2.第I卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦
干净后,再选涂其他答案标号,答案不能答在试卷上.
3.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能
写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带不
按以上要求作答的答案无效.
4.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤.
参考公式:
如果事件A,B互斥,那么PABPAPB;
如果事件A,B独立,那么PAPAPBg;
n次独立重复试验中事件A恰好发生k次概率为10,1,2,,nkkknCppkn.
第I卷(共50分)
一、选择题:本大题共10个小题.每小题5分,共50分.每小题给出的四个选项中只有一项是符合题目
要求的.
(1)已知全集U=R,集合
2
20,sin,AxxxByyxxR
,则图中阴影部分表示的集合为
(A) 1,2 (B) 1,01,2
(C) 0,1 (D) ,12,
(2)定义运算acbdadbc,复数z满足12ziii,则复数z
在复平面内对应
的点位于
(A)第一象限 (B)第二象限
(C)第三象限 (D)第四象限
(3)若随机变量X服从正态分布N(1,4),设03,12,PXmPXnmn,则的大小关系为
(A) mn (B) mn (C) mn (D)不确定
/-------/-/
/-------/-/
(4)若直线0xym被圆2215xy截得的弦长为23,则m的值为
(A)1 (B) 3 (C)l或-3 (D)2
(5)随着“银发浪潮”的涌来,养老是当下普遍关注的热点和难点问题.济南市创新性的采用“公建民营”
的模式,建立标准的“日间照料中心”,既吸引社会力量广泛参与养老建设,也方便规范化管理.计划从中
抽取5个中心进行评估,现将所有中心随机编号,用系统(等距)抽样的方法抽取,已知抽取到的号码有5号,
23号和29号,则下面号码中可能被抽到的号码是
(A)9 (B)12 (C)15 (D)17
(6)命题p:将函数cossinyxx的图象向右平移34个单位可得到1cos22yx的图象;命题q:对
0m
,双曲线2222xym的离心率为3.则下列结论正确的是
(A)p是假命题 (B) p是真命题
(C) pq是真命题 (D) pq是假命题
(7)若实数变量,xy满足约束条件23xyxy,目标函数1zaxyaR.有如下结论:①可
行域外轮廓为矩形;②可行域面积为3;③1az时,的最小值为1;④2a时,使得z取最大值的最优
解有无数组;则下列组合中全部正确的为
(A)①② (B)②③ (C)①③ (D)③④
(8)如图所示,两个非共线向量,OAOBuuuruuur的夹角为,N为OB中点,M为
OA上靠近A的三等分点,点C在直线MN上,且
OCxOAyOB
uuuruuuruuur
,xyR
,则22xy的最小值为
(A) 425 (B) 25
(C) 49 (D) 23
(9)函数112002nmfxaxxa在区间,上的图象如图所示,则,mn的值可能是
(A)1,1mn (B) 1,2mn (C)
2,3mn (D) 3,1mn
(10)执行如下框图所示算法,若实数,ab不相等,依次输入,,abab输出值依次记为
,,fabfafbfabfafb,则
的值为
/-------/-/
/-------/-/
(A)0 (B)1或-1 (C)0或±1 (D)以上均不正确
第Ⅱ卷(共100分)
二、填空题:本大题共5个小题。每小题5分.共25分.
(11)如果函数ln3fxax的定义域为,2,则实数a__________.
(12)由曲线,yxyx围成的封闭图形的面积为___________.
(13)已知抛物线24yx,过焦点F的直线与抛物线交于A,B两点,过A,B分别作x轴,y轴垂线,垂足
分别为C,D,则ACBD的最小值为___________.
(14)若525012532xaaxaxax,则0123452345aaaaaa
___________.
(15)祖咂著《缀术》有云:“缘幂势既同,则积不容异”,这就是著名的祖陋原理.如图1,现有一个半径为
R的实心球,以该球某条直径为中心轴挖去一个半径为r的圆柱形的孔,再将余下部分融铸成一个新的实心
球,则新实心球的半径为__________.(如图2,势为h时幂为222SRrh)
三、解答题:本大题共6小题.共75分
(16)(本小题满分12分)
已知向量2cos,1,3sincos,10mxnxx,函数fxmn,若函数fx图象
与x轴的两个相邻交点的距离为2.
(I)求函数0,2fx在上的值域;
/-------/-/
/-------/-/
(II)在ABC中,角A,B,C所对的边分别为,,abc,若1,3,fAaBC边上的高线长为332,求b,
c的值.
(17)(本小题满分12分)
如图,矩形FCEB是圆柱1OO的轴截面,且1,2FCFB;点A,D分
别在上、下底面圆周上,且在面FCEB的同侧,OAB是等边三角形,
60ECD
o
,M,N分别是OC,AE的中点.
(I)求证:MN∥面CDE;
(1I)求二面角C-AD-E的余弦值.
(18)(本小题满分12分)
2017年4月1日,国家在河北省白洋淀以北的雄县、容城、安新3县设立雄安新区,这是继深圳经济特区
和上海浦东新区之后又一具有全国意义的新区,是千年大计、国家大事。多家央企为了配合国家战略支持
雄安新区建设,纷纷申请在新区建立分公司.若规定每家央企只能在雄县、容城、安新3个片区中的一个
片区设立分公司,且申请其中任一个片区设立分公司都是等可能的,每家央企选择哪个片区相互之间互不
影响且必须在其中一个片区建立分公司;向雄安新区申请建立分公司的任意4家央企中,
(I)求恰有2家央企申请在“雄县”片区建立分公司的概率;
(Ⅱ)用X表示这4家央企中在“雄县”片区建立分公司的个数,用Y表示在“容城”或“安新”片区建立
分公司的个数,记XY,求的分布列与数学期望.
(19)(本小题满分12分)
设数列na的前n项和为nS,对任意的正整数n,都有51nnaS成立,21lognnba,数列nb的
前n项和为11,nnnnnbTcTT.
(I)求数列na的通项公式与数列nc前n项和nA;
(Ⅱ)对任意正整数m,k,是否存在数列na中的项na,使得32mknSSa成立?若存在,请求出正整数
n的取值集合,若不存在,请说明理由.
(20)(本小题满分13分)
平面直角坐标xOy中,与圆221:11Fxy和圆222125Fxy都内切的动圆圆心的轨迹记为C,
点M00,xy为轨迹C上任意一点;在直线:3ly上任取一点P向轨迹C引切线,切点为A,B.
(I)求动圆圆心轨迹C的方程,并求以00,Mxy为切点的C的切线方程;
/-------/-/
/-------/-/
(Ⅱ)证明:直线AB过定点H,并求出H的坐标;
(Ⅲ)过(Ⅱ)中的定点H作直线AB的垂线交l于点T,求THAB的取值范围.
(21)(本小题满分14分)
己知函数21ln,2fxxaxaxaR.
(I)当0a时,讨论函数fx的极值点的个数;
(Ⅱ)若关于x的不等式21fxaxx恒成立,求整数a的最小值;
(Ⅲ)对于函数fx图象上任意给定的两点1122,,,AxfxBxfx,试判断122xxf与
21
21
fxfxxx
的大小关系(其中fx是函数fx的导函数),并给出证明.
/-------/-/
/-------/-/
/-------/-/
/-------/-/
/-------/-/
/-------/-/
/-------/-/
/-------/-/
/-------/-/
/-------/-/
/-------/-/
/-------/-/