浙江省温州市瓯海区实验中学七年级数学下册 第七章分式复习课教案【精品教案】
- 格式:doc
- 大小:172.51 KB
- 文档页数:5
浙教版数学七年级下《分式的乘除》精品教案2一、教材分析:本节课是七年级下册《分式的乘除》这一重要知识点的教学,内容主要是引导学生掌握分式的乘法和除法运算,并能够灵活运用于实际问题中。
通过本课的学习,学生能够进一步提高求解分式乘除题的能力,培养学生的分析问题和解决问题的能力。
二、教学目标:1.知识与技能:(1)理解分式的乘法和除法的定义和性质;(2)掌握分式乘法和除法的运算方法;(3)能够运用分式乘法和除法解决实际问题;(4)培养学生的分析问题和解决问题的能力。
2.过程与方法:(1)通过引导学生观察问题,探索规律,培养探究能力;(2)采用讲解、示范、练习的方式进行教学;(3)采用小组讨论的方式激发学生的学习积极性。
3.情感态度与价值观:(1)培养学生的合作学习意识,学会与他人合作,共同解决问题;(2)培养学生的自主学习能力和解决实际问题的能力;(3)通过分组讨论和展示,培养学生的自信心和团队合作意识。
三、教学重点:(1)理解分式乘法和除法的定义和性质;(2)掌握分式乘法和除法的运算方法;(3)能够运用分式乘法和除法解决实际问题。
四、教学难点:(1)能够运用分式乘法和除法解决实际问题;(2)培养学生的分析问题和解决问题的能力。
五、教学准备:(1)课件、教材、练习册、小黑板、计算器等。
六、教学过程:Ⅰ.导入新课(5分钟)运用有趣的小故事导入新课,引发学生对学习分数乘除的兴趣。
如:小明和小强一起做数学作业,小明觉得分数乘法太难了,乘法算了好多步骤,而小强却说:“分数乘法很简单啊,我用了一个小技巧,只需要做一步就可以了。
”Ⅱ.概念讲解(10分钟)1.引导学生复习分数的定义、简化和比较大小。
2.引入分数的乘法和除法,通过例题展示和解答问题,引导学生发现分数的乘法和除法的规律。
(板书:分式的乘法和除法)Ⅲ.练习与巩固(20分钟)1.指导学生进行基础练习,巩固分式乘法和除法的运算方法。
2.通过一些拓展问题,引导学生灵活应用分式乘法和除法的知识。
分式的乘除【教学内容分析】本节课的教学内容是分式的乘除, 本节课是在学生学习了分式约分的基础上学习的,因为分式的乘除实质最终可归结为分式的约分,所以本节的教学内容是上一节知识的延续,可充分让学生体会分式基本性质的用处之广,因式分解的作用之大。
【教学目标】1.能根据分数的乘除法则叙述分式的乘除法则,并会用字母表示。
2、能进行分式的乘法、除法运算或简单的乘除混合运算。
3、能进行分式与整式的乘除运算。
【教学重点】分式的乘法【教学难点】当分子、分母是多项式时的分式乘除法及课本中的例2【教学过程】(一)创设情景,引入新课你知道吗?同一物体在月球上受到的重力只有在地球上的16. 请问:(1)A 物体在地球上的重力为53牛顿,那么它在月球上的重力是多少? (2)B 物体在月球上的重力为53牛顿,那么它在地球上的重力是多少? (让学生思考后回答。
)列式可得:(1)53 ×16 =518 (2)53 ÷16 =53×6=10 解后反思:(1)式是什么运算?依据是什么?(2)式又是什么运算?依据是什么?能说出具体内容吗?(如果有困难教师应给于引导)设计说明:创设情景,目的激发学生的学习兴趣,让他们体验数学的实用价值;解后反思意在复习旧知识,为学习新知识做好铺垫,并提高学生思维的严密性。
试一试,并说出依据。
b a ·dc _________。
b a ÷d c=_________ (学生应该能说出依据的是:分数的乘法和除法法则)教师加以肯定,并指出与分数的乘除法法则类似,(板书)分式的乘除的法则是: 分式乘分式,用分子的积做积的分子,分母的积做积的分母。
分式除以分式,把除式的分子,分母颠倒位置后,与被除式相乘。
即 a b ·c d =ac bd ; a b ÷c d =a b ·d c =ad bc设计说明:在学生已有知识的基础上,通过类比让学生经历知识迁移的过程,加深学生对法则的理解。
2019-2020学年七年级数学下册 7.4 分式方程一教案浙教版一、背景介绍:本节的安排与老教材不一样,老教材是把分式方程与一元二次方程安排在一起,而新教材是在学生学习了分式及运算后马上学习分式方程,充分体现了分式方程与分式的联系及分式方程与整式方程的区别,让学生体会方式方程也是解决实际问题的重要手段。
分式方程(一)二、教学设计【教材内容分析】本节的主要内容是分式方程及其解法,分式方程与整式方程在概念上是不同的,但他们在解法上却有着一定的联系和区别,即分式方程最终要转化为整式方程来解,但最后要验根这是学生最容易忘记的,所以教学中要强调。
【教学目标】1、会根据定义判别分式方程与整式方程,了解分式方程增根产生的原因,掌握验根的方法。
2、掌握可化为一元二次方程或一元二次方程的分式方程的解法。
3、渗透转化思想。
【教学重点】分式方程的去分母及根的检验【教学难点】方程根的检验及产生增根的原因【教学过程】(一)创设情景,引入新课情景:(出示节前图片)某地电话公司调低了长途电话的话费标准,每分费用降低了25%,因此按原收费标准6元话费的通话时间,在新收费标准下可多通话5分时间,问前后两种收费标准每分收费各是多少?(1)本题中的主要等量关系是什么?(2)如果设原来的收费标准是x元/分,可列怎样的方程?(3)该方程与我们学过的一元一次方程有什么不同?与学生讨论后得到题中的等量关系,并列出方程:8x-6x=5 ,再举例:如1 2x213x-=,2233xx+=+,12xx+=等,让学生观察这些方程与以前学过的方程有什么不同之处?待学生说出后,师生共同归纳得出分式方程的概念:板书:像这样只含分式或整式,并且分母中含有未知数的方程叫做分式方程。
〖设计说明:通过创设情景,让学生了解分式方程来源于实际,学习解分式方程是为了解决生活中的实际问题,体会到解分式方程的重要性〗(二)理解应用,体验成功。
练一练:你能否根据分式方程的概念举一些分式方程的例子呢?(学生举例)如:12x - 23x =1 , x +3x +2 = 23 , x +1x=2等。
2019-2020年七年级数学下册 7.3分式的加减(1)教案 浙教版二、教学设计:【教学内容分析】分式的加减是分式的基本运算之一.本节课是同分母分式的加减,是异分母分式加减基础.教材中先让学生做两道同分母分数加减的题目,目的是通过与同分母分数加减类比,说明同分母分式的加减法法则.【教学目标】1、理解和掌握同分母的分式加减法法则.2、能运用法则进行同分母分式的加减运算.3、能将分母绝对值相等的分式转化为同分母分式,并进行加减运算.【教学重点】同分母分式加减法法则【教学难点】分母中只有符号不同的分式加减运算中的符号处理.【教学过程】(一)类比引入,探求新知.计算:17 +27 = _________ 510 -310 = 这一法则能否推广到分式运算中?请尝试计算1a +3a , x -1x +1 - x x +1, 并分别取a=3,x=4检验你的计算方程是否正确 检验后,类比得到同分母的分式相加减的法则:同分母的分式相加减,把分子相加减,分母不变.用式子表示是:a c ±b c =a ±b c(二)理解应用,体验成功练一练:(课内练习)1、口答:计算:(1)3a +12a -15a (2)1m --3m(3)a x-y -a y-x (4)y x-y -x x-y在学生回答的过程中,教师反问:(3)中x-y 与y-x 相同吗?怎么处理?(可能学生会讲出:y-x =-(x-y ),教师肯定后再加以强调.)设计说明:让学生经历应用新知的过程,从中体会和理解法则中字母含义的广泛性.教师的反问起到了强调作用.做一做:例1:计算(1)a+3b a+b +a-b a+b (2)2xy 2+1(x-y)2 -1+2x 2y (y-x)2 教学建议:把主动权交给学生,待学生完成后,教师反问:在(2)中(x-y )2与(y-x )2是同分母吗?为什么?(多数学生应该知道:(x-y )2=x 2-2xy+y 2 而(y-x )2=y 2-2xy+x 2所以(x-y )2=(y-x)2或(y-x)2=[-(y-x)]2=(x-y)2),再问(x-y)3=(y-x)3吗?为什么?在师生的互动过程中,归纳出:(1)(x-y)2n=(y-x)2n;(x-y)2n-1=(y-x)2n-1(2)分子相加减:应是分子“整体”相加减,注意添括号.(3)结果一定要最简.设计说明:培养学生解题后进行反思、归纳的好习惯,可使知识形成体系,以不变应万变.试一试:(课内练习)2、计算:(1)a2a-b-b2a-b(2)2a2a-b+bb-2a(3)4x-2+x+22-x(4)a-ca2-b2-b-ca2-b2(三)综合应用,巩固提高做一做:例2:先化简,再求值:x2-1x2-2x +x-12x-x2,其中x=3教学建议:在解答过程中,应强调解题格式和步骤.课内练习:先化简,再求值:x2x-1+11-x,其中x=-设计说明:分式的化简求值题是代数式的求值题中的一种,此两题的设计让学生体会到知识间的密切联系.(四)清点收获由教师开出清单,学生进行清点1、同分母的分式相加减法则2、绝对值相等的分母如何化为同分母.3、当分子是多项式时应注意什么?5、结果应的形式设计说明:为了避免学生毫无目的、流于形式的讲讲,由教师根据本节课的教学目标开出清单,让学生有的放矢.(五)作业:课后作业题设计思路:本课时用类比的方法得出同分母分式相加减的法则,通过例题让学生体会当分子分母分别为单项式与多项式时的相同之处和不同之处,引导学生学会用已有的知识经验,探索新的知识.2019-2020年七年级数学下册 7.3分式的加减(2)教学设计 浙教版[教材内容分析]分式的加减是分式的基本运算之一。
分式(一):【知识梳理】 1.分式有关概念(1)分式:分母中含有字母的式子叫做分式。
对于一个分式来说:①当____________时分式有意义。
②当____________时分式没有意义。
③只有在同时满足____________,且____________这两个条件时,分式的值才是零。
(2)最简分式:一个分式的分子与分母______________时,叫做最简分式。
(3)约分:把一个分式的分子与分母的_____________约去,叫做分式的约分。
将一个分式约分的主要步骤是:把分式的分子与分母________,然后约去分子与分母的_________。
(4)通分:把几个异分母的分式分别化成与____________相等的____________的分式叫做分式的通分。
通分的关键是确定几个分式的___________ 。
(5)最简公分母:通常取各分母所有因式的最高次幂的积作公分母,这样的公分母叫做最简公分母。
求几个分式的最简公分母时,注意以下几点:①当分母是多项式时,一般应先 ;②如果各分母的系数都是整数时,通常取它们的系数的 作为最简公分母的系数;③最简公分母能分别被原来各分式的分母整除;④若分母的系数是负数,一般先把“-”号提到分式本身的前边。
2.分式性质: (1)基本性质:分式的分子与分母都乘以(或除以)同一个 ,分式的值 .即:(0)A A M A M M BB MB M⨯÷==≠⨯÷其中(2)符号法则:____ 、____ 与__________的符号, 改变其中任何两个,分式的值不变。
即:a a a ab bbb--==-=---3.分式的运算:注意:为运算简便,运用分式的基本性质及分式的符号法则:()nn a b a b c ca c ad bc d bd a c ac d bd a c a d ad dbc bc a a n b⎧±⎧±=⎪⎪⎪⎪⎨±⎪⎪±=⎪⎪⎩⎪⎧⎪⋅=⎪⎪⎪⎨⎨⎪⎪÷=⋅=⎪⎪⎩⎪⎪=⎪⎪⎪⎩n 同分母c 加减异分母b 乘b 分式运算乘除除b 乘方()为整数b①若分式的分子与分母的各项系数是分数或小数时,一般要化为整数。
用心 爱心 专心1326.3用乘法公式分解因式(1)【教学目标】 一、知识和技能1、经历平方差公式的产生过程,会用公式a 2-b 2=(a +b )(a -b )分解因式。
2、认识a 2-b 2=(a +b )(a -b )与(a +b )(a -b )=a 2-b 2之间区别联系 二、过程和方法通过用平方差公式分解因式。
让学生感受数学来源于实际生活。
体验换元思想,培养学生观察、分析和解决问题能力。
三、情感、态度和价值观通过用平方差公式分解因式,培养发展有条理的思考及表达能力,通过对研究过程的反思,进一步强化对分类和归纳等数学思想的认识, 渗透数学公式的简洁美与和谐美。
【教学重点】掌握平方差公式的特点及运用此公式分解因式。
【教学难点】把多项式转换到能用平方差公式分解因式的模式,综合运用多种方法因式分解。
【教学过程】一、创设情景,引出课题 问题(一)、把如图卡纸剪开,拼成一张长方形 卡纸,作为一幅精美剪纸衬底,怎么剪?你能给出数学解释吗?b aba这个图形的剪拼在整式的乘法中学生已经接触过了,比较容易,估计学生能剪拼成功,可能得到以下两条公式 a 2-b 2=(a +b )(a -b ) 与(a +b )(a -b )=a 2-b 2 想一想:(1) 这两条公式的名称(2) 公式(a +b )(a -b )=a 2-b 2有什么作用?公式是多项式乘法的特殊形式,能简化计算。
(学生能说出最好,若有困难,教师点拨)(3)公式a 2-b 2=(a +b )(a -b )左到右的形式发生了什么变化?(4)请用语言描述公式a 2-b 2=(a +b )(a -b )教师板书:两数的平方差等于两数的和与两数差的积。
相关以往知识:__________________________________________________________________ ______________________教学内容和方法:____________________________________________________________________________________________________________________________________个性化教学思路及改进建议:____________________________________________________________________________________________________________________________________ ______________________ _______________________________________________________________________________________________________________________________________ ______________________用心 爱心 专心133教师指出本课时就应用平方差公式因式分解。
分式计算复习专题课教案(提高版)第一章:分式的概念与基本性质1.1 分式的定义解释分式的含义:分子与分母都为整式,分母不为零的代数表达式。
强调分式中的各个元素:分子、分母、分界线。
1.2 分式的基本性质复习分式的基本性质,如:分式的值不随分子、分母的符号变化而变化。
演示分子与分母乘以(或除以)同一个非零整式,分式的值不变。
第二章:分式的运算2.1 分式的加减法讲解分式加减法的运算规则:通分后分子相加(减),分母保持不变。
举例说明如何进行分式的加减运算,并强调通分的重要性。
2.2 分式的乘除法解释分式乘除法的运算规则:分子与分子相乘,分母与分母相乘。
演示如何进行分式的乘除运算,并提示约分的技巧。
第三章:分式的化简与求值3.1 分式的化简介绍分式化简的常见方法:约分、因式分解。
举例说明如何化简分式,并强调化简的目的:简化表达式,便于计算。
3.2 分式的求值讲解如何求解分式的值:将变量代入分式中,进行计算。
强调求值时需要注意的问题:确保代入的变量值使分母不为零。
第四章:分式的应用4.1 分式在实际问题中的应用介绍分式在实际问题中的应用场景,如:比例计算、分段函数等。
演示如何将实际问题转化为分式问题,并解决。
4.2 分式的综合应用案例分析提供一些综合性的案例,让学生练习分式的应用。
引导学生运用分式的知识解决实际问题,培养其应用能力。
第五章:分式的复习与拓展5.1 分式的复习要点总结分式的概念、运算规则、化简与求值等关键知识点。
强调学生需要掌握的分式计算的基本技能。
5.2 分式的拓展与提高介绍一些分式的拓展知识,如:分式的极限、分式函数等。
提供一些提高性的练习题,激发学生对分式计算的兴趣与深入学习。
第六章:分式的综合题型6.1 分式的混合运算讲解分式的混合运算,包括加减乘除以及括号的运用。
提供混合运算的例题,引导学生逐步解决复杂分式问题。
6.2 分式的复合运算介绍分式的复合运算,如:先乘除后加减、先化简后求值等。
《分式》全章复习与巩固(基础)【学习目标】1. 理解分式的概念,能求出使分式有意义、分式无意义、分式值为0的条件.2.了解分式的基本性质,掌握分式的约分和通分法则.3.掌握分式的四则运算.4.结合分式的运算,将指数的讨论范围从正整数扩大到全体整数,科学记数法.构建和发展相互联系的知识体系.5.结合分析和解决实际问题,讨论可以化为一元一次方程的分式方程,掌握这种方程的解法,体会解方程中的化归思想.【知识网络】【要点梳理】【分式全章复习与巩固知识要点】要点一、分式的有关概念及性质1.分式一般地,如果A、B表示两个整式,并且B中含有字母,那么式子AB叫做分式.其中A叫做分子,B叫做分母.要点诠释:分式中的分母表示除数,由于除数不能为0,所以分式的分母不能为0,即当B≠0时,分式AB才有意义.2.分式的基本性质(M为不等于0的整式).3.最简分式分子与分母没有公因式的分式叫做最简分式.如果分子分母有公因式,要进行约分化简. 要点二、分式的运算1.约分利用分式的基本性质,把一个分式的分子和分母的公因式约去,不改变分式的值,这样的分式变形叫做分式的约分.2.通分利用分式的基本性质,使分子和分母同乘适当的整式,不改变分式的值,把异分母的分式化为同分母的分式,这样的分式变形叫做分式的通分.3.基本运算法则分式的运算法则与分数的运算法则类似,具体运算法则如下:(1)加减运算a b a b c c c±±= ;同分母的分式相加减,分母不变,把分子相加减.;异分母的分式相加减,先通分,变为同分母的分式,再加减.(2)乘法运算 a c ac b d bd⋅=,其中a b c d 、、、是整式,0bd ≠. 两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母.(3)除法运算 a c a d ad b d b c bc÷=⋅=,其中a b c d 、、、是整式,0bcd ≠. 两个分式相除,把除式的分子和分母颠倒位置后,与被除式相乘.(4)乘方运算分式的乘方,把分子、分母分别乘方.4.零指数. 5.负整数指数6.分式的混合运算顺序先算乘方,再算乘除,最后加减,有括号先算括号里面的.7.科学记数法(1)把一个绝对值大于10的数表示成10n a ⨯的形式,其中n 是正整数,1||10a ≤<(2)利用10的负整数次幂表示一些绝对值较小的数,即10n a -⨯的形式,其中n 是正整数,1||10a ≤<.用以上两种形式表示数的方法,叫做科学记数法.要点三、分式方程1.分式方程的概念分母中含有未知数的方程叫做分式方程.2.分式方程的解法解分式方程的关键是去分母,即方程两边都乘以最简公分母将分式方程转化为整式方程.3.分式方程的增根问题增根的产生:分式方程本身隐含着分母不为0的条件,当把分式方程转化为整式方程后,方程中未知数允许取值的范围扩大了,如果转化后的整式方程的根恰好使原方程中分母的值为0,那么就会出现不适合原方程的根---增根.要点诠释:因为解分式方程可能出现增根,所以解分式方程必须验根.验根的方法是将所得的根带入到最简公分母中,看它是否为0,如果为0,即为增根,不为0,就是原方程的解.要点四、分式方程的应用列分式方程解应用题与列一元一次方程解应用题类似,但要稍复杂一些.解题时应抓住“找等量关系、恰当设未知数、确定主要等量关系、用含未知数的分式或整式表示未知量”等关键环节,从而正确列出方程,并进行求解.【典型例题】类型一、分式及其基本性质1、在ma y x xy x x x x 1,3,3,)1(,21,12+++π中,分式的个数是( ) A.2 B.3 C.4 D.5【答案】C ; 【解析】()21131x x a x x x y m+++,,,是分式. 【总结升华】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.2、当x 为何值时,分式293x x -+的值为0? 【思路点拨】先求出使分子为0的字母的值,再检验这个值是否使分母的值等于0,当它使分母的值不等于0时,这个值就是要求的字母的值.【答案与解析】解: 要使分式的值为0,必须满足分子等于0且分母不等于0.由题意,得290,30.x x ⎧-=⎨+≠⎩ 解得3x =.∴ 当3x =时,分式293x x -+的值为0. 【总结升华】分式的值为0的条件是:分子为0,且分母不为0,即只有在分式有意义的前提下,才能考虑分式值的情况.举一反三:【变式】(1)若分式的值等于零,则x =_______;(2)当x ________时,分式没有意义.【答案】(1)由24x -=0,得2x =±. 当x =2时x -2=0,所以x =-2;(2)当10x -=,即x =1时,分式没有意义. 类型二、分式运算3、(2017•青浦区一模)计算:÷(a ﹣1)+. 【思路点拨】结合分式混合运算的运算法则进行求解即可.【答案与解析】解:原式=×+ =+ =+ =.【总结升华】本题考查了分式的混合运算,解答本题的关键在于熟练掌握分式混合运算的运算法则.举一反三:【变式】(2015•滨州)化简:÷(﹣)【答案】解:原式=÷=• =﹣.4、计算:(1)5231010-⨯⨯; (2)134139m npmn p ----÷; (3)22223a a b b ⎛⎫-⎛⎫÷ ⎪ ⎪⎝⎭⎝⎭;(4)1322233(3)(2)(3)mn m n m n ----÷. 【思路点拨】(1)题和(2)题只有乘除运算,按幂的乘法和除法法则进行计算;(3)题中出现了分式,可先将每一个分式转化为整数指数幂,然后再用法则计算;(4)题中出现了整数幂的乘法、除法、乘方计算;先算乘方,再算乘除.【答案与解析】解:(1)原式5233133103103101000-+-=⨯=⨯=⨯=; (2)原式5111(4)3(1)252221(39)33n m n p m n p m p ---------=÷==; (3)原式242222244994a a a b b b ba =÷= 242222999444ab a a--+-===; (4)原式333244333(2)(3)m n m n m n ---=-÷32434334(3)4443236363m m n m n n +-------⨯==-=-. 【总结升华】(1)整数指数幂的运算结果一般要用正整数指数幂来表示.如:(4)题中的结果得到4436m n --后,还要化为4436m n -.(2)进行混合运算时特别要注意运算顺序.5、用科学记数法表示下列各数:(1)0.00001;(2)0.000000203;(3)-0.000135;(4)0.00067【答案与解析】解:(1)0.00001=510-;(2)0.000000203=72.0310-⨯;(3)-0.000135=41.3510--⨯;(4)0.00067=46.710-⨯.【总结升华】注意在10n a -⨯中n 的取值是这个数从左边起第一个不是零的数前面零的个数(包括小数点前边的零).类型三、分式方程的解法【 分式全章复习与巩固 例6(1)】6、解方程23222x x x -=+- 【答案与解析】解:23222x x x -=+-方程两边同乘以()()22x x -+,得()()()()2232222x x x x x --+=+-72x =27x =检验: 当27x =时,最简公分母()()22x x -+≠0, ∴27x =是原方程的解. 【总结升华】分式方程一定要记得检验.举一反三:【变式】()1231244x x x -=---, 【答案】解: 方程两边同乘以()24x -,得()()12422332x x x =---=-∴ 检验:当32x =-时,最简公分母()240x -≠, ∴32x =-是原方程的解. 类型四、分式方程的应用7、(2015•东莞二模)某市为治理污水,需要铺设一条全长为600米的污水排放管道,为了尽量减少施工对城市交通所造成的影响,实际施工时,每天的工效比原计划增加20%,结果提前5天完成这一任务,原计划每天铺设多少米管道?【思路点拨】先设原计划每天铺设x 米管道,则实际施工时,每天的铺设管道(1+20%)x 米,由题意可得等量关系:原计划的工作时间﹣实际的工作时间=5,然后列出方程可求出结果,最后检验并作答.【答案与解析】解:设原计划每天铺设x 米管道,由题意得:﹣=5,解得:x=20,经检验:x=20是原方程的解.答:原计划每天铺设20米管道.【总结升华】本题主要考查分式方程的应用,解题的关键是熟练掌握列分式方程解应用题的一般步骤:设、列、解、验、答.必须严格按照这5步进行,规范解题步骤,另外还要注意完整性:如设和答叙述要完整,要写出单位等.举一反三:【变式】小明家、王老师家、学校在同一条路上,并且小明上学要路过老师家,小明到王老师家的路程为3 km ,王老师家到学校的路程为0.5 km ,由于小明的父母战斗在抗震救灾第一线,为了使他能按时到校、王老师每天骑自行车接小明上学.已知王老师骑自行车的速度是他步行速度的3倍,每天比平时步行上班多用了20 min ,王老师步行的速度和骑自行车的速度各是多少?【答案】解:设王老师步行的速度为x km/h ,则他骑自行车的速度为3x km/h.根据题意,得230.50.520360x x ⨯+=+. 解这个方程,得5x =.经检验5x =是原方程的根且符合题意.当5x =时,315x =.答:王老师步行的速度为5km/h ,他骑自行车的速度为15km/h .。
七年级数学复习教案7篇七年级数学复习教案7篇七年级数学的教案很重要的。
以课时或课题为单位,对教学内容、教学步骤、教学方法等进行的具体设计和安排的一种实用性教学文书。
下面小编给大家带来关于七年级数学复习教案,希望会对大家的工作与学习有所帮助。
七年级数学复习教案(篇1)教学目标1.了解公式的意义,使学生能用公式解决简单的实际问题;2.初步培养学生观察、分析及概括的能力;3.通过本节课的教学,使学生初步了解公式来源于实践又反作用于实践。
教学建议一、教学重点、难点重点:通过具体例子了解公式、应用公式.难点:从实际问题中发现数量之间的关系并抽象为具体的公式,要注意从中反应出来的归纳的思想方法。
二、重点、难点分析人们从一些实际问题中抽象出许多常用的、基本的数量关系,往往写成公式,以便应用。
如本课中梯形、圆的面积公式。
应用这些公式时,首先要弄清楚公式中的字母所表示的意义,以及这些字母之间的数量关系,然后就可以利用公式由已知数求出所需的未知数。
具体计算时,就是求代数式的值了。
有的公式,可以借助运算推导出来;有的公式,则可以通过实验,从得到的反映数量关系的一些数据(如数据表)出发,用数学方法归纳出来。
用这些抽象出的具有一般性的公式解决一些问题,会给我们认识和改造世界带来很多方便。
三、知识结构本节一开始首先概述了一些常见的公式,接着三道例题循序渐进的讲解了公式的直接应用、公式的先推导后应用以及通过观察归纳推导公式解决一些实际问题。
整节内容渗透了由一般到特殊、再由特殊到一般的辨证思想。
四、教法建议1.对于给定的可以直接应用的公式,首先在给出具体例子的前提下,教师创设情境,引导学生清晰地认识公式中每一个字母、数字的意义,以及这些数量之间的对应关系,在具体例子的基础上,使学生参与挖倔其中蕴涵的思想,明确公式的应用具有普遍性,达到对公式的灵活应用。
2.在教学过程中,应使学生认识有时问题的解决并没有现成的公式可套,这就需要学生自己尝试探求数量之间的关系,在已有公式的基础上,通过分析和具体运算推导新公式。
2.6图形变换的简单应用【教学目标】一、知识和技能轴对称变换、平移变换、和旋转变换的概念和性质及应用。
二、过程与方法运用图形变换设计、制作图案,图象的周长和面积计算,应用图形变换的知识解决一些实际生活问题。
通过观察和实验,培养学生的抽象思维和空间想象能力逐步培养学生的各种数学思想。
三、情感、态度与价值观结合教材和联系生活实际培养学生的学习兴趣和热爱生活的情感。
能够自主探索,与同学进行交流合作,能够使用数学语言有条理地表达自己解决问题的过程。
【教学重点】教学重点:轴对称变换、平移变换、和旋转变换在图案设计、图象的面积计算等方面的应用。
【教学难点】运用图形变换设计、制作图案,不仅需要熟练掌握各种图形变换的概念和性质,还需要有丰富的想象力和创造性,是本节教学的难点;能把一些实际生活问题通过学习图形变换的知识转化为数学问题,从尔解决实际生活问题,将是部分同学更高层次的应用和目标。
【教学过程】一、生活中的图形变换1、引入如图的图案,师生共同探究图案中的图形变换。
设问分析:***由哪些基本图形组成?***主体图形是什么?***运用了哪些图形变换?***是怎样变换的?目的是复习轴对称变换、平移变换、和旋转变换的概念,教会学生怎样观察图象,怎样分析图象中的图形变换。
然后投影仪演示这些概念。
相关以往知识:_______________________ _______________________ __________________________________________ 教学内容和方法:_______________________ _______________________ _______________________ _______________________ _______________________ _________________个性化教学思路及改进建议:_______________________ _______________________ _______________________ _______________________ _______________________ _______________________________________ _______________________ _______________________ _______________________ __________________________________________2、展示学生收集的作品,教师经筛选现场出示两幅具有代表性的图案引导学生观察、比较,再由选中的两组代表表述:***由哪些基本图形组成?***主体图形是什么?***运用了哪些图形变换?***是怎样变换的?其他的学生纠正错误点,补充缺漏点。
第七章 分式复习
【教学目标】
一、知识目标 1.通过与分数的类比,了解分式的概念,理解分式的基本性质。
2.鼓励学生通过与分数乘除法则、加减法则的类比,大胆探索分式乘除及其加减运算的法则,并理解其合理性。
3.了解分式方程的概念,掌握解分式方程的一般步骤,了解验根的必要性。
二、能力目标
1.能用分式表示现实情境中的数量关系,体会分式的建模。
2.使学生掌握分式乘除及其加减运算的法则,并会应用到具体的运算之中,培养学生的转化思想与化归能力。
3.引导学生把实际问题转化为数学模型,学会列分式方程解决实际分式方程。
【教学重点】
分式的基本性质和分式的四则运算。
【教学难点】
分式的异分母相加减,解简单的分式方程和列分式方程解应用题。
【教学方法与手段】
以学生为主体,教师为主导,通过双基练习,让学生归纳小结,进一步拓展、探究、提升,最后达到巩固知识的目的。
【课堂教学设计】
一、双基落实 巩固提高 练一练:
1.当x 时,分式x 1
有意义.
2. 当x 时,分式841--x x
无意义3.当x 时,分式29
3--x x 的值为零.
设计说明:通过练习,由学生归纳小结:在什么情况下,分式有意义、无意义、分式的值为零.
4.相等的是
下列各式的结果与a b
-( ) A .a b
-
B .
a b -- C .a b --
D .a b -- 相关以往知识:
__________________________________________________________________ ______________________
教学内容和方法:
____________________________________________________________________________________________________________________________________
个性化教学思路及改进建议:
____________________________________________________________________________________________________________________________________ ______________________ ________________________________________________________________________________________ ______________________ __________________________________________________________________
5.将公式v =v0+at 变形成已知v ,v0,t ,求a 的代数式,得a = .
设计说明:目的是应用和巩固分式的基本性质及符号法则. 6.化简:
① ()ax x a ⨯3 ②5854-÷
-+a a a ③m m 23
1- 7.解分式方程 421
=--x x
设计说明:给学生展现身手的机会,进一步掌握分式的四则运
算及解简单分式方程的方法.
二、综合探究 发展能力
【例1】 若分式
()()
4
2122---x x x 的值等于0,则x 的值为
设计说明:通过例题,使学生进一步明确:要使分式的值为零,必须满足两个条件:分子的值为零,且分母的值不为零.后一个条件容易疏忽,应特别注意.
【例2】 化简: ① 2
1211a a ---
②
x x x x x x 1
211142
2÷-+∙+- 设计说明:通过例题,使学生进一步明确:异分母分式的加减,
关键是要找到公分母,然后进行通分.通常将各分母分解因式,以寻求公分母.分式运算的结果一般要化到最简;分式的乘除运算的实质为约分,约分的关键是找出分式中分子、分母的公因式.通常需对每个分式的分子、分母分解因式.
【例3】 解分式方程 (1) 23
462
-=-x x (2)x x x
+=
+-1112 设计说明:分式方程去分母后可能会产生增根,因此解分式方
程必须验根;用去分母法解分式方程时,不含分母的项不要漏乘公分母.
【例4】
__________________________________________________________________ ______________________
一些学生准备外出秋游,预计共需费用120元,临出发时有2人因故不能参加,但总费用不变,这样外出秋游的学生人均费用增
加41
,问原计划每人付费多少元?
设计说明:由学生归纳列分式方程解应用题的一般步骤为: 为
1.审:分析题意,找出数量关系和相等关系.
2.设:选择恰当的未知数,注意单位和语言完整.
3.列:根据数量和相等关系,正确列出代数式和方程.
4.解:求出所列方程的解.
5.验:有二次检验.(①是不是所列方程的解 ②是否满足实际意义)
6.答:注意单位和语言完整.且答案要生活化.
【探究一】 a 是否存在这样的值,使分式方程
044
22=-+-x x a 有增根.若存在,求出a 的值;若不存在,请说
明理由.
设计说明:针对本题引导学生观察,反思,理解产生增根的内涵,并组织同学之间相互讨论,交流,培养学生良好的与人合作的精神.
【探究二】 请同学们联系生活实际,编写一道应用题,使
其中的未知数x 满足下面的分式方程5
10250=-x x .
设计说明:此开放性问题的设置,为学生提供更大的发展空间,
培养学生的创新意识和思维的广阔性,调动每位同学的积极性,做到人人参与,培养学生的应用和表达能力,体现了数学既来源于生活又应用于生活的理念.
三、自我归纳 感悟提升 1.这节课你有那些收获?
2.你还有什么疑难问题或不懂的地方?
设计说明:以培养学生归纳小结能力为目的,给学生一个自我
展示的机会,体现了每位学生都要学会如何学习的新课标理念.
四、分层作业
作业题分A 组11题,B 组4题.要求:独立完成A 组基础题;
B 组结合自己学习水平独立完成,也可与同学交流后完成.
A 组
____________________________________________
______________________ ______________________
1.下列各式中51,
4,2
1,2--a ab xy x ,属于分式的有 个. 2.当x 时,分式22-x x
无意义.
3.分式x x 1
+的值为0,则x 的值为 . 4.化简:4422
+--a a a = .
5.分式 2
22332xy y
y x x 与的最简公分母是 .
6.计算:a b b
b a a -+
-= .
7.不改变分式的值,使分式的首项分子与分式本身都不含“-”号:
b a b a ---
2=________; ()b a b a ----22=________.
8 .小明参加打靶比赛,有a 次打了m 环,b 次打了n 环, 则此次
打靶的平均成绩是_____环.
9.化简:
969
392
222++-+++x x x x x x x 10.解方程:x x -=
-23
421
11.李某承包了40亩菜地和15亩水田,根据市场信息,冬季瓜菜需求量大,他准备把水田改造为菜地,使改完后水田占菜地的10%,问应把多少水田改为菜地?
B 组
1.将b a a
-3中的a 、b 都扩大到3倍,则分式的值( )
A .不变 B.扩大3倍 C.扩大9倍 D.扩大6倍
2.在分式中212
11
11f f f f F ≠+=中,则F=_________.
3.当k=_____时,分式方程0111=+--+-x x
x k x x 有增根.
__________________________________________________________________ ______________________
______________________
4.若15
a 表示一个整数,则整数a 可取哪些数?
设计说明:分层作业,将因人施教落到实处,实现了面向全体学生这一目标,更有利于每个学生在各自“最近发展区”得到充分发展.
板书设计。