陕西省兴平市东城第一初级中学2016届九年级上学期第三次月考数学试题(原卷版)
- 格式:doc
- 大小:130.00 KB
- 文档页数:5
2016—2017学年度第一学期九年级数学第三次月考试卷第Ⅰ卷 选择题 (共40分)一、选择题(共10个小题,每小题4分,共40分) 1. 若方程()a 2a x ax 10-++=是关于x 的一元二次方程( )A.a 2=±B.a 2=C.a 2=-D.a 2≠± 2.( )3.下列描述中不属于...确定性事件的是 ( ) A.氢气在空气中燃烧生成水 B.正六边形的半径是其边心距的2倍C.守株待兔D.直角三角形的外心在直角三角形的外部 4.下列命题正确的有 ( )①.直径是弦;②.长度相等的两条弧是等弧;③.直径是圆的对称轴;④.平分弦的直径垂直于这条弦;⑤.顶点在圆上的角是圆周角;⑥.同圆或等圆中,相等的圆周角所对的弧相等;⑦.同圆或等圆中,相等的弦所对的圆周角相等.A.2个B.3个C.4个D.5个5.如图,AB 为⊙O 的直径,DCB 30DAC 70∠=∠=o o ,,则D ∠的度数为 (A.70B.50°C.40°D.30° 6.如图是某座天桥的设计图,设计数据如图所示桥拱是圆弧形,则 桥拱的半径为 ( ) A.13cm B.15cm C.20cm D.26cm7. 如图,在等边ABC V 中,AC 9=,点O 在AC 上,且AO 3=,点P 是AB 动点,连接OP 绕点O 逆时针旋转60°得到线段OD ,要使点D 恰好落在BC 上,则AP 的长是 ( ) A.4 B.5 C.6 D.88.已知二次函数()2y ax bx c a 0=++≠的图象如图所示,则下列结论中,正确的是( ) A.ac 0>B.当x 1>时,y 随x 的增大而减小C.b 2a 0-=D.x 3=是关于x 的方程()2ax bx c 0a 0++=≠一个根9.如图,已知正方形ABCD 的边长为1,E F G H 、、、分别为各边上的点,且AE BF CG ==DH =;设小正方形S ,AE 为x ,则S 关于x 的函数图象大致为( ) B A D A10.如图, Rt △ABC 中,︒=∠90ACB ,︒=∠30CAB ,2=BC ,O 、H 分别为边AB 、AC 的中点,将△ABC 绕点B 顺时针旋转120°到△'''A B C 的位置,则整个旋转过程中,线段OH 所扫过部分的面积(即阴影部分的面积)为A.73πB.43ππD.43π第Ⅱ卷 选择题 (共110分)二、 填空题(每题4分,共20分) 11.有三个形状和材质一样的盒子里分别..装有3个红球、6个黄球、9个黑球,蒙着眼睛随机从盒子中摸出一个球...是黑球的概率为 . 12.在平面直角坐标系中,点(),P 23-关于坐标原点对称点的坐标为 . 13.如上图,在Rt △OAB 中,AOB 30∠=o ,将△OAB 绕点O 逆时针旋转 100°得到△11OA B ,则1A OB ∠= .14. 如图所示是一个用来盛爆米花的圆锥形纸杯,纸杯开口圆的直径EF 长 为cm 10,母线()OF OE 长为10cm ;在母线OF 上的点A 处有一块爆米花残 渣,且cm FA 2=,一只蚂蚁从杯口的点E 处沿圆锥表面爬行到A 点,则 此蚂蚁爬行的最短距离为 .15.如图,一段抛物线()()y x x 30x 3=--≤≤,记为1C ,它与x 轴交于点1O A 、;将1C 绕点1A 旋转180°得到2C ,交x 轴于点2A ;将2C 绕点2A 旋转180°得到3C ,交x 轴于点 3A ;… 如此进行下去,直至得13C ;若(),P 37m 在第13段抛物线13C 上,则m = .三、 解答题(每小题8分,共16分) 16.用公式法解方程: 22x 37x =-+17.如图,电路图上有四个开关A B C D 、、、和一个小灯泡,闭合开关D 或同时闭合开关A B C 、、都可使小灯泡发光.⑴.任意闭合其中一个开关,则小灯泡发光的概率为多少?(2分)⑵.任意闭合其中两个开关,请用树状图的方法求出小灯泡 发光的概率. (6分)四.解答题(每小题8分,共16分)18.作图解答:在下面网格图中(每个小正方形方格的边长 为1个单位),把△ABC 向右平移5个单位,再绕点B 的对应点顺时针方向旋转90°.⑴.请画出平移和旋转后的图形,并标明对应字母;(6分)⑵.能否把两次变换合并成一次变换,如果能,请说出变 换过程(可适当在图形中标记);(2分)19.已知:在⊙O 中,M N 、分别是半径OA OB 、的中点,且,CM OA DN OB ⊥⊥.求证:AC BC =''五.解答题(每小题10分,共20分)20.商店将进价为每件8元的商品按每件10元售出,每天可售出200件,现在采取提高商品售价减少销售量的办法增加利润,但销售量不能少于100件.如果这种商品每件的销售价每提高0.5元,其销售量就减少10件,问应将每件售价定为多少元,才能使每天获得的利润为640元?21.如图,AB ⊙O 的直径,AM BN 、是⊙O 的切线,DE 切⊙O 于E ,交AM 于D ,交BN 于C . ⑴. 求证:DOC 90∠=(6分)⑵. 如果,OD 3cm OC 4cm ==,求⊙O 的直径AB 的长;(4分)六.解答题(本小题12分)22.阅读问题与解答,然后回答问题:⑴.若关于x 的一元二次方程()22k x 2k 1x 10+-+=有实数根,求k 的取值范围? ⑵.如果这个方程的两个实数根的倒数和的平方等于8,求k 的值. 解:⑴.△()222k 14k 8k 40=--=-+>⎡⎤⎣⎦,所以1k 2<; ⑵.方程的两个实数根12x x 、.则(),1212222k 11x x x x k k -+=⋅=,所以()222121212x x 112k 18x x x x ⎛⎫⎛⎫++==-=⎡⎤ ⎪ ⎪⎣⎦⎝⎭⎝⎭. 整理得:2k 2k 10--=;所以k 1=或k 1=①.上面的解答中有不少问题,请你指出其中三处;(6分) ②.请给出完整的解答.(6分)七.解答题(本小题12分)23.如图,某隧道的横截面的上下轮廓线分别由抛物线的一部分和矩形的一部分构成,最大高度为6米,底部宽度为12米,现以点O 为原点,OM 所在的直线为x 轴建立平面直角坐标系. ⑴.直接写出点M 以及抛物线顶点P 的坐标;(2分) ⑵.求出这条抛物线的关系式;(5分) ⑶.若搭建一个矩形的“支撑架”ABCD ,使C D 、则这个“支撑架”的总长的最值是多少?(5分)八.解答题(本小题14分)24.如图,在平面直角坐标系中,矩形ABCO 的面积为15,OA 比OC 大2,点E 为BC 的中点,以OE 为直径的⊙'O 交x 轴于点D ,过D 作DF EA ⊥.交AE 于点F .⑴.求OA OC、的长及点'O的坐标;(6分)⑵.求证:DF为⊙'O的切线;(4分)⑶.小明在解答本题时,发现△AOE是等腰三角形,由此他断定:“直线BC上一定存在除点E外的点P,使△AOP 也是等腰三角形,且点P一定在⊙'O外”;你同意他的看法吗?请说明理由. (4分)。
九年级第一学期第三次月考数学试卷(附带有答案)本试题分选择题和非选择题两部分。
本试题共6页,满分为150分,考试时间为120分钟。
注意事项:第1卷(选择题共40分)一.选择题(本大题共10个小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.一元二次方程x2-x=0的根是()A.x1=0,x2=1B.x1=0,x2=-1C.x=-1D.x=02.下列几何体的左视图为()A. B. C. D.3.已知反比例函数y=﹣2x,下列各点中,在此函数图象上的点的是()A.(一1,1)B.(2,-1)C.(1,2)D.(2,2)4.在一个不透明的盒子中装有n个除颜色外完全相同的球,其中有4个红球.若每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子,通过大量重复试验后,发现摸到红球的频率稳定在20%左右,则n的值大约为()A.16B.18C.20D.245.若两个相似三角形的对应中线比是1:3,则它们的周长比是()A.1:2B.1:3C.1:6D.1:96.矩形具有而菱形不一定具有的性质是()A.对角线相等B.对角线互相平分C.邻边相等D.对角线互相垂直7.如图,在Rt△ABC中,AC=4,BC=3,∠C=90°,则cosA的值为( )A.34B.54C.35D.45(第7题图)(第8题图)8.如图,在平面直角坐标系中,一块污渍遮挡了横轴的位置,只有部分纵轴和部分矩形网格,已知每个小正方形的边长都是1个单位长度,反比例函数y=k x (k ≠0,x >0)的图象恰好经过2个格点A 、B ,则k 的值是( )A.3B.4C.6D.89.如图,⊙O 是△ABC 的外接圆,AD 是⊙O 的直径,若⊙O 的半径为32,AC=2,则sinB 的值是( )A.23B.32C.34D.43(第9题图) (第10题图)10.已知二次函数y=ax 2+bx+c 的图象如图所示,有以下结论:①a+b+c<0;②abc>0:③a -b+c>1:④4a -2b+c<0.正确结论的个数是( )A.1B.2C.3D.4第II 卷(非选择题 共110分)二.填空题:(本大题共6个小题,每小题4分,共24分)11.若a b =53,则aa -b = .12.若反比例函数y=m -1x 的图象在一、三象限,则m 的取值范围为 .13.将抛物线y=x 2+3x -2向右平移3个单位后,再向上平移4个单位,得到新的抛物线 的解析式为 .14.如图,△ABC 与△A'B'C'是位似图形,则△ABC 与△A'B'C'的位似比为 .(第14题图) (第15题图) (第16题图)15.如图,A、B、C是⊙O上的三个点,∠ABC=25°,则∠OAC的度数是.16.如图,已知正方形ABCD的边长为12,BE=EC,将正方形CD边沿DE折叠到DF,延长EF 交AB于G,连接DG、BF,现有如下4个结论:①△ADG≌△FDG;②GB=2AG;③△GDE∽△BEF;④S△BEF =725,在以上结论中,正确的是.(填写序号)三.解答题:(本大题共10个小题,共86分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分6分)计算:√3tan60°-2cos30°+4sin30°.18.(本小题满分6分)解方程:x2-5x+6=0.19.(本小题满分6分)如图,在菱形ABCD中,CE=CF.求证:AE=AF.20.(本小题满分8分)一个不透明的口袋中有3个质地和大小相同的小球,球面上分别写有数字1、2、3,从袋中随机地摸出一个小球,记录下数字后放回,再随机地摸出一个小球。
2015-2016学年陕西省咸阳市兴平市东城一中九年级(上)第一次月考数学试卷一、选择题(每小题3分,共30分)1.下列命题是假命题的是()A.四个角相等的四边形是矩形B.对角线相等的平行四边形是矩形C.对角线垂直的四边形是菱形D.对角线垂直的平行四边形是菱形2.如图,矩形ABCD的对角线AC=8cm,∠AOD=120°,则AB的长为()A. cm B.2cm C.2cm D.4cm3.下列方程是一元二次方程()A.x+2y=1 B.2x(x﹣1)=2x2+3 C.3x+=4 D.x2﹣2=04.用配方法解一元二次方程x2﹣2x﹣3=0时,方程变形正确的是()A.(x﹣1)2=2 B.(x﹣1)2=4 C.(x﹣1)2=1 D.(x﹣1)2=75.如图,矩形纸片ABCD中,AB=6cm,BC=8cm,现将其沿AE对折,使得点B落在边AD上的点B1处,折痕与边BC交于点E,则CE的长为()A.6cm B.4cm C.2cm D.1cm6.一元二次方程2x2+6x=9的二次项系数、一次项系数、常数项分别是()A.2,6,9 B.6,2,9 C.2,6,﹣9 D.6,2,﹣97.如图,菱形纸片ABCD中,∠A=60°,折叠菱形纸片ABCD,使点C落在DP(P为AB中点)所在的直线上,得到经过点D的折痕DE.则∠DEC的大小为()A.78° B.75° C.60° D.45°8.已知四边形ABCD的两条对角线AC与BD互相垂直,则下列结论正确的是()A.当AC=BD时,四边形ABCD是矩形B.当AB=AD,CB=CD时,四边形ABCD是菱形C.当AB=AD=BC时,四边形ABCD是菱形D.当AC=BD,AD=AB时,四边形ABCD是正方形9.已知:线段AB,BC,∠ABC=90°.求作:矩形ABCD.以下是甲、乙两同学的作业:甲:1.以点C为圆心,AB长为半径画弧;2.以点A为圆心,BC长为半径画弧;3.两弧在BC上方交于点D,连接AD,CD,四边形ABCD即为所求(如图1).乙:1.连接AC,作线段AC的垂直平分线,交AC于点M;2.连接BM并延长,在延长线上取一点D,使MD=MB,连接AD,CD,四边形ABCD即为所求(如图2).对于两人的作业,下列说法正确的是()A.两人都对 B.两人都不对C.甲对,乙不对 D.甲不对,乙对10.如图,在矩形ABCD中,点E,F分别在边AB,BC上,且AE=AB,将矩形沿直线EF折叠,点B恰好落在AD边上的点P处,连接BP交EF于点Q,对于下列结论:①EF=2BE;②PF=2PE;③FQ=4EQ;④△PBF是等边三角形.其中正确的是()A.①② B.②③ C.①③ D.①④二、填空题(每小题3分,共18分)11.已知菱形的两条对角线长分别为2cm,3cm,则它的面积是cm2.12.把一元二次方程3x(x﹣2)=4化为一般形式是.13.如图,已知P是正方形ABCD对角线BD上一点,且BP=BC,则∠ACP度数是度.14.关于x的方程(m﹣)﹣x+3=0是一元二次方程,则m= .15.如图,菱形ABCD的边长为4,过点A,C作对角线AC的垂线,分别交CB和AD的延长线于点E,F,AE=3,则四边形AECF的周长为.16.如图,在△ABC中,点D、E、F分别在边AB、BC、CA上,且DE∥CA,DF∥BA.下列四种说法:①四边形AEDF是平行四边形;②如果∠BAC=90°,那么四边形AEDF是矩形;③如果AD平分∠BAC,那么四边形AEDF是菱形;④如果AD⊥BC且AB=AC,那么四边形AEDF是菱形.其中,正确的有(只填写序号).三、解答题(共72分)17.用配方法解下列方程:(1)x2﹣4x+2=0;(2)x2+3x+2=0.18.如图,在△ABC中,AB=AC,D为边BC上一点,以AB,BD为邻边作▱ABDE,连接AD,EC.(1)求证:△ADC≌△ECD;(2)若BD=CD,求证:四边形ADCE是矩形.19.如图,已知菱形ABCD的对角线相交于点O,延长AB至点E,使BE=AB,连接CE.(1)求证:BD=EC;(2)若∠E=50°,求∠BAO的大小.20.已知:如图,在▱ABCD中,E、F分别为边AB、CD的中点,BD是对角线,AG∥DB交CB 的延长线于G.(1)求证:△ADE≌△CBF;(2)若四边形BEDF是菱形,则四边形AGBD是什么特殊四边形?并证明你的结论.a'a'a21.如图,已知菱形ABCD,AB=AC,E、F分别是BC、AD的中点,连接AE、CF.(1)证明:四边形AECF是矩形;(2)若AB=8,求菱形的面积.22.(10分)(2014•天水)如图,在正方形ABCD中,点E、F分别在边AB、BC上,∠ADE=∠CDF.(1)求证:AE=CF;(2)连结DB交CF于点O,延长OB至点G,使OG=OD,连结EG、FG,判断四边形DEGF是否是菱形,并说明理由.23.如图,在四边形ABCD中,点E.F.G.H分别为四边形ABCD各边的中点,顺次连接点E.F.G.H,(1)试判断四边形EFGH的形状,并证明你的结论.(2)如果四边形ABCD是矩形,则四边形EFGH是什么形状?并说明理由.2015-2016学年陕西省咸阳市兴平市东城一中九年级(上)第一次月考数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.下列命题是假命题的是()A.四个角相等的四边形是矩形B.对角线相等的平行四边形是矩形C.对角线垂直的四边形是菱形D.对角线垂直的平行四边形是菱形考点:命题与定理.分析:根据矩形的判定对A、B进行判断;根据菱形的判定方法对C、D进行判断.解答:解:A、四个角相等的四边形是矩形,为真命题,故A选项不符合题意;B、对角线相等的平行四边形是矩形,为真命题,故B选项不符合题意;C、对角线垂直的平行四边形是菱形,为假命题,故C选项符合题意;D、对角线垂直的平行四边形是菱形,为真命题,故D选项不符合题意.故选:C.点评:本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.2.如图,矩形ABCD的对角线AC=8cm,∠AOD=120°,则AB的长为()A. cm B.2cm C.2cm D.4cm考点:矩形的性质;等边三角形的判定与性质.分析:根据矩形的对角线相等且互相平分可得AO=BO=AC,再根据邻角互补求出∠AOB的度数,然后得到△AOB是等边三角形,再根据等边三角形的性质即可得解.解答:解:在矩形ABCD中,AO=BO=AC=4cm,∵∠AOD=120°,∴∠AOB=180°﹣120°=60°,∴△AOB是等边三角形,∴AB=AO=4cm.故选D.点评:本题考查了矩形的性质,等边三角形的判定与性质,判定出△AOB是等边三角形是解题的关键.3.下列方程是一元二次方程()A.x+2y=1 B.2x(x﹣1)=2x2+3 C.3x+=4 D.x2﹣2=0考点:一元二次方程的定义.分析:只含有一个未知数,且未知数的最高次数是2的整式方程叫做一元二次方程.一元二次方程有三个特点:(1)只含有一个未知数;(2)未知数的最高次数是2;(3)是整式方程.解答:解:A、x+2y=1是二元一次方程,故错误;B、方程去括号得:2x2﹣2x=2x2+3,整理得:﹣2x=3,为一元一次方程,故错误;C、3x+=4是分式方程,故错误;D、x2﹣2=0,符合一元二次方程的形式,正确.故选D.点评:要判断一个方程是否为一元二次方程,先看它是否为整式方程,若是,再对它进行整理.如果能整理为ax2+bx+c=0(a≠0)的形式,则这个方程就为一元二次方程.4.用配方法解一元二次方程x2﹣2x﹣3=0时,方程变形正确的是()A.(x﹣1)2=2 B.(x﹣1)2=4 C.(x﹣1)2=1 D.(x﹣1)2=7考点:解一元二次方程-配方法.专题:计算题.分析:利用配方法解已知方程时,首先将﹣3变号后移项到方程右边,然后方程左右两边都加上一次项系数一半的平方1,左边化为完全平方式,右边合并为一个非负常数,即可得到所求的式子.解答:解:x2﹣2x﹣3=0,移项得:x2﹣2x=3,两边都加上1得:x2﹣2x+1=3+1,即(x﹣1)2=4,则用配方法解一元二次方程x2﹣2x﹣3=0时,方程变形正确的是(x﹣1)2=4.故选:B点评:此题考查了解一元二次方程﹣配方法,利用此方法解方程时,首先将方程常数项移动方程右边,二次项系数化为1,然后方程左右两边都加上一次项系数一半的平方,方程左边化为完全平方式,右边合并为一个非负常数,开方转化为两个一元一次方程来求解.5.如图,矩形纸片ABCD中,AB=6cm,BC=8cm,现将其沿AE对折,使得点B落在边AD上的点B1处,折痕与边BC交于点E,则CE的长为()A.6cm B.4cm C.2cm D.1cm考点:矩形的性质;翻折变换(折叠问题).分析:根据翻折的性质可得∠B=∠AB1E=90°,AB=AB1,然后求出四边形ABEB1是正方形,再根据正方形的性质可得BE=AB,然后根据CE=BC﹣BE,代入数据进行计算即可得解.解答:解:∵沿AE对折点B落在边AD上的点B1处,∴∠B=∠AB1E=90°,AB=AB1,又∵∠BAD=90°,∴四边形ABEB1是正方形,∴BE=AB=6cm,∴CE=BC﹣BE=8﹣6=2cm.故选C.点评:本题考查了矩形的性质,正方形的判定与性质,翻折变换的性质,判断出四边形ABEB1是正方形是解题的关键.6.一元二次方程2x2+6x=9的二次项系数、一次项系数、常数项分别是()A.2,6,9 B.6,2,9 C.2,6,﹣9 D.6,2,﹣9考点:一元二次方程的一般形式.专题:计算题.分析:方程整理为一般形式,找出二次项系数,一次项系数,以及常数项即可.解答:解:方程整理得:2x2+6x﹣9=0,则二次项系数为2,一次项系数为6,常数项为﹣9.故选C.点评:此题考查了一元二次方程的一般形式,一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.7.(3分)(2013•淄博)如图,菱形纸片ABCD中,∠A=60°,折叠菱形纸片ABCD,使点C 落在DP(P为AB中点)所在的直线上,得到经过点D的折痕DE.则∠DEC的大小为()A.78° B.75° C.60° D.45°考点:翻折变换(折叠问题);菱形的性质.专题:计算题.分析:连接BD,由菱形的性质及∠A=60°,得到三角形ABD为等边三角形,P为AB的中点,利用三线合一得到DP为角平分线,得到∠ADP=30°,∠ADC=120°,∠C=60°,进而求出∠PDC=90°,由折叠的性质得到∠CDE=∠PDE=45°,利用三角形的内角和定理即可求出所求角的度数.解答:解:连接BD,∵四边形ABCD为菱形,∠A=60°,∴△ABD为等边三角形,∠ADC=120°,∠C=60°,∵P为AB的中点,∴DP为∠ADB的平分线,即∠ADP=∠BDP=30°,∴∠PDC=90°,∴由折叠的性质得到∠CDE=∠PDE=45°,在△DEC中,∠DEC=180°﹣(∠CDE+∠C)=75°.故选:B.点评:此题考查了翻折变换(折叠问题),菱形的性质,等边三角形的性质,以及内角和定理,熟练掌握折叠的性质是解本题的关键.8.已知四边形ABCD的两条对角线AC与BD互相垂直,则下列结论正确的是()A.当AC=BD时,四边形ABCD是矩形B.当AB=AD,CB=CD时,四边形ABCD是菱形C.当AB=AD=BC时,四边形ABCD是菱形D.当AC=BD,AD=AB时,四边形ABCD是正方形考点:菱形的判定;矩形的判定;正方形的判定.专题:压轴题.分析:根据平行四边形、菱形的判定与性质分别判断得出即可.解答:解:A、对角线AC与BD互相垂直,AC=BD时,无法得出四边形ABCD是矩形,故此选项错误;B、当AB=AD,CB=CD时,无法得到,四边形ABCD是菱形,故此选项错误;C、当两条对角线AC与BD互相垂直,AB=AD=BC时,∴BO=DO,AO=CO,∴四边形ABCD是平行四边形,∵两条对角线AC与BD互相垂直,∴平行四边形ABCD是菱形,故此选项正确;D、当AC=BD,AD=AB时,无法得到四边形ABCD是正方形,故此选项错误;故选C.点评:此题主要考查了菱形的判定以及矩形和正方形的判定,熟练掌握相关判定是解题关键.9.已知:线段AB,BC,∠ABC=90°.求作:矩形ABCD.以下是甲、乙两同学的作业:甲:1.以点C为圆心,AB长为半径画弧;2.以点A为圆心,BC长为半径画弧;3.两弧在BC上方交于点D,连接AD,CD,四边形ABCD即为所求(如图1).乙:1.连接AC,作线段AC的垂直平分线,交AC于点M;2.连接BM并延长,在延长线上取一点D,使MD=MB,连接AD,CD,四边形ABCD即为所求(如图2).对于两人的作业,下列说法正确的是()A.两人都对 B.两人都不对C.甲对,乙不对 D.甲不对,乙对考点:作图—复杂作图;矩形的判定.分析:先由两组对边分别相等的四边形是平行四边形得出四边形ABCD是平行四边形,再根据有一个角是直角的平行四边形是矩形判断甲的作业正确;先由对角线互相平分的四边形是平行四边形得出四边形ABCD是平行四边形,再根据有一个角是直角的平行四边形是矩形判断乙的作业也正确.解答:解:由甲同学的作业可知,CD=AB,AD=BC,∴四边形ABCD是平行四边形,又∵∠ABC=90°,∴▱ABCD是矩形.所以甲的作业正确;由乙同学的作业可知,CM=AM,MD=MB,∴四边形ABCD是平行四边形,又∵∠ABC=90°,∴▱ABCD是矩形.所以乙的作业正确;故选:A.点评:本题考查了作图﹣复杂作图的应用及矩形的判定,从两位同学的作图语句中获取正确信息及熟练掌握矩形的判定定理是解题的关键.10.如图,在矩形ABCD中,点E,F分别在边AB,BC上,且AE=AB,将矩形沿直线EF折叠,点B恰好落在AD边上的点P处,连接BP交EF于点Q,对于下列结论:①EF=2BE;②PF=2PE;③FQ=4EQ;④△PBF是等边三角形.其中正确的是()A.①② B.②③ C.①③ D.①④考点:翻折变换(折叠问题);矩形的性质.专题:几何图形问题;压轴题.分析:求出BE=2AE,根据翻折的性质可得PE=BE,再根据直角三角形30°角所对的直角边等于斜边的一半求出∠APE=30°,然后求出∠AEP=60°,再根据翻折的性质求出∠BEF=60°,根据直角三角形两锐角互余求出∠EFB=30°,然后根据直角三角形30°角所对的直角边等于斜边的一半可得EF=2BE,判断出①正确;利用30°角的正切值求出PF=PE,判断出②错误;求出BE=2EQ,EF=2BE,然后求出FQ=3EQ,判断出③错误;求出∠PBF=∠PFB=60°,然后得到△PBF是等边三角形,判断出④正确.解答:解:∵AE=AB,∴BE=2AE,由翻折的性质得,PE=BE,∴∠APE=30°,∴∠AEP=90°﹣30°=60°,∴∠BEF=(180°﹣∠AEP)=(180°﹣60°)=60°,∴∠EFB=90°﹣60°=30°,∴EF=2BE,故①正确;∵BE=PE,∴EF=2PE,∵EF>PF,∴PF<2PE,故②错误;由翻折可知EF⊥PB,∴∠EBQ=∠EFB=30°,∴BE=2EQ,EF=2BE,∴FQ=3EQ,故③错误;由翻折的性质,∠EFB=∠EFP=30°,∴∠BFP=30°+30°=60°,∵∠PBF=90°﹣∠EBQ=90°﹣30°=60°,∴∠PBF=∠PFB=60°,∴△PBF是等边三角形,故④正确;综上所述,结论正确的是①④.故选:D.点评:本题考查了翻折变换的性质,直角三角形30°角所对的直角边等于斜边的一半的性质,直角三角形两锐角互余的性质,等边三角形的判定,熟记各性质并准确识图是解题的关键.二、填空题(每小题3分,共18分)11.已知菱形的两条对角线长分别为2cm,3cm,则它的面积是 3 cm2.考点:菱形的性质.分析:由知菱形的两条对角线长分别为2cm,3cm,根据菱形的面积等于对角线乘积的一半,即可求得答案.解答:解:∵菱形的两条对角线长分别为2cm,3cm,∴它的面积是:×2×3=3(cm2).故答案为:3.点评:此题考查了菱形的性质.注意菱形的面积等于对角线乘积的一半.12.把一元二次方程3x(x﹣2)=4化为一般形式是3x2﹣6x﹣4=0 .考点:一元二次方程的一般形式.分析:一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0,去括号,移项把方程的右边变成0即可.解答:解:把一元二次方程3x(x﹣2)=4去括号,移项合并同类项,转化为一般形式是3x2﹣6x﹣4=0.点评:本题需要同学们熟练掌握一元二次方程一般形式的概念,在去括号时要注意符号的变化.13.如图,已知P是正方形ABCD对角线BD上一点,且BP=BC,则∠ACP度数是22.5 度.考点:正方形的性质.专题:计算题.分析:根据正方形的性质可得到∠DBC=∠BCA=45°又知BP=BC,从而可求得∠BCP的度数,从而就可求得∠ACP的度数.解答:解:∵ABCD是正方形,∴∠DBC=∠BCA=45°,∵BP=BC,∴∠BCP=∠BPC=(180°﹣45°)=67.5°,∴∠ACP度数是67.5°﹣45°=22.5°.点评:此题主要考查了正方形的对角线平分对角的性质,平分每一组对角.14.关于x的方程(m﹣)﹣x+3=0是一元二次方程,则m= ﹣.考点:一元二次方程的定义.分析:根据一元二次方程的定义,列方程和不等式解答.解答:解:因为原式是关于x的一元二次方程,所以m2﹣1=2,解得m=±.又因为m﹣≠0,所以m≠,所以m=﹣.故答案为:﹣.点评:考查了一元二次方程的定义,一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.本题容易忽视的条件是m﹣≠0.15.如图,菱形ABCD的边长为4,过点A,C作对角线AC的垂线,分别交CB和AD的延长线于点E,F,AE=3,则四边形AECF的周长为22 .考点:菱形的性质.分析:由菱形的性质得出AB=BC=4,AD∥BC,证明四边形AECF是平行四边形,得出CF=AE=3,AF=CE,再由角的互余关系求出∠BAE=∠E,得出BE=AB=4,求出CE,即可得出四边形AECF 的周长.解答:解:∵四边形ABCD是菱形,∴AB=BC=4,AD∥BC,∴AF∥CE,∵AE⊥AC,CF⊥AC,∴AE∥CF,∴四边形AECF是平行四边形,∴CF=AE=3,AF=CE,∵AB=BC,∴∠BAC=∠BCA,∵AE⊥AC,∴∠EAC=90°,∴∠BAC+∠BAE=90°,∠BCA+∠E=90°,∴∠BAE=∠E,∴BE=AB=4,∴CE=4+4=8,∴四边形AECF的周长=2(AE+CE)=2(3+8)=22.故答案为:22.点评:本题考查了菱形的性质、平行四边形的判定与性质、等腰三角形的判定、平行四边形周长的计算;熟练掌握菱形的性质,并能进行推理论证与计算是解决问题的关键.16.如图,在△ABC中,点D、E、F分别在边AB、BC、CA上,且DE∥CA,DF∥BA.下列四种说法:①四边形AEDF是平行四边形;②如果∠BAC=90°,那么四边形AEDF是矩形;③如果AD平分∠BAC,那么四边形AEDF是菱形;④如果AD⊥BC且AB=AC,那么四边形AEDF是菱形.其中,正确的有①②③④(只填写序号).考点:菱形的判定;平行四边形的判定;矩形的判定.专题:压轴题.分析:根据平行四边形、矩形、菱形的判定方法进行解答.解答:解:①∵DE∥CA,DF∥BA,∴四边形AEDF是平行四边形;故①正确;②若∠BAC=90°,则平行四边形AEDF是矩形;故②正确;③若AD平分∠BAC,则DE=DF;所以平行四边形是菱形;故③正确;④若AD⊥BC,AB=AC;根据等腰三角形三线合一的性质知:DA平分∠BAC;由③知:此时平行四边形AEDF是菱形;故④正确;所以正确的结论是①②③④.点评:此题主要考查了平行四边形、菱形、矩形的判定方法:两组对边分别平行的四边形是平行四边形;有一个角是直角的平行四边形是矩形;一组邻边相等的平行四边形是菱形.三、解答题(共72分)17.用配方法解下列方程:(1)x2﹣4x+2=0;(2)x2+3x+2=0.考点:解一元二次方程-配方法.专题:计算题.分析:(1)方程移项后,利用完全平方公式配方,开方即可求出解;(2)方程移项后,利用完全平方公式配方,开方即可求出解.解答:解:(1)方程整理得:x2﹣4x=﹣2,配方得:x2﹣4x+4=2,即(x﹣2)2=2,开方得:x﹣2=±,解得:x1=2+,x2=2﹣;(2)方程整理得:x2+3x=﹣2,配方得:x2+3x+=,即(x+)2=,开方得:x+=±,解得:x1=﹣1,x2=﹣2.点评:此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键.18.如图,在△ABC中,AB=AC,D为边BC上一点,以AB,BD为邻边作▱ABDE,连接AD,EC.(1)求证:△ADC≌△ECD;(2)若BD=CD,求证:四边形ADCE是矩形.考点:矩形的判定;全等三角形的判定与性质;等腰三角形的性质;平行四边形的性质.专题:证明题.分析:(1)根据平行四边形的性质、等腰三角形的性质,利用全等三角形的判定定理SAS 可以证得△ADC≌△ECD;(2)利用等腰三角形的“三合一”性质推知AD⊥BC,即∠ADC=90°;由平行四边形的判定定理(对边平行且相等是四边形是平行四边形)证得四边形ADCE是平行四边形,所以有一个角是直角的平行四边形是矩形.解答:证明:(1)∵四边形ABDE是平行四边形(已知),∴AB∥DE,AB=DE(平行四边形的对边平行且相等);∴∠B=∠EDC(两直线平行,同位角相等);又∵AB=AC(已知),∴AC=DE(等量代换),∠B=∠ACB(等边对等角),∴∠EDC=∠ACD(等量代换);∵在△ADC和△ECD中,,∴△ADC≌△ECD(SAS);(2)∵四边形ABDE是平行四边形(已知),∴BD∥AE,BD=AE(平行四边形的对边平行且相等),∴AE∥CD;又∵BD=CD,∴AE=CD(等量代换),∴四边形ADCE是平行四边形(对边平行且相等的四边形是平行四边形);在△ABC中,AB=AC,BD=CD,∴AD⊥BC(等腰三角形的“三合一”性质),∴∠ADC=90°,∴▱ADCE是矩形.点评:本题综合考查了平行四边形的判定与性质、全等三角形的判定以及矩形的判定.注意:矩形的判定定理是“有一个角是直角的‘平行四边形’是矩形”,而不是“有一个角是直角的‘四边形’是矩形”.19.如图,已知菱形ABCD的对角线相交于点O,延长AB至点E,使BE=AB,连接CE.(1)求证:BD=EC;(2)若∠E=50°,求∠BAO的大小.考点:菱形的性质;平行四边形的判定与性质.专题:证明题.分析:(1)根据菱形的对边平行且相等可得AB=CD,AB∥CD,然后证明得到BE=CD,BE∥CD,从而证明四边形BECD是平行四边形,再根据平行四边形的对边相等即可得证;(2)根据两直线平行,同位角相等求出∠ABO的度数,再根据菱形的对角线互相垂直可得AC⊥BD,然后根据直角三角形两锐角互余计算即可得解.解答:(1)证明:∵菱形ABCD,∴AB=CD,AB∥CD,又∵BE=AB,∴BE=CD,BE∥CD,∴四边形BECD是平行四边形,∴BD=EC;(2)解:∵平行四边形BECD,∴BD∥CE,∴∠ABO=∠E=50°,又∵菱形ABCD,∴AC丄BD,∴∠BAO=90°﹣∠ABO=40°.点评:本题主要考查了菱形的性质,平行四边形的判定与性质,熟练掌握菱形的对边平行且相等,菱形的对角线互相垂直是解本题的关键.20.(10分)(2010•黔南州)已知:如图,在▱ABCD中,E、F分别为边AB、CD的中点,BD是对角线,AG∥DB交CB的延长线于G.(1)求证:△ADE≌△CBF;(2)若四边形BEDF是菱形,则四边形AGBD是什么特殊四边形?并证明你的结论.考点:全等三角形的判定;平行四边形的性质;菱形的性质;矩形的判定.专题:几何综合题.分析:(1)在证明全等时常根据已知条件,分析还缺什么条件,然后用(SAS,ASA,SSS)来证明全等;(2)先由菱形的性质得出AE=BE=DE,再通过角之间的关系求出∠2+∠3=90°即∠ADB=90°,所以判定四边形AGBD是矩形.解答:(1)证明:∵四边形ABCD是平行四边形,∴∠4=∠C,AD=CB,AB=CD.∵点E、F分别是AB、CD的中点,∴AE=AB,CF=CD.∴AE=CF.在△AED和△CBF中,,∴△ADE≌△CBF(SAS).(2)解:当四边形BEDF是菱形时,四边形AGBD是矩形.证明:∵四边形ABCD是平行四边形,∴AD∥BC.∵AG∥BD,∴四边形AGBD是平行四边形.∵四边形BEDF是菱形,∴DE=BE.∵AE=BE,∴AE=BE=DE.∴∠1=∠2,∠3=∠4.∵∠1+∠2+∠3+∠4=180°,∴2∠2+2∠3=180°.∴∠2+∠3=90°.即∠ADB=90°.∴▱四边形AGBD是矩形.点评:本题主要考查了平行四边形的基本性质和矩形的判定及全等三角形的判定.平行四边形基本性质:①平行四边形两组对边分别平行;②平行四边形的两组对边分别相等;③平行四边形的两组对角分别相等;④平行四边形的对角线互相平分.三角形全等的判定条件:SSS,SAS,AAS,ASA.21.如图,已知菱形ABCD,AB=AC,E、F分别是BC、AD的中点,连接AE、CF.(1)证明:四边形AECF是矩形;(2)若AB=8,求菱形的面积.考点:矩形的判定;勾股定理;菱形的性质.专题:证明题.分析:(1)根据菱形的四条边都相等可得AB=BC,然后判断出△ABC是等边三角形,然后根据等腰三角形三线合一的性质可得AE⊥BC,∠AEC=90°,再根据菱形的对边平行且相等以及中点的定义求出AF与EC平行且相等,从而判定出四边形AECF是平行四边形,再根据有一个角是直角的平行四边形是矩形即可得证;(2)根据勾股定理求出AE的长度,然后利用菱形的面积等于底乘以高计算即可得解.解答:(1)证明:∵四边形ABCD是菱形,∴AB=BC,又∵AB=AC,∴△ABC是等边三角形,∵E是BC的中点,∴AE⊥BC(等腰三角形三线合一),∴∠1=90°,∵E、F分别是BC、AD的中点,∴AF=AD,EC=BC,∵四边形ABCD是菱形,∴AD∥BC且AD=BC,∴AF∥EC且AF=EC,∴四边形AECF是平行四边形(一组对边平行且相等的四边形是平行四边形),又∵∠1=90°,∴四边形AECF是矩形(有一个角是直角的平行四边形是矩形);(2)解:在Rt△ABE中,AE==4,所以,S菱形ABCD=8×4=32.点评:本题考查了矩形的判定,菱形的性质,平行四边形的判定,勾股定理的应用,等边三角形的判定与性质,证明得到四边形AECF是平行四边形是解题的关键,也是突破口.22.(10分)(2014•天水)如图,在正方形ABCD中,点E、F分别在边AB、BC上,∠ADE=∠CDF.(1)求证:AE=CF;(2)连结DB交CF于点O,延长OB至点G,使OG=OD,连结EG、FG,判断四边形DEGF是否是菱形,并说明理由.考点:正方形的性质;全等三角形的判定与性质;菱形的判定.专题:几何综合题.分析:(1)根据正方形的性质可得AD=CD,∠A=∠C=90°,然后利用“角边角”证明△ADE 和△CDF全等,根据全等三角形对应边相等可得AE=CF;(2)求出BE=BF,再求出DE=DF,再根据到线段两端点距离相等的点在线段的垂直平分线可得BD垂直平分EF,然后根据对角线互相垂直平分的四边形是菱形证明.解答:(1)证明:在正方形ABCD中,AD=CD,∠A=∠C=90°,在△ADE和△CDF中,,∴△ADE≌△CDF(ASA),∴AE=CF;(2)四边形DEGF是菱形.理由如下:在正方形ABCD中,AB=BC,∵AE=CF,∴AB﹣AE=BC﹣CF,即BE=BF,∵△ADE≌△CDF,∴DE=DF,∴BD垂直平分EF,又∵OG=OD,∴四边形DEGF是菱形.点评:本题考查了正方形的性质,全等三角形的判定与性质,菱形的判定,熟记各性质并确定出全等三角形是解题的关键.23.如图,在四边形ABCD中,点E.F.G.H分别为四边形ABCD各边的中点,顺次连接点E.F.G.H,(1)试判断四边形EFGH的形状,并证明你的结论.(2)如果四边形ABCD是矩形,则四边形EFGH是什么形状?并说明理由.考点:中点四边形.分析:(1)根据三角形的中位线得到HG∥AC,H G=AC,EF∥AC,EF=AC,推出EF=GH,EF∥GH,根据平行四边形的判定求出即可.(2)由三角形中位线定理得到FE=AC,EF=BD,则由矩形的对角线相等易推知平行四边形EFGH的邻边相等,故平行四边形EFGH是菱形.解答:解:(1)四边形EFGH是平行四边形,理由如下:∵四边形ABCD各边中点是E、F、G、H,∴HG∥AC,HG=AC,EF∥AC,EF=AC,∴EF=GH,EF∥GH,∴四边形EFGH是平行四边形.(2)如果四边形ABCD是矩形,则四边形EFGH是菱形.理由如下:由(1)知,四边形EFGH是平行四边形.∵E、F分别是AB、BC边上的中点,∴EF是△ABC的中位线,∴FE=AC,同理,EH=BD,又∵四边形ABCD是矩形,∴AC=BD,∴EF=EH,∴平行四边形EFGH是菱形.点评:本题主要考查对平行四边形的判定,三角形的中位线,平行公理及推论等知识点的理解和掌握,能推出EF=GH和EF∥GH是解此题的关键.。
2015-2016学年度第一学期九年级数学第三次月考试题(考试时间:100分钟满分:120分)班级:姓名:座号:成绩:1.已知⊙O的半径为5 cm,点P是⊙O外一点,则OP的长可能是A. 3 cmB. 4 cmC. 5 cmD. 6 cm2. 下列说法中,正确的是( )A.等弦所对的弧相等B.等弧所对的弦相等C.圆心角相等,所对的弦相等D.弦相等,所对的圆心角相等3.若⊙O直径为9cm,圆心O到直线AB的距离为5cm,则直线AB与⊙O的位置关系是()A.相切 B.相交 C.相离 D.无法确定4.直线3y x=+上有一点,则点关于原点的对称点在________.A.第一象限 B.第二象限 C.第三象限 D.第四象限5.从下列直角三角板与圆弧的位置关系中,可判断圆弧为半圆的是()A B C D6.在半径等于5cm的圆内有长为的弦,则此弦所对的圆周角为()A.120 B 30或120 C.60 D60或1207.二次函数y=2x2+3x-9的图象与x轴交点的横坐标是( )A.32和3 B.32和-3 C.-32和2 D.-32和-28. 如图,△ABC内接于⊙O,∠A = 30°,则∠BOC的度数为()A. 20°B. 30°C. 60°D. 80°9.如图,在正方形中,,点在上,且,点是上一动点,连接,将线段绕点逆时针旋转90°得到线段.要使点恰好落在上,则的长是( )A .1B .2C .3D .410.如图P 为⊙O 外一点,PA 、PB 分别与⊙O 相切于A 、B ,CD 与⊙O 相切于点E ,分别交PA 、PB 于点C 、D ,若PA=5,则△PCD 的周长为( )A .5B .7C .8D .1011.在平面直角坐标系中,已知点A (2,-3),若将 绕原点逆时针旋转得到,则点在平面直角坐标系中的位置是在( )A.(2,3)B. (2,-3)C. (-2,-3)D. (-2,3) 12. △ABC 的外心是△ABC 的( )A.三条高的交点B.三条中线的交点C.三条角平分线的交点D.三条边的垂直平分线的交点13. 已知两圆的半径R 、r 分别为方程0652=+-x x 的两根,圆心距为5,这两圆的位置关系是( )A .外离B .内切C .相交D .外切14.如图,圆O 的直径AB 垂直于弦CD ,垂足是E ,∠A=22.5°,OC=2,CD 的长为( )A .2B .4C .4D .8二、填空题(本大题满分16分,每小题4分)15、已知圆的半径等于13,直线与圆只有一个公共点,则圆心到直线的距离是______。
2016-2017学年九年级上学期第三次月考数学试卷一、选择题(本题共10小题,每题4分,共40分.每小题有四个答案,其中有且只有一个答案是正确的,请将正确答案的代号,写在题后的括号内.)1.在比例尺是1:8000的南京市城区地图上,太平南路的长度约为25cm,它的实际长度约为()A.320cm B.320m C.2000cm D.2000m2.下列图形一定相似的是()A.两个矩形 B.两个等腰梯形C.对应边成比例的两个四边形 D.有一个内角相等的菱形3.如图,在△ABC中,点D、E分别是AB、AC的中点,则下列结论不正确的是()A.BC=2DE B.△ADE∽△ABC C.=D.S△ABC=3S△ADE4.下列4×4的正方形网格中,小正方形的边长均为1,三角形的顶点都在格点上,则与△ABC相似的三角形所在的网格图形是()A.B.C.D.5.若二次函数y=ax2+bx+c(a≠0)的图象与x轴有两个交点,坐标分别为(x1,0),(x2,0),且x1<x2,图象上有一点M(x0,y0)在x轴下方,则下列判断正确的是()A.a>0 B.b2﹣4ac≥0C.x1<x0<x2D.a(x0﹣x1)(x0﹣x2)<06.如图,在平面直角坐标系中,以原点O为位似中心,将△ABO扩大到原来的2倍,得到△A′B′O.若点A的坐标是(1,2),则点A′的坐标是()A.(2,4)B.(﹣1,﹣2)C.(﹣2,﹣4)D.(﹣2,﹣1)7.已知如图,AB⊥BD,ED⊥BD,C是线段BD的中点,且AC⊥CE,ED=1,BD=4,那么AB的值为()A.2 B.3 C.4 D.58.二次函数y=ax2+bx+c的图象如图所示,有下列结论:①a<0,②b<0,③c>0,④4a﹣2b+c<0,⑤b+2a=0其中正确的个数有()A.1个B.2个C.3个D.4个9.如图,在△ABC中,AB=AC,∠A=36°,BD平分∠ABC交AC于点D,若AC=2,则AD的长是()A.B.C.﹣1 D.+110.如图,在▱ABCD中,AB=6,AD=9,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,BG=,则△CEF的周长为()A.8 B.9.5 C.10 D.11.5二、填空题(本大题共4小题,每小题5分,满分20分)11.若,则=.12.如图,要使△ABC与△DBA相似,则只需添加一个适当的条件是(填一个即可)13.如图,P是Rt△ABC的斜边BC上异于B、C的一点,过点P作直线截△ABC,使截得的三角形与△ABC相似,满足这样条件的直线共有条.14.如图所示,直线l和双曲线交于A、B两点,P是线段AB上的点(不与A、B重合),过点A、B、P分别向x轴作垂线,垂足分别为C、D、E,连接OA、OB、OP.设△AOC 的面积为S1、△BOD的面积为S2、△POE的面积为S3,则S1、S2、S3的大小关系是.三、(本大题共2小题,每小题8分,满分16分)15.如图矩形ABCD中,AB=6,BC=8,若将矩形折叠,使B点与D点重合,求折痕EF的长.16.周长为8米的铝合金条制成如图形状的窗框,使窗户的透光面积最大,则最大透光面积是多少.四、(本大题共2小题,每小题8分,满分16分)17.在△ABC中,∠B=25°,AD是BC边上的高,并且AD2=BD•CD,则∠BCA的度数为多少?18.如图,在6×8的网格图中,每个小正方形边长均为1,点O和△ABC的顶点均为小正方形的顶点.(1)以O为位似中心,在网格图中作△A′B′C′,使△A′B′C′和△ABC位似,且位似比为1:2.(2)连接(1)中的AA′,求四边形AA′C′C的周长.(结果保留根号)五、(本大题共2小题,每小题10分,满分20分)19.在△ABC中,AB=6,BC=8,CA=7,延长CA至点P,使∠PBA=∠C,求AP的长.20.已知:在直角梯形ABCD中,AD∥BC,∠C=90°,AB=AD=25,BC=32.连接BD,AE⊥BD 垂足为E.(1)求证:△ABE∽△DBC;(2)求线段AE的长.六、(本题满分12分)21.如图,某公路隧道横截面为抛物线,其最大高度为6米,底部宽度OM为12米.现以O点为原点,OM所在直线为x轴建立直角坐标系.(1)直接写出点M及抛物线顶点P的坐标;(2)求这条抛物线的解析式;(3)若要搭建一个矩形“支撑架”AD﹣DC﹣CB,使C、D点在抛物线上,A、B点在地面OM上,则这个“支撑架”总长的最大值是多少?七、(本题满分12分)22.已知:如图,△ABC是等边三角形,点D、E分别在边BC、AC上,∠ADE=60°.(1)求证:△ABD∽△DCE;(2)如果AB=3,EC=,求DC的长.八、(本题满分14分)23.如图,梯形ABCD中,AB∥CD,∠ABC=90°,AB=8,CD=6,BC=4,AB边上有一动点P(不与A、B重合),连结DP,作PQ⊥DP,使得PQ交线段BC于点E,设AP=x.(1)当x为何值时,△APD是等腰三角形?(2)若设BE=y,求y关于x的函数关系式;(3)若BC的长a可以变化,在现在的条件下,是否存在点P,使得PQ经过点C?若不存在,请说明理由;若存在,写出当BC的长在什么范围内时,可以存在这样的点P,使得PQ经过点C,并求出相应的AP的长.参考答案与试题解析一、选择题(本题共10小题,每题4分,共40分.每小题有四个答案,其中有且只有一个答案是正确的,请将正确答案的代号,写在题后的括号内.)1.在比例尺是1:8000的南京市城区地图上,太平南路的长度约为25cm,它的实际长度约为()A.320cm B.320m C.2000cm D.2000m【考点】比例线段;比例的性质.【专题】应用题.【分析】根据比例尺=图上距离:实际距离,列比例式,根据比例的基本性质即可求得结果.【解答】解:设它的实际长度为x,则:=x=200000cm=2000m.故选D.【点评】能够根据比例尺灵活计算,注意单位的换算问题.2.下列图形一定相似的是()A.两个矩形 B.两个等腰梯形C.对应边成比例的两个四边形 D.有一个内角相等的菱形【考点】相似图形.【分析】根据相似图形的定义,结合选项,用排除法求解.【解答】解:A、两个矩形的对应角相等,但对应边的比不一定相等,故错误;B、两个等腰梯形不一定相似,故错误;C、对应边成比例且对应角相等的两个四边形是全等形,故错误;D、有一个内角相等的菱形是相似图形,故正确,故选D.【点评】本题考查相似形的定义,熟悉各种图形的性质是解题的关键.3.如图,在△ABC中,点D、E分别是AB、AC的中点,则下列结论不正确的是()A.BC=2DE B.△ADE∽△ABC C.=D.S△ABC=3S△ADE【考点】三角形中位线定理;相似三角形的判定与性质.【专题】压轴题.【分析】根据三角形的中位线定理得出DE是△ABC的中位线,再由中位线的性质得出△ADE∽△ABC,进而可得出结论.【解答】解:∵在△ABC中,点D、E分别是边AB、AC的中点,∴DE∥BC,DE=BC,∴BC=2DE,故A正确;∵DE∥BC,∴△ADE∽△ABC,故B正确;∴=,故C正确;∵DE是△ABC的中位线,∴AD:BC=1:2,∴S△ABC=4S△ADE故D错误.故选D.【点评】本题考查的是相似三角形的判定与性质及三角形的中位线定理,熟记以上知识是解答此题的关键.4.下列4×4的正方形网格中,小正方形的边长均为1,三角形的顶点都在格点上,则与△ABC相似的三角形所在的网格图形是()A.B.C.D.【考点】相似三角形的判定.【专题】网格型.【分析】根据勾股定理求出△ABC的三边,并求出三边之比,然后根据网格结构利用勾股定理求出三角形的三边之比,再根据三边对应成比例,两三角形相似选择答案.【解答】解:根据勾股定理,AB==2,BC==,AC==,所以△ABC的三边之比为:2:=1:2:,A、三角形的三边分别为2,=,=3,三边之比为2::3=::3,故A选项错误;B、三角形的三边分别为2,4,=2,三边之比为2:4:2=1:2:,故B选项正确;C、三角形的三边分别为2,3,=,三边之比为2:3:,故C选项错误;D、三角形的三边分别为=,=,4,三边之比为::4,故D选项错误.故选:B.【点评】本题主要考查了相似三角形的判定与网格结构的知识,根据网格结构分别求出各三角形的三条边的长,并求出三边之比是解题的关键.5.若二次函数y=ax2+bx+c(a≠0)的图象与x轴有两个交点,坐标分别为(x1,0),(x2,0),且x1<x2,图象上有一点M(x0,y0)在x轴下方,则下列判断正确的是()A.a>0 B.b2﹣4ac≥0C.x1<x0<x2D.a(x0﹣x1)(x0﹣x2)<0【考点】抛物线与x轴的交点.【专题】压轴题.【分析】根据抛物线与x轴有两个不同的交点,根的判别式△>0,再分a>0和a<0两种情况对C、D选项讨论即可得解.【解答】解:A、二次函数y=ax2+bx+c(a≠0)的图象与x轴有两个交点无法确定a的正负情况,故本选项错误;B、∵x1<x2,∴△=b2﹣4ac>0,故本选项错误;C、若a>0,则x1<x0<x2,若a<0,则x0<x1<x2或x1<x2<x0,故本选项错误;D、若a>0,则x0﹣x1>0,x0﹣x2<0,所以,(x0﹣x1)(x0﹣x2)<0,∴a(x0﹣x1)(x0﹣x2)<0,若a<0,则(x0﹣x1)与(x0﹣x2)同号,∴a(x0﹣x1)(x0﹣x2)<0,综上所述,a(x0﹣x1)(x0﹣x2)<0正确,故本选项正确.故选:D.【点评】本题考查了二次函数与x轴的交点问题,熟练掌握二次函数图象以及图象上点的坐标特征是解题的关键,C、D选项要注意分情况讨论.6.如图,在平面直角坐标系中,以原点O为位似中心,将△ABO扩大到原来的2倍,得到△A′B′O.若点A的坐标是(1,2),则点A′的坐标是()A.(2,4)B.(﹣1,﹣2)C.(﹣2,﹣4)D.(﹣2,﹣1)【考点】位似变换;坐标与图形性质.【分析】根据以原点O为位似中心,将△ABO扩大到原来的2倍,即可得出对应点的坐标应乘以﹣2,即可得出点A′的坐标.【解答】解:根据以原点O为位似中心,图形的坐标特点得出,对应点的坐标应乘以﹣2,故点A的坐标是(1,2),则点A′的坐标是(﹣2,﹣4),故选:C.【点评】此题主要考查了关于原点对称的位似图形的性质,得出对应点的坐标乘以k或﹣k是解题关键.7.已知如图,AB⊥BD,ED⊥BD,C是线段BD的中点,且AC⊥CE,ED=1,BD=4,那么AB的值为()A.2 B.3 C.4 D.5【考点】相似三角形的判定与性质.【分析】根据相似三角形的判定及已知可得到△ABC∽△CDE,利用相似三角形的对应边成比例即可求得AB的长.【解答】解:∵C是线段BD的中点,BD=4,∴BC=CD=2,∵AB⊥BD,ED⊥BD,∴∠B=∠D=90°,∠A+∠ACB=90°,∵AC⊥CE,即∠ECD+∠ACB=90°,∴∠A=∠ECD,∴△ABC∽△CDE,∴=,∴=,∴AB=4,故选C.【点评】本题主要考查相似三角形的判定、相似三角形的性质等知识,关键是推出△ABC∽△CDE.8.二次函数y=ax2+bx+c的图象如图所示,有下列结论:①a<0,②b<0,③c>0,④4a﹣2b+c<0,⑤b+2a=0其中正确的个数有()A.1个B.2个C.3个D.4个【考点】二次函数图象与系数的关系.【分析】由开口方向,对称轴在y轴右侧,与y交于正半轴,可判定a,b,c的符号,由对称轴为x=1,可求得与x轴的交点坐标以及b+2a=0,继而可判定4a﹣2b+c<0.【解答】解:∵开口向下,∴a<0,故①正确;∵对称轴x=﹣>0,∴b>0,故②错误;∵与y轴交于正半轴,∴c>0,故③正确;∵对称轴为x=1,与x轴的一个交点为(3,0),∴另一个交点为:(﹣1,0),∴当x=﹣2时,y=4a﹣2b+c<0,故④正确;∵对称轴x=﹣=1,∴b+2a=0,故⑤正确.故选D.【点评】此题考查了二次函数系数与图象的关系.此题难度不大,注意掌握抛物线开口方向、对称轴、抛物线与y轴的交点确定,注意掌握抛物线的对称性.9.如图,在△ABC中,AB=AC,∠A=36°,BD平分∠ABC交AC于点D,若AC=2,则AD的长是()A.B.C.﹣1 D.+1【考点】黄金分割.【专题】压轴题.【分析】根据两角对应相等,判定两个三角形相似.再用相似三角形对应边的比相等进行计算求出BD的长.【解答】解:∵∠A=∠DBC=36°,∠C公共,∴△ABC∽△BDC,且AD=BD=BC.设BD=x,则BC=x,CD=2﹣x.由于=,∴=.整理得:x2+2x﹣4=0,解方程得:x=﹣1±,∵x为正数,∴x=﹣1+.故选C.【点评】本题考查的是相似三角形的判定与性质,先用两角对应相等判定两个三角形相似,再用相似三角形的性质对应边的比相等进行计算求出BD的长.10.如图,在▱ABCD中,AB=6,AD=9,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,BG=,则△CEF的周长为()A.8 B.9.5 C.10 D.11.5【考点】相似三角形的判定与性质;勾股定理;平行四边形的性质.【专题】计算题;压轴题.【分析】本题意在综合考查平行四边形、相似三角形、和勾股定理等知识的掌握程度和灵活运用能力,同时也体现了对数学中的数形结合思想的考查.在▱ABCD中,AB=CD=6,AD=BC=9,∠BAD 的平分线交BC于点E,可得△ADF是等腰三角形,AD=DF=9;△ABE是等腰三角形,AB=BE=6,所以CF=3;在△ABG中,BG⊥AE,AB=6,BG=,可得AG=2,又△ADF是等腰三角形,BG⊥AE,所以AE=2AG=4,所以△ABE的周长等于16,又由▱ABCD可得△CEF∽△BEA,相似比为1:2,所以△CEF的周长为8,因此选A.【解答】解:∵在▱ABCD中,AB=CD=6,AD=BC=9,∠BAD的平分线交BC于点E,∴AB∥DC,∠BAF=∠DAF,∴∠BAF=∠F,∴∠DAF=∠F,∴AD=FD,∴△ADF是等腰三角形,同理△ABE是等腰三角形,AD=DF=9;∵AB=BE=6,∴CF=3;∴在△ABG中,BG⊥AE,AB=6,BG=,可得:AG=2,又BG⊥AE,∴AE=2AG=4,∴△ABE的周长等于16,又∵▱ABCD∴△CEF∽△BEA,相似比为1:2,∴△CEF的周长为8.故选:A.【点评】本题考查勾股定理、相似三角形的知识,相似三角形的周长比等于相似比.二、填空题(本大题共4小题,每小题5分,满分20分)11.若,则=.【考点】比例的性质.【专题】计算题;压轴题.【分析】根据比例的基本性质熟练进行比例式和等积式的互相转换.【解答】解:根据题意,设x=2k,y=3k,z=4k,则=,故答案为:.【点评】已知几个量的比值时,常用的解法是:设一个未知数,把题目中的几个量用所设的未知数表示出来,实现消元.12.如图,要使△ABC与△DBA相似,则只需添加一个适当的条件是∠C=∠BAD(填一个即可)【考点】相似三角形的判定.【专题】开放型.【分析】根据相似三角形的判定:(1)三边法:三组对应边的比相等的两个三角形相似;(2)两边及其夹角法:两组对应边的比相等且夹角对应相等的两个三角形相似;(3)两角法:有两组角对应相等的两个三角形相似,进行添加即可.【解答】解:∵∠B=∠B(公共角),∴可添加:∠C=∠BAD.此时可利用两角法证明△ABC与△DBA相似.故答案可为:∠C=∠BAD.【点评】本题考查了相似三角形的判定,注意掌握相似三角形判定的三种方法,本题答案不唯一.13.如图,P是Rt△ABC的斜边BC上异于B、C的一点,过点P作直线截△ABC,使截得的三角形与△ABC相似,满足这样条件的直线共有3条.【考点】相似三角形的判定.【分析】过点P作直线与另一边相交,使所得的三角形与原三角形有一个公共角,只要再作一个直角就可以.【解答】解:由于△ABC是直角三角形,过P点作直线截△ABC,则截得的三角形与△ABC有一公共角,所以只要再作一个直角即可使截得的三角形与Rt△ABC相似,过点P可作AB的垂线、AC的垂线、BC的垂线,共3条直线.故答案为:3.【点评】本题主要考查三角形相似判定定理及其运用.解题时运用了两角法(有两组角对应相等的两个三角形相似)来判定两个三角形相似.14.如图所示,直线l和双曲线交于A、B两点,P是线段AB上的点(不与A、B重合),过点A、B、P分别向x轴作垂线,垂足分别为C、D、E,连接OA、OB、OP.设△AOC 的面积为S1、△BOD的面积为S2、△POE的面积为S3,则S1、S2、S3的大小关系是S1=S2<S3.【考点】反比例函数综合题.【分析】根据双曲线的图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系即S=|k|.【解答】解:结合题意可得:AB都在双曲线y=上,则有S1=S2;而线段AB之间,直线在双曲线上方;故S1=S2<S3.故答案为:S1=S2<S3.【点评】本题主要考查了反比例函数中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.三、(本大题共2小题,每小题8分,满分16分)15.如图矩形ABCD中,AB=6,BC=8,若将矩形折叠,使B点与D点重合,求折痕EF的长.【考点】翻折变换(折叠问题).【分析】如图,证明BF=DF(设为λ),BD⊥EF;证明∠C=90°,DC=AB=6,FC=8﹣λ;列出关于λ的方程,求出λ;借助面积公式即可解决问题.【解答】解:如图,连接BE,DF;由题意得:BF=DF(设为λ),BD⊥EF;∵四边形ABCD为矩形,∴∠C=90°,DC=AB=6,FC=8﹣λ;由勾股定理得:λ2=(8﹣λ)2+62,解得:λ=;BF=λ=.同理可求:BD=10.=BF•DC=BD•EF,∵S四边形BEDF∴EF=7.5.【点评】该题主要考查了翻折变换的性质及其应用问题;解题的关键是作辅助线,灵活运用翻折变换的性质、勾股定理等几何知识点来分析、判断、推理或解答.16.周长为8米的铝合金条制成如图形状的窗框,使窗户的透光面积最大,则最大透光面积是多少.【考点】二次函数的应用.【分析】首先表示出窗户的高,进而表示出矩形面积,再利用配方法求出二次函数最值即可.【解答】解:设矩形窗户的透光面积为S平方米,窗户的宽为x米,则窗户的高为米,由此得出:S=x•,整理得S=﹣x2+4x=﹣(x﹣)2+,因为,所以抛物线开口向下,函数有最大值,最大值为.【点评】此题主要考查了二次函数的应用,根据题意得出正确函数关系式是解题关键.四、(本大题共2小题,每小题8分,满分16分)17.在△ABC中,∠B=25°,AD是BC边上的高,并且AD2=BD•CD,则∠BCA的度数为多少?【考点】相似三角形的判定与性质.【专题】计算题.【分析】解答此题的关键的是利用AD2=BD×CD,推出△ABD∽△ADC,然后利用对应角相等即可知∠BCA的度数.注意分为高在三角形内与高在三角形外两种.【解答】解:如图1:∵∠B=25°,AD是BC边上的高,∴∠BAD=65°,∵AD2=BD.CD,∴,AD⊥BC,∴△ABD∽△CDA,∴∠BCA=∠BAD=65°.如图2:∵∠B=25°,AD是BC边上的高,∴∠BAD=65°,∵AD2=BD.CD,∴,AD⊥BC,∴△ABD∽△CDA,∴∠ACD=∠BAD=65°,∴∠ACB=180°﹣∠ACD=115°.∴∠BCA的度数为65°或115°.【点评】本题关键是要懂得利用对应边成比例,找出相似三角形,利用相似三角形的性质求解.注意三角形的高的作法.18.如图,在6×8的网格图中,每个小正方形边长均为1,点O和△ABC的顶点均为小正方形的顶点.(1)以O为位似中心,在网格图中作△A′B′C′,使△A′B′C′和△ABC位似,且位似比为1:2.(2)连接(1)中的AA′,求四边形AA′C′C的周长.(结果保留根号)【考点】作图-位似变换.【专题】作图题.【分析】(1)取OA的中点A′,OB的中点B′,OC的中点C′,然后顺次连接即可;(2)根据勾股定理列式求出AC、A′C′的长,再根据周长公式列式进行计算即可得解.【解答】解:(1)如图所示,△A′B′C′即为所求作的三角形;(2)根据勾股定理,AC==2,A′C′==,所以,四边形AA′C′C的周长为:1++2+2=3+3.【点评】本题考查了利用位似变换作图,根据网格结构,准确找出对应点的位置是解题的关键.五、(本大题共2小题,每小题10分,满分20分)19.在△ABC中,AB=6,BC=8,CA=7,延长CA至点P,使∠PBA=∠C,求AP的长.【考点】相似三角形的判定与性质.【分析】由已知∠PBA=∠C,∠P=∠P,可得△PAB∽△PBC,即,设PA=x,PB=y代入数值即可求出.【解答】解:由已知∠PBA=∠C,∠P=∠P,∴△PAB∽△PBC,即,设PA=x,PB=y,则有,解方程组可得x=9,∴PA=9.【点评】本题考查了相似三角形的判定和性质,列出二元一次方程组是解题的关键.20.已知:在直角梯形ABCD中,AD∥BC,∠C=90°,AB=AD=25,BC=32.连接BD,AE⊥BD 垂足为E.(1)求证:△ABE∽△DBC;(2)求线段AE的长.【考点】相似三角形的判定与性质;勾股定理;直角梯形.【专题】压轴题.【分析】(1)由等腰三角形的性质可知∠ABD=∠ADB,由AD∥BC可知,∠ADB=∠DBC,由此可得∠ABD=∠DBC,又∵∠AEB=∠C=90°,利用“AA”可证△ABE∽△DBC;(2)由等腰三角形的性质可知,BD=2BE,根据△ABE∽△DBC,利用相似比求BE,在Rt△ABE 中,利用勾股定理求AE.【解答】(1)证明:∵AB=AD=25,∴∠ABD=∠ADB,∵AD∥BC,∴∠ADB=∠DBC,∴∠ABD=∠DBC,∵AE⊥BD,∴∠AEB=∠C=90°,∴△ABE∽△DBC;(2)解:∵AB=AD,又AE⊥BD,∴BE=DE,∴BD=2BE,由△ABE∽△DBC,得,∵AB=AD=25,BC=32,∴,∴BE=20,∴AE=.【点评】本题考查了相似三角形的判定与性质.关键是要懂得找相似三角形,利用相似三角形的性质及勾股定理解题.六、(本题满分12分)21.如图,某公路隧道横截面为抛物线,其最大高度为6米,底部宽度OM为12米.现以O点为原点,OM所在直线为x轴建立直角坐标系.(1)直接写出点M及抛物线顶点P的坐标;(2)求这条抛物线的解析式;(3)若要搭建一个矩形“支撑架”AD﹣DC﹣CB,使C、D点在抛物线上,A、B点在地面OM上,则这个“支撑架”总长的最大值是多少?【考点】二次函数的应用.【专题】压轴题.【分析】(1)根据所建坐标系易求M、P的坐标;(2)可设解析式为顶点式,把O点(或M点)坐标代入求待定系数求出解析式;(3)总长由三部分组成,根据它们之间的关系可设A点坐标为(m,0),用含m的式子表示三段的长,再求其和的表达式,运用函数性质求解.【解答】解:(1)M(12,0),P(6,6).(2)设抛物线解析式为:y=a(x﹣6)2+6∵抛物线y=a(x﹣6)2+6经过点(0,0)∴0=a(0﹣6)2+6,即a=﹣∴抛物线解析式为:y=﹣(x﹣6)2+6,即y=﹣x2+2x.(3)设A(m,0),则B(12﹣m,0),C(12﹣m,﹣m2+2m)D(m,﹣m2+2m).∴“支撑架”总长AD+DC+CB=(﹣m2+2m)+(12﹣2m)+(﹣m2+2m)=﹣m2+2m+12=﹣(m﹣3)2+15.∵此二次函数的图象开口向下.∴当m=3米时,AD+DC+CB有最大值为15米.【点评】本题难度在第(3)问,要分别求出三部分的表达式再求其和.关键在根据图形特点选取一个合适的参数表示它们,得出关系式后运用函数性质来解.七、(本题满分12分)22.已知:如图,△ABC是等边三角形,点D、E分别在边BC、AC上,∠ADE=60°.(1)求证:△ABD∽△DCE;(2)如果AB=3,EC=,求DC的长.【考点】相似三角形的判定与性质.【分析】(1)△ABC是等边三角形,得到∠B=∠C=60°,AB=AC,推出∠BAD=∠CDE,得到△ABD∽△DCE;(2)由△ABD∽△DCE,得到=,然后代入数值求得结果.【解答】(1)证明:∵△ABC是等边三角形,∴∠B=∠C=60°,AB=AC,∵∠B+∠BAD=∠ADE+∠CDE,∠B=∠ADE=60°,∴∠BAD=∠CDE∴△ABD∽△DCE;(2)解:由(1)证得△ABD∽△DCE,∴=,设CD=x,则BD=3﹣x,∴=,∴x=1或x=2,∴DC=1或DC=2.【点评】本题考查了等边三角形的性质,相似三角形的判定和性质,注意数形结合和方程思想的应用.八、(本题满分14分)23.如图,梯形ABCD中,AB∥CD,∠ABC=90°,AB=8,CD=6,BC=4,AB边上有一动点P(不与A、B重合),连结DP,作PQ⊥DP,使得PQ交线段BC于点E,设AP=x.(1)当x为何值时,△APD是等腰三角形?(2)若设BE=y,求y关于x的函数关系式;(3)若BC的长a可以变化,在现在的条件下,是否存在点P,使得PQ经过点C?若不存在,请说明理由;若存在,写出当BC的长在什么范围内时,可以存在这样的点P,使得PQ经过点C,并求出相应的AP的长.【考点】四边形综合题.【分析】(1)表示出PH,然后分①当AP=AD时,②当AD=PD时,根据等腰三角形三线合一的性质,AH=PH,列式进行计算即可得解;③当AP=PD时,表示出PH,然后在Rt△DPH中,根据勾股定理列式进行计算即可得解;(2)根据同角的余角相等求出∠HDP=∠EPB,再根据两角对应相等,两三角形相似求出△DPH和△PEB相似,然后根据相似三角形对应边成比例列出比例式整理即可得解;(3)根据PQ过点C时,BE=4,代入(2)的BE的表达式,再根据一元二次方程的解确定即可.【解答】解:(1)过D点作DH⊥AB于H,则四边形DHBC为矩形,∴DH=BC=4,HB=CD=6,∴AH=2,AD=2,∵AP=x,∴PH=x﹣2,情况①:当AP=AD时,即x=2,情况②:当AD=PD时,则AH=PH,∴2=x﹣2,解得x=4,情况③:当AP=PD时,则Rt△DPH中,x2=42+(x﹣2)2,解得x=5,∵2<x<8,∴当x为2、4、5时,△APD是等腰三角形;(2)∵∠DPE=∠DHP=90°,∴∠DPH+∠EPB=∠DPH+∠HDP=90°,∴∠HDP=∠EPB,又∵∠DHP=∠B=90°,∴△DPH∽△PEB,∴,∴,整理得:;(3)存在,由(2)得△DPH∽△PEB,∴,∴y=,当y=a时,(8﹣x)(x﹣2)=a2,即x2﹣10x+(16+a2)=0,△=100﹣4(16+a2)≥0,即100﹣64﹣4a2≥0,即a2≤9,又∵a>0,∴0<a≤3,∴当BC满足0<BC≤3时,存在点P,使得PQ经过C,此时,AP的长为.【点评】本题考查了四边形综合题,主要考查了直角梯形的性质,勾股定理,等腰三角形的性质,相似三角形的判定与性质,一元二次方程的解的情况,综合性较强,难度较大,(1)要根据等腰三角形的腰长的不同分情况讨论.。
九年级数学上册第三次月考试卷九年级的新学期开始不久,同学们即将迎来第三次月考的时刻了,同学们需要准备哪些数学月考试卷来练习呢?下面是店铺为大家带来的关于九年级数学上册第三次月考试卷,希望会给大家带来帮助。
九年级数学上册第三次月考试卷及答案解析:一、选择题(本大题共11小题,每小题4分,共40分)1.抛物线y=(x﹣1)2+2的顶点是( )A.(1,﹣2)B.(1,2)C.(﹣1,2)D.(﹣1,﹣2)【考点】二次函数的性质.【分析】已知抛物线解析式为顶点式,根据顶点式的坐标特点,直接写成顶点坐标.【解答】解:因为抛物线y=2(x﹣1)2+2是顶点式,根据顶点式的坐标特点,顶点坐标为(1,2).故选B.【点评】抛物线的顶点式的应用.2.⊙O是△ABC的外接圆,若∠ABC=40°,则∠AOC的度数为( )A.20°B.40°C.60°D.80°【考点】圆周角定理.【分析】由⊙O是△ABC的外接圆,若∠ABC=40°,根据圆周角定理,即可求得答案.【解答】解:∵⊙O是△ABC的外接圆,∠ABC=40°,∴∠AOC=2∠ABC=80°.故选:D.【点评】此题考查了圆周角定理.此题比较简单,注意掌握数形结合思想的应用.3.某厂一月份的总产量为500吨,三月份的总产量达到为720吨.若平均每月增长率是x,则可以列方程( )A.500(1+2x)=720B.500(1+x)2=720C.500(1+x2)=720D.720(1+x)2=500【考点】由实际问题抽象出一元二次方程.【专题】增长率问题.【分析】主要考查增长率问题,一般用增长后的量=增长前的量×(1+增长率),如果设平均每月增率是x,那么根据三月份的产量可以列出方程.【解答】解:设平均每月增率是x,二月份的产量为:500×(1+x);三月份的产量为:500(1+x)2=720;故本题选B.【点评】找到关键描述语,找到等量关系是解决问题的关键;本题考查求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b(当增长时中间的“±”号选“+”,当降低时中间的“±”号选“﹣”).4.如果关于x的一元二次方程ax2+x﹣1=0有实数根,则a的取值范围是( )A.a>﹣B.a≥﹣C.a≥﹣且a≠0D.a> 且a≠0【考点】根的判别式;一元二次方程的定义.【分析】在判断一元二次方程根的情况的问题中,必须满足下列条件:(1)二次项系数不为零;(2)在有实数根的情况下必须满足△=b2﹣4ac≥0.【解答】解:依题意列方程组,解得a≥﹣且a≠0.故选C.【点评】本题考查了一元二次方程根的判别式的应用.切记不要忽略一元二次方程二次项系数不为零这一隐含条件.5.下列形中,是中心对称形的是( )A. B. C. D.【考点】中心对称形.【分析】根据中心对称形的概念,即可求解.【解答】解:中心对称形,即把一个形绕一个点旋转180°后能和原来的形重合,只有A符合;B,C,D不是中心对称形.故选;A.【点评】本题考查了中心对称形的概念:在同一平面内,如果把一个形绕某一点旋转180度,旋转后的形能和原形完全重合,那么这个形就叫做中心对称形.6.下列事件是随机事件的为( )A.度量三角形的内角和,结果是180°B.经过城市中有交通信号灯的路口,遇到红灯C.爸爸的年龄比爷爷大D.通常加热到100℃时,水沸腾【考点】随机事件.【分析】随机事件就是可能发生,也可能不发生的事件,依据定义即可作出判断.【解答】A、是必然事件,选项错误;B、正确;C、是不可能事件,选项错误;D、是必然事件,选项错误.故选B.【点评】解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.7.将二次函数y=x2﹣2x+3化为y=(x﹣h)2+k的形式,结果为( )A.y=(x+1)2+4B.y=(x﹣1)2+4C.y=(x+1)2+2D.y=(x﹣1)2+2【考点】二次函数的三种形式.【分析】本题是将一般式化为顶点式,由于二次项系数是1,只需加上一次项系数的一半的平方来凑成完全平方式即可.【解答】解:y=x2﹣2x+3=x2﹣2x+1﹣1+3=(x﹣1)2+2.故选:D.【点评】二次函数的解析式有三种形式:(1)一般式:y=ax2+bx+c(a≠0,a、b、c为常数);(2)顶点式:y=a(x﹣h)2+k;(3)交点式(与x轴):y=a(x﹣x1)(x﹣x2).8.已知一个圆锥的侧面积是150π,母线为15,则这个圆锥的底面半径是( )A.5B.10C.15D.20【考点】圆锥的计算.【分析】根据圆锥的侧面积=底面半径×母线长×π,进而求出即可.【解答】解:∵母线为15,设圆锥的底面半径为x,∴圆锥的侧面积=π×15×x=150π.解得:x=10.故选:B.【点评】本题考查了圆锥的计算,熟练利用圆锥公式求出是解题关键.9.将抛物线y=x2向左平移2个单位,所得抛物线的解析式为( )A.y=x2﹣2B.y=x2+2C.y=(x+2)2D.y=(x﹣2)2【考点】二次函数象与几何变换.【专题】存在型.【分析】直接根据“左加右减”的原则进行解答即可.【解答】解:由“左加右减”的原则可知,将抛物线y=x2向左平移2个单位,所得抛物线的解析式为:y=(x+2)2.故选C.【点评】本题考查的是二次函数的象与几何变换,熟知函数象平移的法则是解答此题的关键.10.CD是⊙O的直径,AB是弦(不是直径),AB⊥CD于点E,则下列结论正确的是( )A.AE>BEB. =C.∠AEC=2∠DD.∠B=∠C.【考点】垂径定理;圆周角定理.【分析】根据垂径定理和圆周角定理判断即可.【解答】解:∵AB⊥CD,CD过O,∴AE=BE,弧AD=弧BD,连接OA,则∠AOC=2∠ADE,∵∠AEC>∠AOC,∴∠AEC=2∠D错误;∵AB不是直径,∴根据已知不能推出弧AC=弧BD,∴∠B和∠C不相等,即只有选项B正确;选项A、C、D都错误;故选A.【点评】本题考查了垂径定理和圆周角定理的应用,主要考查学生的推理能力和辨析能力.11.P是边长为1的正方形ABCD对角线AC上一动点(P与A、C 不重合),点E在射线BC上,且PE=PB.设AP=x,△PBE的面积为y.则下列象中,能表示y与x的函数关系的象大致是( )A..B..C..D..【考点】动点问题的函数象.【分析】过点P作PF⊥BC于F,若要求△PBE的面积,则需要求出BE,PF的值,利用已知条件和正方形的性质以及勾股定理可求出BE,PF的值.再利用三角形的面积公式得到y与x的关系式,此时还要考虑到自变量x的取值范围和y的取值范围.【解答】解:过点P作PF⊥BC于F,∵PE=PB,∴BF=EF,∵正方形ABCD的边长是1,∴AC= = ,∵AP=x,∴PC= ﹣x,∴PF=FC= ( ﹣x)=1﹣ x,∴BF=FE=1﹣FC= x,∴S△PBE= BE•PF= x(1﹣ x)=﹣ x2+ x,即y=﹣ x2+ x(0∴y是x的二次函数(0故选D.【点评】本题考查了动点问题的函数象,和正方形的性质;等于直角三角形的性质;三角形的面积公式.对于此类问题来说是典型的数形结合,象应用信息广泛,通过看获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题、解决问题的能力.用象解决问题时,要理清象的含义即会识.二、填空题(本大题共7小题,每小题3分,共21分)12.已知⊙O的半径为4cm,如果圆心O到直线L的距离为3.5cm,那么直线L与⊙O的位置关系是相交.【考点】直线与圆的位置关系.【分析】运用直线与圆的三种位置关系,结合3.5<4,即可解决问题.【解答】解:∵⊙O的半径为4,圆心O到直线L的距离为3.5,而3.5<4,∴直线L与⊙O相交.故答案为:相交.【点评】该题主要考查了直线与圆的位置关系及其应用问题;若圆的半径为λ,圆心到直线的距离为μ,当λ>μ时,直线与圆相交;当λ=μ时,直线与圆相切;当λ<μ时,直线与圆相离.13.如果扇形的圆心角为120°,半径为3cm,那么扇形的面积是3πcm2,弧长2πcm.【考点】扇形面积的计算;弧长的计算.【分析】先根据扇形的面积公式计算出扇形的面积,再根据弧长公式计算出其弧长即可.【解答】解:∵扇形的圆心角为120°,半径为3cm,∴S扇形= =3π(cm2);l= =2π(cm).故答案为:3π,2π.【点评】本题考查的是扇形面积的计算,熟记扇形的面积公式是解答此题的关键.14.一个口袋里放有三枚除颜色外都相同的棋子,其中有两枚是白色的,一枚是红色的.从中随机摸出一枚记下颜色,放回口袋搅匀,再从中随机摸出一枚记下颜色,两次摸出棋子颜色不同的概率是 .【考点】列表法与树状法.【专题】计算题.【分析】根据题意列出表格得出所有等可能的情况数,找出颜色不同的情况数,即可求出所求的概率.【解答】解:列表如下:白白红白 (白,白) (白,白) (红,白)白 (白,白) (白,白) (红,白)红 (白,红) (白,红) (红,红)所有等可能的情况有9种,其中两次摸出棋子颜色不同的情况有5种,则P(颜色不同)= .故答案为: .【点评】此题考查了列表法与树状法,用到的知识点为:概率=所求情况数与总情况数之比.15.所示,圆O的半径为5,AB为弦,OC⊥AB,垂足为E,如果CE=2,那么AB的长是8.【考点】垂径定理;勾股定理.【分析】连接OA;首先求出OE的长度;借助勾股定理求出AE的长度,即可解决问题.【解答】解:连接OA;OE=OC﹣CE=5﹣2=3;∵OC⊥AB,∴AE=BE;由勾股定理得:AE2=OA2﹣OE2,∵OA=5,OE=3,∴AE=4,AB=2AE=8.故答案为8.【点评】该题主要考查了勾股定理、垂径定理等的应用问题;作辅助线,构造直角三角形,灵活运用勾股定理、垂径定理来分析、判断、解答是解题的关键.16.在平面直角坐标系中,抛物线y= 经过平移得到抛物线y= ,其对称轴与两段抛物线所围成的阴影部分的面积为4.【考点】二次函数象与几何变换.【分析】确定出抛物线y= x2﹣2x的顶点坐标,然后求出抛物线的对称轴与原抛物线的交点坐标,从而判断出阴影部分的面积等于三角形的面积,再根据三角形的面积公式列式计算即可得解.【解答】解:∵y= x2﹣2x= (x﹣2)2﹣2,∴平移后抛物线的顶点坐标为(2,﹣2),对称轴为直线x=2,当x=2时,y= ×22=2,∴平移后阴影部分的面积等于三角形的面积,×(2+2)×2=4.故答案为:4.【点评】本题考查了二次函数象与几何变换,确定出与阴影部分面积相等的三角形是解题的关键.17.若a、b(a【考点】解一元二次方程-因式分解法;关于x轴、y轴对称的点的坐标.【专题】计算题.【分析】利用因式分解法求出已知方程的解确定出a与b的值,即可得出(a,b)关于x轴的对称点坐标.【解答】解:方程2x2﹣7x+3=0,分解因式得:(2x﹣1)(x﹣3)=0,解得:x1= ,x2=3,∴a= ,b=3,则( ,3)关于x轴的对称点坐标为( ,﹣3),故答案为:( ,﹣3)【点评】此题考查了解一元二次方程﹣因式分解法,熟练掌握因式分解的方法是解本题的关键.18.所示,点A是半圆上的一个三等分点,B是劣弧的中点,点P 是直径MN上的一个动点,⊙O的半径为1,则AP+PB的最小值 .【考点】垂径定理;轴对称-最短路线问题.【专题】动点型.【分析】本题是要在MN上找一点P,使PA+PB的值最小,设A′是A关于MN的对称点,连接A′B,与MN的交点即为点P.此时PA+PB=A′B是最小值,可证△OA′B是等腰直角三角形,从而得出结果.【解答】解:作点A关于MN的对称点A′,连接A′B,交MN于点P,连接OA′,OA,OB,PA,AA′.∵点A与A′关于MN对称,点A是半圆上的一个三等分点,∴∠A′ON=∠AON=60°,PA=PA′,∵点B是弧AN的中点,∴∠BON=30°,∴∠A′OB=∠A′ON+∠BON=90°,又∵OA=OA′=1,∴A′B= .∴PA+PB=PA′+PB=A′B= .故答案为: .【点评】本题结合形的性质,考查轴对称﹣﹣最短路线问题.其中求出∠BOA′的度数是解题的关键.三、解答题(本大题共8题,共89分)19.已知二次函数y=x2+2x﹣1.(1)写出它的顶点坐标;(2)当x取何值时,y随x的增大而增大;(3)求出象与x轴的交点坐标.【考点】二次函数的性质;抛物线与x轴的交点.【分析】(1)配方后直接写出顶点坐标即可;(2)确定对称轴后根据其开口方向确定其增减性即可;(3)令y=0后求得x的值后即可确定与x轴的交点坐标;【解答】解:(1)y=x2+2x﹣1=(x+1)2﹣2,∴顶点坐标为:(﹣1,﹣2);(2)∵y=x2+2x﹣1=(x+1)2﹣2的对称轴为:x=﹣1,开口向上,∴当x>﹣1时,y随x的增大而增大;(3)令y=x2+2x﹣1=0,解得:x=﹣1﹣或x=﹣1+ ,∴象与x轴的交点坐标为(﹣1﹣,0),(﹣1+ ,0).【点评】本题考查了二次函数的性质,解题的关键是了解抛物线的有关性质.20.设点A的坐标为(x,y),其中横坐标x可取﹣1、2,纵坐标y 可取﹣1、1、2.(1)求出点A的坐标的所有等可能结果(用树状或列表法求解);(2)试求点A与点B(1,﹣1)关于原点对称的概率.【考点】列表法与树状法;关于原点对称的点的坐标.【分析】列举出所有情况,让所求的情况数除以总情况数即为所求的概率.【解答】解:(解法一)(1)列举所有等可能结果,画出树状如下由上可知,点A的坐标的所有等可能结果为:(﹣1,﹣1)、(﹣1,1)、(﹣1,2)、(2,﹣1)、(2,1)、(2,2),共有6种,(2)由(1)知,能与点B(1,﹣1)关于原点对称的结果有1种.∴P(点A与点B关于原点对称)=(解法二)(1)列表如下﹣1 1 2﹣1 (﹣1,﹣1) (﹣1,1) (﹣1,2)2 (2,﹣1) (2,1) (21,2)由一表可知,点A的坐标的所有等可能结果为:(﹣1,﹣1)、(﹣1,1)、(﹣1,2)、(2,﹣1)、(2,1)、(2,2),共有6种,(2)由(1)知,能与点B(1,﹣1)关于原点对称的结果有1种.∴P(点A与点B关于原点对称)= .【点评】用到的知识点为:概率=所求情况数与总情况数之比.两点关于原点对称,横纵坐标均互为相反数.21.为了落实国务院的指示精神,某地方政府出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)有如下关系:y=﹣2x+80.设这种产品每天的销售利润为w元.(1)求w与x之间的函数关系式.(2)该产品销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元?(3)如果物价部门规定这种产品的销售价不高于每千克28元,该农户想要每天获得150元的销售利润,销售价应定为每千克多少元?【考点】二次函数的应用.【专题】压轴题.【分析】(1)根据销售额=销售量×销售单价,列出函数关系式;(2)用配方法将(1)的函数关系式变形,利用二次函数的性质求最大值;(3)把y=150代入(2)的函数关系式中,解一元二次方程求x,根据x的取值范围求x的值.【解答】解:(1)由题意得出:w=(x﹣20)∙y=(x﹣20)(﹣2x+80)=﹣2x2+120x﹣1600,故w与x的函数关系式为:w=﹣2x2+120x﹣1600;(2)w=﹣2x2+120x﹣1600=﹣2(x﹣30)2+200,∵﹣2<0,∴当x=30时,w有最大值.w最大值为200.答:该产品销售价定为每千克30元时,每天销售利润最大,最大销售利润200元.(3)当w=150时,可得方程﹣2(x﹣30)2+200=150.解得 x1=25,x2=35.∵35>28,∴x2=35不符合题意,应舍去.答:该农户想要每天获得150元的销售利润,销售价应定为每千克25元.【点评】本题考查了二次函数的运用.关键是根据题意列出函数关系式,运用二次函数的性质解决问题.22.已知二次函数y=x2﹣4x+3的象交x轴于A,B两点(点A在点B的左侧),交y轴于点C.(1)求直线BC的解析式;(2)点D是在直线BC下方的抛物线上的一个动点,当△BCD的面积最大时,求D点坐标.【考点】抛物线与x轴的交点;待定系数法求一次函数解析式;二次函数象上点的坐标特征.【专题】计算题.【分析】(1)利用y=x2﹣4x+3的象交x轴于A、B两点(点A在点B的左侧),抛物线y=x2﹣4x+3交y轴于点C,即可得出A,B,C点的坐标,将B,C点的坐标分别代入y=kx+b(k≠0),即可得出解析式;(2)设过D点的直线与直线BC平行,且抛物线只有一个交点时,△BCD的面积最大.【解答】解:(1)设直线BC的解析式为:y=kx+b(k≠0).令x2﹣4x+3=0,解得:x1=1,x2=3,则A(1,0),B(3,0),C(0,3),将B(3,0),C(0,3),代入y=kx+b(k≠0),得,解得:k=﹣1,b=3,BC所在直线为:y=﹣x+3;(2)设过D点的直线与直线BC平行,且抛物线只有一个交点时,△BCD的面积最大.∵直线BC为y=﹣x+3,∴设过D点的直线为y=﹣x+b,∴ ,∴x2﹣3x+3﹣b=0,∴△=9﹣4(3﹣b)=0,解得b= ,∴ ,解得,,则点D的坐标为:( ,﹣ ).【点评】本题考查了二次函数综合题型,主要考查了待定系数法求二次函数解析式,待定系数法求一次函数解析式,利用平行线确定点到直线的最大距离问题.23.所示,已知△ABC的三个顶点的坐标分别为A(﹣2,3),B(﹣6,0),C(﹣1,0).(1)请直接写出点A关于原点O对称的点的坐标;(2)将△ABC绕坐标原点O逆时针旋转90°,求A点经过的路径长;(3)请直接写出:以A、B、C为顶点的平行四边形的第四个顶点D 的坐标.【考点】作-旋转变换;平行四边形的性质.【分析】(1)直接写出点A关于原点O对称的点的坐标即可.(2)根据网格结构找出点A、B、C绕坐标原点O逆时针旋转90°对应点A′、B′、C′的位置,然后顺次连接即可,再根据平面直角坐标系写出点B′的坐标,根据弧长公式列式计算即可得解;(3)根据平行四边形的对边平行且相等,分AB、BC、AC是对角线三种情况分别写出即可.【解答】解:(1)点A关于原点O对称的点的坐标为(2,﹣3);(2)△ABC旋转后的△A′B′C′所示,点A′的对应点的坐标为(﹣3,﹣2);OA′= = ,即点A所经过的路径长为 = ;(3)若AB是对角线,则点D(﹣7,3),若BC是对角线,则点D(﹣5,﹣3),若AC是对角线,则点D(3,3).【点评】本题考查了利用旋转变换作,平行四边形的对边平行且相等的性质,弧长公式,熟练掌握网格结构准确找出对应点的位置是解题的关键,难点在于(3)分情况讨论.24.OC平分∠MON,点A在射线OC上,以点A为圆心,半径为2的⊙A与OM相切于点B,连接BA并延长交⊙A于点D,交ON于点E.(1)求证:ON是⊙A的切线;(2)若∠MON=60°,求中阴影部分的面积.(结果保留π)【考点】切线的判定;扇形面积的计算.【分析】(1)首先过点A作AF⊥ON于点F,易证得AF=AB,即可得ON是⊙A的切线;(2)由∠MON=60°,AB⊥OM,可求得AF的长,又由S阴影=S△AEF﹣S扇形ADF,即可求得答案.【解答】(1)证明:过点A作AF⊥ON于点F,∵⊙A与OM相切于点B,∴AB⊥OM,∵OC平分∠MON,∴AF=AB=2,∴ON是⊙A的切线;(2)解:∵∠MON=60°,AB⊥OM,∴∠OEB=30°,∴AF⊥ON,∴∠FAE=60°,在Rt△AEF中,tan∠FAE= ,∴EF=AF•tan60°=2 ,∴S阴影=S△AEF﹣S扇形ADF= AF•EF﹣×π×AF2=2 ﹣π.【点评】此题考查了切线的判定与性质、扇形的面积以及三角函数的性质.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.25.(13分)已知关于x的一元二次方程kx2+(3k+1)x+3=0(k≠0).(1)求证:无论k取何值,方程总有两个实数根;(2)若二次函数y=kx2+(3k+1)x+3的象与x轴两个交点的横坐标均为整数,且k为整数,求k的值.解:【考点】根的判别式;抛物线与x轴的交点.【专题】证明题.【分析】(1)先计算判别式得值得到△=(3k+1)2﹣4k×3=(3k﹣1)2,然后根据非负数的性质得到△≥0,则根据判别式的意义即可得到结论;(2)先理由求根公式得到kx2+(3k+1)x+3=0(k≠0)的解为x1=﹣,x2=﹣3,则二次函数y=kx2+(3k+1)x+3的象与x轴两个交点的横坐标分别为﹣和﹣3,然后根据整数的整除性可确定整数k的值.【解答】(1)证明:△=(3k+1)2﹣4k×3=(3k﹣1)2,∵(3k﹣1)2,≥0,∴△≥0,∴无论k取何值,方程总有两个实数根;(2)解:kx2+(3k+1)x+3=0(k≠0)x= ,x1=﹣,x2=﹣3,所以二次函数y=kx2+(3k+1)x+3的象与x轴两个交点的横坐标分别为﹣和﹣3,根据题意得﹣为整数,所以整数k为±1.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了抛物线与x轴的交点.26.(14分)所示,在平面直角坐标系xOy中,AB在x轴上,以AB 为直径的半⊙Oˊ与y轴正半轴交于点C,连接BC,AC.CD是半⊙Oˊ的切线,AD⊥CD于点D.(1)求证:∠CAD=∠CAB;(2)已知抛物线y=ax2+bx+c过A、B、C三点,AB=10,AC=2BC.①求抛物线的解析式;②判断抛物线的顶点E是否在直线CD上,并说明理由.【考点】二次函数综合题.【分析】(1)连接O′C,由CD是⊙O的切线,可得O′C⊥CD,则可证得O′C∥AD,又由O′A=O′C,则可证得∠CAD=∠CAB;(2)①首先证得△CAO∽△BCO,根据相似三角形的对应边成比例,可得OC2=OA•OB,又由AC=2BC则可求得CO,AO,BO的长,然后利用待定系数法即可求得二次函数的解析式;②首先证得△FO′C∽△FAD,由相似三角形的对应边成比例,即可得到F的坐标,求得直线DC的解析式,然后将抛物线的顶点坐标代入检验即可求得答案.【解答】(1)证明:连接O′C,∵CD是⊙O′的切线,∴O′C⊥CD,∵AD⊥C D,∴O′C∥AD,∴∠O′CA=∠CAD,∵O′A=O′C,∴∠CAB=∠O′CA,∴∠CAD=∠CAB;(2)解:①∵AB是⊙O′的直径,∴∠ACB=90°,∵OC⊥AB,∴∠CAB=∠OCB,∴△CAO∽△BCO,∴ = ,即OC2=OA•OB,∵AC=2BC,∴tan∠CAO=tan∠CAB= ,∴AO=2CO,又∵AB=10,∴OC2=2CO(10﹣2CO),解得CO1=4,CO2=0(舍去),∴CO=4,AO=8,BO=2∵CO>0,∴CO=4,AO=8,BO=2,∴A(﹣8,0),B(2,0),C(0,4),∵抛物线y=ax2+bx+c过点A,B,C三点,∴c=4,由题意得:,解得:,∴抛物线的解析式为:y=﹣ x2﹣ x+4;②设直线DC交x轴于点F,∴△AOC≌△ADC,∴AD=AO=8,∵O′C∥AD,∴△FO′C∽△FAD,∴ = ,∴O′F•AD=O′C•AF,∴8(BF+5)=5(BF+10),∴BF= ,F( ,0);设直线DC的解析式为y=kx+m,则,解得:,∴直线DC的解析式为y=﹣ x+4,由y=﹣ x2﹣ x+4=﹣ (x+3)2+ 得顶点E的坐标为(﹣3, ),将E(﹣3, )代入直线DC的解析式y=﹣ x+4中,右边=﹣×(﹣3)+4= =左边,∴抛物线顶点E在直线CD上.【点评】此题考查了待定系数法求函数的解析式,相似三角形的判定与性质,点与函数的关系,直角梯形等知识.此题综合性很强,难度较大,解题的关键是注意数形结合与方程思想的应用.。
1九年级数学第一学期第三次月考试卷(卷一)本卷满分100分 命题人:一、选择题(本大题12个小题,每小题3分,共36分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个答案是正确的。
1.下列各式中,是最简二次根式的是( )。
A .18 B .b a 2 C . 22b a + D .32 2.三角形两边的长分别是8和6,第三边的长是一元二次方程060162=+-x x 的一个实数根,则该三角形的面积是 ( )A . 24B . 24或58C . 48D . 583.方程x ²-x +2=0根的情况是( )A. 只有一个实数根B. 有两个相等的实数根C. 有两个不相等的实数根D. 没有实数根 4.下列语句中不正确的有( )①相等的圆心角所对的弧相等 ②平分弦的直径垂直于弦③圆是轴对称图形,任何一条直径都是它的对称轴 ④长度相等的两条弧是等弧 A .3个 B.2个 C.1个 D.4个5. 由一已知点P 到圆上各点的最大距离为5,最小距离为1,则圆的半径为( ) A .2或3 B. 3 C. 4 D. 2 或46.二次函数y=x 2-(12-k)x+12,当x>1时,y 随着x 的增大而增大,当x<1时,y 随着x 的增大而减小,则k 的值应取( )A .12 B. 11 C. 10 D. 97. 下列四个函数中,y 的值随着x 值的增大而减小的是( )A.x y 2=B. ()01>=x xy C. 1+=x y D. ()02>=x x y 8.如果抛物线y=x 2-6x+c-2的顶点到x 轴的距离是3,那么c 的值等于( ) A. 8 B. 14 C. 8或14 D. -8或-149.把二次函数23x y =的图象向左平移2个单位,再向上平移1个单位,所得到的图象对应的二次函数关系式是( ) A.()1232+-=x y B.()1232-+=x y C.()1232--=x y D.()1232++=x y10.直线a上有一点到圆心O 的距离等于⊙O 的半径,则直线a与⊙O 的位置关系是( )A.相离B.相切C.相切或相交D.相交11.有一个多边形的边长分别是4cm 、5cm 、6cm 、4cm 、5cm ,和它相似的一个多边形最长边为8cm ,那么这个多边形的周长是( )A .12cmB .18cm C. 32cm D. 48cm 12.下列图形既是轴对称图形,又是中心对称图形的是( )A B C D 二、填空题(本大题12个小题,每小题2分,共24分) 13.若x 、y 都为实数,且152********+-+-=x x y ,则y x +2=________。
九年级(上)第三次月考数学试卷一、选择题(下列各题中的四个选项只有一个是正确的,请将正确选项的字母标号填在题后的括号内,每小题3分,共24分)1.下列图形中,是中心对称图形,而不是轴对称图形的是()A.菱形B.平行四边形C.正六边形D.矩形2.一元二次方程3x2﹣x+2=0的根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.无实数根D.只有一个实数根3.下列四个点,在反比例函数y=的图象上的是()A.C.4.某人把50粒黄豆染色后与一袋黄豆充分混匀,接着抓出100黄豆,数出其中有10粒黄豆被染色,则这袋黄豆原来有()A.10粒B.160粒C.450粒D.500粒5.某几何体的三种视图如图所示,则该几何体可能是()A.圆锥体B.球体C.长方体D.圆柱体6.以下四个三角形,与如图的三角形相似的是()A.B.C.D.7.已知:点A(x1,y1)、B(x2,y2)、C(x3,y3)是函数y=﹣图象上的三点,且x1<0<x2<x3则y1、y2、y3的大小关系是()A.y1<y2<y3B.y2<y3<y1C.y3<y2<y1D.无法确定8.反比例函数y=和一次函数y=kx﹣k在同一直角坐标系中的图象大致是()A.B.C.D.二、填空题(每小题3分,共24分)9.分解因式a3﹣6a2+9a= .10.反比例函数的图象在一、三象限,则k应满足.11.将方程x2+10x+1=0配方后,原方程变形为.12.如图所示,A为反比例函数图象上一点,AB垂直x轴,垂足为B点,若S△AOB=3,则k的值为.13.某商场在促销活动中,将原价100元的商品,连续两次降价m%后现价为81元.根据题意可列方程为.14.如图,D、E分别是△ABC的边AB,AC上的点,DE∥BC,=2,则S△ADE:S△ABC= .15.如图,菱形ABCD周长为8cm,∠BAD=60°,则菱形的面积是.16.如图,矩形ABCD沿着直线BD折叠,使点C落在C′处,BC′交AD于点E,AD=8,AB=6,则AE的长为.三、解答题:(共72分)17.解方程:(1)x2+2x+1=4(2)x(x﹣3)+x﹣3=0.18.解不等式组:.19.如图所示,方格纸中的每个小方格都是边长为1个单位长度的正方形,△ABC的顶点均在格点上,在建立平面直角坐标系后,点C的坐标为(4,﹣1).(1)画出△ABC以y轴为对称轴的对称图形△A1B1C1,并写出点C1的坐标;(2)以原点O为位似中心,画出△A1B1C1缩小一半后的△A2B2C2.20.长城公司为希望小学捐赠甲、乙两种品牌的体育器材,甲品牌有A、B、C三种型号,乙品牌有D、E两种型号,现要从甲、乙两种品牌的器材中各选购一种型号进行捐赠.(1)写出所有的选购方案(用列表法或树状图);(2)如果在上述选购方案中,每种方案被选中的可能性相同,那么A型器材被选中的概率是多少?21.已知,如图,AB和DE是直立在地面上的两根立柱,AB=5m,某一时刻AB在阳光下的投影BC=3m.(1)请你在图中画出此时DE在阳光下的投影;(2)在测量AB的投影时,同时测量出DE在阳光下的投影长为6m,请你计算DE的长.22.在矩形ABCD中,点E是BC上一点,AE=AD,DF⊥AE,垂足为F;求证:DF=DC.23.如图,在宽为20m,长为32m的矩形地面上修筑同样宽的道路(图中阴影部分),余下的部分种上草坪.要使草坪的面积为540m2,求道路的宽.(部分参考数据:322=1024,522=2704,482=2304)24.如图,矩形ABCD中,点P是线段AD上一动点,O为BD的中点,PO的延长线交BC于Q.(1)求证:OP=OQ;(2)若AD=4厘米,AB=3厘米,当AP为何值时,四边形PBQD是菱形,并加以说明.25.如图,已知一次函数y=kx+b的图象与反比例函数的图象交于A、B两点,且点A的纵坐标和点B的横坐标都是2.求:(1)分别求出直线AB的表达式;(2)求△AOB的面积;(3)利用图象直接写出:当x在什么范围内取值时,y1>y2.26.如图,在Rt△ABC中,∠ACB=90°,AC=8,BC=6,CD⊥AB于点D.点P从点D出发,沿线段DC向点C运动,点Q从点C出发,沿线段CA向点A运动,两点同时出发,速度都为每秒1个单位长度,当点P运动到C时,两点都停止.设运动时间为t秒.(1)求线段CD的长;(2)当t为何值时,△CPQ与△ABC相似?(3)当t为何值时,△CPQ为等腰三角形?参考答案与试题解析一、选择题(下列各题中的四个选项只有一个是正确的,请将正确选项的字母标号填在题后的括号内,每小题3分,共24分)1.下列图形中,是中心对称图形,而不是轴对称图形的是()A.菱形B.平行四边形C.正六边形D.矩形【考点】中心对称图形;轴对称图形.【分析】根据多边形的性质和轴对称图形与中心对称图形的定义解答.【解答】解:A、是轴对称图形,也是中心对称图形,故选项错误;B、不是轴对称图形,是中心对称图形,故选项正确;C、是轴对称图形,也是中心对称图形,故选项错误;D、是中心对称图形,也是轴对称图形,故选项错误.故选:B.【点评】本题主要考查了中心对称图形与轴对称图形的定义,理解定义是关键.2.一元二次方程3x2﹣x+2=0的根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.无实数根D.只有一个实数根【考点】根的判别式.【分析】首先确定一元二次方程的各项系数及常数项,代入根的判别式进行计算,根据数值的正负判定即可.【解答】解:∵a=3,b=﹣1,c=2,∴b2﹣4ac=(﹣1)2﹣4×3×2=﹣23<0,∴方程没有实数根.故选:C.【点评】本题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.3.下列四个点,在反比例函数y=的图象上的是()A.C.【考点】反比例函数图象上点的坐标特征.【专题】计算题.【分析】根据反比例函数图象上点的坐标特征进行判断.【解答】解:∵1×(﹣6)=﹣6,2×4=8,3×(﹣2)=6,(﹣6)×(﹣1)=6,∴点(3,﹣2)在反比例函数y=的图象上.故选D.【点评】本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.4.某人把50粒黄豆染色后与一袋黄豆充分混匀,接着抓出100黄豆,数出其中有10粒黄豆被染色,则这袋黄豆原来有()A.10粒B.160粒C.450粒D.500粒【考点】利用频率估计概率.【专题】计算题.【分析】黄豆的频率为,利用大量反复试验时,频率接近于概率,可得,即可求出原黄豆的数量.【解答】解:设原黄豆数为x,则染色黄豆的概率为解得x=450.故选C.【点评】本题利用了用大量试验得到的频率可以估计事件的概率.用到的知识点为:概率=所求情况数与总情况数之比.5.某几何体的三种视图如图所示,则该几何体可能是()A.圆锥体B.球体C.长方体D.圆柱体【考点】由三视图判断几何体.【分析】根据三视图可知主视图和左视图都是矩形,俯视图为一个圆形,故这个几何体为圆柱体.【解答】解:本题中,圆锥体的主视图和俯视图不可能是矩形,球体的三视图中不可能由矩形,长方体的俯视图不可能是圆,故选D.【点评】本题考查由三视图确定几何体的形状,主要考查学生空间想象能力,要熟悉特殊几何体的特点.6.以下四个三角形,与如图的三角形相似的是()A.B.C.D.【考点】相似三角形的判定.【专题】网格型.【分析】分别求出选项中所有三角形的边长,求出与原三角形的比,若对应边的比相同,则相似.【解答】解:原图三边长为,2,;A、三边长分别为2,,3,对应边的比为,=,=,两三角形不相似,故本选项错误;B、三边长分别为2,4,2,对应边的比为,=,=,两三角形相似,故本选项正确;C、三边长分别为2,3,,对应边的比为,,=,两三角形不相似,故本选项错误;D、三边长分别为,,4,对应边的比为,,,两三角形不相似,故本选项错误;故选B.【点评】本题考查了相似三角形的判定,求出三边的比,若三边的比相等,则两三角形相似.7.已知:点A(x1,y1)、B(x2,y2)、C(x3,y3)是函数y=﹣图象上的三点,且x1<0<x2<x3则y1、y2、y3的大小关系是()A.y1<y2<y3B.y2<y3<y1C.y3<y2<y1D.无法确定【考点】反比例函数图象上点的坐标特征.【专题】压轴题.【分析】对y=﹣,由x1<0<x2<x3知,A点位于第二象限,y1最大,第四象限,y随x增大而增大,y2<y3,故y2<y3<y1.【解答】解:∵y=﹣中k=﹣3<0,∴此函数的图象在二、四象限,∵点A(x1,y1)、B(x2,y2)、C(x3,y3)是函数y=﹣图象上的三点,且x1<0<x2<x3,∴A点位于第二象限,y1>0,B、C两点位于第四象限,∵0<x2<x3,∴y2<y3,∴y2<y3<y1.故选B.【点评】本题考查了反比例函数图象上点的坐标特征,要学会比较图象上点的坐标.8.反比例函数y=和一次函数y=kx﹣k在同一直角坐标系中的图象大致是()A.B.C.D.【考点】反比例函数的图象;一次函数的图象.【专题】压轴题;分类讨论.【分析】因为k的符号不确定,所以应根据k的符号及一次函数与反比例函数图象的性质解答.【解答】解:当k<0时,﹣k>0,反比例函数y=的图象在二,四象限,一次函数y=kx﹣k 的图象过一、二、四象限,选项C符合;当k>0时,﹣k<0,反比例函数y=的图象在一、三象限,一次函数y=kx﹣k的图象过一、三、四象限,无符合选项.故选C.【点评】本题主要考查了反比例函数和一次函数的图象性质,正确掌握它们的性质才能灵活解题.二、填空题(每小题3分,共24分)9.分解因式a3﹣6a2+9a= a(a﹣3)2.【考点】提公因式法与公式法的综合运用.【分析】先提取公因式a,再根据完全平方公式进行二次分解即可求得答案.完全平方公式:a2±2ab+b2=(a±b)2.【解答】解:a3﹣6a2+9a=a(a2﹣6a+9)=a(a﹣3)2.故答案为:a(a﹣3)2.【点评】本题考查了提公因式法,公式法分解因式的知识.注意提取公因式后利用完全平方公式进行二次分解,分解要彻底.10.反比例函数的图象在一、三象限,则k应满足k>﹣2 .【考点】反比例函数的性质.【分析】由于反比例函数的图象在一、三象限内,则k+2>0,解得k的取值范围即可.【解答】解:由题意得,反比例函数的图象在二、四象限内,则k+2>0,解得k>﹣2.故答案为k>﹣2.【点评】本题考查了反比例函数的性质,重点是注意y=(k≠0)中k的取值,①当k>0时,反比例函数的图象位于一、三象限;②当k<0时,反比例函数的图象位于二、四象限.11.将方程x2+10x+1=0配方后,原方程变形为x+5)2=24 .【考点】解一元二次方程-配方法.【分析】方程常数项移到右边,两边加上25配方得到结果即可.【解答】解:方程x2+10x+1=0,移项得:x2+10x=﹣1,配方得:x2+10x+25=24,即(x+5)2=24,故答案为:(x+5)2=24.【点评】此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键.12.如图所示,A为反比例函数图象上一点,AB垂直x轴,垂足为B点,若S△AOB=3,则k的值为 6 .【考点】反比例函数系数k的几何意义.【分析】过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S是个定值,即S=|k|.【解答】解:由于点A是反比例函数图象上一点,则S△AOB=|k|=3;又由于函数图象位于一、三象限,则k=6.故答案为6.【点评】本题考查了反比例函数系数的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得三角形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.13.某商场在促销活动中,将原价100元的商品,连续两次降价m%后现价为81元.根据题意可列方程为100(1﹣m%)2=81 .【考点】由实际问题抽象出一元二次方程.【专题】增长率问题.【分析】利用等量关系:原价×(1﹣降低率)2=25,把相关数值代入即可.【解答】解:第一次降价后的价格为100×(1﹣m%),第二次降价后的价格为100×(1﹣m%)×(1﹣m%)=36×(1﹣m%)2,列方程为100(1﹣m%)2=81.故答案为:100(1﹣m%)2=81.【点评】本题考查由实际问题抽象出一元二次方程,求平均变化率的方法:若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.14.如图,D、E分别是△ABC的边AB,AC上的点,DE∥BC,=2,则S△ADE:S△ABC= 4:9 .【考点】平行线分线段成比例;相似三角形的判定与性质.【分析】先根据平行线分线段成比例求出AD:AB的值,即两相似三角形的相似比,再根据相似三角形面积的比等于相似比的平方即可求解.【解答】解:∵DE∥BC,∴△ADE∽△ABC,∴AD:DB=2:1,∴AD:AB=2:3∴S△ADE:S△ABC=4:9.【点评】本题是考查比例性质和相似三角形面积比等于相似比的平方.15.如图,菱形ABCD周长为8cm,∠BAD=60°,则菱形的面积是2cm2.【考点】菱形的性质.【分析】根据已知条件和菱形的性质,可推出△ABD为等边三角形,AB=2cm,∠OAB=30°,根据锐角三角函数推出OA的长度,求得AC的长度,再根据菱形面积等于两对角线乘积的一半计算即可求解.【解答】解:∵菱形ABCD周长为8cm,∠BAD=60°,∴AB=AD=BD=2cm,∠OAB=30°,OA=OC,AC⊥BD,∴OA=cm,∴AC=2cm.∴菱形ABCD的面积=ACBD=×2×2=2(cm2).故答案为:2cm2.【点评】本题主要考查菱形的性质、锐角三角函数等知识点,解题的关键是根据有关性质推出边和相关角的度数,解直角三角形.16.如图,矩形ABCD沿着直线BD折叠,使点C落在C′处,BC′交AD于点E,AD=8,AB=6,则AE的长为.【考点】翻折变换(折叠问题).【分析】先根据折叠的性质得∠C′BD=∠CBD,再利用矩形的性质得AD∥BC,则∠EDB=∠CBD,所以∠EDB=∠C′BD,根据等腰三角形的判定定理得EB=ED,设AE=x,则ED=AD﹣AE=8﹣x,BE=8﹣x,在Rt△ABE中,根据勾股定理得62+x2=(8﹣x)2,然后解方程即可.【解答】解:∵矩形ABCD沿着直线BD折叠,使点C落在C′处,BC′交AD于点E,∴∠C′BD=∠CBD,∵四边形ABCD为矩形,∴AD∥BC,∴∠EDB=∠CBD,∴∠EDB=∠C′BD,∴EB=ED,设AE=x,则ED=AD﹣AE=8﹣x,BE=8﹣x,在Rt△ABE中,∵AB2+AE2=BE2,∴62+x2=(8﹣x)2,解得x=,即AE的长为.故答案为.【点评】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了矩形的性质和勾股定理.三、解答题:(共72分)17.解方程:(1)x2+2x+1=4(2)x(x﹣3)+x﹣3=0.【考点】解一元二次方程-因式分解法;解一元二次方程-配方法.【分析】(1)方程整理得x2+2x﹣3=0,然后分解因式,即可得出两个一元一次方程,求出方程的解即可.(2)利用提取公因式法分解因式求得方程的解即可.【解答】解:(1)x2+2x+1=4,x2+2x﹣3=0(x+3)(x﹣1)=0,∴x﹣1=0,x+3=0,∴x1=1,x2=﹣3(2)x(x﹣3)+x﹣3=0.(x﹣3)(x+1)=0,∴x﹣3=0,x+1=0,∴x1=3,x2=﹣1.【点评】本题考查了解一元二次方程的应用,解此题的关键是能把一元二次方程转化成一元一次方程.18.解不等式组:.【考点】解一元一次不等式组.【专题】计算题;压轴题.【分析】分别解两个不等式,再求其公共部分即可.【解答】解:解不等式,由①得x<4,由②得x≤1,∴原不等式组的解集是x≤1.【点评】主要考查了一元一次不等式解集的求法,其简便求法就是用口诀求解,求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).19.如图所示,方格纸中的每个小方格都是边长为1个单位长度的正方形,△ABC的顶点均在格点上,在建立平面直角坐标系后,点C的坐标为(4,﹣1).(1)画出△ABC以y轴为对称轴的对称图形△A1B1C1,并写出点C1的坐标;(2)以原点O为位似中心,画出△A1B1C1缩小一半后的△A2B2C2.【考点】作图-位似变换;作图-轴对称变换.【专题】作图题.【分析】(1)过A作y轴垂线,截取DA1=DA,B1D=BD,过C作y轴垂线,截取C1E=CE,连接A1B1,A1C1,B1C1,△A1B1C1为所求三角形,写出点C1的坐标即可;(2)连接OA1,OB1,OC1,取OA1中点A2,取OB1中点B2,取OC1中点C2,连接A2B2,A2C2,B2C2,△A2B2C2为所求三角形.【解答】解:(1)画出△ABC以y轴为对称轴的对称图形△A1B1C1,如图所示,根据题意得:点C1的坐标为(﹣4,﹣1);(2)以原点O为位似中心,画出△A1B1C1缩小一半后的△A2B2C2,如图所示.【点评】此题考查了作图﹣位似变换,作图﹣轴对称变换,画位似图形的一般步骤为:①确定位似中心,②分别连接并延长位似中心和能代表原图的关键点;③根据相似比,确定能代表所作的位似图形的关键点;顺次连接上述各点,得到放大或缩小的图形.20.长城公司为希望小学捐赠甲、乙两种品牌的体育器材,甲品牌有A、B、C三种型号,乙品牌有D、E两种型号,现要从甲、乙两种品牌的器材中各选购一种型号进行捐赠.(1)写出所有的选购方案(用列表法或树状图);(2)如果在上述选购方案中,每种方案被选中的可能性相同,那么A型器材被选中的概率是多少?【考点】列表法与树状图法.【专题】压轴题.【分析】(1)画出树状图即可;(2)根据树状图可以直观的得到共有6种情况,选中A的情况有2种,进而得到概率.【解答】解:(1)如图所示:(2)所有的情况有6种,A型器材被选中情况有2中,概率是=.【点评】本题考查概率公式,即如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.21.已知,如图,AB和DE是直立在地面上的两根立柱,AB=5m,某一时刻AB在阳光下的投影BC=3m.(1)请你在图中画出此时DE在阳光下的投影;(2)在测量AB的投影时,同时测量出DE在阳光下的投影长为6m,请你计算DE的长.【考点】平行投影;相似三角形的性质;相似三角形的判定.【专题】计算题;作图题.【分析】(1)根据投影的定义,作出投影即可;(2)根据在同一时刻,不同物体的物高和影长成比例;构造比例关系.计算可得DE=10(m).【解答】解:(1)连接AC,过点D作DF∥AC,交直线BC于点F,线段EF即为DE的投影.(2)∵AC∥DF,∴∠ACB=∠DFE.∵∠ABC=∠DEF=90°∴△ABC∽△DEF.∴,∴∴DE=10(m).说明:画图时,不要求学生做文字说明,只要画出两条平行线AC和DF,再连接EF即可.【点评】本题考查了平行投影特点:在同一时刻,不同物体的物高和影长成比例.要求学生通过投影的知识并结合图形解题.22.在矩形ABCD中,点E是BC上一点,AE=AD,DF⊥AE,垂足为F;求证:DF=DC.【考点】矩形的性质;全等三角形的判定与性质.【专题】证明题.【分析】根据矩形的性质和DF⊥AE于F,可以得到∠DEC=∠AED,∠DFE=∠C=90,进而依据AAS可以证明△DFE≌△DCE.然后利用全等三角形的性质解决问题.【解答】证明:连接DE.∵有矩形ABCD,∴AD∥BC,∠C=90°.∴∠DEC=∠AED.又∵DF⊥AE,∴∠DFE=∠C=90°.∵DE=DE,(1分)∴△DFE≌△DCE.∴DF=DC.(1分)【点评】此题比较简单,主要考查了矩形的性质,全等三角形的性质与判定,综合利用它们解题.23.如图,在宽为20m,长为32m的矩形地面上修筑同样宽的道路(图中阴影部分),余下的部分种上草坪.要使草坪的面积为540m2,求道路的宽.(部分参考数据:322=1024,522=2704,482=2304)【考点】一元二次方程的应用.【专题】几何图形问题;数形结合.【分析】本题可设道路宽为x米,利用平移把不规则的图形变为规则图形,如此一来,所有草坪面积之和就变为了(32﹣x)(20﹣x)米2,进而即可列出方程,求出答案.【解答】解法(1):解:利用平移,原图可转化为右图,设道路宽为x米,根据题意得:(20﹣x)(32﹣x)=540整理得:x2﹣52x+100=0解得:x1=50(舍去),x2=2答:道路宽为2米.解法(2):解:利用平移,原图可转化为右图,设道路宽为x米,根据题意得:20×32﹣(20+32)x+x2=540整理得:x2﹣52x+100=0解得:x1=2,x2=50(舍去)答:道路宽应是2米.【点评】这类题目体现了数形结合的思想,需利用平移把不规则的图形变为规则图形,进而即可列出方程,求出答案.另外还要注意解的合理性,从而确定取舍.24.如图,矩形ABCD中,点P是线段AD上一动点,O为BD的中点,PO的延长线交BC于Q.(1)求证:OP=OQ;(2)若AD=4厘米,AB=3厘米,当AP为何值时,四边形PBQD是菱形,并加以说明.【考点】矩形的性质;菱形的性质.【分析】(1)根据矩形性质推出AD∥BC,根据平行线的性质得出∠PDO=∠QBO,根据全等三角形的判定ASA证△PDO≌△BQO,根据全等三角形的性质推出即可.(2)由菱形的性质得出BP=PD,设AP=x厘米,则BP=PD=(4﹣x)厘米,由勾股定理得出方程,解方程即可.【解答】(1)证明:∵四边形ABCD是矩形,∴AD∥BC,∠A=90°,∴∠PDO=∠QBO,∵O为BD中点,∴OB=OD,在△PDO和△QBO中,,∴△PDO≌△BQO(ASA),∴OP=OQ.(2)解:当AP=时,四边形PBQD是菱形;理由如下:∵OB=OD,OP=OQ,∴四边形PBQD是平行四边形,当四边形PBQD是菱形时,BP=PD,设AP=x厘米,则BP=PD=(4﹣x)厘米,由勾股定理得:X2+32=(4﹣x)2,解得:x=,即当AP为厘米时,四边形PBQD是菱形.【点评】本题考查了矩形的性质,全等三角形的性质和判定,平行四边形的判定,菱形的判定与性质;题目比较好,综合性比较强.25.如图,已知一次函数y=kx+b的图象与反比例函数的图象交于A、B两点,且点A的纵坐标和点B的横坐标都是2.求:(1)分别求出直线AB的表达式;(2)求△AOB的面积;(3)利用图象直接写出:当x在什么范围内取值时,y1>y2.【考点】反比例函数与一次函数的交点问题.【分析】(1)根据A、B两点在反比例函数的图象上,且点A的纵坐标和点B的横坐标都是2,求出A、B两点的坐标,运用待定系数法求出直线AB的解析式;(2)求出点M的坐标,根据面积公式求出△AOB的面积;(3)根据图象结合交点坐标即可求得.【解答】解:(1)A、B两点在反比例函数的图象上,A的纵坐标是2,则横坐标为﹣4,A点的坐标(﹣4,2),B的横坐标为2,则纵坐标为﹣4,B点的坐标(2,﹣4),设一次函数解析式为y=kx+b,,解得.故直线AB的解析式为y=﹣x﹣2.(2)设直线AB与y轴的交点为M,则点M的坐标为(0,﹣2),△AOB的面积=△AOM的面积+△BOM的面积=×2×4+×2×2=6.(3)当x<﹣4或0<x<2时,y1>y2.【点评】本题考查了反比例函数与一次函数的交点问题:反比例函数与一次函数图象的交点坐标满足两函数解析式.也考查了待定系数法求函数解析式以及观察函数图象的能力.26.如图,在Rt△ABC中,∠ACB=90°,AC=8,BC=6,CD⊥AB于点D.点P从点D出发,沿线段DC向点C运动,点Q从点C出发,沿线段CA向点A运动,两点同时出发,速度都为每秒1个单位长度,当点P运动到C时,两点都停止.设运动时间为t秒.(1)求线段CD的长;(2)当t为何值时,△CPQ与△ABC相似?(3)当t为何值时,△CPQ为等腰三角形?【考点】相似形综合题.【分析】(1)先根据勾股定理求出AB的长,再由三角形的面积公式即可得出结论;(2)先用t表示出DP,CQ,CP的长,再分PQ⊥CD与PQ⊥AC两种情况进行讨论;(3)根据题意画出图形,分CQ=CP,PQ=PC,QC=QP三种情况进行讨论.【解答】解:(1)∵∠ACB=90°,AC=8,BC=6,∴AB=10.∵CD⊥AB,∴S△ABC=BCAC=ABCD.∴CD===4.8.∴线段CD的长为4.8.(2)由题可知有两种情形,设DP=t,CQ=t.则CP=4.8﹣t.①当PQ⊥CD时,如图a∵△QCP∽△△ABC∴=,即=,∴t=3;②当PQ⊥AC,如图b.∵△PCQ∽△ABC∴=,即=,解得t=,∴当t为3或时,△CPQ与△△ABC相似;(3)①若CQ=CP,如图1,则t=4.8﹣t.解得:t=2.4.②若PQ=PC,如图2所示.∵PQ=PC,PH⊥QC,∴QH=CH=QC=.∵△CHP∽△BCA.∴=.∴=,解得t=.③若QC=QP,过点Q作QE⊥CP,垂足为E,如图3所示.同理可得:t=.综上所述:当t为2.4秒或秒或秒时,△CPQ为等腰三角形.【点评】本题考查的是相似形综合题,涉及到相似三角形的判定与性质等知识,在解答此题时要注意进行分类讨论.。
一、选择题(下列各题中的四个选项只有一个是正确的,请将正确选项的字母标号填在题后的括号内,每小题3分,共30分)
1.一元二次方程x 2
-5x-6=0的根是( )
A .x 1=1,x 2=6
B .x 1=2,x 2=3
C .x 1=1,x 2=-6
D .x 1= -1,x 2=6
2.下列四个几何体中,主视图、左视图与俯视图是全等图形的几何体是( )
A .球
B .圆柱
C .三棱柱
D .圆锥
3.下列函数中,属于反比例函数的是( ) A .3x y =
B .13y x
= C .52y x =- D .21y x =+ 4.如果矩形的面积为6cm 2,那么它的长y cm 与宽x cm 之间的函数关系用图象表示大致是( )
5.在一个不透明的口袋中,装有5个红球3个白球,它们除颜色外都相同,从中任意摸出一个球,摸到红球的概率为( )
A .51
B .31 C. 85 D .8
3
6.下列叙述正确的是( ) A. 任意两个等腰三角形相似; B. 任意两个等腰直角三角形相似
C. 两个全等三角形不相似;
D. 两个相似三角形的相似比不可能等于1
7.下列命题中,正确的是( )
A .四边相等的四边形是正方形
B .四角相等的四边形是正方形
C .对角线相等的菱形是正方形
D .对角线垂直且相等的四边形是正方形
8.P 是Rt △ABC 的斜边BC 上异于B 、C 的一点,过点P 作直线截△ABC ,使截得的三角形与△ABC 相似,满足这样条件的直线共有( )
A. 1条
B. 2条
C. 3条
D. 4条
9.如图,AB ⊥BC ,AD ⊥CD ,垂足分别为B 、D ,若CB =CD ,则ABC ∆≌ACD ∆,理由是( )
A.SAS
B.AAS
C.HL
D.ASA
10.如图,有一块直角三角形纸片,两条直角边AC =6cm ,BC =8cm.若将直角边AC 沿直线折叠,使它落在斜边AB 上,且与AE 重合,则CD 等于( )
A.2cm
B.3cm
C.4cm
D.5cm
二、填空题(每小题3分,共18分)
11.已知2y=6x,则 x :y=_____.
12.若关于x 的一元二次方程x 2-3x+m=0有实数根,则m 的取值范围是________.
13.某同学的身高为1.4m,某一时刻他在阳光下的影长为1.2m ,此时,与他相邻的一棵小树的影长为3.6m,这棵小树的高度为________m.
14.请你写出一个反比例函数的解析式,使它的图象在第二、四象限 .
15.初三(1)班共有48名团员要求参加青年志愿者活动,根据实际需要,团支部从中随机选择12名团员参加这次活动,该班团员小明能参加这次活动的概率是 .
16.已知正比例函数kx y =与反比例函数()0>=k x
k y 的一个交点是(2,3),则另一个交点是 . 三、解答题:(共72分)
17.解方程:(1)(x+8)(x+1)=-12 (2) x(5x+4)=5x+4
18.在△ABC中,AB=AC,BD=CD,CE⊥AB于E,求证:△ABD∽△CBE A
19.“一方有难,八方支援”.今年11月2日,某县出现洪涝灾害,牵动着全县人民的心,县人民医院准备从甲、乙、丙三位医生和A、B两名护士中选取一位医生和一名护士支援防汛救灾工作.
(1)若随机选一位医生和一名护士,用树状图(或列表法)表示所有可能出现的结果.
(2)求恰好选中医生甲和护士A的概率.
20.已知,如图,AB、DE是直立在地面上的两根立柱.AB=5m,某一时刻AB在阳光下的投影BC=3m.
(1)请你在图中画出此时DE在阳光下的投影EF.
(2)在测量AB的投影时,同时测量出DE在阳光下的投影长为6m,请你计算DE的长.
21.某气球内充满一定质量的气体,当温度不变时,气球内气体的气压p(kPa)是气体体积V(m3)的反比例函数,其图象如图所示.
(1)写出这一函数的表达式.
(2)当气体体积为1 m3时,气压是多少?
(3)当气球内的气压大于140 kPa时,气球将爆炸,为了安全考虑,气体的体积应不小于多少?
22.在一张长12cm 、宽5cm 的矩形纸片内,要折出一个菱形.小华同学按照取两组对边中点的方法折出菱形EFGH (见方案一),小丽同学沿矩形的对角线AC 折出∠CAE =∠CAD ,∠ACF =∠ACB 的方法得到菱形AECF (见方案二).
(1)你能说出小华、小丽所折出的菱形的理由吗?
(2)请你通过计算,比较小华和小丽同学的折法中,哪种菱形面积较大?
23.如图,已知反比例函数x
k y 2
和一次函数y =2x -1,其中一次函数的图象经过(a,b ),(a +1,b +k )两点. (1)求反比例函数的解析式;
(2)如下图,已知点A 在第一象限,且同时在上述两个函数的图象上,求点A 的坐标;
(3)利用(2)的结果,请问:在x 轴上是否存在点P ,使△AOP 为等腰三角形?若存在,把符合条件的P 点坐标都求出来;若不存在,请说明理由.
高考一轮复习:。