七年级数学命题定理
- 格式:pdf
- 大小:1.08 MB
- 文档页数:9
人教版数学七年级下册5.3.2-1《命题、定理、证明1》教案2一. 教材分析《命题、定理、证明1》是人教版数学七年级下册第五章第三节的一部分,这部分内容是学生学习数学证明的基础。
通过这部分的学习,学生将理解命题与定理的概念,学会如何阅读和理解数学证明,并初步掌握证明的方法。
二. 学情分析七年级的学生已经具备了一定的逻辑思维能力,能够理解和运用基本的数学概念和运算。
但是,对于数学证明这一概念,学生可能还比较陌生,需要通过具体的例子和实践活动来逐渐理解和掌握。
三. 教学目标1.了解命题和定理的概念,能够区分它们。
2.学会阅读和理解数学证明,能够初步进行简单的证明。
3.培养学生的逻辑思维能力和数学表达能力。
四. 教学重难点1.命题与定理的概念。
2.数学证明的方法和步骤。
五. 教学方法采用问题驱动法和案例教学法,通过具体的例子和实践活动,引导学生理解和掌握命题、定理和证明的概念和方法。
六. 教学准备1.PPT课件。
2.相关例题和练习题。
七. 教学过程1.导入(5分钟)通过一个具体的数学问题,引出命题、定理和证明的概念。
2.呈现(15分钟)讲解命题和定理的概念,通过具体的例子让学生理解它们的区别。
然后讲解数学证明的方法和步骤,引导学生学会阅读和理解数学证明。
3.操练(15分钟)让学生分组讨论,尝试解决一些简单的证明问题,教师巡回指导。
4.巩固(5分钟)对学生的解答进行点评,指出其中的错误和不足,引导学生正确理解和掌握证明的方法。
5.拓展(5分钟)给出一些思考题,让学生进一步深入理解和掌握命题、定理和证明的知识。
6.小结(5分钟)对本节课的主要内容进行总结,强调命题、定理和证明的概念和方法。
7.家庭作业(5分钟)布置一些相关的练习题,让学生巩固所学知识。
8.板书(5分钟)将本节课的主要内容进行板书,方便学生复习和记忆。
教学过程每个环节所用的时间:导入5分钟,呈现15分钟,操练15分钟,巩固5分钟,拓展5分钟,小结5分钟,家庭作业5分钟,板书5分钟。
初中数学中,垂径定理是一个常见且重要的命题和定理,它在解决相关几何问题中起到了关键的作用。
下文将从垂径定理的概念入手,深入解析其原理和应用,并列举一些相关的例题,以便读者更加深入地理解和掌握这一重要定理。
一、垂径定理的概念垂径定理是指:如果在一个圆上,直径的两端连接圆上任意一点,那么这两条线段所夹的角都是直角。
简而言之,垂径定理可以理解为描述直径和圆上一点所构成的角是直角的规律。
二、垂径定理的证明1. 引理:直径是任意一点的最短距离。
这是基本的几何定理,无需证明。
2. 证明:设在圆上有直径AB,圆上的一点C。
连接AC和BC两条线段。
假设∠ACB不是直角,而是锐角或钝角。
那么,以AC为直径作圆,由于ACB不是直角,必定有另一个点D在圆上,使得∠ADB是锐角或钝角。
根据引理,AD+DB要小于或等于AE+EB,而AE+EB等于AB,所以AD+DB小于或等于AB,这与AD+DB等于AB矛盾。
由此可知,∠ACB必须是直角。
三、垂径定理的应用垂径定理在实际问题中有着广泛的应用。
通过运用垂径定理,我们可以解决许多与圆相关的问题,如圆的切线问题、直线与圆的位置关系问题等。
1. 圆的切线问题由垂径定理可知,连接圆上点和圆心构成的线段为直径,因此连接切点和圆心的线段垂直于切线。
这一性质是圆的切线问题得以解决的基础。
2. 直线与圆的位置关系问题利用垂径定理,可以判断直线与圆的位置关系。
当直线与圆相切时,由于切点和圆心连线垂直于切线,可根据垂径定理得出直线与圆相切的结论。
四、垂径定理的例题1. 已知AB是⊙O的直径,C,D是圆周上的两点,AC与BD相交于E,割⊙O的弦AE与BE的关系为()A. AE=BEB. AE>BEC. AE<BED. 无法确定解析:根据垂径定理可知,连接圆上点和圆心构成的线段为直径,因此以AE为直径的⊙O必定经过B点,以BE为直径的⊙O必定经过A 点,所以EA=EB。
2. 如图,在直径AB上取一点C,过点C作弦CD,与⊙O交于点E,连接AE、EB,若CD与AB垂直,求证:AC=CB。
人教版数学七年级下册5.3.2《命题、定理、证明》教学设计4一. 教材分析《人教版数学七年级下册5.3.2命题、定理、证明》这一节主要介绍命题、定理和证明的概念。
通过本节课的学习,学生能够理解命题、定理和证明的定义,掌握判断命题真假的方法,了解证明的两种方法——演绎法和归纳法,并能够运用这些知识解决实际问题。
二. 学情分析七年级的学生已经掌握了基本的数学运算能力和逻辑思维能力,但对命题、定理和证明的概念接触较少。
因此,在教学过程中,需要引导学生从实际问题中抽象出命题、定理和证明的概念,并通过实例让学生理解和掌握这些概念。
三. 教学目标1.了解命题、定理和证明的概念。
2.掌握判断命题真假的方法。
3.掌握证明的两种方法——演绎法和归纳法。
4.能够运用命题、定理和证明的知识解决实际问题。
四. 教学重难点1.重点:命题、定理和证明的概念,判断命题真假的方法,证明的两种方法。
2.难点:证明的两种方法——演绎法和归纳法的理解和运用。
五. 教学方法1.情境教学法:通过实际问题引入命题、定理和证明的概念。
2.实例教学法:通过具体的实例让学生理解和掌握命题、定理和证明的概念。
3.小组讨论法:引导学生分组讨论,培养学生的合作能力和解决问题的能力。
4.教学反馈法:通过提问、练习等方式及时了解学生的学习情况,调整教学进度和方法。
六. 教学准备1.教学PPT:制作含有命题、定理和证明的实例的PPT。
2.练习题:准备一些判断命题真假和运用证明方法的练习题。
3.教学素材:准备一些实际问题作为教学素材。
七. 教学过程1.导入(5分钟)通过一个实际问题引入命题、定理和证明的概念。
例如:在三角形中,如果一个角是直角,那么它的两条边分别是斜边。
这个命题是如何判断真假的?如何用数学语言来表达这个命题?2.呈现(10分钟)介绍命题、定理和证明的定义。
命题是判断某个陈述真假的语句,定理是被证明为真的命题,证明是用逻辑推理的方法来证明定理的过程。