高性能薄膜材料研究方向
- 格式:ppt
- 大小:838.00 KB
- 文档页数:60
材料专业研究方向 -回复
材料科学和工程是一个广泛且不断发展的领域,在这个领域里,有许多研究方向可以选择,以下是其中一些例子:
1. 纳米材料研究:包括纳米粒子、薄膜、纳米线等,这些材料具有独特的物理、化学和生物学特性,可用于制备高性能传感器、催化剂、半导体器件等。
2. 材料表面与界面研究:研究各种材料表面和界面的物理、化学、生物学特性及其影响因素,包括表面改性、生物界面、能源界面等。
3. 能源材料研究:包括太阳能电池、燃料电池、锂离子电池等新型能源材料的开发和应用等。
4. 高分子材料研究:包括高分子合成、无机-有机复合材料、高分子纳米复合材料、高分子自组装等研究。
5. 金属材料研究:包括金属合金、高强度金属材料、形状记忆合金、超塑性合金等研究。
这些研究方向均与工业和社会的发展密切相关,未来也将继续受到广泛关注和支持。
薄膜材料的特点及其制备技术薄膜材料的特点及其制备技术厚度小于1微米的膜材料,称为薄膜材料。
下面是店铺给大家整理的薄膜材料的特点及其制备技术,希望能帮到大家!薄膜材料的特点与制备技术工业上有两大类塑料薄膜(厚度在0.005mm~0.250mm)生产方法——压延法和挤出法,其中挤出法中又分为挤出吹塑、挤出拉伸和挤出流延。
目前最广泛使用的生产工艺有挤出吹塑、挤出拉伸和挤出流延,尤其是聚烯烃薄膜,而压延法主要用于一些聚氯乙烯薄膜的生产。
在挤出吹塑、挤出拉伸和挤出流延中,由于挤出吹塑设备的整体制造技术的不断提高以及相对于拉伸和流延设备而言低得多的,本应用在不断增多。
不过在生产高质量的各种双向拉伸薄膜中仍然广泛使用挤出拉伸设备。
随着食品、蔬菜、水果等对塑料薄膜包装的要求越来越高以及农地膜、棚膜的高性能要求和工业薄膜的应用不断增加、计算机和自动化技术的应用,塑料薄膜设备生产商一直在不断创新,提高薄膜的生产质量。
薄膜材料的简介当固体或液体的一维线性尺度远远小于其他二维时,我们将这样的固体或液体称为膜。
通常,膜可分为两类,一类是厚度大于1微米的膜,称为厚膜;另一类则是厚度小于1微米的膜,称为薄膜。
半导体功能器件和光学镀膜是薄膜技术的主要应用。
一个很为人们熟知的表面技术的应用是家用的镜子:为了形成反射表面在镜子的背面常常镀上一层金属,镀银操作广泛应用于镜子的制作,而低于一个纳米的极薄的镀层常常用来制作双面镜。
当光学用薄膜材料(例如减反射膜消反射膜等)由数个不同厚度不同反射率的薄层复合而成时,他们的光学性能可以得到加强。
相似结构的由不同金属薄层组成的周期性排列的薄膜会形成所谓的超晶格结构。
在超晶格结构中,电子的运动被限制在二维空间中而不能在三维空间中运动于是产生了量子阱效应。
薄膜技术有很广泛的应用。
长久以来的研究已经将铁磁薄膜用于计算机存储设备,医药品,制造薄膜电池,染料敏化太阳能电池等。
陶瓷薄膜也有很广泛的应用。
由于陶瓷材料相对的高硬度使这类薄膜可以用于保护衬底免受腐蚀氧化以及磨损的危害。
钛酸铋钠系列铁电薄膜的研究李大吉,王亚平,李绍霞,王卓(烟台大学环境与材料工程学院,烟台 264005)摘要铁电薄膜材料、集成铁电器件以及与之相关的物理问题,多年来一直是物理学(特别是电介质物理学) 、材料科学与工程、微电子与光电子等领域的科学技术人员所关注的重要问题之一。
重点介绍了钛酸铋钠系列铁电薄膜及其掺杂的研究,同时介绍了笔者对钛酸铋钠薄膜掺杂钙、锶、钡的一系列研究工作。
关键字钛酸铋钠铁电薄膜掺杂The Study of Serial Na0.5Bi0.5TiO3 Ferroelctric Thin FilmLI Daji, WANG Yaping, LI Shaoxia, WANG Zhuo(The school of environment and materials engineering in Yantai University, Yantai, Shandong, 264005)Abstract Ferroelectric thin-film materials , integrated ferroelectric apparatus and correlative physics questions have been paid close attention to for many years by technical staff in physics(especially dielectric physics), material science and engineering , microelectronics and photoelectron scientific fields.The research of titanium bismuth sodium thin film and its doped series are introduced in details in the article.Meanwhile our serial study of titanium bismuth sodium thin films doping the calcium , strontium , barium are introduced.Key words Na0.5Bi0.5TiO3,f erroelctric t hin f ilm,d oping0 引言铁电薄膜是一类重要的功能性薄膜材料,多年来一直是铁电性研究和高技术新材料研究的前沿和热点之一,以铁电存储为代表的器件可望在微电子领域得到广泛的应用。
压电薄膜材料的性能与性能特点压电材料是实现机械能与电能相互转换的功能材料,它的发展有着十分悠久的历史。
自19世纪80年代从CURIE 兄弟在石英晶体上发现了压电效应后,压电材料开始引起人们的广泛注意,随着研究深入,不断涌现出大量的压电材料,如压电功能陶瓷材料、压电薄膜、压电复合材料等。
这些材料有着十分广泛的用途,在电、磁、声、光、热、湿、气、力等功能转换器件中发挥着重要的作用。
PVDF压电薄膜PVDF压电薄膜即聚偏氟乙烯压电薄膜,在1969年,日本人发现了高分子材料聚偏氟乙烯(polyvinylidene fluoride polymer) 简称PVDF,具有极强的压电效应。
PVDF薄膜主要有二种晶型即α型和β型,α型晶体不具有压电性,但PVDF膜经滚延拉伸后,原来薄膜中的α型晶体变成β型晶体结构。
拉伸极化后的PVDF 薄膜在承受一定方向的外力或变形时,材料的极化面就会产生一定的电荷,即压电效应。
与压电陶瓷和压电晶体相比,压电薄膜主要有以下优点:(1)质量轻,它的密度只有常用的压电陶瓷PZT的四分之一,粘贴在被测物体上对原结构几乎不产生影响,高弹性柔顺性,可以加工成特定形状可以与任意被测表面完全贴合,机械强度高,抗冲击;(2)高电压输出,在同样受力条件下,输出电压比压电陶瓷高10倍;(3)高介电强度,可以耐受强电场的作用(75V/um),此时大部分压电陶瓷已经退极化了;(4)声阻抗低,仅为压电陶瓷PZT的十分之一,与水、人体组织以及粘胶体相接近;(5)频响宽,从10-3Hz到109均能转换机电效应,而且振动模式单纯。
因此在力学中可以测量应力和应变,在振动中可以制作加速度计和振动模态传感器,在声学上可以制作声辐射模态传感器和超声换能器以及用在主动控制中,在机器人研究中可以。
课程设计实验课程名称电子功能材料制备技术实验项目名称薄膜材料及薄膜技术专业班级学生姓名学号指导教师薄膜材料及薄膜技术薄膜技术发展至今已有200年的历史。
在19世纪可以说一直是处于探索和预研阶段。
经过一代代探索者的艰辛研究,时至今日大量具有各种不同功能的薄膜得到了广泛的应用,薄膜作为一种重要的材料在材料领域占据着越来越重要的地位,各种材料的薄膜化已经成为一种普遍趋势。
其中包括纳米薄膜、量子线、量子点等低维材料,高K值和低K值介质薄膜材料,大规模集成电路用Cu布线材料,巨磁电阻、厐磁电阻等磁致电阻薄膜材料,大禁带宽度的“硬电子学”半导体薄膜材料,发蓝光的光电半导体材料,高透明性低电阻率的透明导电材料,以金刚石薄膜为代表的各类超硬薄膜材料等。
这些新型薄膜材料的出现,为探索材料在纳米尺度内的新现象、新规律,开发材料的新特性、新功能,提高超大规模集成电路的集成度,提高信息存储记录密度,扩大半导体材料的应用范围,提高电子元器件的可靠性,提高材料的耐磨抗蚀性等,提供了物质基础。
以至于将薄膜材料及薄膜技术看成21世纪科学与技术领域的重要发展方向之一。
一、薄膜材料的发展在科学发展日新月异的今天,大量具有各种不同功能的薄膜得到了广泛的应用,薄膜作为一种重要的材料在材料领域占据着越来越重要的地位。
自然届中大地、海洋与大气之间存在表面,一切有形的实体都为表面所包裹,这是宏观表面。
生物体还存在许多肉眼看不见的微观表面,如细胞膜和生物膜。
生物体生命现象的重要过程就是在这些表面上进行的。
细胞膜是由两层两亲分子--脂双层膜构成,它好似栅栏,将一些分子拦在细胞内,小分子如氧气、二氧化碳等,可以毫不费力从膜中穿过。
膜脂双层分子层中间还夹杂着蛋白质,有的像船,可以载分子,有的像泵,可以把分子泵到膜外。
细胞膜具有选择性,不同的离子须走不同的通道才行,比如有K+通道、Cl-通道等等。
细胞膜的这些结构和功能带来了生命,带来了神奇。
二、薄膜材料的分类目前,对薄膜材料的研究正在向多种类、高性能、新工艺等方面发展,其基础研究也在向分子层次、原子层次、纳米尺度、介观结构等方向深入,新型薄膜材料的应用范围正在不断扩大。
ald沉积原理等离子体摘要:一、ald沉积原理简介二、等离子体在ald过程中的作用三、ald沉积技术的应用四、我国在ald沉积技术方面的发展五、未来ald沉积技术的发展趋势正文:【一、ald沉积原理简介】原子层沉积(ALD,Atomic Layer Deposition)是一种先进的薄膜制备技术,以其优异的薄膜性能和高度的控制能力著称。
ALD沉积原理主要基于气相反应,通过周期性曝露样品表面于不同气体或化学物质,使得沉积物质以原子层的形式逐渐累积,从而实现薄膜的制备。
【二、等离子体在ald过程中的作用】等离子体在ALD过程中起到了关键作用。
在ALD过程中,等离子体源产生的高能粒子束可以与前驱体气体发生反应,产生高活性的表面反应物,从而促进薄膜的沉积。
此外,等离子体还可以改善薄膜的密度、均匀性和完整性,提高薄膜的质量。
【三、ald沉积技术的应用】ALD沉积技术广泛应用于微电子、光电子和能源领域,如半导体器件制造、太阳能电池、发光二极管等。
通过ALD技术,可以实现对薄膜厚度、成分和结构的精确控制,从而提高器件的性能和稳定性。
【四、我国在ald沉积技术方面的发展】我国在ALD技术研究方面取得了显著成果,已成功应用于实际生产。
国内科研机构和企业通过不断引进、消化、吸收和创新,已在ALD设备、工艺和材料等方面取得了重要突破。
此外,我国政府也高度重视ALD技术的发展,给予了大力支持,推动了我国ALD产业的壮大。
【五、未来ald沉积技术的发展趋势】随着科技的不断进步,未来ALD沉积技术将呈现以下发展趋势:1.高性能ALD薄膜材料的研究与开发:针对不同应用领域,研究新型高性能ALD薄膜材料,以满足不断提高的性能需求。
2.低成本、高效能的ALD设备:发展具有自主知识产权的ALD设备,提高设备性能,降低成本,以满足大规模生产的需求。
3.跨学科整合与创新:结合物理、化学、材料等多学科研究,探索新型ALD工艺和方法,拓宽ALD技术的应用领域。
金刚石薄膜的性质、制备及应用金刚石薄膜因其独特的物理、化学性质而备受。
作为一种具有高硬度、高熔点、优良光学和电学性能的材料,金刚石薄膜在许多领域具有广泛的应用前景。
本文将详细探讨金刚石薄膜的性质、制备方法以及在各个领域中的应用,旨在为相关领域的研究提供参考和借鉴。
金刚石薄膜具有许多优异的物理和化学性质。
金刚石是已知的世界上最硬的物质,其硬度远高于其他天然矿物。
金刚石的熔点高达3550℃,远高于其他碳材料。
金刚石还具有优良的光学和电学性能。
其透明度较高,可用于制造高效光电设备。
同时,金刚石具有优异的热导率和电绝缘性能,使其在高温和强电场环境下具有广泛的应用潜力。
制备金刚石薄膜的方法主要有物理法、化学法和电子束物理法等。
物理法包括热解吸和化学气相沉积等,可制备高纯度、高质量的金刚石薄膜。
化学法主要包括有机化学气相沉积和溶液法等,具有沉积速率快、设备简单等优点。
电子束物理法是一种较为新兴的方法,具有较高的沉积速率和良好的薄膜质量。
各种方法的优劣和适用范围因具体应用场景而异,需根据实际需求进行选择。
光电领域:金刚石薄膜具有优良的光学性能,可用于制造高效光电设备。
例如,利用金刚石薄膜制造的太阳能电池可将更多的光能转化为电能。
金刚石薄膜还可用于制造高品质的激光器、光电探测器和光学窗口等。
高温领域:金刚石的熔点高达3550℃,使其在高温环境下具有广泛的应用潜力。
例如,金刚石薄膜可应用于高温炉的制造,提高炉具的耐高温性能和加热效率。
金刚石薄膜还可用于制造高温传感器和热电偶等。
高压力领域:金刚石具有很高的硬度,使其在高压环境下保持稳定。
因此,金刚石薄膜可应用于高压设备的制造,如高压泵、超高压测试仪器等。
金刚石薄膜还可用于制造高精度的光学镜头和机械零件等。
本文对金刚石薄膜的性质、制备及应用进行了详细的探讨。
作为一种具有高硬度、高熔点、优良光学和电学性能的材料,金刚石薄膜在光电、高温、高压力等领域具有广泛的应用前景。
薄膜电真空薄膜与电真空技术-打造未来科技的新希望薄膜和电真空技术是当今科技领域中备受瞩目的两大研究方向。
它们具有广泛的应用前景,并且正在引领着新一轮科技革命。
本文将深入探讨薄膜和电真空技术的原理、应用以及未来发展的前景。
首先,我们来了解一下薄膜技术。
薄膜是一种非常薄的材料层,通常厚度在纳米到微米级别。
薄膜技术是将材料沉积在基底上形成薄膜层的一种方法。
薄膜技术在电子器件、光学器件、能源存储和转换等领域具有广泛的应用。
例如,薄膜太阳能电池利用薄膜材料将太阳光转化为电能,具有高效率和轻便的特点,成为可再生能源的重要组成部分。
此外,薄膜技术还被应用在显示器件、传感器、光纤通信等领域,为现代科技的快速发展提供了坚实的基础。
接下来,让我们来了解一下电真空技术。
电真空是指在真空环境中利用电子束或离子束进行加热、腐蚀、镀膜等工艺的技术。
电真空技术被广泛应用于半导体、光学、材料科学等领域。
例如,电子束光刻技术是制造集成电路的重要工艺之一,通过控制电子束的聚焦和定位,实现对光刻胶的局部曝光,从而形成微米级别的芯片结构。
此外,电真空技术还被应用于材料表面处理、光学薄膜制备等领域,为科学家们提供了研究材料性能和制备新材料的重要手段。
薄膜和电真空技术的研究不仅仅是为了满足现有的需求,更重要的是为未来科技的发展打下基础。
随着科技的不断进步,对于材料的性能和功能要求也越来越高。
薄膜和电真空技术具有制备材料薄、性能优良的特点,能够满足未来科技对材料的高性能需求。
例如,通过薄膜技术制备的二维材料具有独特的电子、光学和力学性质,被广泛应用于电子器件、传感器等领域。
而电真空技术的快速发展,也为新材料和新器件的制备提供了新的方法和手段。
薄膜和电真空技术的发展离不开科研人员的不断努力和创新。
他们通过改进材料的制备方法、优化器件的结构设计以及探索新的应用领域,不断推动着薄膜和电真空技术的发展。
同时,他们也面临着一系列的挑战,如改善薄膜的质量和稳定性、提高电真空器件的加工精度和效率等。
材料科学与工程学院硕士研究生招生研究方向简介专业:080500材料科学与工程01光电薄膜及器件本方向主要研究薄膜材料结构与光电性能关系以及其表面/界面的物理与化学性质,优化与发展先进光电薄膜材料及其器件的制备方法、测量原理与应用技术。
主要研究方向有:(1)先进太阳能薄膜制备及器件技术;(2)新型氧化物半导体光电薄膜的掺杂改性及原型器件探索;(3)场发射纳米多层半导体薄膜制备及器件技术;(4)钙钛矿锰氧化物及半金属磁隧道结制备及器件开发;本研究方向曾主持完成国家973、863及国家自然科学基金等多项国家重点科技项目,获北京市科技进步奖3项,发表SCI收录论文100余篇,国家发明授权10余项。
目前在研国家自然科学基金、北京市科技新星科技等多个项目。
从事该研究方向的导师:严辉、张铭、王如志、王波02纳电子与磁电子学本方向主要研究纳米体系及低维材料的在热、电、磁等外场调制下的结构、电子与电荷的相互关联效应及新型纳电子器件制备技术探索。
主要研究方向有:(1)磁电调控作用下低维体系(量子点、量子线及二维电子气)量子输运问题研究;(2)基于纳米体系的第一原理、分子动力学及蒙特卡罗法的结构设计及性能模拟;(3)纳米场发射显示器件的冷阴极结构设计、制备及相关基础研究;(4)碳系(CNT及graphene)纳电子器件化技术基础研究;基于本研究方向,在国际重要学术刊物Phys. Rev. B, Appl. Phys. Lett.等发表论文多篇,申请国家发明多项,目前在研国家自然科学基金、北京市科技新星科技等多个项目。
从事该研究方向的导师:王如志、张铭、严辉03纳微仿生表面仿照动植物表面的特殊微观结构,利用低温等离子体相关技术制备纳米和微米多尺度的仿生复合结构,研究材料表面微观结构与表面功能特性间的本质联系,开发具有特殊润湿性能以及其它功能特性的表面材料,探索相关表面材料在自清洁、微流芯片以及舰船减阻等领域的实用途径。
薄膜材料综述科技的发展对材料的要求越来越高,一种新材料的问世对社会的影响将非常巨大.考虑到新材料的获得一般都不太容易,而且其价格不菲,由此,研究附着在基体表面的薄膜材料就很有意义.薄膜材料可以看成表面材料,一般都非常薄,因此,薄膜材料的制备及其表征方法与材料表面研究有着非常密切的联系.薄膜材料不仅具有优越的力学、热学等性能,而且还具有光电、压电、磁性等特定功能,并且成本较低,所以广泛应用于生产和生活中.按其性能和实际用途划分,可分为结构薄膜材料和功能薄膜材料.结构薄膜结构薄膜材料在材料应用中非常重要,它可以提高材料的力学性能、减轻材料的质量、减少成本等.其主要有高温合金薄膜、陶瓷薄膜、准晶薄膜等.其中高温合金薄膜主要应用于汽轮机及航天发动机的涡轮叶片的涂层;陶瓷薄膜主要用作大容量的薄膜电容器、超导体、固/液分离膜等;准晶薄膜由于具有高硬度、低摩擦因数、低热导率、低电导率、抗氧化、耐腐蚀及特殊的光学性能而被应用于不粘锅涂层、热障和热防护涂层、太阳能选择吸收器等方面.功能薄膜功能薄膜材料是广泛应用于国民经济、军事工业等领域的基础材料,具有重要的应用和基础研究价值.主要有光学薄膜、电极薄膜、磁性薄膜等.其中,光学薄膜主要用于光学和光电子技术领域,制造各种光学仪器,如反射膜、增透膜、滤光膜、光学保护膜、偏振膜、分光膜和位相膜等;电极薄膜主要应用于太阳能电池及透明导电氧化物(TCO)薄膜;磁性薄膜一般按材料性质分为金属和非金属磁膜材料,按材料组织状态分为非晶、多层调制和微晶磁膜材料.磁膜材料广泛用于制造计算机存储,光通信中的磁光调制器、光隔离器和光环行器等;也用作磁记录薄膜介质、薄膜磁头和磁光记录盘等.薄膜制备薄膜的制备方法很多,原理也有所不同,归纳起来,常见的薄膜制备方式主要有两种,物理气相沉积(Physical Vapor Deposition,PVD)和等离子体化学气相沉积(Plasma Chemical Vapor Deposition,PCVD).其中物理气相沉积主要有3种常见的方法:磁控溅射镀膜、离子束溅射镀膜和脉冲激光沉积镀膜(Pulsed Laser Deposition,PLD).以往薄膜制备主要采用PCVD方法,但此方法对于反应器工件的清洁度要求比较高,制备的薄膜表面比较粗糙.另外,由于是化学方法镀膜,对环境的污染比较大.相比之下,近年来兴起的PVD方法,综合性能比较好,所以目前薄膜制备更多采用的是PVD方法.脉冲激光沉积镀膜PLD技术是将高能量的脉冲激光束聚焦作用于靶材表面,使靶材瞬间在真空中蒸发,从而在衬底上沉积成膜的一种镀膜技术.特别适用于制备合金及化合物薄膜,即使靶材中不同组元有不同的蒸汽压,蒸发时也不会发生组分偏离.镀膜需要在真空下完成,通过PLD方法制得的薄膜成分与靶材成分基本一致,所以薄膜成分易控制,无需退火等苛刻条件,即可得到性能良好的薄膜,降低了制备的难度与成本.磁控溅射镀膜磁控溅射镀膜主要有直流溅射镀膜和射频溅射镀膜两种,直流溅射镀膜只适合于金属,而射频溅射镀膜对金属和非金属都适用.磁控溅射的基本原理是:系统抽到高真空后,充入惰性气体(一般为氩气),在阴极和阳极间加几千伏电压,两极间即产生辉光放电.放电产生的正离子在电场作用下,高速轰击靶材,受碰撞后从靶面逸出的靶原子称为溅射原子,其能量在一至几十电子伏范围.溅射原子在基片表面沉积成膜.通过增加磁场控制溅射原子的路径,可大大提高沉积速率,提高镀膜的效率.由于在靶材表面建立与电场正交磁场,解决了二极溅射沉积速率低,等离子体离化率低等问题,是目前镀膜工业的主要方法之一.磁控溅射与其他镀膜技术相比具有如下特点:可制备成靶的材料范围广,几乎所有金属、合金和陶瓷材料都可以制成靶材;在适当条件下,多元靶材共溅射方式,可沉积配比精确恒定的合金;在溅射的放电气氛中加入氧、氮或其他活性气体,可沉积形成靶材物质与气体分子的化合物薄膜;通过精确地控制溅射镀膜过程,容易获得均匀的高精度的膜厚;通过离子溅射靶材料物质由固态直接转变为等离子态,溅射靶的安装不受限制,适合于大容积镀膜室多靶布置设计;溅射镀膜具有速度快、膜层致密、附着性好等特点,很适合于大批量、高效率的工业生产.离子束溅射镀膜离子束溅射镀膜(Ion Beam Sputter Deposi—tion,IBSD)是PVD 的一种,其原理是通过一个大功率的离子源产生高能的离子束轰击靶材,使固体原子或分子射出到达基板表面,实现膜料的沉积.与传统的电子束蒸发技术相比,离子束溅射沉积粒子的动能更大,一般为10 eV 以上,是电子束蒸发方法的几十倍.因此制备的薄膜十分致密,不易形成柱状结构,具有损耗小、稳定性高、抗激光损伤性能较好等优点.同时离子束溅射的离子束能量和束流可精确控制,因而工艺稳定,可重复性好,是制备高质量光学薄膜的一种重要手段.在激光技术、光通信技术的发展中,发挥了重要的作用,在其他领域,也具有广阔的应用前景.离子束溅射镀膜实际上是真空蒸发镀膜和反应磁控溅射镀膜的结合,也是在高真空腔内完成镀膜的.但与磁控溅射不同的是其基体在阴极,靶材在阳极,蒸发出来的靶材分子在通过等离子区时发生电离,正离子在电场作用下迅速打到基体表面,实现镀膜.薄膜的分析表征方法表面分析技术是研究材料表面的化学组分、形貌、原子结构、键和状态(电子态和原子态)等信息的实验技术.按所得的信息分类,表面分析技术有组分分析、结构分析、形貌分析和表面键合状态分析等.由于固体材料的表面极易从周围吸附气体分子,所以表面分析仪器也要求比较高的真空度.表面组分分析目前许多物理、化学方法都可以用来分析材料表面的化学成分,但往往只能得到材料的平均化学成分,无法获知表面特征微区的化学组成.电子或场离子显微术及扫描探针显微术,虽然可以提供微观形貌、结构等信息,却无法直接测定化学组成.而显微电子能谱则是特征微区成分分析的有力工具,它可以直接测量材料的微结构或微小区域中元素组分和化学态及其分布.X线光电子能谱分析X线光电子能谱分析(X-ray PhotoelectronSpectroscopy,XPS)是利用x线源产生很强的x线轰击样品,从样品中激发出电子,并将其引入能量分析器,探测经过能量分析的电子,做出x线对能量的分布图.它可以用于区分非金属原子的化学状态和金属的氧化状态,所以又称为化学分析光电子能谱仪(Electron—Spectroscopy for ChemicalAnalysis,ESCA).俄歇电子能谱分析俄歇电子能谱分析(Auger Electron Spec—troscopy,AES)是利用入射电子束使原子内层能级电离,产生无辐射俄歇跃迁.其原理是:当内层电缺位时出现一个空位,使整个原子体系处于不稳定的激发态,然后自发地由能量高的状态跃迁到能量低的状态,这个过程称为弛豫过程.弛豫过程既可以是非辐射跃迁,也可以是辐射跃迁.当较外层的电子跃迁到空穴时,所释放的能量随即在原子内部被吸收而逐出较外层的另一个次级光电子,称为俄歇效应,亦称次级光电效应或无辐射效应,所逐出的次级光电子称为俄歇电子.俄歇电子逃逸到真空中,用电子能谱仪在真空中对其进行探测,对探测结果进行分析便可确定组分.能量色散X线分析能量色散X线分析也称EDX或EDS,主要应用于材料表面的微区成分分析.它的能量具有特征性,与入射辐射的能量无关.当较外层的电子跃人内层空穴所释放的能量不在原子内被吸收,而是以辐射形式放出,便产生X线荧光,其能量等于两个能级之间的能量差.因此,X线荧光的能量或波长是特征性的,与元素有一一对应的关系.EDXA工作时温度一般比较高,所以一般都在液氮的冷却下进行分析.表面结构分析物质结构分析最常用的方法是X线衍射分析(x—Ray Diffraction,XRD)E15].X 线衍射分析是一种微米级的表层分析,通过对材料进行X线衍射,分析其衍射图谱,可获得材料的成分、材料内部原子或分子的结构、形态等信息.目前x线衍射(包括散射)已经成为研究晶体物质和某些非晶态物质微观结构的有效方法,在金属中的应用主要有物相分析和点阵参数测定两个方面.表面形貌分析材料表面形貌包括表面宏观形貌和显微组织形貌.由于受光学显微镜分辨率的限制,表面形貌分析已大量使用现代化的分析手段.扫描电子显微镜扫描电子显微镜(Scanning Electron Mi—croscope,sEM)是当极细电子束在样品表面作光栅状扫描时,利用扫描产生的二次电子或背散射电子量来调制同步扫描的成像显像管电子枪的栅极而成像的,反映的是样品表面形貌.扫描电子显微镜的优点是景深大,样品制备简单,对于导电材料,可直接放人样品室进行分析,对于导电性差或绝缘的样品则需要喷镀导电层。
上海交通大学硕士学位论文PVDF/PMMA和PVDF/PMMA/TiO<,2>共混体系结构与性能研究姓名:李卫申请学位级别:硕士专业:材料学指导教师:张永明20090101PVDF/PMMA和 PVDF/PMMA/TiO2共混体系结构与性能研究摘要聚偏氟乙烯 ( PVDF作为一种氟碳热塑性塑料具有优异的耐候性, 抗污染性和化学稳定性, 被广泛用于涂料和户外保护膜。
但 PVDF 价格昂贵,加工困难,不易得到表面光滑、均匀的薄膜,因此常用与聚甲基丙烯酸甲酯(PMMA 共混的方法对其改性。
本文制备了聚偏氟乙烯 PVDF/PMMA和 PVDF/PMMA/TiO2膜,并对其结构和性能进行了研究。
本文将 PVDF 和 PMMA 共混, 采用熔融挤出吹塑法成型工艺制备了不同质量比例的 PVDF/PMMA透明膜。
通过对其结构和性能的研究表明: PMMA 的加入能够大大改善 PVDF 的微观结构,不但使结晶度降低,而且红外分析(IR和广角 X 射线衍射 (WXRD证实, 其中部分α晶型能明显地转变成β晶型; TGA 研究表明,共混体系的稳定性比纯粹的 PMMA 稳定性提高,但 PVDF 的热稳定性只有很少降低;流变性能研究显示, PMMA 含量在很宽的范围内体系扭矩变化不大, 为选择加工条件提供了依据;力学性能测试显示出共混膜很好的力学性能。
进一步在 PVDF/PMMA质量比为 70:30的体系上,添加不同质量的二氧化钛(TiO 2得到一系列不透明的 PVDF/PMMA/TiO2复合膜。
利用 DSC 、 TG 、ATR 、 XRD 、 Py-GC/MS等手段研究了复合膜的结构、形态、力学性能、加工性能、表面性能和透水性。
研究发现:PVDF/PMMA/TiO2共混体系中, TiO 2可以很好的分散在 PVDF/PMMA中;少量 TiO 2的加入可以提高其力学性能,改善其加工性能; TiO 2对 PVDF 的分解起了催第 I 页化作用,但 PVDF/PMMA/TiO2复合膜仍有很好的热稳定性。
南京理工大学张轩教授团队在高适应力的聚酯薄膜用于高性能反渗透海水淡化方面取得最新研究进展洪晚晚【期刊名称】《水处理技术》【年(卷),期】2024(50)5【摘要】近日,Science(《科学》)以“More resilient polyester membranes for high-performance reverse osmosis desalination”为题,报道南京理工大学环境与生物工程学院张轩教授团队在反渗透膜研究方向的重要进展。
姚宇健博士为论文第一作者,张轩教授、东北师范大学王宪泽副教授、美国耶鲁大学化学与环境系Menachem Elimelech教授为论文共同通讯作者,南京理工大学为第一通讯单位。
该团队设计并合成了一类间苯二酚衍生物—3,5-二羟基-4-甲基苯甲酸(DHMBA),借助“共溶剂辅助”界面聚合的制膜方法,提高了反应物从水相迁移至有机相的扩散速率,构建了无缺陷且具有优异“水/盐选择性”的三维网络聚合物薄膜结构,验证了材料优异的反渗透基础分离性能(与Dupont公司SW30系列海淡膜相当)。
进一步的模型实验研究结果表明,DHMBA型聚酯反渗透膜材料在脱硼率、耐氯性、抗有机污染、抗无机结垢等海水淡化关键评价指标方面均表现出色,综合性能在多维度超越行业标杆。
【总页数】1页(P66-66)【作者】洪晚晚【作者单位】不详【正文语种】中文【中图分类】G64【相关文献】1.反渗透膜技术的最新进展及其应用高性能海水淡化反渗透膜的研发及应用2.最新的泵技术用于反渗透海水淡化,每吨产水耗电仅2.7KW/h3.KAUST/香港理工大学王鹏团队:设计新一代太阳能结晶器用于真实海水淡化浓盐水的零排放4.南京大学朱嘉教授团队成功将纳米技术应用于海水淡化5.安徽农业大学生物质健康家居团队在太阳能界面海水淡化方面取得的研究进展因版权原因,仅展示原文概要,查看原文内容请购买。
具有高表面能的材料表面获得方法和应用研究材料科学与工程领域中,材料表面能是一个非常关键的参数,它能够影响材料的许多性质和应用。
表面能越高的材料,一般来说更容易和水以及其他一些分子之间产生相互作用,因此在许多领域都有着广泛的应用,如化学传感、润滑、去污、自组装等。
本文将介绍一些具有高表面能的材料表面获得的方法和应用研究。
方法一:等离子体处理等离子体处理是目前制备高表面能薄膜中应用最广泛的一种方法。
它是将高纯度气体通过一定形式的电介质以电信号作为能源来产生等离子体,并将材料放置在等离子体内加工,以达到提高表面能的效果。
等离子体处理不仅能够提高材料表面能,还可以使其表面功能化改性。
例如,苯乙烯等低表面能材料的等离子体处理可以在表面上引入羟基或羧基等高表面能基团,从而增加表面能、改变表面性能以及使其适合各种应用。
方法二:原子层沉积原子层沉积技术(ALD)是一种能够精确控制材料表面化学组成和沉积层厚度的技术,具有高度可定制化性、卓越的均匀性和极高的可重复性。
由于其表面质量,热稳定性,较低的残留应力和与其他材料的化学相容性,ALD被广泛应用于制备高性能涂层、纳米材料、氧化物薄膜、复合材料和电子器件等领域。
例如,通过ALD方法制备的氧化锆薄膜具有非常高的密度、致密性和均匀性,这使得其在生物传感和光电应用中具有广阔的应用前景。
方法三:溶胶凝胶法溶胶凝胶法是通过将适当量的粉末氧化物溶解在特定的溶剂中,通过水解凝胶化反应产生三维立体网状结构的方法。
凝胶的形成过程非常复杂,包括溶胶聚合、交联、成核和表面化学变换等过程。
由于凝胶的独特结构可以通过调节制备条件来控制,所以这种方法被广泛用于制备高表面能氧化物、溶胶凝胶纳米材料和涂层薄膜等领域。
溶胶凝胶法制备的二氧化钛薄膜具有高催化活性、优异的光学性能和极好的稳定性,被广泛用于光电及催化应用中。
应用一:纳米润滑材料纳米润滑材料是一种新型的高性能润滑材料,是应用纳米技术制备的材料。
高压直流金属化薄膜电容器绝缘性能提升方法研究进展一、简述随着电力电子技术的发展,高压直流(HVDC)金属化薄膜电容器在能源转换、传输和储存等领域的应用越来越广泛。
传统的高压直流金属化薄膜电容器在绝缘性能方面存在一定的局限性,如击穿电压低、介质损耗大等。
为了满足高速、高效、高可靠性的电力电子设备对绝缘性能的要求,研究人员对高压直流金属化薄膜电容器绝缘性能提升方法进行了深入研究。
提高高压直流金属化薄膜电容器绝缘性能的方法主要包括以下几个方面:优化电极结构:通过改变电极形状、尺寸和分布等参数,优化电极结构,以提高电容器的整体性能。
采用纳米级颗粒填充电极,可以有效降低介质损耗,提高击穿电压。
引入新型绝缘材料:研究和开发具有优异绝缘性能的新型材料,如高温超导体、高性能介电陶瓷等,作为电容器的主要绝缘介质,以满足高压直流应用的需求。
表面处理技术:通过表面处理技术,改善电容器表面的微观结构和化学性质,提高其绝缘性能。
采用低温共烧工艺(LTCC)对电极进行表面处理,可以显著降低介质损耗和串联电阻。
复合绝缘技术:将不同材料的绝缘层进行复合,以实现更好的绝缘性能。
将金属箔与聚酰亚胺薄膜复合,形成具有优异绝缘性能的复合材料,用于高压直流金属化薄膜电容器。
优化制造工艺:通过改进制造工艺,提高电容器的质量和稳定性,从而保证其良好的绝缘性能。
采用高精度的卷绕工艺和严格的质量控制措施,可以有效降低介质损耗和串联电阻。
通过对高压直流金属化薄膜电容器绝缘性能提升方法的研究,有望为电力电子设备提供更加可靠、高效的绝缘解决方案。
研究背景和意义提高高压直流金属化薄膜电容器绝缘性能可以显著降低设备的体积和重量,从而减小系统成本和能耗。
优化的绝缘材料可以提高设备的运行稳定性和可靠性,延长设备寿命,降低故障率,提高系统的安全性和经济性。
研究新型高压直流金属化薄膜电容器绝缘材料有助于推动相关领域的技术进步。
通过对绝缘材料的深入研究,可以揭示其物理机制和设计规律,为其他高性能绝缘材料的研究提供理论基础和实验依据。