高等数学-第3章 3.4 函数的极值与最值
- 格式:pdf
- 大小:205.61 KB
- 文档页数:7
函数极值求解与最值问题函数的极值和最值是数学中一个非常重要的概念。
在实际生活中,我们经常会遇到需要求一个函数的最大值或最小值的问题。
比如,在决策过程中,我们需要找到最优的方案来实现目标。
在经济学中,我们需要找到生产效率最高的方案,以最大化利润。
因此,掌握函数的极值和最值求解方法,对我们解决实际问题具有重要的意义。
一、函数的极值和最值我们先来了解一下函数的极值和最值是什么。
函数的极值包括最大值和最小值,是指函数在某一段区间内的最值。
而函数的最值则是指函数在整个定义域内的最大值和最小值。
通常来说,求解函数的极值和最值问题,需要使用微积分的相关知识。
下面我们就来介绍一些求解函数极值和最值的方法。
二、函数的导数在求解函数极值和最值的问题中,函数的导数是非常重要的工具。
函数的导数也称为函数的变化率,它的定义如下:$\lim_{\Delta x \to 0} \frac{f(x+\Delta x)-f(x)}{\Delta x}$这个定义可以被理解为,函数$f(x)$在$x$处的导数,是当$x$有一个小的变化量$\Delta x$时,$f(x)$的变化量与$\Delta x$的比值。
当$\Delta x$趋于0时,这个比值的极限就是函数$f(x)$在$x$处的导数。
现在我们来看一下,如何利用函数$f(x)$的导数来求解它的极值和最值。
三、求解函数的极值对于函数$f(x)$,如果它在$x=a$处的导数$f'(a)$存在,且$f'(a)=0$,那么我们称$x=a$是$f(x)$的一个极值点。
也就是说,在$x=a$处,函数$f(x)$达到极大值或极小值。
需要注意的是,在极值点处,函数的导数为0并不是充分条件,因为在某些情况下,函数可能在导数不存在的地方也有极值。
当我们将一个函数曲线画在坐标系中时,看一下哪些点上导数为0,哪些点上导数不存在,就可以找到这个函数的极值点。
这个方法被称为导数法。
假设我们找到函数的所有极值点$x_1,x_2,\cdots,x_n$,那么$f(x)$的极大值就是$f(x_1),f(x_2),\cdots,f(x_n)$中的最大值,而$f(x)$的极小值就是$f(x_1),f(x_2),\cdots,f(x_n)$中的最小值。
专题3.4 利用导数研究函数的极值,最值【考纲解读】【知识清单】1.函数的极值(1)函数的极小值:函数y=f(x)在点x=a的函数值f(a)比它在点x=a附近其它点的函数值都小,f′(a)=0,而且在点x=a附近的左侧f′ (x)<0,右侧f′(x)>0,则点a叫做函数y=f(x)的极小值点,f(a)叫做函数y=f(x)的极小值.(2)函数的极大值:函数y=f(x)在点x=b的函数值f(b)比它在点x=b附近的其他点的函数值都大,f′(b)=0,而且在点x=b附近的左侧f′(x)>0,右侧f′(x)<0,则点b叫做函数y=f(x)的极大值点,f(b)叫做函数y=f(x)的极大值.极小值点,极大值点统称为极值点,极大值和极小值统称为极值.对点练习:【2017课标II ,理11】若2x =-是函数21()(1)x f x x ax e -=+-的极值点,则()f x 的极小值为( )A.1-B.32e --C.35e -D.1 【答案】A 【解析】2.函数的最值(1)在闭区间[a ,b]上连续的函数f(x)在[a ,b]上必有最大值与最小值.(2)若函数f(x)在[a ,b]上单调递增,则f(a)为函数的最小值,f(b)为函数的最大值;若函数f(x)在[a ,b]上单调递减,则f(a)为函数的最大值,f(b)为函数的最小值. 对点练习:【2017北京,理19】已知函数()e cos xf x x x =-. (Ⅰ)求曲线()y f x =在点(0,(0))f 处的切线方程; (Ⅱ)求函数()f x 在区间π[0,]2上的最大值和最小值. 【答案】(Ⅰ)1y =;(Ⅱ)最大值1;最小值2π-. 【解析】所以函数()f x 在区间π[0,]2上单调递减.因此()f x 在区间π[0,]2上的最大值为(0)1f =,最小值为ππ()22f =-. 【考点深度剖析】导数是研究函数性质的重要工具,它的突出作用是用于研究函数的单调性、极值与最值、函数的零点等.从题型看,往往有一道选择题或填空题,有一道解答题.其中解答题难度较大,常与不等式的证明、方程等结合考查,且有综合化更强的趋势.【重点难点突破】考点1 应用导数研究函数的极(最)值问题【1-1】【2017河北武邑三调】已知函数()()12ln 2f x a x ax x=-++. (1)当2a =时,求函数()f x 的极值; (2)当0a <时,求函数()f x 的单调增区间. 【答案】(1)极小值为142f ⎛⎫=⎪⎝⎭,无极大值;(2)当2a =-时,增区间()0,+∞,当20a -<<时,增区间11,2a ⎛⎫- ⎪⎝⎭,当2a <-时,增区间11,2a ⎛⎫- ⎪⎝⎭. 【解析】试题分析:(1)函数()f x 的定义域为()0,+∞,令 ()21'40f x x=-+=,得1211;22x x ==-(舍去). 然后列表可求得:函数()f x 的极小值为142f ⎛⎫= ⎪⎝⎭,无极大值;(2)令()'0f x =,得1211,2x x a==-,然后利用分类讨论思想对a 分三种情况进行讨论. 试题解析: (1) 函数()f x 的定义域为()()210,,'4f x x+∞=-+,令()21'40f x x =-+=,得1211;22x x ==-(舍去). 当x 变化时,()()',f x f x 的取值情况如下:所以,函数()f x 的极小值为142f ⎛⎫=⎪⎝⎭,无极大值.【1-2】【2016新课标2理数】(Ⅰ)讨论函数xx 2f (x)x 2-=+e 的单调性,并证明当0x >时,(2)20xx e x -++>; (Ⅱ)证明:当[0,1)a ∈时,函数2x =(0)x e ax ag x x -->()有最小值.设()g x 的最小值为()h a ,求函数()h a 的值域.【答案】(Ⅰ)详见解析;(Ⅱ)21(,].24e .【解析】试题解析:(Ⅰ)()f x 的定义域为(,2)(2,)-∞-⋃-+∞.222(1)(2)(2)'()0,(2)(2)x x x x x e x e x e f x x x -+--==≥++且仅当0x =时,'()0f x =,所以()f x 在(,2),(2,)-∞--+∞单调递增, 因此当(0,)x ∈+∞时,()(0)1,f x f >=- 所以(2)(2),(2)20xxx e x x e x ->-+-++>(II )22(2)(2)2()(()),x x e a x x g x f x a x x-+++==+ 由(I )知, ()f x a +单调递增,对任意[0,1),(0)10,(2)0,a f a a f a a ∈+=-<+=≥ 因此,存在唯一0(0,2],x ∈使得0()0,f x a +=即0'()0g x =, 当00x x <<时,()0,'()0,()f x a g x g x +<<单调递减; 当0x x >时,()0,'()0,()f x a g x g x +>>单调递增. 因此()g x 在0x x =处取得最小值,最小值为000000022000(1)+()(1)().2x x x e a x e f x x e g x x x x -++===+ 于是00h()2x e a x =+,由2(1)()'0,2(2)2x x xe x e e x x x +=>+++单调递增【领悟技法】1.求函数f(x)极值的步骤: (1)确定函数的定义域; (2)求导数f′(x);(3)解方程f′(x)=0,求出函数定义域内的所有根;(4)列表检验f′(x)在f′(x)=0的根x 0左右两侧值的符号,如果左正右负,那么f(x)在x 0处取极大值,如果左负右正,那么f(x)在x 0处取极小值. 2. 求函数f(x)在[a ,b]上的最大值和最小值的步骤 (1)求函数在(a ,b)内的极值;(2)求函数在区间端点的函数值f(a),f(b);(3)将函数f(x)的各极值与f (a),f(b)比较,其中最大的一个为最大值,最小的一个为最小值. 【触类旁通】【变式一】已知等比数列{}n a 的前n 项的和为12n n S k -=+,则()3221f x x kx x =--+的极大值为( )A .2B .3C .72D .52【答案】D 【解析】因k a S S k a a S k a S +=+=+=+=+==4,2,132321211,即2,1,1321==+=a a k a ,故题设21,1)1(2-==+k k ,所以1221)(23+-+=x x x x f ,由于)1)(23(23)(2/+-=-+=x x x x x f ,因此当)1,(--∞∈x 时, )(,0)(/x f x f >单调递增;当)32,1(-∈x 时, )(,0)(/x f x f <单调递减,所以函数)(x f 在1-=x 处取极大值2512211)1(=+++-=-f ,应选D.【变式二】已知函数()()321xf x x a x ax a e ⎡⎤=+--+⎣⎦,若0x =是()f x 的一个极大值点,则实数a 的取值范围为 . 【答案】(),2-∞ 【解析】因xe a ax x a x a x a x xf ])1()1(23[)(232/+--++--+=,即x x e a x a x x e x a x a x x f )]2()2([])2()2([)(223/-+++=-+++=,由题设条件及导函数的图象可以推知方程0)2()2(2=-+++a x a x 的两根21,x x 在0的两边,即021<x x ,也即02<-a ,所以2<a .【易错试题常警惕】易错典例:已知函数f(x)=(x -k)e x. (1)求f(x)的单调区间;(2)求f(x)在区间[0,1]上的最小值.易错分析:解答本题时,易于忽视对k -1不同取值情况的讨论,而错误得到f(x)在区间[0,1]上的最小值为f(k-1).正确解析: (1)f′(x)=(x -k +1)e x . 令f′(x)=0,得x =k -1. f(x)与f′(x)的情况如下:所以,f(x)的单调递减区间是(-∞,k -1);单调递增区间是(k -1,+∞).由(1)知f(x)在[0,k -1)上单调递减,在(k -1,1]上单调递增,所以f(x)在区间[0,1]上的最小值为f(k -1)=1k e--;当k -1≥1时,即k≥2时,函数f(x)在[0,1]上单调递减,所以f(x)在区间[0,1]上的最小值为f(1)=(1-k)e.温馨提醒:1.求函数极值时,易于误把导数为0的点作为极值点;极值点的导数也不一定为0.2.极值与最值:注意函数最值是个“整体”概念,而极值是个“局部”概念.【学科素养提升之思想方法篇】_____化整为零,积零为整——分类讨论思想1.分类讨论是一种逻辑方法,是一种重要的数学思想,同时也是一种重要的解题策略,它体现了化整为零、积零为整的思想与归类整理的方法,这种思想在简化研究对象,发展思维方面起着重要作用,因此,有关分类讨论的思想的数学命题在高考试题中占有重要地位. 所谓分类讨论,就是在研究和解决数学问题时,当问题所给对象不能进行统一研究,我们就需要根据数学对象的本质属性的相同点和不同点,将对象区分为不同种类,然后逐类进行研究和解决,最后综合各类结果得到整个问题的解决,这一思想方法,我们称之为“分类讨论的思想”.2.分类讨论思想的常见类型⑴问题中的变量或含有需讨论的参数的,要进行分类讨论的; ⑵问题中的条件是分类给出的;⑶解题过程不能统一叙述,必须分类讨论的;⑷涉及几何问题时,由几何元素的形状、位置的变化需要分类讨论的. 【典例】【2017浙江台州4月调研】已知函数.(1)若函数在上存在两个极值点,求的取值范围;(2)当时,求证:对任意的实数,恒成立.【答案】(1) 的取值范围;(2)见解析.【解析】试题分析:(1)在上有两个实根,根据二次函数根的分布列不等式组,,将问题转化为线性规划求取值范围;(2)当时,,利用导数分和两类情况讨论函数的单调性和最值,转化为证明.试题解析:(1),由已知可得在上存在两个不同的零点,故有,即,令,由图可知,故的取值范围.(2)证明:,所以,当时,在上恒成立,则在上单调递增,故,所以;当时,由,解得,则在上单调递减,在上单调递增,所以,因为,所以成立.综上所述,对任意的实数恒成立.。
函数的极值与最值函数是数学中非常重要的概念,它描述了输入和输出之间的关系。
在数学中,我们经常会遇到寻找函数的极值和最值的问题。
本文将介绍函数的极值和最值的概念、求取方法以及相关的应用。
一、函数的极值和最值概念函数的极值指的是函数在特定区间内取得的最大值和最小值。
极大值是函数在该区间内取得的最大值,而极小值则是函数在该区间内取得的最小值。
极大值和极小值统称为极值。
而最大值和最小值则是函数在整个定义域内的最大值和最小值。
二、求取函数极值的方法有多种方法可以求取函数的极值,下面介绍常用的两种方法:导数法和二阶导数法。
1. 导数法导数法是一种基于函数导数的方法,它通过求取函数的导数来判断函数在某一点的递增或递减性,从而确定极值的存在和位置。
具体步骤如下:(1)求取函数的导数;(2)求取导数为零的点,即导数为零的点可能是函数的极值点;(3)求取导数为零点的二阶导数,并判断二阶导数的正负性;(4)根据二阶导数的正负性来确定函数在该点处的极值。
2. 二阶导数法二阶导数法是基于函数的二阶导数来判断函数极值的存在和位置。
通过求取函数的二阶导数,我们可以确定函数的凹凸性,并进而确定极值的存在和位置。
具体步骤如下:(1)求取函数的二阶导数;(2)求取二阶导数为零的点,即二阶导数为零的点可能是函数的极值点;(3)根据二阶导数的正负性来确定函数在该点处的极值。
三、函数极值与最值的应用函数的极值和最值在数学中有广泛的应用,下面介绍几个常见的应用场景:1. 最优化问题最优化问题是函数极值与最值的常见应用之一。
在实际问题中,我们常需要寻找一个函数的最大值或最小值,以满足特定的条件。
例如,生产厂家为了最大化利润,需要确定产量的最优值,这就是一个最优化问题。
2. 经济学应用函数的极值和最值在经济学中也有广泛的应用。
例如,生产函数和效用函数都需要求取最大值或最小值来确定最佳生产方案或消费方案。
3. 物理学应用在物理学中,函数的极值和最值也有很多应用。
函数的极值与最值在数学中,函数的极值与最值是我们经常会遇到的概念。
它们在解决实际问题,优化算法等方面发挥着重要的作用。
本文将介绍函数的极值与最值的定义、求解方法以及其在实际问题中的应用。
一、极值的定义与求解方法极值是函数在特定区间内取得的最大值或最小值。
根据定义,当函数在某个点的左右两侧函数值发生变化时,这个点就被称为极值点。
函数的最大值与最小值就是所有极值点中的最大值与最小值。
求解函数的极值可以通过以下几种方法:1. 导数法导数法是求解函数极值最常用的方法之一。
首先,我们需要计算函数的导数,然后找出导数为零的点,即驻点。
接下来,通过二阶导数的符号判断驻点是极大值还是极小值。
2. 边界法当函数在一个闭区间内连续且可导时,我们只需要计算函数在区间的端点以及在内部导数为零的点,然后比较这些函数值,即可找到函数的最大值与最小值。
3. Lagrange乘数法Lagrange乘数法主要用于求解带有约束条件的极值问题。
通过构造Lagrange函数并求解其偏导数为零的方程,我们可以获得函数在约束条件下的极值点。
二、最值的定义与求解方法最值是函数在定义域内的最大值或最小值。
与极值不同的是,最值并不要求函数在某个点处取得。
求解函数的最值可以通过以下几种方法:1. 根据函数性质有些函数具有明显的性质,比如函数的图像是凸函数或凹函数,这时我们可以直接判断函数的最值在哪个区间内取得。
2. 数值法数值法是一种较为直接的方法。
我们可以通过在定义域内取一系列点的函数值,然后比较这些函数值找出最大值与最小值。
3. 优化算法优化算法可以用来求解函数的最值问题。
例如,梯度下降法、遗传算法、模拟退火算法等可以被应用于求解实际问题中的最优解。
三、函数极值与最值的应用函数的极值与最值在实际问题中具有广泛的应用。
以下是一些具体例子:1. 生产优化问题在生产过程中,我们希望能够最大化产量或最小化成本。
通过建立相应的数学模型,并利用函数的极值与最值概念,可以确定生产因素的最佳配置,从而实现生产效益的最大化。
函数的极值与最值问题在数学中,函数的极值与最值问题是一类常见且重要的问题。
通过研究函数的极值和最值,我们能够深入理解函数的特点,并且在实际问题中能够得到有效的应用。
一、函数极值的定义在初等数学中,我们将极值分为两种,即极大值和极小值。
对于一个函数f(x),如果在某一点x0处,其函数值f(x0)大于其邻近点的函数值,那么f(x0)即为函数的极大值;相反,如果在某一点x0处,其函数值f(x0)小于其邻近点的函数值,那么f(x0)即为函数的极小值。
数学上,我们通过求函数的导数来判断函数的极值。
若函数在某一点的导数等于零,且导数在该点的某个邻域内变号,那么这个点就是函数的极值点。
二、函数最值的定义与函数的极值不同,函数的最值是指函数在其定义域内取得的最大值和最小值。
函数的最大值是指函数在定义域内的某个点或某些点上取得的最大函数值;函数的最小值则是指函数在定义域内的某个点或某些点上取得的最小函数值。
为了求得函数的最值,我们需要通过一定的方法进行计算。
常见的方法有试探法、数列极限法、导数法等。
通过这些方法,我们能够准确地找到函数的最值点和最值。
三、函数极值与最值问题的应用函数的极值与最值问题广泛应用于各个领域,包括自然科学、工程技术以及社会经济等。
下面以数学建模为例,简要说明函数极值与最值问题的应用。
在数学建模中,我们常常需要寻找能够最大化或最小化某种指标的函数值。
通过求解函数的极值和最值问题,我们可以确定最优解。
例如,在运输路线优化问题中,我们可以将运输距离或成本等指标建立函数,然后通过求函数的最小值来确定最佳的运输路线。
在生产优化中,我们可以将成本和产量建立函数,进而求函数的最大值或最小值来获得最优的生产方案。
函数的极值与最值问题还应用于金融领域。
在投资决策中,我们需要评价不同投资方案的风险收益特征。
通过构建风险与收益函数,我们可以求函数的最值,从而找到最佳的投资方案。
此外,在金融衍生品定价中,通过求解衍生品定价模型中的极值问题,我们可以确定合理的衍生品价格,为交易提供参考。
高等数学第7版教材目录本教材分为以下主要章节:第一章:函数和极限1.1 函数的概念与性质1.2 极限的概念与性质1.3 极限存在准则与计算1.4 无穷小与无穷大1.5 极限的运算法则1.6 连续与间断第二章:导数与微分2.1 导数的概念与几何意义2.2 导数的计算2.3 高阶导数与导数公式2.4 已知导函数求原函数2.5 微分的概念与计算2.6 高阶微分与微分公式第三章:微分中值定理3.1罗尔中值定理3.2 拉格朗日中值定理3.3 函数单调性与函数的图像 3.4 函数的极值与最值3.5 函数的凹凸性与拐点3.6 分析作图与最优化问题第四章:不定积分4.1 原函数与不定积分4.2 不定积分的基本公式与性质 4.3 第一换元法4.4 第二换元法4.5 分部积分法4.6 综合运用不定积分法求积分第五章:定积分与数值积分5.1 定积分的定义与性质5.2 定积分的计算5.3 定积分的应用5.4 定积分的几何应用5.5 数值积分的概念与公式5.6 数值积分的误差估计第六章:微分方程6.1 微分方程基本概念与解的存在唯一性定理 6.2 一阶微分方程的常见类型6.3 可分离变量的方程6.4 齐次方程与伯努利方程6.5 一阶线性方程6.6 变量可分离的高阶方程第七章:多元函数微分学7.1 多元函数的极限与连续7.2 偏导数及其计算7.3 隐函数与参数方程7.4 多元函数的微分学定理与全微分7.5 多元复合函数的求导法则7.6 多元函数的高阶导数第八章:多元函数微分学的应用 8.1 多元函数的极值问题8.2 最小二乘法8.3 条件极值与拉格朗日乘子法 8.4 多元函数的泰勒展开8.5 多元函数的方向导数与梯度 8.6 多元函数的极值与最值问题第九章:重积分9.1 二重积分的概念与性质9.2 二重积分的计算9.3 两类重要的曲线与曲面积分 9.4 三重积分的概念与性质9.5 三重积分的计算9.6 重积分的应用第十章:曲线积分与曲面积分 10.1 曲线积分的概念与计算10.2 曲线积分的物理应用10.3 曲面积分的概念与计算10.4 曲面积分的物理应用10.5 斯托克斯公式10.6 散度定理与高斯公式第十一章:无穷级数11.1 数项级数的概念与性质11.2 收敛级数的判别法11.3 幂级数的收敛半径与收敛域11.4 泰勒级数与带余项的计算11.5 函数展开成幂级数11.6 傅里叶级数与一些特殊函数通过以上章节的学习,可以全面系统地掌握高等数学的基本内容和方法,为进一步学习相关学科打下坚实的基础。