初三一模数学试卷分析
- 格式:docx
- 大小:42.36 KB
- 文档页数:24
镇海区2024年初三模拟考试试卷数学 学科考生须知:1.全卷共三个大题,24个小题.满分为120分,考试时间为120分钟.2.请将学校、姓名、班级填写在答题卡的规定位置上.3.请在答题卡的规定区域作答,在试卷上作答或超出答题卡的规定区域作答无效.试题卷Ⅰ一、选择题(每小题3分,共30分,在每小题给出的四个选项中,只有一项符合题目要求)1. 在实数,中,最小的数是( )A. B. C. D. 【答案】D【解析】【分析】本题考查了实数的大小比较,根据负数小于0,0小于正数,即可求解.【详解】解:∴最小,故选:D .2. 据统计,2024年春节期间,国内旅游出行474000000人次,其中数474000000用科学记数法表示为( )A. B. C. D. 【答案】C【解析】【分析】此题考查科学记数法表示较大的数的方法.科学记数法的表示形式为的形式,其中,为整数.确定的值时,要看把原数变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同.【详解】解:数474000000用科学记数法表示为.故选:C .3. 下列计算正确的是( )102-102-201-<<<2-74.7410⨯747.410⨯84.7410⨯90.47410⨯10n a ⨯1||10a ≤<n n a n 84.7410⨯A. B. C. D. 【答案】C【解析】【分析】本题考查整式的运算.利用合并同类项法则,同底数幂乘法法则,幂的乘方法则,平方差公式逐项判断即可.【详解】解:与不是同类项,无法合并,则选项A 不符合题意;,则选项B 不符合题意;,则选项C 符合题意;,则选项D 不符合题意;故选:C .4. 一城市准备选购一千株高度大约为2m 的某种风景树来进行街道绿化, 有四个苗圃生产基地投标(单株树的价格都一样). 采购小组从四个苗圃中都任意抽查了20株树苗的高度,得到的数据如下:树苗平均高度(单位:m )标准差甲苗圃1.8 0.2乙苗圃1.8 0.6丙苗圃2.0 0.6丁苗圃2.0 0.2请你帮采购小组出谋划策,应选购( )A. 甲苗圃的树苗B. 乙苗圃的树苗;C. 丙苗圃的树苗D. 丁苗圃的树苗【答案】D【解析】【分析】根据标准差和方差可以反映数据的波动大小,选出合适苗圃的树苗;再比较它们的高度,进而确32a a a-=326a a a ⋅=()236a a =()()2212121a a a +-=-3a 2a 3256a a a a ⋅=≠()236a a =()()2221214121a a a a +-=-≠-定选购哪家的树苗.【详解】由于标准差和方差可以反映数据的波动大小,所以甲苗圃与丁苗圃比较合适;又因为丁苗圃树苗平均高度大于甲苗圃,所以应选丁苗圃的树苗.故选D .【点睛】考查了标准差,标准差也均称方差,方差是反映一组数据波动大小的特征数,方差越大,数据的波动性越大;方差越小,稳定性越好.5. 若点是第二象限的点,则a 的取值范围是( )A. B. C. D. 或【答案】A【解析】【分析】本题考查了象限内点的坐标特征,解不等式方程组,掌握第二象限内点的坐标特征是解题关键.根据第二象限内的点横坐标小于0,纵坐标大于0,列不等式组求解即可.【详解】解:点是第二象限的点,,解得:,故选:A .6. 如图是一架人字梯,已知米,AC 与地面BC 的夹角为,则两梯脚之间的距离BC 为( )A. 米B. 米C. 米D. 米【答案】A【解析】(),2G a a -a<02a <02a <<a<02a > (),2G a a -020a a <⎧∴⎨->⎩a<02AB AC ==α4cos α4sin α4tan α4cos α【分析】根据等腰三角形的性质得到,根据余弦的定义即可,得到答案.【详解】过点A 作,如图所示:∵,,∴,∵,∴,∴,故选:A .【点睛】本题考查的是解直角三角形的应用,明确等腰三角形的性质是解题的关键.7. 一次数学课上,老师让大家在一张长12cm ,宽5cm 的矩形纸片内,折出一个菱形;甲同学按照取两组对边中点的方法折出菱形见方案一,乙同学沿矩形的对角线AC 折出,的方法得到菱形见方案二,请你通过计算,比较这两种折法中,菱形面积较大的是( ).A. 甲B. 乙C. 甲乙相等D. 无法判断【答案】B【解析】【分析】方案一中,通过图可知四个小直角三角形全等,用矩形面积减去4个小直角三角形的面积,即可得菱形面积;方案二中,两个小直角三角形全等,设菱形边长为x ,在直角三角形中利用勾股定理可求x ,再利用底高可求菱形面积然后比较两者面积大小.12BD DC BC ==AD BC ⊥AB AC =AD BC ⊥BD DC =DC co ACα=cos 2cos DC AC αα=⋅=24cos BC DC α==(EFGH )CAE DAC ∠=∠ACF ACB ∠=∠(AECF )⨯.【详解】解:方案一中,、F 、G 、H 都是矩形ABCD 的中点,≌≌≌,,,,;方案二中,设,则,,,,≌,在中,,,,由勾股定理得,解得,,,,,,故甲乙.E HAE ∴ HDG △△FCG FBE 11111111551222222222HAE S AE AH AB AD =⋅=⨯⨯=⨯⨯⨯⨯= 4HAE ABCD EFGH S S S =- 矩形菱形1512542=⨯-⨯30=BE x =12CE AE x ==-AF EC = AB CD =AE CF =ABE ∴ CDF Rt ABE 5AB =BE x =12AE x =-222(12)5x x -=+11924x =111195955222448ABE S BE AB =⋅=⨯⨯= 2ABE ABCD EFGH S S S =- 矩形菱形595125248=⨯-⨯6025≈-3530=><故选B .【点睛】本题考查菱形的性质、勾股定理以及矩形的性质.注意掌握数形结合思想与方程思想的应用.8. 甲乙两人练习跑步,如果乙先跑10米,甲跑5秒就可追上乙;如果乙先跑2秒,甲跑4秒就可追上乙.设甲速度为x 米/秒,乙的速度为y 米/秒,则可列出的方程组为( )A. B. C. D. 【答案】B【解析】【分析】根据题意,确定等量关系即甲行驶路程等于乙的两次行驶路程的和,列出方程即可,本题考查了二元一次方程组的应用,熟练掌握方程组的应用是解题的关键.【详解】根据题意,得,故选B .9. 二次函数的图象如图所示.下列结论:①;②;③;④若图象上有两点,且,则.其中正确结论的个数为( )A. 1个B. 2个C. 3个D. 4个【答案】C【解析】【分析】本题主要考查了二次函数的图象与性质.依据题意,由抛物线开口向下,从而,又抛物线为,故,再结合抛物线与轴交于负半轴,可得,进而可以判断①;又,从而可以判断②;又当时,,又,故,进而可以判断的551046x y y x =+⎧⎨=⎩551046x y x y=+⎧⎨=⎩510546x y x y+=⎧⎨=⎩551046y x y x=+⎧⎨=⎩551046x y x y =+⎧⎨=⎩2(0)y ax bx c a =++≠0abc >40b a +=0b c +>()11,x y ()22,x y 1204x x <<<12y y <a<022b x a=-=40b a =->y 0c <4b a =-1x =0y a b c =++>a<00b c a +>->③;由抛物线的对称轴是直线,从而当时与当时函数值相等,进而可得当,则,故可以判断④.【详解】解:由题意,抛物线开口向下,.又抛物线为..抛物线与轴交于负半轴,.,故①正确.又,,故②正确.由题意,当时,.又,,故③正确.抛物线的对称轴是直线,当时与当时函数值相等.当,则,故④错误.综上,正确的有:①②③.故选:C .10. 如图,点E 、F 分别是正方形的边、上的点,将正方形沿折叠,使得点B 的对应点恰好落在边上,则的周长等于( )A B. C. D. 【答案】A【解析】.2x =0x =4x =1204x x <<<12y y > <0a ∴22b x a=-=40b a ∴=-> y 0c ∴<0abc ∴>4b a =-40b a ∴+=1x =0y a b c =++>a<00b c a ∴+>-> 2x =∴0x =4x =∴1204x x <<<12y y >ABCD AD BC ABCD EF B 'CD DGB '△2AB ABBF+【分析】本题考查正方形的性质,全等三角形的判定与性质,如图,作,连接,,可证,,根据全等三角形的性质可得,,等量代换即可求解.【详解】解:如图,作,连接,,∵四边形是正方形,∴,由折叠可得,∴,∵ ∴,∴,∴,在和中,∴∴,,在和中,BH A B ''⊥BG BB 'BB C BB H ''≌ BHG BAG ≌ HB CB ''=GH AG =BH A B ''⊥BG BB 'ABCD 90ABC C A ∠=∠=∠=︒BF B F '=90FB A ABC ''∠=∠=︒23∠∠=BHG ∠=90FB A ''∠=︒BH FB ∥24∠∠=3=4∠∠BCB 'V BHB ' 9034BHB C BB BB ∠=∠=︒⎧⎪∠==''∠⎨'⎪⎩()AAS BB C BB H ''≌ BC BH =HB CB ''=Rt BAG Rt BHG BG BG BH AB=⎧⎨=⎩∴,∴,∴,故选:A .试题卷Ⅱ二、填空题(每小题4分,共24分)11. 若分式的值为0,则x 的值是______.【答案】2【解析】【分析】根据分式的值为0,即分母不为0,分子为0得到x-2=0,且x+3≠0,求出x 即可.【详解】解:∵分式的值为0,∴x-2=0,且x+3≠0,∴x=2.故答案为:2.【点睛】本题考查了分式的值为0的条件:分式的值为0,要满足分母不为0,分子为0.也考查了解方程和不等式.12. 分解因式:_____.【答案】【解析】【分析】此题主要考查了提取公因式法以及公式法分解因式,首先提取公因式,进而利用平方差公式分解因式即可,正确应用平方差公式是解题关键.【详解】解:,,故答案为:.13. 在平行四边形中,,的平分线交边于点E ,则的长为______.()HL BHG BAG ≌ GH AG =2DGB C DG GH B H B D AD CD AD '''=+++=+= 23x x -+23x x -+24mx m -=()()22m x x +-m ()2244mx m m x -=-()()22m x x =+-()()22m x x +-ABCD 58AB BC ==,B ∠BE AD DE【答案】3【解析】【分析】本题考查平行四边形的性质、等腰三角形的判定和性质.根据平行四边形的性质可得,则,再由角平分线的定义可得,从而求得,则,从而求得结果.【详解】解:∵四边形是平行四边形,∴,∴,∵的平分线交于点E ,∴,∴,∴,∵,∴,故答案为:3.14. 一个圆锥的高为4,母线长为6,则这个圆锥的侧面积是______.【答案】【解析】【分析】本题考查了圆锥的计算.先利用勾股定理计算出这个圆锥的底面圆的半径,然后根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式计算即可.【详解】解:这个圆锥的底面圆的半径,所以这个圆锥的侧面积.故答案为:.15. 有三面镜子如图放置,其中镜子和相交所成的角,已知入射光线经反射后,反射光线与入射光线平行,若,则镜子和相交所成的角AD BC ∥AEB CBE ∠=∠ABE CBE ∠=∠AEB ABE ∠=∠AE AB =ABCD AD BC ∥AEB CBE ∠=∠B ∠BE AD ABE CBE ∠=∠AEB ABE ∠=∠AE AB =58AB BC ==,853DE AD AE BC AB =-=-=-===1262π=⨯⨯=AB BC 110ABC ∠=︒EF ,,AB BC CD EF AEF α∠=BC CD______.(结果用含的代数式表示)【答案】【解析】【分析】本题考查了入射角和反射角、平行线以及三角形内角和等知识,解题的关键在于正确画出辅助线【详解】根据入射光线画出反射光线,交于点,同理根据入射光线画出反射光线,交于点,根据入射光线画出反射光线,过点作的平行线,使得.入射角等于反射角入射角等于反射角根据入射角等于反射角,可知:的BCD ∠=α90α︒+FE EG BC G EG GH CD H GH HK G EF GP EF HK BEG AEF α∴∠=∠=1802GEF α∴∠=︒-110ABC ∠=︒18011070BGE αα∴∠=︒-︒-=︒- 70HGC BGE α∴∠=∠=︒-()180270402EGH αα∴∠=︒-⨯︒-=︒+GP EF HK180,180GEF EGP PGH GHK ∴∠+∠=︒∠+∠=︒402EGP PGH EGH α∠+∠=∠=︒+ 360GEF EGH GHK ∴∠+∠+∠=︒()()3601802402140GHK αα∴∠=︒-︒--︒+=︒()1180140202GHC KHD ∠=∠=︒-︒=︒18090BCD CGH GHC α∴∠=︒-∠-∠=︒+故答案为:.16. 如图,已知矩形,过点A 作交的延长线于点E ,若,则______.【解析】【分析】利用矩形的性质,证明,,,变形计算,结合勾股定理,解方程,正切函数解答即可.【详解】∵矩形,∴,∴,,∵,∴,∴,,∴,∴,∴,∴,90α︒+ABCD AE AC ⊥CB AED ACB ∠=∠2tan BAE ∠=1-ADF CEF △∽△ADE FEC ∽BAE BCA △△∽ABCD ,,90,AD BC AB CD ABC BCD AD BC ==∠=∠=︒ ADF CEF △∽△ADE CEF ∠=∠AED ACB ∠=∠ADE FEC ∽AD DF EC EF=EF EC AD ED =AD ED EF EC EF-=ED EC EF AD EC =+ ()·ED EC EC AD AD EC ED=+22ED AD AD EC =+根据勾股定理,得,∴,∴,∴,∴,∵,∴,∵,∴,∴,∴,∴,解得,解得(舍去),∵∴,.【点睛】本题考查了矩形的性质,三角形相似的判定和性质,勾股定理,正切函数,直角三角形的性质,解方程,熟练掌握三角形相似的判定和性质,正切函数,勾股定理,解方程是解题的关键.三、解答题(第17-19题每小题6分,第20、21题每小题8分,第22、23题每小题10分,第24题12分,共66分)17. 计算:(1)222ED CD EC =+222CD EC AD AD EC +=+ ()()222·AB EB BC BC BC EB BC ++=++222222AB EB EB BC BC BC EB BC BC +++=++ 2220AB EB EB BC BC ++-= AE AC ⊥90BAE AEB BCA ∠︒-∠=∠=90ABE CBA ∠∠=︒=BAE BCA △△∽AB BE BC AB=2AB BE BC = 2220EB EB BC BC +-= (1EB BC ==-±1,1EB EB BC BC=-=tan BE BAE AB ∠=2222tan 1BE BE BE BAE AB BE BC BC ∠====- 102212024(3)33-+-⨯--(2)先化简,再求值:,其中【答案】(1) (2),2【解析】【分析】本题主要考查了实数的运算,整式的化简求值,对于(1),根据,,,,再根据有理数运算法则计算;对于(2),先根据整式的乘法法则及公式化简,再代入求值即可.【小问1详解】;【小问2详解】原式.当时,原式.18. 某校为了解本校九年级男生“引体向上”项目的训练情况,随机抽取该年级部分男生进行了一次测试(满分10分,成绩均记为整数分),并按测试成绩m (单位:分)分成四类:类,类,类,类,绘制出如图两幅不完整的统计图,请根据图中信息,解答下列问题:(1)本次抽样调查的人数为______,并补全条形统计图:(1)(1)(2)x x x x +-++12x =5312x +020241=2(93)-=2139-=1133-=02212024(3)33-+-⨯--111993=+⨯-213=+53=2212x x x=-++12x =+12x =11222=+⨯=A (10)m =B (79)m ≤≤C (46)m ≤≤D (3)m ≤(2)扇形统计图中A 类所对的圆心角是______°,测试成绩的中位数落在______类;(3)若该校九年级男生有500名,请估计该校九年级男生“引体向上”项目成绩为A 类或B 类的共有多少名?【答案】(1)50人,图见解析(2)72,B (3)估计该校九年级男生“引体向上”项目成绩为类或类的约有320名.【解析】【分析】本题考查条形统计图,扇形统计图,用样本估计总体,中位数;通过统计图之间的联系求出样本容量是解题的关键.(1)由统计图之间的联系求出样本容量,进一步求出组人数,补齐图形;(2)由组的占比求出对应圆心角;根据中位数定义,可知第25,26个数在组,故中位数在组;(3)由样本占比估计总本的人数.【小问1详解】解:本次抽样调查的人数为(人),组人数为(人),补全的条形统计图如图;故答案为:50人;【小问2详解】解:类所对的圆心角是;样本量为50,可知数据从大到小排列,第25,26个数在组,故中位数在类;故答案为:72,;小问3详解】解:类或类的共有(名),答:估计该校九年级男生“引体向上”项目成绩为类或类的共有320名.19. 如图,直线与双曲线相交于点.【A B C A B B 1020%50÷=C 501022315---=A 36020%72︒⨯=︒B B B A B 500(20%44%)320⨯+=A B y kx b =+(0)m y x x=>()()2,6,1A n B(1)求直线及双曲线对应的函数表达式;(2)直接写出关于x 的不等式的解集;(3)求的面积.【答案】(1)直线:,双曲线: (2)(3)8【解析】【分析】本题主要考查了一次函数,反比例函数的交点坐标,将点的坐标代入函数关系式是确定函数关系式的常用方法,理解交点坐标与不等式解集之间的关系是解本题的关键.(1)将代入到反比例函数解析式可得其解析式;先根据反比例函数解析式求得点的坐标,再由,坐标可得直线解析式;(2)根据图象得出不等式的解集即可;(3)设一次函数的图象与坐标轴交于,两点,分别过,两点作轴于,作轴于,根据题意可得,,从而求出,和,进而求出的值.【小问1详解】把代入,得:,∴反比例函数的解析式为;把代入,得:,∴,(0)m kx b x x +>>ABO 142y x =-+6(0)y x x =>26x <<()6,1B ()2,3A A B (0)m kx b x x+>>C D A B AE y ⊥E BF x ⊥F 2,1AE BF ==48OC OD ==,AOC S BOD S COD S △AOB S ()6,1B m y x=6m =6y x=()2,A n 6y x =3n =()2,3A把、代入,得:,解得:,∴一次函数的解析式为;故答案为:;.【小问2详解】由图象可知当时,,∴不等式的解集是,【小问3详解】设一次函数的图象与坐标轴交于,两点,分别过,两点作轴于,作轴于,∵、,∴,∵一次函数的解析式为,当时,,当当时,,解得,,∴点C 的坐标是,点D 的坐标是∴.∴,,()2,3A ()6,1B y kx b =+2361k b k b +=⎧⎨+=⎩124k b ⎧=-⎪⎨⎪=⎩142y x =-+5y x =-+4y x =26x <<(0)m kx b x x+>>(0)m kx b x x+>>26x <<C D A B AE y ⊥E BF x ⊥F ()2,3A ()6,1B 2,1AE BF ==142y x =-+0x =4y =0y =1042x =-+8x =()0,4()8,048OC OD ==,114,422AOC BOD S OC AE S OD BF =⋅==⋅= 1162COD S OC OD =⋅=△∴.20. 如图,已知和均是等边三角形,F 点在上,延长交于点D ,连接.(1)求证:四边形是平行四边形;(2)当点D 在线段上什么位置时,四边形是矩形?请说明理由.【答案】(1)见解析(2)当点D 在中点时,四边形是矩形,见解析【解析】【分析】本题考查了等边三角形的性质,平行四边形的判定与性质,矩形的判定等知识.熟练掌握等边三角形的性质,平行四边形的判定与性质,矩形的判定是解题的关键.(1)由和均是等边三角形,可得,则,进而可证四边形是平行四边形;(2)由,点D 在中点,可得,则,可证四边形是平行四边形,由,可证四边形是矩形.【小问1详解】证明:∵和均是等边三角形,∴,∴,∴四边形是平行四边形;【小问2详解】解:当点D 在中点时,四边形是矩形,理由如下;∵,点D 在中点,∴,∵四边形是平行四边形,∴,∴,∵,16448AOB COD AOC BOD S S S S =--=--= ABC AEF △AC EF BC AD CE ,ABDE BC ADCE BC ADCE ABC AEF △6060BAC AFE ACB FAE ∠=∠=︒∠=∠=︒,AB DE AE BD ∥,∥ABDE AB AC =BC AD BC BD CD ⊥=,AE CD =ADCE AD BC ⊥ADCE ABC AEF △6060BAC AFE ACB FAE ∠=∠=︒∠=∠=︒,AB DE AE BD ∥,∥ABDE BC ADCE AB AC =BC AD BC BD CD ⊥=,ABDE AE BD =AE CD =AE CD ∥∴四边形是平行四边形,∵,∴四边形是矩形.21. 如图的正方形网格中,每个小正方形的边长均为,的各个顶点都在格点上.(1)在边上作一点,使得的面积是,并求出的值;(2)作出边上的高,并求出高的长.(说明:只能使用没有刻度尺的直尺进行作图,并保留画图痕迹)【答案】(1)画图见解析,; (2)见解析,.【解析】【分析】()根据网格特征作即可;()根据网格特征作即可,本题考查了无刻度尺的直尺作图—作垂线,熟练掌握无刻度尺的直尺作图的方法是解题的关键.【小问1详解】如图,由网格的特征可知:,∴,∴,∴面积为,∴即为所求;ADCE AD BC ⊥ADCE 1ABC BC M ABM 83BM CMAC BD BD 12BM CM =165BD =112BM CM =2BD AC ⊥BG CH ∥CHM BGM ∽12BG BM CH CM ==ABM 1118443323ABC S =⨯⨯⨯= ABM【小问2详解】如图,根据网格作垂线的方法即可,∴即为所求,由网格的特征可知:,∴,∴.22. 星期日上午,小明从家里出发步行前往离家的镇海书城参加读书会活动,他以的速度步行了后发现忘带入场券,于是他停下来.打电话给家里的爸爸寻求帮助,爸爸骑着自行车从家里出发,沿着同一路线以的速度行进,同一时刻小明继续按原速步行赶往目的地.爸爸追上小明后载上他以相同的车速前往书城(停车载人时间忽略不计),到达书城后爸爸原速返回家.爸爸和小明离家的路程与小明所用时间的函数关系如图所示.(1)求爸爸在到达镇海书城前,他离开家的路程s 关于t 的函数表达式及a 的值.(2)爸爸出发后多长时间追上小明?此时距离镇海书城还有多远?【答案】(1),(2)爸爸出发3分钟后追上小明,此时距离镇海书城1275米【解析】【分析】本题考查一次函数的应用以及路程、速度、时间之间关系的应用,关键是用待定系数法求出函数解析式.(1)根据爸爸行驶的路程和爸爸的速度,求出爸爸到达书城所用时间,再根据待定系数法求函数解析式,再求出的值;BD 5AC ==1144522ABC S BD =⨯⨯=⨯⨯ 165BD =9:00 2.4km 75m/min 12min 9:15375m/min ()m s ()min t 3755625s t =-27.8a =a(2)设爸爸出发后分钟追上小明,根据两人路程相等列出方程,解方程求出,并求出距离书城的距离.【小问1详解】解:爸爸到达达镇海书城所用时间为,设爸爸在到达镇海书城前,他离开家的路程关于的函数表达式为,把,代入,得:,解得,爸爸在到达镇海书城前,他离开家的路程关于的函数表达式为;爸爸的速度不变,他返回家的时间和到达书城的时间均为,;【小问2详解】设爸爸出发后分钟追上小明,则,解得,此时,,答:爸爸出发后3分钟追上小明,此时距离镇海书城还有1275米.23. 根据以下素材,探索完成任务.设计跳长绳方案素材1:某校组织跳长绳比赛,要求如下:(1)每班需报名跳绳同学9人,摇绳同学2人;(2)跳绳同学需站成一路纵队,原地起跳,如图1.素材2:某班进行赛前训练,发现:(1)当绳子摇至最高处或最低处时,可近似看作两条对称分布的抛物线.已知摇绳同学之间水平距离为,绳子最高点为,摇绳同学的出手高度均为,如图x x 2400 6.4(min)375=s t s kt b =+(15,0)(21.4,2400)s kt b =+15021.42400k b k b +=⎧⎨+=⎩3755625k b =⎧⎨=-⎩∴s t 3755625s t =- ∴ 6.4min 152 6.427.8a ∴=+⨯=x 37575(12)x x =+3x =240037531275(m)-⨯=6m 2m 1m2;(2)9名跳绳同学身高如右表.【答案】任务1:;任务2:当绳子在最高点时,长绳不会触碰到位于最边侧的同学;任务3:方案可行【解析】【分析】本题考查了二次函数的应用,任务1:建立平面直角坐标系,待定系数法求解析式,即可求解;任务2,得出最右侧同学横坐标为代入解析式,结合按照排列方式可知最右(左)侧同学屈膝后身高即可求解;任务3,求得平移后的抛物线解析式,进而将代入,结合题意,即可求解.【详解】解:任务1:以两个摇绳人的中点所在直线与地面的交点为原点,地面所在直线为轴,建立直角坐标系,如图:由已知可得,在抛物线上,且抛物线顶点的坐标为,设抛物线解析式为,∴,解得:,∴抛物线的函数解析式为:任务2:∵抛物线的对称轴为直线,名同学,以轴为对称轴,分布在对称轴两侧,将同学按“中间高,两边低”的方式对称排列,同时保持的间距,则最右边侧的同学的坐标为即,当时,的21129y x =-+()1.8,1.7 1.8x =x ()()3,1,3,1-()0,222y ax =+192a =+19a =-21129y x =-+3x =9y 0.45m ()0.454,1.70⨯()1.8,1.71.8x =211.82 1.649y =-⨯+=按照排列方式可知最右(左)侧同学屈膝后身高:∴当绳子在最高点时,长绳不会触碰到位于最边侧的同学;任务3:∵当绳子摇至最高处或最低处时,可近似看作两条对称分布的抛物线.设开口向上的抛物线解析式为,对称轴为直线,则的顶点坐标为,∵,的开口大小不变,开口方向相反,∴当绳子摇至最低处时,抛物线的解析式为:∵将出手高度降低至.∴抛物线向下平移∴改变方案后的抛物线解析式为将,代入因此,方案可行24. 如图1,已知四边形内接于,且为直径.作交于点E ,交于点F .(1)证明:;(2)若,,求半径r ;(3)如图2,连接并延长交于点G ,交于点H .若,.①求;②连接,设,用含x 的式子表示的长.(直接写出答案)【答案】(1)见解析 (2) (3)①;②191.70 1.615 1.6420⨯=<2y1y =2y ()0,01y 2y 2219y x =-0.85m 10.850.15-=2310.159y x =--1.8x =223110.15 1.80.150.210.2599y x =-=⨯-=<ABCD O BD AF BC ∥CD O AF CD ⊥4cos 5DAF ∠=4AC =BE DF O AF CD =AEB BDC ∠=∠tan BDC ∠OE OE x =GH 52r =1tan 2BDC ∠=GH x =【解析】【分析】(1)根据圆周角定理得出,根据平行线的得出,即可证明结论;(2)证明,得出,根据,得出,根据,求出结果即可;(3)①过点O 作于点P ,于点Q ,证明矩形是正方形,设,,得出,,证明,得出,求出,得出;②连接,证明,得出,即,求出,证明,得出,根据,得出,证明,得出,证明,得出【小问1详解】证明:∵为直径,∴,∵,∴,即.【小问2详解】解:∵,∴,又∵,∴,90BCD ∠=︒90AED BCD ∠=∠=︒AEC DAB ∽ AC AE BD AD =4cos 5AE DAF AD ∠==45AC BD =4AC =OP DC ⊥OQ AF ⊥OPEQ OP a PE ==CE b =2BC a =()22CD PC a b ==+BEC DBC ∽ 2BC CE CD =⋅1b a =1tan 2OP a BDC DP a b ∠===+HF ODP MDE ∽OP DP ME DE ==ME x =AMN CBN ∽ 37AN AC x ==ODP MDE ∽CEB CBD ∠∠=DEG DAN ∽ AN AD EG DE ==EG AN ==ABE HFE ∽ EH AE ==BD 90BCD ∠=︒AF BC ∥90AED BCD ∠=∠=︒AF CD ⊥AF BC ∥EAC ACB ∠=∠ACB ADB Ð=ÐEAC ADB ∠=∠∵,∴,∴,∴,∴,∵,∴,即.【小问3详解】①如图2,过点O 作于点P ,于点Q ,如图所示:∵,∴四边形是矩形,∵,∴,∴矩形是正方形设,,∵,∴,∵,90AEC BAD ∠=∠=︒AEC DAB ∽ AC AE BD AD=4cos 5AE DAF AD ∠==45AC BD =4AC =5BD =52r =OP DC ⊥OQ AF ⊥90OPE PEQ OQE ∠=∠=∠=︒OPEQ AF CD =OP OQ =OPEQ OP a PE ==CE b =OP CD ⊥DP CP =DO OB =∴,,∵,∴,∵,∴,∵,∴,∴,∴,即:,解得:,∴;②如图,连接,由(3)①得,四边形为正方形,2BC a =()22CD PC a b ==+AF BC ∥AEB EBC ∠=∠AEB BDC ∠=∠EBC BDC ∠=∠BCE BCD ∠=∠BEC DBC ∽ BC EC DC BC=2BC CE CD =⋅()()222a b a b =⋅+1b a=1tan 2OP a BDC DP a b ∠===+HF OPEQ∵,∴,由,得,∴,∴,,∵,,∴为等腰直角三角形,∴,,∴,∵,,∴,∴,,解得:,∴,∵,∴,∴,∴,OE x =OP PE QE x ===1tan 2BDC ∠=DP =CP DP ==CE CP EP x =-=CD =AF CD =AF CD ⊥ADE V x AE DE ==EF CE x ==AC ==90OPD DEM ∠=∠=︒ODP MDE ∠=∠ODP MDE ∽OP DP ME DE==ME x =AM AE ME x x x =-==AF BC ∥AMN CBN ∽ 34AN AM NC BC ===37AN AC x ==∵,∴,∵,∴,∵,∴,∵,∴,∵,∴,∵,∴,∴,∴,∴∴,∵,∴,∵,∴,∴∴,∴.【点睛】本题主要考查了相似三角形的判定和性质,勾股定理,圆周角定理,等腰三角形的判定和性质,ODP MDE ∽CEB CBD∠∠= CDCD =CBD CAD ∠=∠CEB DEG ∠=∠DAN DEG ∠=∠ CFCF =EDG CAE ∠=∠AF BC ∥CAE ACB ∠=∠ AB AB =ADN ACB ∠=∠ADN EDG ∠=∠DEG DAN ∽ AN AD EG DE==EG AN x == BFBF =EAB EHF ∠=∠AEB HEF ∠=∠ABE HFE ∽ EH EF AE BE ==EH AE ==GH EH EG x =-=解题的关键是熟练掌握相关的判定和性质,数形结合,作出辅助线.。
2024年江苏省南通市部分学校中考数学一模试卷一、选择题(本大题共10小题,每小题3分,共30分.)1.(3分)下列结果中,是负数的是()A.﹣(﹣2)B.﹣|﹣1|C.3×2D.0×(﹣4)2.(3分)风能是一种清洁能源,我国风能储量很大,仅陆地上风能储量就有253000兆瓦,将数据253000用科学记数法表示为()A.25.3×104B.2.53×104C.2.53×105D.0.253×106 3.(3分)如图是由四个小正方体叠成的一个立体图形,那么它的主视图是()A.B.C.D.4.(3分)下列各图中,可看作轴对称图形的是()A.B.C.D.5.(3分)如图,四边形ABCD的对角线AC,BD相交于点O,OA=OC,且AB∥CD,则添加下列一个条件能判定四边形ABCD是菱形的是()A.AC=BD B.∠ADB=∠CDB C.∠ABC=∠DCB D.AD=BC6.(3分)如图,直线l1∥l2,含有30°的直角三角板的一个顶点C落在l2上,直角边交l1于点D,连接BD,使得BD⊥l2,若∠1=72°,则∠2的度数是()A.48°B.58°C.42°D.18°7.(3分)我国古代数学名著《九章算术》中记载:“粟米之法:粟率五十;粝米三十.今有米在十斗桶中,不知其数.满中添粟而舂之,得米七斗.问故米几何?”意思为:50斗谷子能出30斗米,即出米率为.今有米在容量为10斗的桶中,但不知道数量是多少.再向桶中加满谷子,再舂成米,共得米7斗.问原来有米多少斗?如果设原来有米x 斗,向桶中加谷子y斗,那么可列方程组为()A.B.C.D.8.(3分)若关于x的不等式组有且只有3个整数解,则a的取值范围是()A.﹣1≤a<0B.﹣1<a≤0C.﹣4<a≤﹣3D.﹣4≤a<﹣3 9.(3分)如图,四边形ABCD是边长为2cm的正方形,点E,点F分别为边AD,CD中点,点O为正方形的中心,连接OE,OF,点P从点E出发沿E﹣O﹣F运动,同时点Q 从点B出发沿BC运动,两点运动速度均为1cm/s,当点P运动到点F时,两点同时停止运动,设运动时间为t s,连接BP,PQ,△BPQ的面积为S cm2,下列图象能正确反映出S与t的函数关系的是()A.B.C.D.10.(3分)已知实数a,b满足4a2+b=n,b2+2a=n,b≠2a.其中n为自然数,则n的最小值是()A.4B.5C.6D.7二、填空题(本大题共8小题,第11~12题每小题3分,第13~18题每小题3分,共30分.)11.(3分)代数式在实数范围内有意义,则x的取值范围是.12.(3分)因式分解:2x﹣8x3=.13.(4分)底面圆半径为10cm、高为的圆锥的侧面展开图的面积为cm2.14.(4分)某种型号的小型无人机着陆后滑行的距离S(米)关于滑行的时间t(秒)的函数解析式是S=﹣0.25t2+10t,无人机着陆后滑行秒才能停下来.15.(4分)如图,社小山的东侧炼A处有一个热气球,由于受西风的影响,以30m/min的速度沿与地面成75°角的方向飞行,20min后到达点C处,此时热气球上的人测得小山西侧点B处的俯角为30°,则小山东西两侧A,B两点间的距离为.16.(4分)如图,在矩形ABCD中,AB=3,BC=10,点E在边BC上,DF⊥AE,垂足为F.若DF=6,则线段EF的长为.17.(4分)若a,b是一元二次方程x2﹣5x﹣2=0的两个实数根,则的值为.18.(4分)如图,点A,B在反比例函数y=(k>0)的图象上,AC⊥x轴,BD⊥x轴,垂足C,D分别在x轴的正、负半轴上,CD=k,已知AB=2AC,E是AB的中点,且△BCE的面积是△ADE的面积的2倍,则k的值是.三、解答题(本大题共8小题,共90分.解答时应写出文字说明、证明过程或演算步骤)19.(10分)(1)计算:;(2)先化简,再求值:,其中x=3.20.(8分)如图,已知A,D,C,E在同一直线上,BC和DF相交于点O,AD=CE,AB ∥DF,AB=DF.(1)求证:△ABC≌△DFE;(2)连接CF,若∠BCF=54°,∠DFC=20°,求∠DFE的度数.21.(10分)某市今年初中物理、化学实验技能学业水平考查,采用学生抽签方式决定各自的考查内容.规定:每位考生必须在4个物理实验考查内容(用A、B、C、D表示)和4个化学实验考查内容(用E、F、G、H表示)中各抽取一个进行实验技能考查.小刚在看不到签的情况下,从中各随机抽取一个.(1)小刚抽到物理实验A的概率是;(2)用列表法或画树状图法中的一种方法,求小刚抽到物理实验B和化学实验F的概率.22.(10分)青年大学习是共青团中央为组织引导广大青年深入学习宣传贯彻习近平新时代中国特色社会主义思想和党的十九大精神持续引向深人组织的青年学习行动.某校举办了相关知识竞赛(百分制),并分别在七、八年级中各随机抽取20名学生的成绩进行统计、整理与分析,绘制成如图两幅统计图.成绩用x表示,并且分为A、B、C、D、E五个等级,并且分别是:A:50≤x<60;B:60≤x<70;C:70≤x<80;D:80≤x<90;E:90≤x≤100.七、八年级成绩的平均数、中位数众数如下表:平均数中位数众数七年级76m75八年级777678其中,七年级成绩在C等级的数据为77、75、75、78、79、75、73、75;八年级成绩在E等级的有3人.根据以上信息,解答下列问题:(1)扇形统计图中B等级所占圆心角的度数是,表中m的值为;(2)通过以上数据分析,你认为哪个年级对青年大学习知识掌握得更好?请说明理由;(3)请对该校学生“青年大学习”的掌握情况作出合理的评价.23.(12分)如图,AB是⊙O的直径,点C在⊙O上,∠ABC=60°,⊙O的切线CD与AB的延长线相交于点D.(1)求证:BD=BC;(2)若⊙O的半径为6,求图中阴影部分的面积.24.(13分)随着“双减”政策的逐步落实,其中增加中学生体育锻炼时间的政策引发社会的广泛关注,体育用品需求增加,某商店决定购进A、B两种羽毛球拍进行销售,已知每副A种球拍的进价比每副B种球拍贵20元,用2800元购进A种球拍的数量与用2000元购进B种球拍的数量相同.(1)求A、B两种羽毛球拍每副的进价;(2)若该商店决定购进这两种羽毛球拍共100副,考虑市场需求和资金周转,用于购买这100副羽毛球拍的资金不超过5900元,那么该商店最多可购进A种羽毛球拍多少副?(3)若销售A种羽毛球拍每副可获利润25元,B种羽毛球拍每副可获利润20元,在第(2)问条件下,如何进货获利最大?最大利润是多少元?25.(13分)如图1,P是正方形ABCD边BC上一点,线段AE与AD关于直线AP对称,连接EB并延长交直线AP于点F,连接CF.(1)补全图形,求∠AFE的大小;(2)用等式表示线段CF,BE之间的数量关系,并证明;(3)连接CE,G是CE的中点,AB=2,若点P从点B运动到点C,直接写出DG的最大值.26.(14分)定义:若一个函数的图象上存在横、纵坐标之和为零的点,则称该点为这个函数图象的“平衡点”.例如,点(﹣1,1)是函数y=x+2的图象的“平衡点”.(1)在函数①y=﹣x+3,②y=,③y=﹣x2+2x+1,④y=x2+x+7的图象上,存在“平衡点”的函数是;(填序号)(2)设函数y=﹣(x>0)与y=2x+b的图象的“平衡点”分别为点A、B,过点A作AC⊥y轴,垂足为C.当△ABC为等腰三角形时,求b的值;(3)若将函数y=x2+2x的图象绕y轴上一点M旋转180°,M在(0,﹣1)下方,旋转后的图象上恰有1个“平衡点”时,求M的坐标.2024年江苏省南通市部分学校中考数学一模试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分.)1.【分析】利用相反数的意义及绝对值的性质化简A、B,再利用乘法法则计算即可得到C、D.【解答】解:∵A、﹣(﹣2)=2,∴A项不符合题意;∵B、﹣|﹣1|=﹣1,∴B项符合题意;∵C、3×2=6,∴C项不符合题意;∵D、0×(﹣4)=0,∴D项不符合题意.故选:B.【点评】本题考查了相反数的意义,绝对值的性质,有理数的乘法法则,掌握绝对值的性质是解题的关键.2.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:253000=2.53×105.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:从正面看易得第一层有3个正方形,第二层中间有1个正方形.故选:C.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.4.【分析】根据轴对称图形的概念进行判断即可.【解答】解:A、不是轴对称图形,不符合题意;B、是轴对称图形,符合题意;C、不是轴对称图形,不符合题意;D、不是轴对称图形,不符合题意;故选:B.【点评】本题考查了轴对称图形,解题关键是抓住轴对称图形是指将一个图形沿着某条直线折叠,直线两旁的部分能够完全重合.5.【分析】根据菱形的判定方法分别对各个选项进行判定,即可得出结论.【解答】解:∵AB∥CD,∴∠BAO=∠DCO,∠ABO=∠CDO,∵OA=OC,∴△AOB≌△COD(AAS),∴AB=CD,∴四边形ABCD是平行四边形,A、当AC=BD时,四边形ABCD是矩形;故选项A不符合题意;B、∵AB∥CD,∴∠ABD=∠CDB,∵∠ADB=∠CDB,∴∠ADB=∠ABD,∴AD=AB,∴四边形ABCD为菱形,故选项B符合题意;C、∵AB∥CD,∴∠ABC+∠BCD=180°,∵∠ABC=∠DCB∴∠ABC=∠DCB=90°,∴四边形ABCD是矩形;故选项C不符合题意;D、当AD=BC时,不能判定四边形ABCD为菱形;故选项D不符合题意.故选:B.【点评】本题考查了菱形的判定,平行四边形的判定和性质,等腰三角形的判定和性质,熟练掌握菱形的判定定理是解题的关键.6.【分析】根据平行的性质可得∠DEB=∠1=72°,根据三角形的外角的定义可得∠ADC=42°,再根据平角进行计算即可得到答案.【解答】解:如图,设AB与l1相交于点E,∵l1∥l2,∠1=72°,∴∠DEB=∠1=72°,∵∠A+∠ADC=∠DEB=72°,∠A=30°,∴∠ADE=42°,∵∠ADC+∠BDE+∠2=180°,BD⊥l2,∴∠2=48°.故选:A.【点评】本题主要考查了平行线的性质、三角形外角的定义,平角的定义,熟练掌握平行线的性质、三角形外角的定义,平角的定义是解题的关键.7.【分析】根据原来的米+向桶中加的谷子=10,原来的米+桶中的谷子舂成米=7即可得出答案.【解答】解:根据题意得:,故选:A.【点评】本题考查了由实际问题抽象出二元一次方程组,找到等量关系:原来的米+向桶中加的谷子=10,原来的米+桶中的谷子舂成米=7是解题的关键.8.【分析】先解出每个不等式的解集,即可得到不等式组的解集,然后根据不等式组有且只有3个整数解,即可得到a的取值范围.【解答】解:,解不等式①,得:x≤2,解不等式②,得:x>a,∴该不等式组的解集是a<x≤2,∵关于x的不等式组有且只有3个整数解,∴这三个整数解是0,1,2,∴﹣1≤a<0,故选:A.【点评】本题考查一元一次不等式组的整数解,解答本题的关键是明确解一元一次不等式的方法.9.【分析】当0<t≤1时,点P在OE上,当1<t≤2时,点P在OF上,分别求出S与t 的函数关系,即可解答.【解答】解:如图,当0<t≤1时,由题得,PE=BQ=t cm,∵正方向ABCD是边长为2cm,∴P到BC的距离为(2﹣t)cm,∴S=t•(2﹣t)=﹣t2+t,如图,当1<t≤2时,由题得,PF=CQ=(2﹣t)cm,∴四边形CFPQ为矩形,∴PQ=CF=1cm,∴S=t•1=t,故选:D.【点评】本题考查了动点问题的函数图象应用,三角形面积的计算是解题关键.10.【分析】由原式知,(4a2+b)﹣(b2+2a)=0,进一步变形得(2a﹣b)(2a+b﹣)=0,因为b≠2a,所以2a+b﹣=0,得b=﹣2a,代入b2+2a=n得,(﹣2a)+2a=n,配方法求极值.【解答】解:由原式知,(4a2+b)﹣(b2+2a)=0,∴(4a2﹣b2)﹣(2a﹣b)=0∴(2a﹣b)(2a+b)﹣(2a﹣b)=0∴(2a﹣b)(2a+b﹣)=0∵b≠2a∴2a+b﹣=0,∴b=﹣2a,代入b2+2a=n得,(﹣2a)2+2a=n,整理,得n=4a2﹣2a+7=(2a﹣)2+5≥5,∴自然数n的最小值为6故选C.【点评】本题考查等式的基本性质,平方差公式、完全平方公式、配方法求极值;根据式子的具体特征,结合乘法公式对代数式作恒等变形是解题的关键.二、填空题(本大题共8小题,第11~12题每小题3分,第13~18题每小题3分,共30分.)11.【分析】根据二次根式有意义的条件列出不等式,解不等式得到答案.【解答】解:由题意得,x﹣5≥0,解得x≥5,故答案为:x≥5.【点评】本题考查的是二次根式有意义的条件,掌握二次根式的被开方数是非负数是解题的关键.12.【分析】先提公因式,再利用平方差公式继续分解即可解答.【解答】解:2x﹣8x3=2x(1﹣4x2)=2x(1+2x)(1﹣2x),故答案为:2x(1+2x)(1﹣2x).【点评】本题考查了提公因式法与公式法的综合运用,一定要注意如果多项式的各项含有公因式,必须先提公因式.13.【分析】先求出圆锥的母线长,再根据扇形的面积公式计算即可.【解答】解:∵圆锥的底面半径为10cm,高为10cm,∴圆锥的母线为=20(cm),∴圆锥的侧面展开图的面积为×(2π×10)×20=200π(cm2).故答案为:200π.【点评】本题考查圆锥的计算,解题的关键是求出圆锥的母线和掌握圆锥的侧面展开图的面积公式.14.【分析】飞机停下时,也就是滑行距离最远时,即在本题中需求出s最大时对应的t值.【解答】解:由题意得,S=﹣0.25t2+10t=﹣0.25(t2﹣40t+400﹣400)=﹣0.25(t﹣20)2+100,∵﹣0.25<0,∴t=20时,飞机滑行的距离最大,即当t=20秒时,飞机才能停下来.故答案为:20.【点评】本题考查了二次函数的应用,能熟练的应用配方法得到顶点式是解题关键.15.【分析】作AD⊥BC于D,根据速度和时间先求得AC的长,在Rt△ACD中,求得∠ACD 的度数,再求得AD的长度,然后根据∠B=30°求出AB的长.【解答】解:如图,过点A作AD⊥BC,垂足为D,在Rt△ACD中,∠ACD=75°﹣30°=45°,AC=30×20=600(米),∴AD=AC•sin45°=300(米).在Rt△ABD中,∵∠B=30°,∴AB=2AD=600(米).故答案为:600.【点评】本题考查了解直角三角形的应用,解答本题的关键是根据仰角和俯角构造直角三角形并解直角三角形,难度适中.16.【分析】证明△AFD∽△EBA,得到,求出AF,即可求出AE,从而可得EF.【解答】解:∵四边形ABCD为矩形,∴AB=CD=3,BC=AD=10,AD∥BC,∴∠AEB=∠DAF,∴△AFD∽△EBA,∴,∵DF=6,∴AF===8,∴,∴AE=5,∴EF=AF﹣AE=8﹣5=3,故答案为:3.【点评】本题考查了相似三角形的判定和性质,矩形的性质,勾股定理,解题的关键是掌握相似三角形的判定方法.17.【分析】先根据一元二次方程的解的定义及根与系数的关系得出a +b =5,a 2=5a +2,再将其代入整理后的代数式计算即可.【解答】解:∵a ,b 是一元二次方程x 2﹣5x ﹣2=0的两个实数根,∴a +b =5,a 2﹣5a ﹣2=0,即:a 2=5a +2,∴,故答案为:5.【点评】本题考查了根与系数的关系:若x 1,x 2是一元二次方程ax 2+bx +c =0(a ≠0)的两根时,,x 1•x 2=.也考查了一元二次方程的解.18.【分析】过点B 作直线AC 的垂线交直线AC 于点F ,由△BCE 的面积是△ADE 的面积的2倍以及E 是AB 的中点即可得出S △ABC =2S △ABD ,结合CD =k 即可得出点A 、B 的坐标,再根据AB =2AC 、AF =AC +BD 即可求出AB 、AF 的长度,根据勾股定理即可算出k 的值,此题得解.【解答】解:过点B 作直线AC 的垂线交直线AC 于点F ,如图所示.∵△BCE 的面积是△ADE 的面积的2倍,E 是AB 的中点,∴S △ABC =2S △BCE ,S △ABD =2S △ADE ,∴S △ABC =2S △ABD ,且△ABC 和△ABD 的高均为BF ,∴AC =2BD ,又∵OC •AC =OD •BD ,∴OD =2OC .∵CD =k ,∴点A 的坐标为(,3),点B 的坐标为(﹣,﹣),∴AC =3,BD =,∴AB =2AC =6,AF =AC +BD =,∴CD =k ===.故答案为:.【点评】本题考查了反比例函数图象上点的坐标特征、三角形的面积公式以及勾股定理,构造直角三角形利用勾股定理巧妙得出k值是解题的关键.三、解答题(本大题共8小题,共90分.解答时应写出文字说明、证明过程或演算步骤)19.【分析】(1)先化简,然后算加减法即可;(2)先算括号内的式子,再算括号外的除法,然后将x的值代入化简后的式子计算即可.【解答】解:(1)=3+﹣1﹣=+;(2)=•===,当x=3时,原式==﹣5.【点评】本题考查实数的运算、分式的化简求值,熟练掌握运算法则是解答本题的关键.20.【分析】(1)由平行线的性质得∠A=∠FDE,根据等式的性质可得AC=DE,再由SAS 证明△ABC≌△DFE即可;(2)先根据三角形的外角可得∠DOC=74°,由平行线的性质可得∠B=∠DOC,最后由全等三角形的性质可得结论.【解答】(1)证明:∵AB∥DF,∴∠A=∠EDF,∵AD=CE,∴AD+CD=CE+CD,即AC=DE,在△ABC和△DFE中,,∴△ABC≌△DFE(SAS);(2)解:∵∠BCF=54°,∠DFC=20°,∴∠DOC=∠BCF+∠DFC=54°+20°=74°,∵AB∥DF,∴∠B=∠DOC=74°,∵△ABC≌△DFE,∴∠DFE=∠B=74°.【点评】本题考查了全等三角形的判定与性质,平行线的性质,证明三角形全等是解题的关键.21.【分析】(1)直接利用概率公式计算;(2)画树状图展示所有16种等可能的结果,再找出抽到B和F的结果数,然后根据概率公式计算.【解答】解:(1)小刚抽到物理实验A的概率是;故答案为:;(2)画树状图为:共有16种等可能的结果,其中抽到B和F的结果数为1,所以小刚抽到物理实验B和化学实验F的概率=.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式计算事件A或事件B的概率.22.【分析】(1)求出调查人数以及B等级的学生人数所占的百分比即可求出相应的圆心角度数,根据中位数的定义求出中位数即可得出m的值;(2)通过平均数、中位数、众数的大小比较得出答案;(3)根据平均数、中位数、众数综合进行判断即可.【解答】解:(1)由条形统计图可得,调查人数为2+5+8+2+3=20(人),扇形统计图中B等级所占圆心角的度数是360=90°,将七年级这20名学生的成绩从小到大排列,处在中间位置的两个数的平均数为=75,因此中位数是75分,即m=75,故答案为:90°,75;(2)八年级学生的成绩较好,理由:八年级学生成绩的平均数、中位数、众数均比七年级学生的平均数、中位数、众数大,所以八年级学生成绩较好;(3)青年学生对深入学习宣传贯彻习近平新时代中国特色社会主义思想和党的十九大精神掌握情况一般,还需要进一步加强学习和宣传.【点评】本题考查条形统计图、扇形统计图,平均数、中位数、众数,理解两个统计图中数量之间的关系以及中位数、众数、平均数的意义是正确解答的前提.23.【分析】(1)连接OC,可证明△BOC是等边三角形,则∠BOC=∠BCO=60°,由CD 与⊙O相切于点C,得∠OCD=90°,即可求得∠D=90°﹣∠BOC=30°,∠BCD=90°﹣∠BCO=30°,所以∠BCD=∠D,则BD=BC;(2)作CE⊥OB于点E,则CE=OC•sin60°=3,可求得S阴影=S扇形BOC﹣S△BOC=6π﹣9.【解答】(1)证明:连接OC,则OC=OB,∵∠ABC=60°,∴△BOC是等边三角形,∴∠BOC=∠BCO=60°,∵CD与⊙O相切于点C,∴CD⊥OC,∴∠OCD=90°,∴∠D=90°﹣∠BOC=30°,∠BCD=90°﹣∠BCO=30°,∴∠BCD=∠D,∴BD=BC.(2)解:作CE⊥OB于点E,则∠OEC=90°,∵OC=OB=6,∴CE=OC•sin60°=6×=3,∴S阴影=S扇形BOC﹣S△BOC=﹣×6×3=6π﹣9,∴阴影部分的面积是6π﹣9.【点评】此题重点考查切线的性质、等边三角形的判定与性质、等腰三角形的判定、锐角三角函数与解直角三角形、三角形的面积公式、扇形的面积公式等知识,正确地作出所需要的辅助线是解题的关键.24.【分析】(1)设A种羽毛球拍每副的进价为x元,根据用2800元购进A种球拍的数量与用2000元购进B种球拍的数量相同,列分式方程,求解即可;(2)设该商店购进A种羽毛球拍m副,根据购买这100副羽毛球拍的资金不超过5900元,列一元一次不等式,求解即可;(3)设总利润为w元,表示出w与m的函数关系式,根据一次函数的性质即可确定如何进货总利润最大,并进一步求出最大利润即可.【解答】解:(1)设A种羽毛球拍每副的进价为x元,根据题意,得,解得x=70,经检验,x=70是原分式方程的根,且符合题意,70﹣20=50(元),答:A种羽毛球拍每副的进价为70元,B种羽毛球拍每副的进价为50元;(2)设该商店购进A种羽毛球拍m副,根据题意,得70m+50(100﹣m)≤5900,解得m≤45,m为正整数,答:该商店最多购进A种羽毛球拍45副;(3)设总利润为w元,w=25m+20(100﹣m)=5m+2000,∵5>0,∴w随着m的增大而增大,当m=45时,w取得最大值,最大利润为5×45+2000=2225(元),此时购进A种羽毛球拍45副,B种羽毛球拍100﹣45=55(副),答:购进A种羽毛球拍45副,B种羽毛球拍55副时,总获利最大,最大利润为2225元.【点评】本题考查了分式方程的应用,一元一次不等式的应用,一次函数的应用,理解题意并根据题意建立相应的关系式是解题的关键.25.【分析】(1)由轴对称的性质可得∠DAP=∠EAP=70°,AD=AE,由等腰三角形的性质和三角形内角和定理可求解;(2)先求出∠AFE=45°,通过证明△CDF∽△BDE,可得BE=CF;(3)先确定点G在以O为圆心,1为半径的圆上运动,再根据等腰直角三角形的性质求解即可.【解答】解:(1)补全图形如图1所示;设∠BAP=x,∴∠DAP=90°﹣x,∵线段AE与AD关于直线AP对称,∴∠DAP=∠EAP=90°﹣x,AD=AE,∴∠BAE=90°﹣2x,AB=AE,∴∠E=∠ABE=45°+x,∴∠AFE=180°﹣(90°﹣x)﹣(45°+x)=45°;(2)BE=CF;证明:如图2,连接DF,DE,BD,∵四边形ABCD是正方形,∴BD=CD,∠CDB=45°,∵线段AE与AD关于直线AP对称,∴DF=EF,∠DFA=∠AFE=45°,∴∠DFE=90°,∴∠FDE=45°=∠CDB,DE=DF,∴∠CDF=∠BDE,,∴△CDF∽△BDE,∴,∴BE=CF;(3)如图3,连接AC,BD交于点O,连接OG,∵四边形ABCD是正方形,∴AO=CO,又∵G是CE中点,∴OG=AE=AD=1,∴点G在以O为圆心,1为半径的圆上运动,∴点P从点B运动到点C,点G的运动到BD上时DG的值最大,且DG的最大值为DO+OG,∵OD=AD=,∴DG的最大值为1.【点评】本题是四边形综合题,考查了正方形的性质,轴对称的性质,相似三角形的判断和性质,三角形中位线定理等知识,灵活运用这些性质解决问题是本题的关键.26.【分析】(1)在y=﹣x+3中,令y=﹣x得﹣x=﹣x+3,方程无解,可知y=﹣x+3的图象上不存在“平衡点”;同理可得y=,y=x2+x+7的图象上不存在“平衡点”,y=﹣x2+2x+1的图象上存在“平衡点”;(2)在y=﹣中,令y=﹣x得A(2,﹣2)或(﹣2,2);在y=2x+b中,令y=﹣x 得B(﹣,),当A(2,﹣2)时,C(0,﹣2),可得AB2=2(2+)2,BC2=+(2+)2,AC2=4,分三种情况列方程可得答案;(3)设M(0,m),m<﹣1,求出抛物线y=x2+2x的顶点为(﹣1,﹣1),而点(﹣1,﹣1)关于M(0,m)的对称点为(1,2m+1),可得旋转后的抛物线解析式为y=﹣(x ﹣1)2+2m+1=﹣x2+2x+2m,令y=﹣x得x2﹣3x﹣2m=0,根据旋转后的图象上恰有1个“平衡点”,知x2﹣3x﹣2m=0有两个相等实数根,故9+8m=0,m=﹣,从而得M的坐标为(0,﹣).【解答】解:(1)根据“平衡点”的定义,“平衡点”的横、纵坐标互为相反数,在y=﹣x+3中,令y=﹣x得﹣x=﹣x+3,方程无解,∴y=﹣x+3的图象上不存在“平衡点”;同理可得y=,y=x2+x+7的图象上不存在“平衡点”,y=﹣x2+2x+1的图象上存在“平衡点”;故答案为:③;(2)在y=﹣中,令y=﹣x得﹣x=﹣,解得x=2或x=﹣2,∵x>0,∴A(2,﹣2);在y=2x+b中,令y=﹣x得﹣x=2x+b,解得x=﹣,∴B(﹣,),当A(2,﹣2)时,C(0,﹣2),∴AB2=2(2+)2,BC2=+(2+)2,AC2=4,若AB=BC,则2(2+)2=+(2+)2,解得b=﹣3;若AB=AC,则2(2+)2=4,解得b=﹣3﹣6或b=3﹣6;若BC=AC,则+(2+)2=4,解得b=0或b=﹣6(此时A,B重合,舍去);∴b的值为﹣3或﹣3﹣6或3﹣6或0;(3)设M(0,m),m<﹣1,∵y=x2+2x=(x+1)2﹣1,∴抛物线y=x2+2x的顶点为(﹣1,﹣1),点(﹣1,﹣1)关于M(0,m)的对称点为(1,2m+1),∴旋转后的抛物线解析式为y=﹣(x﹣1)2+2m+1=﹣x2+2x+2m,在y=﹣x2+2x+2m中,令y=﹣x得:﹣x=﹣x2+2x+2m,∴x2﹣3x﹣2m=0,∵旋转后的图象上恰有1个“平衡点”,∴x2﹣3x﹣2m=0有两个相等实数根,∴Δ=0,即9+8m=0,∴m=﹣,∴M的坐标为(0,﹣).【点评】本题考查二次函数的综合应用,涉及新定义,等腰三角形,一元二次方程根的判别式,旋转变换等知识,解题的关键是读懂新定义,利用二次函数与一元二次方程的关系解决问题。
2024年山东省枣庄市滕州市滕南中学中考数学一模试卷一、选择题:本题共9小题,每小题3分,共27分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.下列实数π3、−227、9、−7、3.14中,无理数有( )A. 1个B. 2个C. 3个D. 4个2.我国航天事业发展越来越吸引人们关注,刚返回地面的神州17号三名航天员接受采访的短视频最近在短视频平台的点赞量达到150万次,数据150万用科学记数法表示为( )A. 1.5×105B. 0.15×105C. 1.5×106D. 1.5×1073.实数a,b在数轴上的位置如图所示,则化简a2+2a+1−b2−4b+4的结果正确的是( )A. −a−b+1B. −a+b+1C. a−b−1D. a+b−14.“致中和,天地位焉,万物育焉.”对称美是我国古人和谐平衡思想的体现,常被用于建筑、器物、绘画、标识等作品的设计上,使对称美惊艳了千年的时光.下列大学的校徽图案是轴对称图形的是( )A. B. C. D.5.2024年元旦期间,某超市为了增加销售额,举办了“购物抽奖”活动:凡购物达到200元即可抽奖1次,达到400元可抽奖2次,…,依次类推.抽奖方式为:在不透明的箱子中有四个形状相同的小球,四个小球上分别写有对应奖品的价值为10元、15元、20元和“谢谢惠顾”的字样;抽奖1次,随机从四个小球抽取一个;抽奖2次时,记录第1次抽奖的结果后放回箱子中再进行第2次抽取,…,依次类推.小明和妈妈一共购买了420元的物品,获得了两次抽奖机会,则小明和妈妈获得奖品总值不低于30元的概率为( )A. 16B. 14C. 38D. 126.已知下列各图中的四边形是平行四边形,根据各图中保留的作图痕迹,能得到菱形的有( )A. 1个B. 2个C. 3个D. 4个7.马面裙(图1),又名“马面褶裙”,是我国古代女子穿着的主要裙式之一,如图2,马面裙可以近似地看作扇环ABCD(AD和BC的圆心为点O),A为OB的中点,BC=OB=8dm,则该马面裙裙面(阴影部分)的面积为( )A. 4πdm2B. 8πdm2C. 12πdm2D. 16πdm28.如图,等边△ABC的边长为1,D是BC边上的一动点,过点D作AB边的垂线,交AB于点G,设线段AG的长度为x,△GBD的面积为y,则y关于x的函数图象正确的是( )A.B.C.D.9.已知P1(x1,y1)P2(x2,y2)是抛物线y=ax2+4ax+3(a是常数,a≠0)上的点,现有以下四个结论:①该抛物线的对称轴是直线x=−2;②点(0,3)在抛物线上;③若x1>x2>−2,则y1>y2;④若y1=y2,则x1+x2=−2,其中,正确结论的个数为( )A. 1个B. 2个C. 3个D. 4个二、填空题:本题共6小题,每小题3分,共18分。
学校九年级数学一模考试试卷分析1.各班的三分三率:2.各班各题的得分情况: (1)选择题:班级 13 14 15 16 17 1 0.97 0.92 0.89 0.66 0.47 2 1.00 1.00 0.95 0.84 0.27 3 1.00 1.00 0.97 0.79 0.39 4 1.00 0.97 0.95 0.81 0.32 5 1.00 1.00 0.97 0.72 0.31 6 1.00 0.97 0.95 0.78 0.41 合计1.000.980.940.770.36(2)填空题:班级 1234567891011121 1.00 1.00 0.87 0.79 0.95 0.97 1.00 0.87 0.89 0.43 0.37 0.042 1.00 1.00 0.97 1.00 1.00 0.97 0.97 0.86 0.92 0.89 0.86 0.083 1.00 1.00 0.88 0.94 0.91 0.97 0.94 0.82 0.76 0.52 0.48 0.00 4 0.97 1.00 0.95 0.97 0.95 0.97 1.00 0.92 0.97 0.81 0.76 0.03 5 1.00 1.00 1.00 0.83 0.97 0.93 0.97 0.93 0.90 0.48 0.55 0.00 6 0.97 1.00 0.97 0.89 0.97 0.97 1.00 0.95 0.89 0.76 0.76 0.05 合计0.99 1.00 0.94 0.90 0.96 0.97 0.980.89 0.89 0.650.63 0.03(3)解答题:单位平均分最高分最低分优秀人优秀率% 良好人 良好率%及格人数 及格率%不及格人 不及格率% 01班 72.37 100.0032.00 0 0.00% 1 2.63% 20 52.63%18 47.37%02班 88.43 99.00 71.00 0 0.00% 3 8.11% 36 97.30% 1 2.70% 03班 74.15 99.00 20.00 0 0.00% 2 6.06% 23 69.70% 10 30.30% 04班 86.95 105.00 45.00 0 0.00% 6 16.22% 36 97.30% 1 2.70% 05班 75.00 94.00 33.00 0 0.00% 0 0.00% 20 68.97% 9 31.03% 06班 86.95 105.00 52.00 0 0.00% 6 16.22% 34 91.89% 3 8.11%80.91105.0020.000.00%18 8.53% 169 80.09%42 19.91%优秀率:>=108.00分人数/参考人数 良好率:>=96.00分人数/参考人数及格率:>=72.00分人数/参考人数班级18 19 20 21 22 23 24 25 26 27 281 0.98 0.87 0.93 0.74 0.59 0.59 0.34 0.52 0.27 0.10 0.062 0.99 0.95 1.00 0.88 0.88 0.83 0.50 0.80 0.55 0.24 0.223 0.93 0.82 0.87 0.79 0.62 0.66 0.42 0.49 0.32 0.15 0.094 0.98 0.90 0.97 0.89 0.86 0.86 0.47 0.74 0.58 0.24 0.215 0.97 0.92 0.85 0.76 0.60 0.65 0.34 0.52 0.41 0.11 0.076 0.99 0.89 0.98 0.91 0.91 0.80 0.45 0.77 0.47 0.27 0.25合计0.97 0.89 0.93 0.83 0.74 0.73 0.42 0.64 0.43 0.18 0.153.试卷分析:(1)学生答卷中主要问题:1、基础知识掌握的不扎实(题8、9、10),对基本方法(题11、16、22、23)基本技能(题15、21(3))、基本数学思想(题16、17、25、26)不能熟练、准确的掌握和应用。
各位同学,本次初三数学模拟试卷的评阅工作已经圆满结束。
在此,我对大家的试卷表现进行如下评析:一、试卷整体分析本次模拟试卷的难度适中,涵盖了初三数学教材中的重点、难点和易错点。
试题类型丰富,包括选择题、填空题、解答题等,旨在全面考察同学们对基础知识的掌握程度和综合运用能力。
从试卷的整体情况来看,同学们的表现如下:1. 基础知识掌握较好:大部分同学对基础概念、公式、定理掌握牢固,能够准确无误地完成选择题和填空题。
2. 综合运用能力有待提高:在解答题部分,部分同学对复杂问题的分析能力不足,解题过程不够严谨,导致得分不高。
3. 时间分配不均:在考试过程中,部分同学未能合理分配时间,导致解答题部分时间不够,影响了整体得分。
二、具体评析1. 选择题和填空题:(1)基础知识扎实:大部分同学能够熟练运用基础知识解答选择题和填空题,得分较高。
(2)审题不够严谨:部分同学在解答选择题时,对题目的要求理解不够透彻,导致选择错误。
2. 解答题:(1)分析能力不足:部分同学在解答题部分,对问题的分析不够深入,导致解题过程混乱,得分不高。
(2)解题过程不规范:部分同学在解答题中,未能按照解题步骤进行,导致解答过程不够严谨,得分受到影响。
3. 时间分配:(1)时间观念不强:部分同学在考试过程中,未能合理安排时间,导致解答题部分时间不够,影响了整体得分。
(2)答题速度过慢:部分同学在考试过程中,答题速度过慢,导致时间浪费,影响了整体得分。
三、建议与期望1. 加强基础知识的学习:同学们要重视基础知识的学习,熟练掌握公式、定理等,为解题打下坚实基础。
2. 提高分析能力:在解题过程中,要学会分析问题,找出解题思路,提高解题效率。
3. 合理分配时间:在考试过程中,要合理安排时间,确保每道题都有足够的时间去解答。
4. 注重解题规范:在解答题中,要按照解题步骤进行,保持解答过程的严谨性。
最后,希望同学们能够认真总结本次模拟试卷的不足,努力提高自己的数学水平,为即将到来的中考做好准备。
初三一模数学成绩分析及改进措施初三一模数学成绩分析及改进措施「篇一」本试题总体感觉题量较大,题目偏难,简单题较少,难度与中考提相当。
试卷所考查学生的知识点主要有十八大类,具有全面性、重复性、重点突出三大特点,同时与能力考查紧密结果,这就要求同学们在学习过程中首先一定要注重基本概念、基础知识,把根基打牢,然后就是要学会灵活运用,提高思维能力。
每一个题仅仅是考察了学生必学必会,也就是应知应会的知识,不偏不怪,至于学生得分低,成绩差,关键是平时的知识落实不到位,这给我们提出了警示,下面就学生的答题情况做简单的分析:从代数方面看,一元二次方程与反比例函数考察的题目比较多,也是本学期学习中的重点难点。
这就要求同学们在平时学习的时候,对相应的基本概念,基本技能多加练习。
并注意归纳总结,努力发现它们之间的联系。
从几何方面,主要侧重考察相似三角形、解直角三角形和与圆有关的一些问题。
与圆有关的问题涉及的知识面广,技巧性强,是学习中的重点跟难点。
这要求同学们对基本概念熟练掌握,对基本技能熟练运用。
只是死记硬背还不可以,同学们还要具备一定的抽象思维能力。
在学习过程中多动动手,发挥空间想象。
从试卷学生得分情况看一、选择题:学生出错较多的是8、12、15、16第8题是关于三角函数的有关计算,部分学生没注意到点P所在的象限,有些同学看到3、4和6就想到了8,没有仔细审题。
第12题考察学生对反比例函数图像和性质的理解,分辨不清。
第15题考察了学生对圆周角和圆心角以及和他们所对的弧之间的关系,由于刚学过去对知识的理解不透彻,。
第16题是关于圆锥侧面积的计算,扇形的面积和圆锥侧面积的转化学生理解不够,不能真正的理解和转化。
二、填空题:得分率低,每个题的分量都不轻,考察了学生求平均数(17题)、数形结合的思想(18题)、反比例函数(19题)、圆的有关知识及勾股定理灵活运用(20题)。
三、解答题:题目覆盖面较广,知识点较全,既有动手操作、又有动脑思考,既有形象思维(21、25),又有抽象理解(24、26函数问题。
初三数学一模试卷分析一. 试题的的命题思想及特点命题思想:1. 此次数学试题比较绕,印刷排版质量不高。
1.本次试题难度较大,精选知识点,覆盖面较宽,易中难的比例基本为5:3:2.2.试卷结构简洁、合理,有偏题、怪题、繁难的计算题和证明题。
呈现形式较为新颖、灵活,有些题目把几个小知识点揉在一起,综合性较强,突出考查了学生的基本数学素养。
3.本次试题积极创设探索思考空间,重视开放性,探索性试题,注重能力立意,注重在知识网络的交汇点处设计试题,体现知识间内在联系,重点考查学生综合运用数学知识和数学思想方法解决问题的能力。
二、初三数学一模成绩分析从数据统计分析中我们不难看出有两点值得关注。
第一,学生的初中数学基础要突出强化。
选择全市得分率为0.81,而填空题得分率仅为0.59,说明学生的运算的基本功不过关;再看解答题的第一题,得分率仅为0.66,明显低于20、21、22题,说明不少学生特殊三角函数值记不清或者简单的根式化简不对。
第二,学生的答题格式、表达要严格规范。
填空题得分低还有一个原因,就是结果的表达不规范,我们在阅卷中发现,不少学生写得老师看不清,或潦草或不按照题目要求作答。
三、试卷中反应的教与学的问题教的问题:1.对学生解题方法与能力的培养有待进一步加强,增强解题方法指导性教学;2.分层次教学实施不到位,造成优秀率、及格率均不高.3.教师检查学生落实方面较为欠缺.学生的问题:1.基础知识不扎实,基本概念、基本公式、基本性质、基本定理等不熟,造成失分。
2.审题不清,导致严重失分。
3.解题过程不规范,不严谨,解题基本技能不熟练,基本思路方法不明确,造成失分。
4.数学思想方法不灵活,转化思想、分类讨论思想、数形结合思想等能力差,综合、灵活应用知识能力差造成失分。
四、下一阶段复习建议1抓好基础:在一模分析的基础上,查缺补漏外,结合考试说明有针对性的强化基础训练。
①重视基本概念、公式、法则、性质、定理的理解和掌握;②重视运算、作图、推理等基本技能的训练;③重视知识间的内在联系,多在知识网络交汇点设计试题;④重视数学思想方法的专题训练,常见解题思路方法的总结、归纳和整理。
一、试卷概述初三第一阶段数学试卷是针对我国初中三年级学生设计的,旨在考察学生对初中数学知识的掌握程度和运用能力。
本次试卷共分为选择题、填空题、解答题三个部分,涵盖了代数、几何、概率与统计等模块,题型丰富,难度适中。
二、试卷分析1. 选择题选择题共20题,主要考察学生对基础知识的掌握。
从题目设置来看,难度适中,既有对基础知识的考察,也有对应用能力的考察。
其中,第1-10题主要考察学生对整式的运算、方程(组)的解法、不等式(组)的解法等基础知识的掌握;第11-15题主要考察学生对一元二次方程、一元二次函数、二次函数图像等知识的掌握;第16-20题主要考察学生对概率与统计、几何图形的面积和体积等知识的掌握。
在选择题中,部分学生失分的原因如下:(1)基础知识掌握不牢固,对基本概念、公式、定理理解不透彻。
(2)解题技巧掌握不熟练,对一些典型题型的解题方法不够熟悉。
(3)审题不仔细,对题目要求理解不准确。
2. 填空题填空题共10题,主要考察学生对基础知识的灵活运用。
从题目设置来看,难度适中,既有对基础知识的考察,也有对应用能力的考察。
其中,第1-5题主要考察学生对整式的运算、方程(组)的解法、不等式(组)的解法等基础知识的掌握;第6-10题主要考察学生对一元二次方程、一元二次函数、二次函数图像等知识的掌握。
在填空题中,部分学生失分的原因如下:(1)基础知识掌握不牢固,对基本概念、公式、定理理解不透彻。
(2)解题技巧掌握不熟练,对一些典型题型的解题方法不够熟悉。
(3)书写不规范,导致答案错误。
3. 解答题解答题共4题,难度适中,主要考察学生对知识的综合运用。
其中,第1题主要考察学生对一元二次方程、一元二次函数、二次函数图像等知识的掌握;第2题主要考察学生对几何图形的面积和体积等知识的掌握;第3题主要考察学生对概率与统计等知识的掌握;第4题为一道综合题,考察学生对代数、几何、概率与统计等知识的综合运用。
在解答题中,部分学生失分的原因如下:(1)基础知识掌握不牢固,对基本概念、公式、定理理解不透彻。
初三第一次模拟考试数学试卷分析齐淑慧为了对初三的第一轮复习进行有效检验,也为下一轮复习进行“查缺补漏”。
我们县全体初三学生参加了3月28、29号的新乡市一模考试。
一模是一个定位考,是考生们中考前的第一次仿真练习。
它从考试形式上、试题结构上、题型分布和赋分比例上都尽可能地接近河南省的中考。
考生们能够在此考试中暴露自己在复习中存在的漏洞与问题,为下一轮复习找准方向。
通过这次考试也能客观的反映出考生的实力与水平。
1.从整体上看这张试卷从整体而看,这张试卷既重视对数学的重点知识与技能结果的考查,也重视了学生的数学学习能力和解决问题能力等方面的考查。
总体上来说题型比较丰富、新颖、能够较为公正、客观、全面、准确的考查出学生的学习水平。
考查内容体现了基础性,突出了对学生数学素养的评价;试题素材和求解方式上力求体现公平性;关注对学生数学学习各个方面的考查。
从这次抽样来看,试卷难度为0.75,属于中档偏难,平均分为62.75,优秀率为8%、及格率为45%。
2.试卷的整体结构一模试卷与近几年河南省的中考题比较起来,结构相同、内容相近,在力求稳定的同时注意创新。
本张试卷满分120分,总题量共23题,其中选择题占35%(24分),填空题占30%(21分),解答题占35%(75分),易、中、难题三个档次的题目分值比约为2:5:3,试题注意到了控制试卷的整体难度,因而在总体上从易到难形成梯度,并且每类题型上也形成难易梯度,试题的出现从难度,分值,位置等方面都充分考虑到学生的承受能力,后面的大题为了增加试卷的区分度,每题设计都有2--3问,且最后一问均有较高思维含量,因此全卷试题解答完整、准确,则需要有较强的数学能力,得高分不容易,这一点也和我们省的中考试题比较接近。
在知识点的覆盖率上不再刻意追求,而是着重考查了支撑学科知识体系的知识主干内容以及应用性较强的知识。
比如数与代数中的数式组合变形运算、方程、函数;空间与图形中的简单视图、空间观念、直线形、特殊四边形、圆,以及应用性较强的统计与概率知识,显示出重点知识在试卷中突出的地位,同时,发现、猜想、探究、归纳、推理等与素质教育相关的能力考查也在彰显,还注意到了避免偏题、怪题。
九年级数学一模考试试卷分析考试概况本次九年级数学一模考试共有两个部分,第一部分为选择题,共60道,每道题目2分,共120分;第二部分为主观题,共5道,每道题目20分,共100分。
总分为220分。
考试时间为120分钟。
选择题本次选择题难度适中,整体难度与去年基本一致。
本部分的考察重点为数的计算、代数式的计算与简化、平面图形的性质以及统计学中的图表分析。
考试中,一些比较经典的难点也被重点考察。
例如,选择题中的第45题为“已知一三角形中,角B为钝角,AB=1,BC=2,AC=√5,则三角形的周长等于()”。
其中需要考生使用余弦定理求出角C的大小,再使用勾股定理计算出三角形的周长。
另外,本次考试也涉及到了一些新的知识点。
例如,选择题中的第53题为“下列图中,由四个相等的正方形组成的图形称为:()”,涉及到了计算几何中的面积计算。
至此,考生对于知识点的关注可以放到代数式的计算与简化、平面图形的性质,以及统计学中的图表分析上。
主观题本次主观题难度适中,但相较于选择题,存在难度加大的情况。
本部分的考察重点为代数方程的解法、平面图形的性质以及空间几何的计算。
在本次主观题中,较难的题目为第四题:“已知四棱锥的顶点为V,底面为正方体ABCD,AB=1,点V到面ABCD的距离为1,则四棱锥的体积为()”和第五题:“如图,四边形ABCD中,∠B=∠C。
通过点A作BC的平行线,分别交AB、CD于点E、F。
比较BE和CF的大小,请证明你的答案”。
涉及到的知识点为平面图形的性质、空间几何的计算与证明,较为考验学生的综合运用能力。
对于九年级数学一模考试而言,选择题和主观题的整体难度适中,且考察知识点较为全面。
考生需要全面复习数的计算、代数式的计算与简化、平面图形的性质以及统计学中的图表分析等知识点,并注重综合应用和创新思维的培养。
2024年广东省汕头市潮阳实验学校中考数学一模试卷一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.与为倒数的数为( )A. B. C. 5 D.2.下列计算正确的是( )A. B. C. D.3.有一组数据:2,,2,4,6,7这组数据的中位数为( )A. 2B. 3C. 4D. 64.如图,,,,则的度数为( )A.B.C.D. 755.下列说法正确的个数是( )①的立方根是;②如果一个角的两边分别平行于另一个角的两边,则两个角一定相等;③正三角形既是中心对称又是轴对称图形;④顺次连接对角线相等的四边形四边中点所得的四边形必是矩形;⑤三角形的内心到三角形的三个顶点的距离相等A. 0个B. 1个C. 2个D. 3个6.如图,在中,,分别以点A、B为圆心,以适当的长为半径作弧,两弧分别交于E,F,作直线EF,D为BC的中点,M为直线EF上任意一点.若,面积为10,则长度的最小值为( )A.B. 3D. 57.已知二次函数的解析式是,结合图象回答:当时,函数值y的取值范围是( )A.B.C.D.8.将反比例函数的图象绕坐标原点O逆时针旋转,得到如图的新曲线,与过点,的直线相交于点C、D,则的面积为( )A. 8B. 3C.D.9.对于实数a,b,定义运算“*”如下:,例如:,则方程的根的情况是( )A. 没有实数根B. 只有一个实数根C. 有两个相等的实数根D. 有两个不相等的实数根10.如图,正方形纸片ABCD,P为正方形AD边上的一点不与点A,点D重合将正方形纸片折叠,使点B落在点P处,点C落在点G处,PG交DC于点H,折痕为EF,连接BP,BH,BH交EF于点M,连接下列结论:①;②;③PB平分;④;⑤,其中正确结论的个数是( )B. 4C. 3D. 2二、填空题:本题共5小题,每小题3分,共15分。
11.分解因式:______.12.某商场的打折活动规定:凡在本商场购物,可转动转盘一次,并根据所转结果付账.其中不打折的概率为______.13.某楼梯的侧面如图所示,测得,,则该楼梯的高度______.14.如图,一艘轮船以20海里/小时速度从南向北航行,当航行至A处时,测得小岛C在轮船的北偏东45度的方向处,航行一段时间后到达B处,此时测得小岛C在轮船的南偏东60度的方向处.若海里,则轮船航行的时间为______.15.如图,已知一次函数的图象与坐标轴分别交于点A,B两点,的半径为1,P是线段AB上的一个点,过点P作的切线PQ,切点为Q,则PQ的最小值为______.三、计算题:本大题共1小题,共6分。
数学练习卷考生注意:1.本考试设试卷和答题纸两部分,试卷包括试卷与答题要求,所有答题必须涂(选择题)或写(非选择题)在答题纸上,做在试卷上一律不得分.2.答题前,务必在答题纸上填写姓名、学校和考号.3.答题纸与试卷在试卷编号上是一一对应的,答题时应特别注意,不能错位.一、选择题(本大题共6题)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】1.已知tanA =,则锐角A 的度数是()A.30︒B.45︒C.60︒D.75︒2.已知Rt ABC △中,90C ∠=︒,2AC =,3BC =,那么下列结论正确的是()A.2tan 3A =B.2cot 3A =C.2sin 3A =D.2cos 3A =3.关于抛物线()2213y x =-+-,下列说法正确的是()A.开口向上B.与y 轴的交点是()0,3-C.顶点是()1,3- D.对称轴是直线=1x -4.已知a 、b为非零向量,下列判断错误的是()A.如果2a b =,那么a b∥ B.如果0a b += ,那么a b∥C.如果a b = ,那么a b = 或a b =-D.如果e 为单位向量,且2a e =,那么2a = 5.如图,为测量一条河的宽度,分别在河岸一边相距a 米的A 、B 两点处,观测对岸的标志物P ,测得PAB α∠=、PBA β∠=,那么这条河的宽度是()A.cot cot aαβ+米B.cot cot aαβ-米C.tan tan aαβ+米D.tan tan aαβ-米6.如图,直角梯形ABCD 中,AD BC ∥,90ABC ∠=︒,3AB =,2AD =,4BC =.P 是BA 延长线上一点,使得PAD 与PBC 相似,这样的点P 的个数是()A.1B.2C.3D.4二、填空题(本大题共12题)【请将结果直接填入答题纸的相应位置上】7.已知x y =32,则x yx y-+=_____.8.已知线段6AB =,P 是AB 的黄金分割点,且PA PB >,那么PA 的长是________.9.如图,已知直线AD BE CF ∥∥,如果23=AB BC ,3DE =,那么线段EF 的长是________.10.如图,ABC 中,90ACB ∠=︒,4AB =,E 是边AC 的中点,延长BC 到点D ,使2BC CD =,那么DE 的长是________.11.如图,Rt ABC △中,90ACB ∠=︒,CD AB ⊥于点D ,如果3AC =,5AB =,那么cos BCD ∠的值是________12.如图,河堤横断面迎水坡AB 的坡比1:0.75i =,堤高 4.8BC =米,那么坡面AB 的长度是________米.13.把抛物线21y x =+向左平移2个单位,所得新抛物线的表达式是________.14.如果一条抛物线经过点()2,0A -和()4,0B ,那么该抛物线的对称轴是直线________.15.已知一个二次函数的图像经过点()0,2,且在y 轴左侧部分是上升的,那么该二次函数的解析式可以是________(只要写出一个符合要求的解析式).16.公园草坪上,自动浇水喷头喷出的水线呈一条抛物线,水线上水珠的离地高度y (米)关于水珠与喷头的水平距离x (米)的函数解析式是()2140433y x x x =-+≤≤.那么水珠的最大离地高度是________米.17.已知ABC ,P 是边BC 上一点,PAB 、PAC △的重心分别为1G 、2G ,那么12AG G ABCS S 的值为________.18.如图,已知Rt ABC △中,90C ∠=︒,3sin 5A =,将ABC 绕点C 旋转至ABC ''△,如果直线A B AB ''⊥,垂足记为点D ,那么ADBD的值为________.三、解答题(本大题共7题)19.如图,已知ABC 中,点D 、E 分别在边AB 、AC 上,DE BC ∥,2AD DB =.(1)如果4BC =,求DE 的长;(2)设AB a =,DE b =,用a 、b 表示AC .20.已知二次函数2241y x x =--.(1)用配方法求这个二次函数的顶点坐标;(2)在所给的平面直角坐标系xOy 中(如图),画出这个二次函数的图像;(3)请描述这个二次函数图像的变化趋势.21.如图,已知ABC 中,10AB AC ==,12BC =,D 是AC 的中点,DE BC ⊥于点E ,ED 、BA 的延长线交于点F .(1)求ABC ∠的正切值;(2)求DFDE的值.22.小明想利用测角仪测量操场上旗杆AB 的高度.如图,他先在点C 处放置一个高为1.6米的测角仪(图中CE ),测得旗杆顶部A 的仰角为45︒,再沿BC 的方向后退3.5米到点D 处,用同一个测角仪(图中DF ),又测得旗杆顶部A 的仰角为37︒.试求旗杆AB 的高度.(参考数据:sin 370.6︒≈,cos370.8︒≈,tan 370.75︒≈)23.如图,已知梯形ABCD 中,AD BC ∥.E 是边AB 上一点,CE 与对角线BD 交于点F ,且2BE EF EC =⋅.求证:(1)ABD FCB △△;(2)BD BE AD CE ⋅=⋅.24.在平面直角坐标系xOy 中(如图),已知抛物线()20=+≠y ax c a 经过点()2,0A 和点()1,3B -.(1)求该抛物线的表达式;(2)平移这条抛物线,所得新抛物线的顶点为(),P m n .①如果PO PA =,且新抛物线的顶点在AOB 的内部,求m n +的取值范围;②如果新抛物线经过原点,且POA OBA ∠=∠,求点P 的坐标.25.已知梯形ABCD 中,AD BC ∥,90ABC ∠=︒,4AB =,6BC =,E 是线段CD 上一点,连接BE .(1)如图1,如果1AD =,且3CE DE =,求ABE ∠的正切值;(2)如图2,如果BE CD ⊥,且2CE DE =,求AD 的长;(3)如果BE CD ⊥,且ABE 是等腰三角形,求ABE 的面积.数学练习卷考生注意:1.本考试设试卷和答题纸两部分,试卷包括试卷与答题要求,所有答题必须涂(选择题)或写(非选择题)在答题纸上,做在试卷上一律不得分.2.答题前,务必在答题纸上填写姓名、学校和考号.3.答题纸与试卷在试卷编号上是一一对应的,答题时应特别注意,不能错位.一、选择题(本大题共6题)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】1.已知tanA =,则锐角A 的度数是()A.30︒ B.45︒C.60︒D.75︒【答案】C【分析】因为,A 为锐角,由特殊角的三角函数值即可解答.【详解】因为,A 为锐角由特殊角的三角函数值知:A=60°,故选C.【点睛】掌握特殊角的三角函数值是解答本题的关键.2.已知Rt ABC △中,90C ∠=︒,2AC =,3BC =,那么下列结论正确的是()A.2tan 3A = B.2cot 3A =C.2sin 3A =D.2cos 3A =【答案】B【分析】根据勾股定理求得斜边长,进而根据三角函数的定义即可求解.【详解】解:如图∵Rt ABC △中,90C ∠=︒,2AC =,3BC =,∴AB ==,∴3tan 2BC AAC ==,2cot 3AC A BC ==,sin 13BC A AB ==,cos 13AC A AB ===,故选:B .【点睛】本题考查了三角函数的定义,掌握三角函数的定义是解题的关键.3.关于抛物线()2213y x =-+-,下列说法正确的是()A.开口向上B.与y 轴的交点是()0,3-C.顶点是()1,3-D.对称轴是直线=1x -【答案】D【分析】根据二次函数解析式中系数与图形的关系即可求解.【详解】解:A 选项,抛物线()2213y x =-+-中,20a =-<,图像开口向下,故A 选项错误,不符合题意;B 选项,令0x =,函数值22(01)35y =-+-=-,则抛物线与y 轴的交点是()0,5-,故B 选项错误,不符合题意;C 选项,根据顶点式得,抛物线()2213y x =-+-的顶点为()1,3--,故C 选项错误,不符合题意;D 选项,抛物线()2213y x =-+-的对称轴是直线=1x -,故D 选项正确,符合题意;故选:D .【点睛】本题主要考查二次函数系数与图像的关系,理解并掌握二次函数中系数与图像开口,对称轴,与,x y 轴交点的特点,顶点坐标的计算方法是解题的关键.4.已知a 、b为非零向量,下列判断错误的是()A.如果2a b =,那么a b∥ B.如果0a b += ,那么a b∥C.如果a b = ,那么a b = 或a b=-D.如果e 为单位向量,且2a e =,那么2a = 【答案】C【分析】根据单位向量、平行向量以及模的定义进行判断即可.【详解】解:A 、如果2a b =,那么a b ∥ ,故本选正确;B 、如果0a b += ,那么a b ∥,故本选正确;C 、如果a b = ,没法判断a 与b之间的关系,故本选项错误D 、如果e 为单位向量,且2a e =,那么2a = ,故本选正确;故选:C .【点睛】本题考查了平面向量,熟记单位向量、平行向量以及模的定义是解题的关键.5.如图,为测量一条河的宽度,分别在河岸一边相距a 米的A 、B 两点处,观测对岸的标志物P ,测得PAB α∠=、PBA β∠=,那么这条河的宽度是()A.cot cot aαβ+米B.cot cot aαβ-米C.tan tan aαβ+米D.tan tan aαβ-米【答案】A【分析】过点P 作PC AB ⊥于点C ,则这条河的宽度是PC 的长,根据锐角三角函数可得,tan tan PC PCAC BC αβ==,从而得到cot cot PC PC a ββ⋅+⋅=,即可求解.【详解】解:如图,过点P 作PC AB ⊥于点C ,则这条河的宽度是PC 的长,∵tan ,tan PC PCAC BCαβ==,∴,tan tan PC PCAC BC αβ==,∵AB AC BC a =+=米,∴tan tan PC PC a αβ+=,即cot cot PC PC a ββ⋅+⋅=,∴()cot cot PC a ββ+=,即cot cot aPC αβ=+米,即这条河的宽度是cot cot aαβ+米,故选:A .【点睛】本题主要考查了解直角三角形的实际应用,明确题意,准确构造直角三角形是解题的关键.6.如图,直角梯形ABCD 中,AD BC ∥,90ABC ∠=︒,3AB =,2AD =,4BC =.P 是BA 延长线上一点,使得PAD 与PBC 相似,这样的点P 的个数是()A.1B.2C.3D.4【答案】B【分析】由于90PAD PBC ∠=∠=︒,故要使PAD 与PBC 相似,分两种情况讨论:①APD BPC ~△△,②△△APD BCP ,这两种情况都可以根据相似三角形对应边的比相等求出AP 的长,即可得到P 点的个数.【详解】∵AD BC ∥,90B Ð=°,18090A B ∴∠=︒-∠=︒,90PAD PBC \Ð=Ð=°.设AP 的长为x ,则3BP AB AP x =+=+.若AB 边上存在P 点,使PAD ∆与PBC ∆相似,那么分两种情况:①若APD BPC ~△△,则PA ADBP BC=,即234x x =+,解得:3x =②若△△APD BCP ,则PA ADBC BP=,即243x x=+,整理得:2380x x +-=,13412x -+=,23412x --=(舍去)∴满足条件的点P 的个数是2个,故选:B .【点睛】本题主要考查了相似三角形的判定及性质,难度适中,进行分类讨论是解题的关键.二、填空题(本大题共12题)【请将结果直接填入答题纸的相应位置上】7.已知x y =32,则x yx y-+=_____.【答案】15【分析】根据分式的基本性质,由32x y =可得32x y =,然后代入式子进行计算即可得解.【详解】解:∵32x y =,∴32x y =,则3122352152y yy y y x y x y y --===++.故答案为:15.【点睛】本题考查了分式的化简求值,掌握分式的基本性质并能灵活运用性质进行分式的化简求值是解题的关键.8.已知线段6AB =,P 是AB 的黄金分割点,且PA PB >,那么PA 的长是________.【答案】3-【分析】根据黄金分割点的定义,PA 是较长线段得到12PA AB -=,代入数据即可得出PA 的长.【详解】解:∵P 是AB 的黄金分割点,且PA PB >,6AB =,∴1632PA -=⨯=.故答案为:3-.【点睛】本题考查了黄金分割的定义,理解黄金分割点的概念.牢记黄金分割比是解题关键.9.如图,已知直线AD BE CF ∥∥,如果23=AB BC ,3DE =,那么线段EF 的长是________.【答案】92【分析】由平行线所截线段对应成比例可知AB DEBC EF=,然后代入DE 的值求解即可.【详解】解:AD BE CF∥∥ 23AB DE BC EF ∴==3DE = 3393222EF DE ∴==⨯=.故答案为:92【点睛】本题主要考查平行线所截线段对应成比例,熟练掌握比例线段的计算是解决本题的关键.10.如图,ABC 中,90ACB ∠=︒,4AB =,E 是边AC 的中点,延长BC 到点D ,使2BC CD =,那么DE 的长是________.【答案】2【分析】先判断出ACB ECD △△∽,再利用相似三角形的性质即可得到DE .【详解】:∵90ACB ∠=︒,∴ACB ECD ∠=∠,∵E 是边AC 的中点,2BC CD =,∴2BC AC CD CE==,∴ACB ECD △△∽,∴2BC AB CD DE==∵4AB =∴42DE =∴2DE =.故答案为:2.【点睛】本题主要考查相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解题关键.11.如图,Rt ABC △中,90ACB ∠=︒,CD AB ⊥于点D ,如果3AC =,5AB =,那么cos BCD ∠的值是________【答案】35##0.6【分析】根据题意得出90BCD ACD A ∠=︒-∠=∠,继而根据余弦的定义即可求解.【详解】解:∵Rt ABC △中,90ACB ∠=︒,CD AB ⊥,∴90BCD ACD A ∠=︒-∠=∠,∵3AC =,5AB =,∴cos BCD ∠=3cos 5AC A AB ==,故答案为:35.【点睛】本题考查了求余弦,掌握余弦的定义是解题的关键.12.如图,河堤横断面迎水坡AB 的坡比1:0.75i =,堤高 4.8BC =米,那么坡面AB 的长度是________米.【答案】6【分析】首先根据坡比求出AC 的长度,然后根据勾股定理求出AB 的长度.【详解】解:∵迎水坡AB 的坡比1:0.75i =,∴:1:0.75BC AC =∵堤高 4.8BC =米,∴ 3.6AC =米,∴226AB AC BC =+=米,故答案为:6.【点睛】此题考查了解直角三角形的实际应用,熟记坡比的定义是解题的关键.13.把抛物线21y x =+向左平移2个单位,所得新抛物线的表达式是________.【答案】()221y x =++【分析】根据抛物线的顶点坐标()0,1,再左平移2个单位即()2,1-,再利用顶点式抛物线解析式写出即可.【详解】21y x =+的顶点坐标()0,1,抛物线21y x =+左平移2个单位后的抛物线的顶点坐标为()2,1-,新的顶点式抛物线为()221y x =++.故答案为:()221y x =++.【点睛】本题考查了二次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.并根据规律利用点的变化确定函数解析式.14.如果一条抛物线经过点()2,0A -和()4,0B ,那么该抛物线的对称轴是直线________.【答案】1x =【分析】根据,A B 的坐标,利用二次函数的性质求出抛物线的对称轴,即可得出.【详解】解:∵抛物线经过点()2,0A -和()4,0B ,∴抛物线的对称轴是直线2412x -+==,故答案为: 1.x =【点睛】本题主要考查了二次函数的性质,根据抛物线的对称轴,求出抛物线的对称轴是解题的关键.15.已知一个二次函数的图像经过点()0,2,且在y 轴左侧部分是上升的,那么该二次函数的解析式可以是________(只要写出一个符合要求的解析式).【答案】22y x =-+(答案不唯一)【分析】由于二次函数的图象经过点()0,2,且在y 轴左侧部分是上升的,由此可以确定抛物线的对称轴为y 轴或在y 轴的右侧,且图象开口向下,由此可以确定函数解析式不唯一.【详解】解:∵二次函数的图像经过点()0,2,且在y 轴左侧部分是上升的,若二次函数的顶点坐标为()0,2,且图象开口向下,∴二次函数解析式的二次项系数a<0,∴二次函数解析式不唯一,如:22y x =-+故答案为:22y x =-+(答案不唯一)【点睛】此题主要考查了二次函数的性质,解题的关键是会利用函数的性质确定解析式的各项系数.16.公园草坪上,自动浇水喷头喷出的水线呈一条抛物线,水线上水珠的离地高度y (米)关于水珠与喷头的水平距离x (米)的函数解析式是()2140433y x x x =-+≤≤.那么水珠的最大离地高度是________米.【答案】43【分析】根据二次函数的顶点式即可求解.【详解】∵()()2214142043333y x x x x =-+=--+≤≤,∴2x =时,y 取最大值43,即水珠的高度达到最大43米时,水珠与喷头的水平距离是2米,故答案为:43.【点睛】本题考查了二次函数的应用,解决本题的关键是掌握把二次函数的解析式化为顶点式.17.已知ABC ,P 是边BC 上一点,PAB 、PAC △的重心分别为1G 、2G ,那么12AG G ABC S S 的值为________.【答案】29【分析】由重心可知线段1223AG AG AE AF ==,得到12AG G AEF ∽,从而得出面积比,再利用中线的性质得到最后的面积之比.【详解】解:12G G ,是APB △,APC △的重心,1223AG AG AE AF ∴==,12G AG EAF ∠=∠ ,12AG G AEF ∴ ∽,1249AG G AEF S S ∴= ,E F ,分别是BP CP ,的中点,1122AEP APF ABP APC S S S S ∴== ,,12AEF ABC S S ∴= ,12412929AG G ABC S S ∴=⨯=,故答案为:29.【点睛】本题主要考查重心的性质以及线段比与面积的关系,熟练掌握重心的性质以及利用线段比求面积比是解决本题的关键.18.如图,已知Rt ABC △中,90C ∠=︒,3sin 5A =,将ABC 绕点C 旋转至A B C ''△,如果直线A B AB ''⊥,垂足记为点D ,那么AD BD的值为________.【答案】421或283【分析】设3BC a =,则5AB a =,4AC a =,分两种情况讨论,画出图形,利用相似三角形的判定和性质,列式计算即可求解.【详解】解:∵Rt ABC △中,90C ∠=︒,3sin 5A =,∴3sin 5BC A AB ==,设3BC a =,则5AB a =,4AC a =,∵将ABC 绕点C 旋转至A B C ''△,∴3B C BC a '==,则5A B AB a ''==,4A C AC a '==,A A '∠=∠,B B '∠=∠,如图,A B a '=,A A '∠=∠,90ACB A DB '∠=∠=︒,∴ACB A DB '∽△△,∴A B BD AB BC '=,则53a BD a a=,∴35a BD =,∴328555a a AD AB BD a =+=+=,∴28285335A D a D aB ==;如图,AB a '=,A A '∠=∠,90ACB ADB '∠=∠=︒,∴A CB ADB '''∽△△,∴AB AD A B A C '=''',则54a AD a a=,∴45a AD =,∴421555a a BD AB AD a =-=-=,∴44521215A D a D aB ==;故答案为:421或283.【点睛】本题考查了旋转的性质,勾股定理,正弦函数,相似三角形的判定和性质,解题的关键是灵活运用所学知识解决问题.三、解答题(本大题共7题)19.如图,已知ABC 中,点D 、E 分别在边AB 、AC 上,DE BC ∥,2AD DB =.(1)如果4BC =,求DE 的长;(2)设AB a =,DE b = ,用a 、b 表示AC .【答案】(1)83DE =(2)32AC a b =+ 【分析】(1)先证明ADE ABC △△∽得到AD DE AB BC =,再根据已知条件推出23AD AB =,得到23DE BC =,由此即可得到答案;(2)先求出32BC b = ,再由AC AB BC =+ 进行求解即可.【小问1详解】解:∵DE BC ∥,∴ADE ABC△△∽∴AD DE AB BC=,∵2AD DB =,∴23AD AB =,∴23DE BC =,∵4BC =,∴83DE =;【小问2详解】解:∵DE b = ,23DE BC =,∴32BC b = ,∵AB a =,∴32AC AB BC a b =+=+ .【点睛】本题主要考查了相似三角形的性质与判定,向量的线性运算,证明ADE ABC △△∽推出23DE BC =是解题的关键.20.已知二次函数2241y x x =--.(1)用配方法求这个二次函数的顶点坐标;(2)在所给的平面直角坐标系xOy 中(如图),画出这个二次函数的图像;(3)请描述这个二次函数图像的变化趋势.【答案】(1)顶点坐标()1,3-(2)见解析(3)这个二次函数图像在对称轴直线1x =左侧部分是下降的,右侧部分是上升的【分析】(1)将函数解析式化为顶点式,即可得出答案;(2)先求出几个特殊的点,然后描点连线即可;(3)根据(2)函数图像,即可得出结果.【小问1详解】解:(1)()()222241221213y x x x x x =--=--=--∴二次函数的顶点坐标()1,3-;【小问2详解】解:当0x =时,1y =-,当1y =-时,2x =,经过点()0,1-,()2,1-,顶点坐标为:()1,3-图像如图所示:【小问3详解】解:这个二次函数图像在对称轴直线1x =左侧部分是下降的,右侧部分是上升的.【点睛】本题主要考查二次函数的基本性质及作图方法,熟练掌握二次函数的基本性质是解题关键.21.如图,已知ABC 中,10AB AC ==,12BC =,D 是AC 的中点,DE BC ⊥于点E ,ED 、BA 的延长线交于点F .(1)求ABC ∠的正切值;(2)求DF DE的值.【答案】(1)4tan 3B =(2)2DF DE=【分析】(1)过点A 作AH BC ⊥于点H ,由10AB AC ==得到ABC 是等腰三角形,由三线合一得到6BH CH ==,由勾股定理求得8AH =,根据正切的定义即可得到答案;(2)由AH BC ⊥,FE BC ⊥得到AH FE ∥,则CD CE AD EH =,由D 是AC 的中点,得到DE 是ACH 的中位线,求得4DE =,进一步得到23AH BH FE BE ==,求得12EF =,得到8DF =,即可得到答案.【小问1详解】解:过点A 作AH BC ⊥于点H ,∵10AB AC ==,∴ABC 是等腰三角形,∵12BC =,AH BC ⊥,∴6BH CH ==,∴Rt ABH △中,22221068AH AB BH =-=-,∴84tan 63AH B BH ===;【小问2详解】解:∵AH BC ⊥,FE BC ⊥,∴AH FE ∥,∴CD CE AD EH=,∵D 是AC 的中点,∴EH CE =,∴DE 是ACH 的中位线,142DE AH ==,∵BH CH =,∴23AH BH FE BE ==,∴12EF =,∴8DF =∴2DF DE=.【点睛】此题考查了平行线分线段成比例定理、三角形中位线定理、等腰三角形的判定和性质、三角函数的定义、勾股定理等知识,熟练掌握相关定理是解题的关键.22.小明想利用测角仪测量操场上旗杆AB 的高度.如图,他先在点C 处放置一个高为1.6米的测角仪(图中CE ),测得旗杆顶部A 的仰角为45︒,再沿BC 的方向后退3.5米到点D 处,用同一个测角仪(图中DF ),又测得旗杆顶部A 的仰角为37︒.试求旗杆AB 的高度.(参考数据:sin 370.6︒≈,cos370.8︒≈,tan 370.75︒≈)【答案】旗杆的高度AB 约为12.1米【分析】如图所示,延长FE ,交AB 于点G ,则FG AB ⊥,设EG x =,则AG GE x ==, 3.5FG GE EF x =+=+,在Rt AFG △中,根据三角函数值的计算方法即可求解.【详解】解:如图所示,延长FE ,交AB 于点G ,则FG AB ⊥,由题意得,45AEG ∠=︒,37AFG ∠=︒, 3.5FE =, 1.6CE =,设EG x =,则AG GE x ==, 3.5FG GE EF x =+=+, 1.6GB CE ==在Rt AFG △中,tan tan 370.75AG AFG FG ∠=︒==,∴0.753.5x x =+,解得10.5x =,即10.5AG GE ==(米),∴10.5 1.612.1AB AG GB =+=+=(米).∴旗杆的高度AB 约为12.1米.【点睛】本题主要考查仰俯角测量高度,理解图示中角与线的关系,掌握仰俯角测量高度的方法,三角函数值的计算方法是解题的关键.23.如图,已知梯形ABCD 中,AD BC ∥.E 是边AB 上一点,CE 与对角线BD 交于点F ,且2BE EF EC =⋅.求证:(1)ABD FCB △△;(2)BD BE AD CE ⋅=⋅.【答案】(1)见解析(2)见解析【分析】(1)由2BE EF EC =⋅可证BEF CEB V :V ,得到EBF ECB ∠=∠,再由AD BC ∥得到ADB DCB ∠=∠,即可证明ABD FCB △△;(2)由BEF CEB V :V 得到BF BE BC CE =,ABD FCB △△得到AB BD AD FC BC BF ==,进而得到BE AD CE BD =,即可得到BD BE AD CE ⋅=⋅.【小问1详解】∵2BE EF EC =⋅,∴BE CE EF BE=∵BEF CEB Ð=Ð,∴BEF CEBV :V ∴EBF ECB∠=∠∵AD BC ∥,∴ADB DCB∠=∠∴ABD FCB △△;【小问2详解】∵BEF CEB V :V ,∴BF BE BC CE=∵ABD FCB △△,∴AB BD AD FC BC BF==∴BF AD BC BD=∴BE AD CE BD =∴BE BD AD CE ⋅=⋅.【点睛】本题考查相似三角形的判定与性质,相似三角形判定方法是解题的关键.24.在平面直角坐标系xOy 中(如图),已知抛物线()20=+≠y ax c a 经过点()2,0A 和点()1,3B -.(1)求该抛物线的表达式;(2)平移这条抛物线,所得新抛物线的顶点为(),P m n .①如果PO PA =,且新抛物线的顶点在AOB 的内部,求m n +的取值范围;②如果新抛物线经过原点,且POA OBA ∠=∠,求点P 的坐标.【答案】(1)抛物线的表达式24y x =-+(2)①m n +的取值范围是12m n <+<;②11,24P ⎛⎫⎪⎝⎭【分析】(1)根据抛物线()20=+≠y ax c a 经过点()2,0A 和点()1,3B -,待定系数法求解析式即可求解;(2)①新抛物线的顶点为(),P m n ,()2,0A ,由PO PA =得出1m =,待定系数法求解析式得直线AB 的解析式:2y x =-+,根据题意,当1x =时,1y =,新抛物线的顶点在AOB 的内部,得出01n <<,继而即可求解;②新抛物线的顶点为(),P m n ,设抛物线解析式为()2y x m n =--+,由新抛物线经过原点,得出2n m =,根据POA OBA ∠=∠,得出21tan 2m POA m ∠==,即可求解.【小问1详解】∵抛物线()20=+≠y ax c a 经过点()2,0A 和点()1,3B -,∴403a c a c +=⎧⎨+=⎩,∴14a c =-⎧⎨=⎩∴抛物线的表达式24y x =-+【小问2详解】①新抛物线的顶点为(),P m n ,()2,0A ∵PO PA =,∴1m =∵()2,0A 、()1,3B -,设直线AB 的解析式为y kx b =+,则203k b k b +=⎧⎨-+=⎩解得:12k b =-⎧⎨=⎩∴直线AB 的解析式:2y x =-+当1x =时,1y =,新抛物线的顶点在AOB 的内部,∴01n <<∴m n +的取值范围是12m n <+<②∵新抛物线的顶点为(),P m n ,∴()2y x m n=--+∵新抛物线经过原点,∴20m n -+=,即2n m =可知点P 在第一象限,()2,P m m作OQ AB ⊥于点Q ,则OQ =,BQ =,1tan 2OBA ∠=∵POA OBA ∠=∠,∴21tan 2m POA m ∠==,∴12m =∴12m =,14n =,∴11,24P ⎛⎫ ⎪⎝⎭.【点睛】本题考查了二次函数综合运用,平移问题,角度问题,正切的定义,掌握二次函数图象的性质是解题的关键.25.已知梯形ABCD 中,AD BC ∥,90ABC ∠=︒,4AB =,6BC =,E 是线段CD 上一点,连接BE .(1)如图1,如果1AD =,且3CE DE =,求ABE ∠的正切值;(2)如图2,如果BE CD ⊥,且2CE DE =,求AD 的长;(3)如果BE CD ⊥,且ABE 是等腰三角形,求ABE 的面积.【答案】(1)3tan 4ABE ∠=(2)3172AD +=(3)ABE 的面积是625+、163或19225【分析】(1)延长AD 、BE ,交于点F ,根据AD BC ∥求出2DF =,最后根据tan AF ABE AB ∠=求解即可;(2)延长AD 、BE ,交于点F ,过点D 作DH BC ⊥于点H ,根据AD BC ∥求出3DF =,再由ABE C ∠=∠可得tan tan AF DH ABE C AB CH ∠===,设AD x =,则6CH x =-,代入后列方程求解即可;(3)分EA EB =、AB BE =、AB AE =三种情况分别求解即可.【小问1详解】延长AD 、BE ,交于点F∵AD BC ∥,∴DF DE BC CE=∵3CE DE =,6BC =,∴2DF =Rt ABF 中,3tan 4AF ABE AB ∠==【小问2详解】延长AD 、BE ,交于点F ,过点D 作DH BC ⊥于点H ,则4AB DH ==∵DF DE BC CE=,2CE DE =,6BC =,∴3DF =∵90ABC ∠=︒,BE CD ⊥,∴ABE C∠=∠∴tan tan ABE C ∠=,设AD x =,则6CH x =-,∴AF DH AB CH=,∴3446x x+=-,解得32x ±=(负值舍去),∴3172AD +=【小问3详解】1︒EA EB =时,过点E 作EH AB ⊥于点H ,则H 是AB 中点,∴E 是CD 的中点,∵BE CD ⊥,∴6BD BC ==,Rt △ABD中,AD =(14362ABE S =⨯⨯=+△2︒AB BE =时,4BE =,6BC =,CE =过点A 作AG BE ⊥于点G ,sin sin ABE C ∠=,∴AG BE AB BC=,∴446AG =,∴83AG =∴18164233ABE S =⨯⨯=△3︒AB AE =时,过点A 作AG BE ⊥于点G ,延长AG 交BC 于点M ,则AM CD ,∵AB AE =,∴BG GE =,∴3BM CM ==,∴3AD =∴165AG =,125BG =1241619225525ABE S =⨯⨯=△∴ABE 的面积是6+、163或19225.【点睛】本题考查梯形、锐角三角函数、平行线分线段成比例,熟记常用的梯形辅助线是解题的关键.。
一、基础知识掌握不牢固1. 对基本概念、公式、定理等理解不透彻,导致应用时出现错误。
2. 忽视基础知识的积累,导致解题时无法顺利运用所学知识。
二、解题思路不清晰1. 缺乏解题技巧,导致解题过程繁琐,浪费时间。
2. 对题目要求理解不透彻,导致解题方向错误。
3. 思维定式,对于某些类型的题目,没有灵活运用解题方法。
三、审题不仔细1. 对题目中的关键词、关键信息把握不准确,导致解题思路偏离。
2. 审题速度慢,影响答题时间。
四、计算错误1. 计算过程中出现粗心大意,导致计算错误。
2. 对计算公式不熟悉,导致计算错误。
3. 没有养成良好的计算习惯,如验算等。
五、书写不规范1. 字迹潦草,影响阅卷老师对答案的判断。
2. 没有按照规范格式书写,导致答题卡混乱。
3. 标点符号使用不规范,影响答案的准确性。
六、心理因素1. 焦虑、紧张,导致答题速度慢,影响答题质量。
2. 自信心不足,对解题没有信心,导致解题过程中出现犹豫、放弃等消极情绪。
七、时间管理不当1. 没有合理安排答题时间,导致某些题目解答不完整。
2. 对于一些简单题目,花费过多时间,导致后续题目没有时间解答。
八、缺乏实际应用能力1. 对数学知识的应用理解不透彻,导致解题过程中无法灵活运用。
2. 缺乏实际操作经验,导致解题过程中出现偏差。
针对以上失分原因,以下是一些建议:1. 加强基础知识的学习,熟练掌握基本概念、公式、定理等。
2. 提高解题技巧,掌握不同类型题目的解题方法。
3. 仔细审题,确保对题目要求理解准确。
4. 培养良好的计算习惯,如验算、检查等。
5. 规范书写,提高答题质量。
6. 调整心态,保持自信,克服焦虑、紧张等消极情绪。
7. 合理安排答题时间,确保每个题目都能得到充分解答。
8. 注重数学知识的实际应用,提高解题能力。
总之,要想在初三数学考试中取得好成绩,需要从多个方面入手,全面提升自己的数学素养。
通过不断努力,相信同学们一定能够在考试中取得优异的成绩。
2024年北京市东城区中考数学一模试卷一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.(2分)在下列几何体中,俯视图是矩形的几何体是()A.B.C.D.2.(2分)2024年2月29日,在国家统计局发布的《中华人民共和国2023年国民经济和社会发展统计公报》中,2023年全年完成造林面积400万公顷,其中人工造林面积133万公顷.将数字1330000用科学记数法表示应为()A.1.33×107B.13.3×105C.1.33×106D.0.13×107 3.(2分)在平面直角坐标系xOy中,点A(0,2),B(﹣1,0),C(2,0)为▱ABCD的顶点,则顶点D的坐标为()A.(﹣3,2)B.(2,2)C.(3,2)D.(2,3)4.(2分)若实数a,b在数轴上的对应点的位置如图所示,在下列结论中,正确的是()A.|a|<|b|B.a+1<b+1C.a2<b2D.a>﹣b5.(2分)在平面直角坐标系xOy中,点P(1,2)在反比例函数y=(k是常数,k≠0)的图象上.下列各点中,在该反比例函数图象上的是()A.(﹣2,0)B.(﹣1,2)C.(﹣1,﹣2)D.(1,﹣2)6.(2分)如图,AB是⊙O的弦,CD是⊙O的直径,CD⊥AB于点E.在下列结论中,不一定成立的是()A.AE=BE B.∠CBD=90°C.∠COB=2∠D D.∠COB=∠C 7.(2分)一个不透明的口袋中有三个完全相同的小球,把它们分别标号为1,2,3.随机摸出一个小球后放回,摇匀后再随机摸出一个小球,两次摸出的小球标号相同的概率为()A.B.C.D.8.(2分)2024年1月23日,国内在建规模最大塔式光热项目——甘肃省阿克塞汇东新能源“光热+光伏”试点项目,一万多面定日镜(如图1)全部安装完成.该项目建成后,年发电量将达17亿千瓦时.该项目采用塔式聚光热技术,使用国内首创的五边形巨蜥式定日镜,单块定日镜(如图2)的形状可近似看作正五边形,面积约为48m2,则该正五边形的边长大约是()(结果保留一位小数,参考数据:tan36°≈0.7,tan54°≈1.4,≈6.5,≈4.6)A.5.2m B.4.8m C.3.7m D.2.6m二、填空题(本题共16分,每小题2分)9.(2分)若二次根式有意义,则实数x的取值范围是.10.(2分)因式分解:2xy2﹣18x=.11.(2分)方程的解为.12.(2分)若关于x的一元二次方程x2﹣2x+m=0有两个不相等的实数根,则m的取值范围是.13.(2分)为了解某校初三年级500名学生每周在校的体育锻炼时间(单位:小时),随机抽取了50名学生进行调查,结果如表所示:锻炼时间x5≤x<66≤x<77≤x<8x≥8学生人数1016195以此估计该校初三年级500名学生一周在校的体育锻炼时间不低于7小时的约有____人.14.(2分)在Rt△ABC中,∠A=90°,点D在AC上,DE⊥BC于点E,且DE=DA,连接DB.若∠C=20°,则∠DBE的度数为°.15.(2分)阅读材料:如图,已知直线l及直线l外一点P.按如下步骤作图:①在直线l上任取两点A,B,作射线AP,以点P为圆心,PA长为半径画弧,交射线AP于点C;②连接BC,分别以点B,C为圆心,大于的长为半径画弧,两弧分别交于点M,N,作直线MN,交BC于点Q;③作直线PQ.回答问题:(1)由步骤②得到的直线MN是线段BC的;(2)若△CPQ与△CAB的面积分别为S1,S2,则S1:S2=.16.(2分)简单多面体的顶点数(V)、面数(F)、棱数(E)之间存在一定的数量关系,称为欧拉公式.(1)四种简单多面体的顶点数、面数、棱数如表:名称图形顶点数(V)面数(F)棱数(E)三棱锥446长方体8612五棱柱10715正八面体6812在简单多面体中,V,F,E之间的数量关系是;(2)数学节期间,老师布置了让同学们自制手工艺品进行展示的任务,小张同学计划做一个如图所示的简单多面体作品.该多面体满足以下两个条件:①每个面的形状是正三角形或正五边形;②每条棱都是正三角形和正五边形的公共边.小张同学需要准备正三角形和正五边形的材料共个.三、解答题(本题共68分,第17-22题,每题5分,第23-26题,每题6分,第27-28题,每题7.分)解答应写出文字说明、演算步骤或证明过程.17.(5分)计算:.18.(5分)解不等式组:.19.(5分)已知2x﹣y﹣9=0,求代数式的值.20.(5分)如图,四边形ABCD是菱形.延长BA到点E,使得AE=AB,延长DA到点F,使得AF=AD,连接BD,DE,EF,FB.(1)求证:四边形BDEF是矩形;(2)若∠ADC=120°,EF=2,求BF的长.21.(5分)每当优美的“东方红”乐曲从北京站的钟楼响起时,会唤起很多人的回忆,也引起了同学们的关注.某数学兴趣小组测量北京站钟楼AB的高度,同学们发现在钟楼下方有建筑物遮挡,不能直接到达钟楼底部点B的位置,被遮挡部分的水平距离为BC的长度.通过对示意图的分析讨论,制定了多种测量方案,其中一种方案的测量工具是皮尺和一根直杆.同学们在某两天的正午时刻测量了钟楼顶端A的影子D到点C的距离,以及同一时刻直杆的高度与影长.设AB的长为x米,BC的长为y米.测量数据(精确到0.1米)如表所示:直杆高度直杆影长CD的长第一次 1.00.615.8第二次 1.00.720.1(1)由第一次测量数据列出关于x,y的方程是,由第二次测量数据列出关于x,y的方程是;(2)该小组通过解上述方程组成的方程组,已经求得y=10,则钟楼的高度约为____米.22.(5分)在平面直角坐标系xOy中,一次函数y=kx+b(k为常数,k≠0)的图象由函数的图象平移得到,且经过点A(3,2),与x轴交于点B.(1)求这个一次函数的解析式及点B的坐标;(2)当x>﹣3时,对于x的每一个值,函数y=x+m的值大于一次函数y=kx+b的值,直接写出m的取值范围.23.(6分)某校初三年级两个班要举行韵律操比赛.两个班各选择8名选手,统计了他们的身高(单位:cm),数据整理如下:a.1班1681711721741741761771792班168170171174176176178183b.每班8名选手身高的平均数、中位数、众数如下:班级平均数中位数众数1班173.8751741742班174.5m n 根据以上信息,回答下列问题:(1)写出表中m,n的值;(2)如果某班选手的身高的方差越小,则认为该班选手的身高比较整齐.据此推断:在1班和2班的选手中,身高比较整齐的是班(填“1”或“2”);(3)1班的6位首发选手的身高分别为171,172,174,174,176,177.如果2班已经选出5位首发选手,身高分别为171,174,176,176,178,要使得2班6位首发选手的平均身高不低于1班6位首发选手的平均身高,且方差尽可能小,则第六位选手的身高是cm.24.(6分)如图,AB为⊙O的直径,点C在⊙O上,∠EAC=∠CAB,直线CD⊥AE于点D,交AB的延长线于点F.(1)求证:直线CD为⊙O的切线;(2)当,CD=4时,求BF的长.25.(6分)小明是一位羽毛球爱好者,在一次单打训练中,小明对“挑球”这种击球方式进行路线分析,球被击出后的飞行路线可以看作是抛物线的一部分.建立如图所示的平面直角坐标系xOy,击球点P到球网AB的水平距离OB=1.5m.小明在同一击球点练习两次,球均过网,且落在界内.第一次练习时,小明击出的羽毛球的飞行高度y(单位:m)与水平距离x(单位:m)近似满足函数关系y=﹣0.2(x﹣2.5)2+2.35.第二次练习时,小明击出的羽毛球的飞行高度y(单位:m)与水平距离x(单位:m)的几组数据如下:水平距离x/m01234飞行高度y/m 1.1 1.6 1.92 1.9根据上述信息,回答下列问题:(1)直接写出击球点的高度;(2)求小明第二次练习时,羽毛球的飞行高度y与水平距离x满足的函数关系式;(3)设第一次、第二次练习时,羽毛球落地点与球网的距离分别为d1,d2,则d1d2(填“>”,“<”或“=”).26.(6分)在平面直角坐标系xOy中,M(x1,y1),N(x2,y2)是抛物线y=ax2+bx+1(a >0)上任意两点,设抛物线的对称轴为直线x=t.(1)若点(2,1)在该抛物线上,求t的值;(2)当t≤0时,对于x2>2,都有y1<y2,求x1的取值范围.27.(7分)在Rt△ABC中,∠BAC=90°,AB=AC,点D,E是BC边上的点,,连接AD.过点D作AD的垂线,过点E作BC的垂线,两垂线交于点F.连接AF交BC 于点G.(1)如图1,当点D与点B重合时,直接写出∠DAF与∠BAC之间的数量关系;(2)如图2,当点D与点B不重合(点D在点E的左侧)时,①补全图形;②∠DAF与∠BAC在(1)中的数量关系是否仍然成立?若成立,加以证明;若不成立,请说明理由.(3)在(2)的条件下,直接用等式表示线段BD,DG,CG之间的数量关系.28.(7分)在平面直角坐标系xOy中,已知线段PQ和直线l1,l2,线段PQ关于直线l1,l2的“垂点距离”定义如下:过点P作PM⊥于点M,过点Q作QN⊥l2于点N,连接MN,称MN的长为线段PQ关于直线l1和l2的“垂点距离”,记作d.(1)已知点P(2,1),Q(1,2),则线段PQ关于x轴和y轴的“垂点距离”d为;(2)如图1,线段PQ在直线y=﹣x+3上运动(点P的横坐标大于点Q的横坐标),若,则线段PQ关于x轴和y轴的“垂点距离”d的最小值为;(3)如图2,已知点,⊙A的半径为1,直线与⊙A交于P,Q两点(点P的横坐标大于点Q的横坐标),直接写出线段PQ关于x轴和直线的“垂点距离”d的取值范围.2024年北京市东城区中考数学一模试卷参考答案与试题解析一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.【分析】俯视图是分别从物体上面看所得到的图形,据此作答.【解答】解:A、球的俯视图是圆,故此选项不合题意;B、长方体俯视图是矩形,故此选项符合题意;C、三棱锥俯视图是三角形(三角形内部有一点与三角形的三个顶点相连接),故此选项不合题意;D、圆柱俯视图是圆,故此选项不合题意;故选:B.【点评】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.2.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数,当原数绝对值<1时,n是负整数.【解答】解:1330000=1.33×106.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【分析】根据平行四边形的对边相等,对边平行求解即可.【解答】解:如图,∵点A(0,2),B(﹣1,0),C(2,0)为▱ABCD的顶点,∴AD=BC=3,AD∥BC,∴顶点D的坐标为(3,2),故选:C.【点评】此题考查了平行四边形的性质、坐标与图形性质,熟记平行四边形的性质是解题的关键.4.【分析】根据图示,可得﹣2<a<﹣1,0<b<1,据此逐项判断即可.【解答】解:根据图示,可得﹣2<a<﹣1,0<b<1,∵﹣2<a<﹣1,0<b<1,∴1<|a|<2,0<|b|<1,∴|a|>|b|,∴选项A不符合题意;∵﹣2<a<﹣1,0<b<1,∴a<b,∴a+1<b+1,∴选项B符合题意;∵﹣2<a<﹣1,0<b<1,∴1<a2<4,0<b2<1,∴a2>b2,∴选项C不符合题意;∵0<b<1,∴﹣1<﹣b<0,∵﹣2<a<﹣1,∴a<﹣b,∴选项D不符合题意.故选:B.【点评】此题主要考查了实数大小比较的方法,以及数轴的特征:一般来说,当数轴正方向朝右时,右边的数总比左边的数大.5.【分析】根据反比例函数比例系数k=xy(k≠0),依次判断各个选项即可.【解答】解:根据题意得,k=xy=1×2=2,∴将A,B,C,D四个选项中点的坐标代入得到k=6的点在反比例函数的图象上.故选:C.【点评】本题考查了反比例函数图象上点的坐标特征,关键是运用xy=k解决问题.6.【分析】根据垂径定理、圆周角定理判断求解即可.【解答】解:∵CD是⊙O的直径,CD⊥AB,∴AE=BE,∠CBD=90°,∠COB=2∠D,∠CBO=∠C,故A、B、C不符合题意,D符合题意;故选:D.【点评】此题考查了圆周角定理、垂径定理,熟练掌握圆周角定理、垂径定理是解题的关键.7.【分析】列表可得出所有等可能的结果数以及两次摸出的小球标号相同的结果数,再利用概率公式可得出答案.【解答】解:列表如下:1231(1,1)(1,2)(1,3)2(2,1)(2,2)(2,3)3(3,1)(3,2)(3,3)共有9种等可能的结果,其中两次摸出的小球标号相同的结果有3种,∴两次摸出的小球标号相同的概率为.故选:B.【点评】本题考查列表法与树状图法,熟练掌握列表法与树状图法以及概率公式是解答本题的关键.8.【分析】设正五边形的中心为O,连接OA,OB,过点O作OF⊥AB,垂足为F,根据正五边形的性质可得∠AOB=72°,△AOB的面积=m2,然后利用等腰三角形的三线合一性质可得:∠AOF=36°,AB=2AF,从而设OF=x m,再在Rt△OAF中,利用锐角三角函数的定义求出AF的长,从而求出AB的长,最后列出关于x的方程,进行计算即可解答.【解答】解:如图:设正五边形的中心为O,连接OA,OB,过点O作OF⊥AB,垂足为F,∴∠AOB==72°,△AOB的面积=正五边形的面积=m2,∵OA=OB,OF⊥AB,∴∠AOF=∠AOB=36°,AB=2AF,设OF=x m,在Rt△OAF中,AF=OF•tan36°≈0.7x(m),∴AB=2AF=1.4x(m),∴AB•OF=,•1.4x•x=,解得:x≈3.71,∴AB=1.4x≈5.2(m),∴该正五边形的边长大约是5.2m,故选:A.【点评】本题考查了解直角三角形的应用,正多边形和圆,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.二、填空题(本题共16分,每小题2分)9.【分析】根据被开方数不小于零的条件【解答】解:由题可知,x﹣1≥0,解得x≥1.故答案为:x≥1.【点评】本题考查二次根式有意义的条件,掌握被开方数不小于零的条件是解题的关键.10.【分析】提取公因式后再用平方差公式分解即可.【解答】解:2xy2﹣18x=2x(y2﹣9)=2x(y+3)(y﹣3).故答案为:2x(y+3)(y﹣3).【点评】本题考查了因式分解,熟练掌握公式法和提取公因式法是关键.11.【分析】方程两边都乘x(x﹣3)得出3(x﹣3)=2x,求出方程的解,再进行检验即可.【解答】解:,方程两边都乘x(x﹣3),得3(x﹣3)=2x,3x﹣9=2x,3x﹣2x=9,x=9,检验:当x=9时,x(x﹣3)≠0,所以分式方程的解是x=9.故答案为:x=9.【点评】本题考查了解分式方程,能把分式方程转化成整式方程是解此题的关键.12.【分析】根据方程的系数结合根的判别式Δ>0,可得出关于m的一元一次不等式,解之即可得出m的取值范围.【解答】解:∵关于x的一元二次方程x2﹣2x+m=0有两个不相等的实数根,∴Δ=(﹣2)2﹣4×1×m=4﹣4m>0,解得:m<1.故答案为:m<1.【点评】本题考查了根的判别式,牢记“当Δ>0时,方程有两个不相等的实数根”是解题的关键.13.【分析】总人数乘以样本中体育锻炼时间不低于7小时的人数所占比例即可.【解答】解:估计该校初三年级500名学生一周在校的体育锻炼时间不低于7小时的约有500×=240(人),故答案为:240.【点评】本题主要考查用样本估计总体,一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.14.【分析】由∠A=90°,∠C=20°,求得∠ABC=70°,然后证明Rt△EBD≌Rt△ABD,推导出∠DBE=∠DBA,或根据角平分线的性质证明BD平分∠ABC,求得∠DBE=∠ABC=35°,于是得到问题的答案.【解答】解法一:∵∠A=90°,∠C=20°,∴∠ABC=90°﹣∠C=70°,∵DE⊥BC于点E,∴∠BED=90°,在Rt△EBD和Rt△ABD中,,∴Rt△EBD≌Rt△ABD(HL),∴∠DBE=∠DBA=∠ABC=35°,故答案为:35.解法二:∵∠A=90°,∠C=20°,∴∠ABC=90°﹣∠C=70°,∵∠A=90°,∴DA⊥BA,∵DE⊥BC,且DE=DA,∴点D在∠ABC的平分线上,∴BD平分∠ABC,∴∠DBE=∠DBA=∠ABC=35°,故答案为:35.【点评】此题重点考查直角三角形的两个锐角互余、全等三角形的判定与性质、角平分线的性质等知识,证明∠DBE=∠DBA是解题的关键.15.【分析】(1)根据线段垂直平分线的作图过程可知,步骤②得到的直线MN是线段BC 的垂直平分线.(2)由题意可得AP=CP,CQ=BQ,可证明△PCQ∽△ACB,根据相似三角形的性质可得答案.【解答】解:(1)由作图过程可知,步骤②得到的直线MN是线段BC的垂直平分线.故答案为:垂直平分线.(2)由作图过程可知,AP=CP,∵MN是线段BC的垂直平分线,∴CQ=BQ,∴,∵∠PCQ=∠ACB,∴△PCQ∽△ACB,∴S1:S2==.故答案为:.【点评】本题考查作图—复杂作图、线段垂直平分线的性质、相似三角形的判定与性质,熟练掌握相似三角形的判定与性质、线段垂直平分线的性质以及作图方法是解答本题的关键.16.【分析】(1)观察可得顶点数+面数﹣棱数=2;(2)设正五边形x块,正三边形y块,则由上面的规律数可以看出,棱数E=5x,而顶点数V=×5x,有欧拉公式列出二元一次方程;再由足球表面中所有白皮的边数等于所有黑皮的边数;组成方程组解决问题.【解答】解:(1)四面体的棱数为6;正八面体的顶点数为6;关系式为:V+F﹣E=2;故答案为:V+F﹣E=2;(2)设正五边形x块,正三边形y块,由题意得,解得所以正五边形为12块,正三边形为20块.所以需要准备正三角形和正五边形的材料共32个.故答案为:32.【点评】本题考查等边三角形的性质,欧拉公式等知识,解题的关键是学会利用参数构建方程解决问题.三、解答题(本题共68分,第17-22题,每题5分,第23-26题,每题6分,第27-28题,每题7.分)解答应写出文字说明、演算步骤或证明过程.17.【分析】利用二次根式的性质,特殊锐角三角函数值,零指数幂,绝对值的性质计算即可.【解答】解:原式=4﹣2×+1﹣2=4﹣+1﹣2=3﹣1.【点评】本题考查实数的运算,熟练掌握相关运算法则是解题的关键.18.【分析】首先解出两个不等式的解集,再根据大小小大中间找确定不等式组的解集.【解答】解:,解不等式①,得:x<4,解不等式②,得:x≥﹣2,∴原不等式组的解集为﹣2≤x<4.【点评】此题主要考查了解一元一次不等式组,关键是掌握解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.19.【分析】根据2x﹣y﹣9=0,得2x﹣y=9,化简约分即可求出答案.【解答】解:∵2x﹣y﹣9=0,∴2x﹣y=9,∴==,当2x﹣y=9时,原式==.【点评】本题考查了分式的值,关键是求出2x﹣y=9.20.【分析】(1)先证明四边形BDEF为平行四边形,再由菱形的性质得AB=AD,则BE=DF,然后由矩形的判定即可得出结论;(2)由矩形的性质得∠DBF=90°,BD=EF=2,再由菱形的性质得∠ADB=60°,AB =AD,进而证明△ABD是等边三角形,得AB=AD=BD=2,则DF=2AD=4,然后由勾股定理求出BF的长即可.【解答】(1)证明:∵AE=AB,AF=AD,∴四边形BDEF为平行四边形,∵四边形ABCD为菱形,∴AB=AD,∴AE=AB=AF=AD,∴BE=DF,∴平行四边形BDEF是矩形;(2)解:由(1)可知,AB=AD,四边形BDEF是矩形,∴∠DBF=90°,BD=EF=2,∵四边形ABCD是菱形,∴∠ADB=∠ADC=60°,AB=AD,∴△ABD是等边三角形,∴AB=AD=BD=2,∴DF=2AD=4,∴BF===2,即BF的长为2.【点评】本题考查了矩形的判定与性质、菱形的性质、平行四边形的判定与性质、等边三角形的判定与性质以及勾股定理等知识,熟练掌握矩形的判定与性质是解题的关键.21.【分析】(1)由同一时刻测量,可得=,分别代入第一次测量、第二次测量的数值,可得其关于x、y的方程;(2)已经求得y=10,将y=10代入任一个方程,可求得x的值,即得钟楼的高度.【解答】解:(1)由同一时刻测量,可得=,第一次测量:,化简得,y=0.6x﹣15.8,第二次测量:=,化简得,y=0.7x﹣20.1,故答案为:y=0.6x﹣15.8,y=0.7x﹣20.1;(2)对于y=0.6x﹣15.8,代入y=10,得,0.6x﹣15.8=10,解得:x=43,∴钟楼AB=43米,故答案为:43.【点评】本题考查了相似三角形的应用,由同一时刻测量,得到=是本题的关键.22.【分析】(1)根据一次函数y=kx+b的图象由函数的图象平移得到,且经过点A(3,2),可得,即可解得一次函数的解析式为y=x+1;从而求出B的坐标为(﹣3,0);(2)当x=﹣3时,y=x+m=﹣3+m,y=x+1=×(﹣3)+1=0,根据当x>﹣3时,对于x的每一个值,函数y=x+m的值大于一次函数y=x+1的值,可得﹣3+m≥0,可解得答案.【解答】解:(1)∵一次函数y=kx+b的图象由函数的图象平移得到,且经过点A (3,2),∴,解得,∴一次函数的解析式为y=x+1;在y=x+1中,令y=0得0=x+1,解得x=﹣3,∴B的坐标为(﹣3,0);(2)当x=﹣3时,y=x+m=﹣3+m,y=x+1=×(﹣3)+1=0,∵当x>﹣3时,对于x的每一个值,函数y=x+m的值大于一次函数y=x+1的值,∴﹣3+m≥0,解得m≥3,∴m的取值范围是m≥3.【点评】本题考查一次函数图象与几何变换,一次函数图象与系数的关系,解题的关键是求出函数解析式和列出不等式﹣3+m≥0解决问题.23.【分析】(1)根据中位数和众数概念,即可作答;(2)根据方差的概念,即可作答;(3)先求出1班6位首发选手的平均身高,再求出2班第6位首发选手的身高取值范围;接着根据题意,从方差的概念入手,确定第六位选手的身高.【解答】解:(1)2班数据从小到大排列为168、170、171、174、176、176、178、183从中可以看出一共八个数,第四个数据为174、第五个数据为176,所以这组数据的中位数为:(174+176)÷2=175,故m=175;其中176出现的次数最多,所以这组数的众数为176,故n=176;故答案为:175、176.(2)根据方差的定义可以知道,方差越大,一组数据的波动越大,离散程度越大,稳定性也越小,反之亦然.1班的身高分布于168﹣179,2班的身高分布于168﹣183,从中可以看出,1班的数据较2班的数据波动较小,更加稳定,所以1班的选手身高比较整齐,故答案为:1.(3)(171+172+174+174+176+177)÷6=174(厘米)设2班第六位选手的身高为x厘米,则(171+174+176+176+178+x)÷6≥174,x≥169,据此,第六位可选的人员身高为170、183,若为170时,2班的身高数据分布于170﹣178,若为183时,2班的身高数据分布于171﹣183,从中可以看出当身高为170时的数据波动更小,更加稳定,所以第六位选手的身高应该是170厘米,故答案为:170.【点评】本题考查了平均数、众数、中位数和方差,熟记方差的计算公式以及方差的意义是解题的关键.24.【分析】(1)连接OC,根据等腰三角形的性质得到∠CAO=∠ACO,求得∠DAC=∠ACO,根据平行线的性质得到OC⊥DF,根据切线的判定定理得到结论;(2)设OC=x,则CF=2x,AO=OB=x,根据勾股定理得到OF==x,根据相似三角形的性质即可得到结论.【解答】(1)证明:连接OC,∵OA=OC,∴∠CAO=∠ACO,∵∠EAC=∠CAB,∴∠DAC=∠ACO,∵OC∥AD,∵CDAD,∴OC⊥DF,∵OC是⊙O的半径,∴直线CD为⊙O的切线;(2)解:∵,∴,设OC=x,则CF=2x,AO=OB=x,∴OF==x,∵OC∥AD,∴△AFD∽△OFC,∴,∴,∴x=2,∴BF=OF﹣OB=10﹣2.【点评】本题考查了切线的判定和性质,相似三角形的判定和性质,勾股定理,平行线的判定和性质,正确地作出辅助线是解题的关键.25.【分析】(1)令y=﹣0.2(x﹣2.5)2+2.35中x=0,求出y的值即可(或由表格信息直接得出);(2)根据表格信息,设出抛物线解析式,利用待定系数法求出解析式即可;(3)分别利用第一次练习和第二次练习时的抛物线解析式求出羽毛球落地点与球网的距离分别为d1,d2,再比较即可.【解答】解:(1)当x=0时,y=﹣0.2(0﹣2.5)2+2.35=1.1,故击球点的高度为1.1m;(2)由表格信息可知,第二次练习时,抛物线的顶点为(3,2),设抛物线的解析式为:y=a(x﹣3)2+2,过点(4,1.9),∴1.9=a(4﹣3)2+2,解得a=﹣0.1,∴抛物线的解析式为:y=﹣0.1(x﹣3)2+2,(3)∵第一次练习时,当y=0时,0=﹣0.2(x﹣2.5)2+2.35.解得x1=+2.5,x2=﹣+2.5<0(舍去),∴d1=+2.5﹣1.5=+1,∵第二次练习时,当y=0时,0=﹣0.1(x﹣3)2+2.解得x1=+3,x2=﹣+3<0(舍去),∴d2=+3﹣1.5=+1.5,∵+1<+1.5,∴d1<d2,故答案为:<【点评】本题考查二次函数的应用,理解题意,掌握待定系数法是解题的关键.26.【分析】(1)点(2,1)代入解析式求得b=﹣2a,进一步即可求得t=1;(2)根据二次函数的性质即可得到x1的取值范围.【解答】解:(1)∵点(2,1)在该抛物线∴4a+2b+1=1,∴b=﹣2a,∴t=﹣=1;(2)∵t≤0时,x2>2,∴N(x2,y2)的对称点的横坐标x3<﹣2,∵抛物线y=ax2+bx+1(a>0)开口向上,y1<y2,∴﹣2≤x1≤2.【点评】本题考查了二次函数的性质,二次函数图象上点的坐标特征,掌握二次函数的性质是解题的关键.27.【分析】(1)运用等腰三角形性质可得AE⊥BC,∠BAE=∠BAC,再证明A、E、F 在同一条直线上,即可得出答案;(2)①按照题意作图即可;②过点A作AH⊥BC于点H,可证得△ADH≌△DFE(AAS),得出AD=DF,即△ADF是等腰直角三角形,即可证得结论;(3)将△ACG绕点A顺时针旋转90°得到△ABG′,可证得∠DBG′=90°,运用勾股定理可得BD2+BG′2=DG′2,再证得△ADG′≌△ADG(SAS),即可得出答案.【解答】解:(1)当点D与点B重合时,∠DAF=∠BAC,理由如下:如图1,∵点D与点B重合,点D,E是BC边上的点,且DE=BC,∴E是BC的中点,∵∠BAC=90°,AB=AC,∴AE⊥BC,∠BAE=∠BAC,∵EF⊥BC,∴∠AEB=∠BEF=90°,∴∠AEB+∠BEF=180°,即A、E、F在同一条直线上,∴∠BAF=∠BAC,即∠DAF=∠BAC;(2)①补全图形如图2所示:②∠DAF=∠BAC仍然成立,理由如下:如图3,过点A作AH⊥BC于点H,则∠AHD=90°,∵∠DEF=90°,∴∠AHD=∠DEF,∵∠ADH+∠FDE=∠ADH+∠DAH=90°,∴∠DAH=∠FDE,∵∠BAC=90°,AB=AC,AH⊥BC,∴AH=BC,∵DE=BC,∴AH=DE,∴△ADH≌△DFE(AAS),∴AD=DF,∵∠ADF=90°,∴△ADF是等腰直角三角形,∴∠DAF=45°,∴∠DAF=∠BAC;(3)BD2+CG2=DG2,理由如下:如图4,将△ACG绕点A顺时针旋转90°得到△ABG′,则BG′=CG,AG′=AG,∠ABG′=∠ACG,∠BAG′=∠CAG,∵∠BAC=90°,AB=AC,∴∠ABC=∠ACG=45°,∴∠ABC+∠ABG′=90°,即∠DBG′=90°,∴BD2+BG′2=DG′2,由(2)知∠DAF=45°,即∠DAG=45°,∴∠BAD+∠CAG=45°,∴∠BAD+∠BAG′=45°,即∠DAG′=45°,∴∠DAG′=∠DAG,在△ADG′和△ADG中,,∴△ADG′≌△ADG(SAS),∴DG′=DG,∴BD2+CG2=DG2.【点评】本题是几何变换综合题,考查了全等三角形的判定和性质,旋转的性质,等腰直角三角形的性质,勾股定理等知识,添加恰当辅助线构造全等三角形是解题的关键.28.【分析】(1)根据定义得出点P到x轴的距离为:1,点Q到y轴的距离为:2,进而得出结果;(2)延长NQ,MP交于点A,得出四边形ANOM是矩形,AQ=AP=1,设Q(m,﹣m+3),则A(m+1,﹣m+3),从而得出OA==,进而得出结果;(3)设直线y=﹣x+b与x轴交于D,交直线y=﹣于C,延长NQ,MP,交于点B,作直线AB,可得出△PBQ是等边三角形,可得出点B在过O点且与CD垂直的直线上运动,从而得出当点B越往上,MN越大,从而推出当MP和BN与⊙A相切时,MN最大,当直线l1且⊙A于下方时,MN最小;当PM和NQ与⊙A相切时,连接AP,设AB交ON于F交x轴于E,可求得AE=,AF=OF=EF=2,从而得出BF和BE的值,进而得出BM和BN的值,进一步得出结果;当直线y=﹣与⊙A相切时,MN最小,同样的方法得出结果,进一步得出结果.【解答】解:(1)∵点P到x轴的距离为:1,点Q到y轴的距离为:2,∴线段PQ关于x轴和y轴的“垂点距离”d为:1+2=3,故答案为:3;(2)如图1,延长NQ,MP交于点A,∵QN⊥y轴,PM⊥x轴,∴∠ANO=∠AMO=90°,∵∠MON=90°,∴四边形ANOM是矩形,∴∠NAM=90°,MN=AO,∵线段PQ在直线y=﹣x+3上运动,∴∠AQP=∠APQ=45°,∴AQ=AP=1,设Q(m,﹣m+3),则A(m+1,﹣m+3),∴OA==,∴当m=1时,OA=2,最小∴MN的最小值为:2,故答案为:2;(3)如图2,1设直线y=﹣x+b与x轴交于D,交直线y=﹣于C,延长NQ,MP,交于点B,作直线AB,∴∠CDO=∠OCD=30°,∵QN⊥l2,PM⊥x轴,∴∠CNQ=∠PMD=90°,∴∠BQP=∠CQN=60°,∠BPQ=∠MPD=60°,∴△PBQ是等边三角形,∴∠QBP=60°,AB⊥PQ,∠PBA=30°,∴点B在过O点且与CD垂直的直线上运动,∴当点B越往上,MN越大,∴当MP和BN与⊙A相切时,MN最大,当直线l1且⊙A于下方时,MN最小,如图3,当PM和NQ与⊙A相切时,连接AP,设AB交ON于F交x轴于E,∴AP⊥BM,∴AB=2AP=2,∵∠AOE=90°,∠OAE=∠PBA=30°,OA=2,∴AE=,∵∠FOE=∠FEO=60°,∴∠OFE=60°,∴∠OAF=∠AOF=30°,∴AF=OF=EF=2,∴BF=AF+AB=4,BE=AE+AB=6,∴BN=BF•sin∠BFN=4•sin60°=2,BM=BE•sin∠FEO=6•sin60°=3,∴MN2=BN2+BM2﹣BN•BM=(2)2+=21,∴MN=,如图4,当直线y=﹣与⊙A相切时,MN最小,∵PF=AF﹣AP=2﹣1=1,EQ=AE﹣AQ=4﹣1=3,∴PN=PF=,QM=EQ=,∴MN2=PN2+QM2﹣PN•QM=,∴MN=,∴.【点评】本题考查了新定义的阅读理解,圆的切线的性质,解直角三角形,等边三角形的判定和性质,矩形的判定和性质,一次函数的性质等知识,解决问题的关键是作辅助线,转化题意。
九年级数学一模试卷分析通过分析结果,我们看到了我校数学教学令人鼓舞的一面,同时也暴露出一些存在问题。
以下是我们对结果所作的一些统计,并据此提出几点教学想法。
一、试卷整体评价这份数学试卷在总体上较地体现了《课程标准》的评价理念。
在题型设计、情境安排以及设问方式等方面有了一些新的创造,出现一些前景新颖、设计巧妙、富有思维含量、形式活泼的好题。
题型、题量、难度及分值符合学生实际情况。
基础知识、基本技能和数学思想方法落实到位,做到了重点知识重点考,并对应用数学的能力、综合运用数学知识分析问题、解决问题的能力做了重点的考查,适当考查了探索性试题。
为中考复习奠定了基础,贯彻了新课标的要求,试题源于课本,并适当拓宽加深,试题的编排具有起点低、坡度缓、难点分散等特点。
体现了对初中数学基础知识、基本技能和以思维为核心的数学能力的考查。
二、学生学习状况(答题)评价1.选择题考生答题情况分析选择题(1-8)均为基础题,主要考查学生数学中的基本概念(二次根式的性质、相似三角形的性质)的理解,以及对基本技能(一元二次方程解应用题、概率)的应用,得分率很高。
选择题(9)、(10)主要是关于相似知识的应用,学生没遇到过这样的提问,错误率较高。
这类试题涉及知识虽然基础,但需要考生具备一定的“思考”能力。
考试结果表明,对于这样的试题,有相当一小部分学生存在能力上的欠缺。
2.填空题考生答题情况分析填空题分别考查了辨别一元二次方程的求解和二次根式的取值范围及成比例线段的性质、解直角三角形的应用等,学生很少做错,说明对于概念的基本应用和求值运算,学生掌握的比较好。
填空15,16是一道解直角三角形及最小值的关系问题,错误率为60%。
本题的关键在于学生对知识的传统认识,没有细致的观察图形,导致错误。
3.简答题考生答题情况分析简答题共8道,考查了解一元二次方程、一元二次方程及应用题、相似的性质、解直角三角形的应用、概率等相关知识。
第21、22题是最基本的解一元二次方程、混合计算的题,考查学生的计算能力,有相当一部分学生基础掌握的还是不错。
初三一模数学试卷分析初三一模数学试卷分析(精选12篇)生活中我们会遇到很多相同的问题,但我们还是会犯同样的错误,当然在做数学题也一样。
下面是店铺收集整理初三一模数学的试卷分析,以供家学习参考。
初三一模数学试卷分析篇1一、试卷总体情况:1、基础部分(86分)(1)相反数(2)科学记数法(3)圆心角与圆周角的关系(4)概率(5)相似(6)配方法(7)统计量(9)自变量取值范围(10)分解因式(11)解直角三角形的简单应用(13)实数计算(14)解不等式组(15)全等(16)方程组,代数式求值(17)一次函数与反比例函数(18)列方程解应用题(19)四边形计算(20)第一问切线证明(21)统计(23)第一问判别式(25)第一问求二次函数解析式。
2、中档、提高部分(34分)(8)展开图(12)规律探索(19)第二问与圆有关的计算(22)阅读、操作问题(23)第二、三问代数综合(24)几何综合(25)第二、三问代数几何综合题。
二、部分题目分析:1、第8题,展开图问题(中考选择压轴题常考题),难度中,考查学生的空间想象能力,此题可采用退步法,使问题简化,三个面想不过来,你可以想两个面,之后看有无重叠即可,本题也可实验操作,但图形有些复杂,折起纸来有一定困难。
2、第12题,规律探究题,本题所考图形在中考或模拟中多次出现,同学们并不陌生,解题关键是代数与几何之间的相互转换。
3、第17、18、19题,都是模仿11年中考题出的,17注意分类讨论,18注意分式方程要检验,19没考常规梯形计算。
4、第20题,切线的证明实为弦切角逆定理模型,但为了降低难度,题中给画出了直径;第二问也是模仿中考题求了2条线段长度,但第一个线段长度实为降低求第二条的难度,并可以达到一定的区分度,本题为中等难题,但比11年中考简单。
5、第22题,本题为阅读理解类信息题,做这类题目注意一定要把信息读完了,再思考,然后照葫芦画瓢即可。
本题在北京竞赛中考过,在市面上比较流行的培优类教辅《新思维》或《培优竞赛新方法》中的平移部分可以找到。
6、第23题,常规代数综合题,一句话“代数就行”。
7、第24题,中点相关几何综合题,10、11年海淀一模第25题皆是此类问题,本题图形的实质是增设中点法的外构中位线,进而极大的降低了难度,本类题在竞赛和中考中多次考察,08北京中考第25题就是此类问题(05大连中考改题),本题为08大连二模第26题改题。
8、第25题,代几综合,第一问送分,第二问割补法求面积,第3问可视为以代数为主的代几综合题(典型的大连题风格,本题为09大连中考第26题改题),注意代数和几何之间的转换计算即可。
小结:本次海淀区一模题目和以往相比略显简单,因此同学们会有一个不错的成绩(相对期末考试),但且不可骄傲,对于大多数同学来说要保证简单题的准确率,提高中等题的速度,了解难题的基本套路。
三、试卷中反映教与学的问题:教的问题:对学生解题方法与能力的培养有待进一步加强,增强解题方法指导性教学。
学生问题:1、基础知识不扎实,基本概念、基本公式、基本性质、基本定理不熟,造成失分;2、审题不清,导致严重失分;3、解题过程不规范,不严谨,解题基本技能不熟练,基本思路不明确,造成失分;4、数学思想方法不灵活,转化思想、分类讨论思想、数形结合思想等能力差,综合、灵活应用知识能力差造成失分。
四、试卷分析这次试卷检测的范围主要是初三上学的知识点,难易也适度,比较能如实反映出学生的实际数学知识的掌握情况,而从试卷成绩来看,基本达到了预期目标,大致可分为两类:第一类是基础知识,通过选择、填空、计算、和画图题进行检测,第二类是综合应用,主要是考几何证明、应用实践和分类讨论等试题。
在基本知识中,选择、填空的情况基本较好。
选择题失分情况最多的是第一题,学生容易犯粗心的错误,其次填空题错误的在地17题。
对于应用题,培养学生的读题能力很关键,自己读懂题意。
分析题意在现在看来是一种不可或缺的能力,很多学生因为缺少这种能力而在自己明明会做的题上失分了,太可惜了。
(试卷第22题就是一应用题,学生主要错误是由于题意没有理解导致错误;第25题学生因为看见题目太长,甚至连题目都没有看就没有去做了)初三一模数学试卷分析篇2从抽样的两个考场四十五份试卷卷面答题情况分析:本次质量检测九年级数学及格率57、8%,优秀率15、6%,平均成绩72、4分,最高成绩110分,最低成绩18分,在一定程度上反映了学生对数学学科知识掌握情况。
一、总体评价本次九年级数学试题能紧扣教材,注重双基,突出了教材的重难点,难度适中,分值分配合理,易、中、难程度保持在7:2:1范围之内,题型与中考题型接轨。
试题立意鲜明,取材新颖,设计巧妙,贴近学生实际,体现了时代气息与人文精神的要求,并且鼓励学生创新,加大创新意识考察力度,突出试题的开放性,整套试卷充分体现课改思想理念。
通过检测,考生不仅长了见识,也找到了自信。
二、试题结构及特点1、试题结构本套试题满分120分,共三道大题27道小题,其中客观性题占60分,主观题占60分。
具体为第二十一章《二次根式》26分,第二十二章《一元二次方程》61分,第二十三章《旋转》33分。
2、试题特点(1)试卷主要考查学生对九年级上册前半期数学基础知识的掌握情况,题量适中,从时间上保证了考生精心思考、认真答卷;从试题内容上看,分值比较合理,各知识点均有体现;再从命题角度看,试题材料鲜活,结合实际生活,立足紧扣学生脉搏,体现数学来源于生活,服务于生活。
(2)注重灵活运用知识和探求能力的考查试卷积极创新思维,重视开放性、探索性试题的设计;第3、6、10、27题等具有开放性、探索性,有利于考查不同层次的学生的分析、探求、解决问题的能力。
第4、13、22、25题考查学生灵活运用知识与方法的能力。
(3)重视联系实际生活,突出数学应用能力的考查试卷设置了实际应用问题,如第7、8题考查学生从实际问题中抽象数学模型的能力,体验运用数学知识解决实际问题的情感,让学生深切地感受到现实生活中充满了数学,要具备活学活用数学知识解决实际问题的能力和素质。
三、试题做答情况试题在设计上注意了保持一定的梯度,不是在最后一题难度加大,而是注意了难度分散的命题思想,使每个学生在每道题中都能感到张弛有度。
从这些试卷中可以看出答得好的有第9、10、11、12、14、20题,较好的有2、6、8、17、18、21、23、24题;答得较差的题有第1、5、7、16题,差的有第22、26题。
四、难度、区分度统计分析(其中1—20题为客观题,21—27为主观表述题)注:1、难度系数(其数值越小,该题难度越大)(1)该题答对人数/该题抽样人数(客观题);(2)该题平均得分/该题分值(主观题)。
2、区分度(其数值越小,区分程度越小,试题越差)(1)(样本中前27%的高分组答对人数后27%的低分组该题答对人数)/抽样的高低分组总人数(客观题);(2)(高分组该题答对平均分或低分组该题答对平均分)/该题分值(主观题)。
从上表统计出的数据及结合学生作答情况可以看出以下信息:客观题5、7、13、16难度系数值略低,但5、13题区分度高一些;主观题的第22、25题难度系数低,但区分度略高,而第26题的区分度较低,难度分散的命题思想得以体现。
结合试卷作答深究原因主要反映出教学中的以下问题:1、学生审题不清导致失分;2、对题意理解偏差造成错误;3、数学基本功不够扎实。
五、教学启示与建议通过以上分析,在今后的教学中应注意切实加强以下三个方面。
1、面向全体,夯实基础正确理解新课标下“双基”的含义,数学教学中应重视基本概念、基本图形、基本思想方法的教学和基本运算及分析、解决问题等能力的培养。
要面向全体学生,做到用教材教,而不是教教材,以教材的例题、习题为素材,结合学生实际,举一反三加以推敲、延伸和适当变形,以达到“人人掌握必须的数学”,同时关心数学学习困难的学生,通过学习兴趣培养、学习方法指导,使他们达到学习的基本要求,使不同的学生得到不同的发展。
2、注重应用,培养能力在教学中应关注社会生活,注重情感培育,引导学生从所熟悉的实际生活中和相关学科的实际问题出发,通过观察分析,归纳抽象出数学概念和规律,让学生不断体验数学与生活的联系,在提高学习兴趣的同时,培养学生的分析能力和建模能力;同时要加强思维能力和创新能力的培养,激发学生的好奇心和求知欲,通过独立思考,不断追求新知,发现、提出、分析并创造性的解决问题,也要设计一定数量的开放性、探索性问题,为培养学生的创新意识提供机会,鼓励学生对某些问题进行探讨。
3、关注本质,指导教学近几年的中考中有不少试题体现了数学应用思想、实践与操作、过程与方法,探究学习等新课程理念,因此,在教学中应以新课程理念为指导,重视学生动手实践、自主探索和合作交流等教学方式的运用,在教师启发引导的基础上,留给学生一定的时间和空间。
合作探究学习中,要让学生充分表达自己的思想,引导学生讨论、自主反思、归纳小结活动中隐含的或发现的数学规律,让学生真正体验和经历数学知识的变化及构建生成过程。
初三一模数学试卷分析篇3这次期末考试全面提高数学教育质量,有利于初中数学课程改革和教学改革,培养学生的创新精神和实践能力;有利于减轻学生过重的负担,促进学生主动、活泼、生动地学习、一、试卷的、整体分析:试卷的总体难度适宜,能坚持“以纲为纲,以本为本的原则”,在加强基础知识的考查的同时,还加强了对学生的能力的考查的比例设置考题,命题能向课程改革靠拢、注重基础,加大知识点的覆盖面,控制题目的烦琐程度,题目力求简洁明快,不在运算的复杂上做文章;整体布局力求合理有序,提高应用题的考查力度,适当设置创新考题,注重知识的拓展与应用,适应课程改革的形势、二、存在的主要问题:1、缺少高分,优秀率低。
2、学生对基础知识掌握的不牢。
知识不系统,综合能力应变能力较差,不能举一反三。
3、做题步骤不严密、解题不灵活,不注重方法和技巧。
三、典型错误:1、解选择题第1题时由于不仔细部分学生忽略了分母不能为0。
2、解填空题第5题时考虑不全面,好多学生将C坐标找错。
3、填空题第8题扇形面积问题,忘记公式,不能正确理解出错率高。
4、填空题第10题,不会灵活应用树形图求概率,导致丢分。
5、第五题解方程,很多学生不能结合周长写出正确的解析式。
6、第六,七等题都是对圆的理解,部分学生出错率也较高。
7、解第八题时,错误也较多。
8、第九题求值,第三小题不会灵活运用韦达定理解题,出错率高。
四、今后工作思路我们提出要加强基础知识教学要加强对学生“三基”的教学和训练,使学生掌握必要的基础知识、基本技能和基本方法、在概念、基本定理、基本法则、性质等教学过程中,要加强知识发生过程的教学,使学生加深对基础知识的理解;要加强对学生数学语言的训练,使学生的数学语言表达规范、准确、到位;要加强运算能力的教学,使学生明白算理,并选择简捷、合理的算法,提高运算的速度和准确率;要依纲据本进行教学,踏踏实实地教好第一遍,切不可不切实际地脱离课本,搞难题训练,更不能随意补充纲本外的知识、教学中要立足于把已学的知识弄懂弄通,真正让学生形成良好的认知结构和知识网络,打好初中数学基础,全面提高学生的数学素质、这次考试数学的统计数据进一步说明,在数学学习上的困难生还比较多,怎样使这些学生尽快“脱贫”、摆脱中考成绩个位数的困境,以适应在高一级学校的继续学习和当今的信息时代,这是我们每一个初中数学教育工作者的一个重要研究课题、重视培优,更应关注补差、课堂教学中,要根据本班的学情,选择好教学内容,合理地确定教学的起点和进程、课外要多给学习有困难的学生开“小灶”,满腔热情地关心每一位后进生,让他们尽快地跟上其他同学,促进全体学生的进步和发展、初三一模数学试卷分析篇4本试题总体感觉题量较大,题目偏难,简单题较少,难度与中考提相当。