北京市东城区广渠门中学2020年4月初三初三适应性练习数学试题(PDF版无答案)
- 格式:pdf
- 大小:813.55 KB
- 文档页数:6
第1页/共26页 2023北京广渠门中学初三(下)第一次月考 数 学 时间120分钟 卷面总分100分 一、选择题(共16分,每题2分) 1. 如图是某几何体的三视图,该几何体是( )
A. 圆柱 B. 三棱柱 C. 长方体 D. 圆锥 2. 国家统计局发布2021年国内生产总值达到1140000亿元,比上年增长8.1%.将1140000用科学记数法
表示应为( ) A. 411410 B. 511.410 C. 61.1410 D. 51.1410
3. 如图,将一块直角三角板的直角顶点放在直尺的一边上.若∠2=40°,则∠1的度数是( )
A. 60° B. 50° C. 40° D. 30° 4. 实数a,b在数轴上对应的点的位置如图所示,下列结论中正确的是( )
A. 0ab+ B. 0ab C. 0ab− D. ||||ab 5. 五边形的内角和是( ) A. 360 B. 540 C. 720 D. 1080 6. 不透明的袋子中有3个小球,其中有1个红球,1个黄球,1个绿球,除颜色外3个小球无其他差别,从
中随机摸出一个小球,放回并摇匀,再从中随机摸出一个小球,那么两次摸出的小球都是红球的概率是( )
A. 23 B. 13 C. 16 D. 19
7. 已知a、b表示下表第一行中两个相邻的数,且13ab
,那么a的值是( )
x 3 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4 2x 9 9.61 10.24 10.89 11.56 12.25 12.96 13.69 14.44 15.21 16 第2页/共26页
A. 3.5 B. 3.6 C. 3.7 D. 3.8 8. 用绳子围成周长为10m的矩形,记矩形的一边长为
mx
,它的邻边长为my,矩形的面积为2Sm.当x
在一定范围内变化时,y和S都随x的变化而变化,则y与x,S与x满足的函数关系分别是( ) A. 二次函数关系,一次函数关系 B. 正比例函数关系,二次函数关系 C. 二次函数关系,正比例函数关系 D. 一次函数关系,二次函数关系 二、填空题(共16分,每题2分)
1(人大附)2(清华附中)3(首师大附中)如图1,在菱形ABCD中,对角线AC与BD相交于点O,AB=13,BD=24,在菱形ABCD 的外部以AB为边作等边三角形ABE.点F是对角线BD上一动点(点F不与点B重合),将线段AF绕点A顺时针方向旋转60°得到线段AM,连接FM.在△ABC中,∠C=90°,AC=BC,点D在射线BC上(不与点B、C重合),连接AD,将AD绕点D顺时针旋转90°得到DE,连接BE.(1)如图1,点D在BC边上.①依题意补全图1;②作DF⊥BC交AB于点F,若AC=8,DF=3,求BE的长;(2)如图2,点D在BC边的延长线上,用等式表示线段AB、BD、BE之间的数量关系(直接写出结论).,DE与AF交于点O.已知正方形ABCD,点E、F分别在射线AB、射线BC上,AE BF(1)如图1,当点E、F分别在射向AB、BC上时,则线段DE于AF的数量关系是________________,位置关系是____________.(2)如图2,当点E在线段AB延长线上时,将线段AE沿AF进行平移至FG,连接DG.①依题意将图2补全;②在点E运动的过程中,DG、AD、AE之间始终保持一种等量关系,你能找到这个关系并证明吗?6(海淀外国语)7(十一学校)如图1,在△ABC中,∠ACB=90°,AC=BC,E为∠ACB平分线CD上一动点(不与点C 重合),点E关于直线BC的对称点为F,连接AE并延长交CB延长线于点H,连接FB 并延长交直线AH于点G.(1)求证:AE=BF.(2)用等式表示线段FG,EG与CE的数量关系,并证明.(3)连接GC,用等式表示线段GE,GC与GF的数量关系是.1.如图①,在等腰Rt△ABC中,∠ACB=90°,CD平分∠ACB交AB于点D.点P 为线段CD上一点(不与端点C,D重合),PE⊥PA,PE与BC的延长线交于点E,与AC 交于点F,连接AE,AP,BP.(1)求证:AP=BP;(2)求∠EAP的度数;(3)探究线段EC,PD之间的数量关系,并证明.图①备用图10(北师大附属实验中学)11(陈经纶望京实验中学)12(海淀实验中学)26.四边形ABCD 是正方形,△BEF 是等腰直角三角形,∠BEF =90°,BE=EF ,连接DF ,G 为DF 的中点,连接EG ,CG ,EC .(1)如图1,若点E 在CB 边的延长线上,直接写出EG 与GC 的位置关系及GCEC 的值;(2)将图1中的△BEF 绕点B 顺时针旋转至图2所示位置,请问(1)中所得的结论是否仍然成立?若成立,请写出证明过程;若不成立,请说明理由;(3)将图1中的△BEF 绕点B 顺时针旋转α(0°<α<90°),若BE =1,AB =2,当E ,F ,D 三点共线时,求DF 的长及tan ∠ABF 的值.19(北京教师进修学校)在ABC ∆中,AB AC AD CE =,,分别平分BAC ∠和ACB ∠,且AD 与CE 交于点M .点N 在射线AD 上,且NA NC =.过点N 作NF CE ⊥于点G ,且与AC 交于点F ,再过点F 作//FH CE ,且与AB 交于点H .(1)如图1,当60BAC ∠= 时,点M N G ,,重合.①请根据题目要求在图1中补全图形;②连结EF HM ,,则EF 与HM 的数量关系是______.(2)如图2,当120BAC ∠= 时,求证:AF EH =;(3)当36BAC ∠= 时,我们称ABC !为“黄金三角形”,此时12BC AC -=.若4EH =,直接写出GM 的长.20(西城实验)如图,正方形ABCD中,P是BA延长线上一点,且∠PDA=α(0° ﰐᢜ .点A,点E 关于DP对称,连接ED,EP,并延长EP交射线CB于点F,连接DF.(1)请按照题目要求补全图形(2)求证:∠EDF=∠CDF(3)∠EDF=______________(含有α的式子表示)(4)过点P做PH⊥DP交DF于点H,连接BH,猜想AP与BH的数量关系并加以证明.21(北外附中)22(北师大朝阳附属中学)已知∠MON=120°,点A,B分别在ON,OM边上,且OA=OB,点C在线段OB上(不与点O,B重合),连接CA.将射线CA绕点C逆时针旋转120°得到射线CA´,将射线BO 绕点B逆时针旋转150°与射线CA´交于点D.(1)根据题意补全图1;(2)求证:①∠OAC=∠DCB;②CD=CA(提示:可以在OA上截取OE=OC,连接CE);(3)点H在线段AO的延长线上,当线段OH,OC,OA满足什么等量关系时,对于任意的点C都有∠DCH=2∠DAH,写出你的猜想并证明.图1备用图GF E如图,在△ABC 中,∠ACB =90°,AC=BC ,E 为外角∠BCD 平分线上一动点(不与点C 重合),点E 关于直线BC 的对称点为F ,连接BE ,连接AF 并延长交直线BE 于点G .(1)求证:AF =BE ;(2)用等式表示线段FG ,EG 与CE 的数量关系,并证明.BA C D25(清华附中朝阳分校)如图1,正方形ABCD中,点E是BC延长线上一点,连接DE,过点B作BF⊥DE 于点F,连接FC.(1)求证:∠FBC=∠CDF.(2)作点C关于直线DE的对称点G,连接CG,FG.①依据题意补全图形;②用等式表示线段DF,BF,CG之间的数量关系并加以证明.26(十三分)在△ABC 中,AB =BC ,BD ⊥AC 于点D .(1)如图1,当∠ABC =90°时,若CE 平分∠ACB ,交AB 于点E ,交BD 于点F .①求证:△BEF 是等腰三角形;②求证:()BF BC BD +=21;(2)点E 在AB 边上,连接CE .若()BF BC BD +=21,在图2.中补全图形,判断∠ACE 与∠ABC 之间的数量关系,写出你的结论,并写出求解∠ACE 与∠ABC 关系的思路图1图2如图,在△ABC中,∠ACB=90°,AC=BC,E为外角∠BCD平分线上一动点(不与点C重合),点E关于直线BC的对称点为F,连接BE,连接AF并延长交直线BE于点G.(1)求证:AF=BE;(2)用等式表示线段FG,EG与CE的数量关系,并证明.如图,直线l是线段MN的垂直平分线,交线段MN于点O,在MN下方的直线l上取一点P,连接PN,以线段PN为边,在PN上方作正方形NPAB,射线MA交直线l于点C,连接BC.(1)设∠ONP=α,求∠AMN的度数;(2)写出线段AM、BC之间的等量关系,并证明.29(广渠门中学)如图,在△ABC中,∠ACB=90°,AC=BC,点D是射线CB上一点,连接AD,过D作DE ⊥AD交射线AB于点E,以A为旋转中心,将线段AD绕点A逆时针旋转90°得线段AF,过点F作FG⊥AF交AC的延长线于点G,连接EG.(1)如图1,点D在CB上.①依题意补全图1;②猜想DE、EG、FG之间的数量关系并证明;(2)如图2,点D在CB的延长线上.请直接写出DE、EG、FG之间的数量关系为.图1图230(北京四中璞瑅学校)在△ABC中,∠ACB为锐角.点D为射线BC上一动点,连接AD,将线段AD绕点A逆时针旋转90°得到AE,连结EC.如果AB=AC,∠BAC=90°.①当点D在线段BC上时(与点B不重合),如图1,请你判断线段CE、BD之间的位置和数量关系(直接写出结论);②当点D在线段BC的延长线上时,请你在图2画出图形,判断①中的结论是否仍然成立,并证明你的判断.如图,∠BAD=90°,AB=AD,CB=CD,一个以点C为顶点的45°角绕点C旋转,角的两边与BA,DA交于点M,N,与BA,DA的延长线交于点E,F,连接AC.(1)在∠FCE旋转的过程中,当∠FCA=∠ECA时,如图1,求证:AE=AF;(2)在∠FCE旋转的过程中,当∠FCA≠∠ECA时,如图2,如果∠B=30°,CB=2,用等式表示线段AE,AF之间的数量关系,并证明.如图,∠BAD=90°,AB=AD,CB=CD,一个以点C为顶点的45°角绕点C旋转,角的两边与BA,DA交于点M,N,与BA,DA的延长线交于点E,F,连接AC.(1)在∠FCE旋转的过程中,当∠FCA=∠ECA时,如图1,求证:AE=AF;(2)在∠FCE旋转的过程中,当∠FCA≠∠ECA时,如图2,如果∠B=30°,CB=2,用等式表示线段AE,AF之间的数量关系,并证明.如图,在△ABC中,AC=BC,∠ACB=90°,D为AC延长线上一点,连接BD,AE⊥BD 于点E.(1)记△ABC得外接圆为⊙O.①请用文字描述圆心O的位置;②求证:点E一定在⊙O上.(2)将射线AE绕点A顺时针旋转45°后,所得到的射线与BD延长线交于点F,连接CF,CE.①依题意补全图形;②用等式表示线段AF,CE,BE的数量关系,并证明.已知∠AOB=30°,H为射线OA上一定点,OH=+1,P为射线OB上一点,M为线段OH上一动点,连接PM,满足∠OMP为钝角,以点P为中心,将线段PM顺时针旋转150°,得到线段PN,连接ON.(1)依题意补全图1;(2)求证:∠OMP=∠OPN;(3)点M关于点H的对称点为Q,连接QP.写出一个OP的值,使得对于任意的点M 总有ON=QP,并证明.已知△ABC为等边三角形,M为三角形外任意一点,把△ABM绕着点A按逆时针方向旋转60°到△CAN的位置.(1)如图①,若∠BMC=120°,BM=2,MC=3.求:∠AMB的度数和求AM的长.(2)如图②,若∠BMC=n°,试写出AM、BM、CM之间的数量关系,并证明你的猜想.37(55中)如图,在Rt△ABC中,∠BAC=90°,AB=AC.在平面内任取一点D,连结AD(AD<AB),将线段AD绕点A逆时针旋转90°,得到线段AE,连结DE,CE,BD.(1)请根据题意补全图1;(2)猜测BD和CE的数量关系并证明;(3)作射线BD,CE交于点P,把△ADE绕点A旋转,当∠EAC=90°,AB=2,AD =1时,补全图形,直接写出PB的长.38(161中学)39(八一)(1)问题发现如图1,△ACB和△DCE均为等边三角形,点A,D,E在同一直线上,连接BE.填空:①∠AEB的度数为;②线段AD,BE之间的数量关系为.(2)拓展探究如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A,D,E在同一直线上,CM为△DCE中DE边上的高,连接BE,请判断∠AEB的度数及线段CM,AE,BE之间的数量关系,并说明理由.(3)解决问题如图3,在正方形ABCD中,CD=,若点P满足PD=1,且∠BPD=90°,请直接写出点A到BP的距离.40(朝阳双语学校)已知AC=DC,AC⊥DC,直线MN经过点A,作DB⊥MN,垂足为B,连接CB.(1)直接写出∠D与∠MAC之间的数量关系;(2)①如图1,猜想AB,BD与BC之间的数量关系,并说明理由;②如图2,直接写出AB,BD与BC之间的数量关系;(3)在MN绕点A旋转的过程中,当∠BCD=30°,BD=时,直接写出BC的值.41(陈经纶中学)已知:在△ABC中,∠BAC=90°,AB=AC.(1)如图1,将线段AC绕点A逆时针旋转60°得到AD,连结CD、BD,∠BAC的平分线交BD于点E,连结CE.①求证:∠AED=∠CED;②用等式表示线段AE、CE、BD之间的数量关系(直接写出结果);(2)在图2中,若将线段AC绕点A顺时针旋转60°得到AD,连结CD、BD,∠BAC 的平分线交BD的延长线于点E,连结CE.请补全图形,并用等式表示线段AE、CE、BD之间的数量关系,并证明.42(二中)如图,在正方形ABCD中,点E是BC边所在直线上一动点(不与点B、C重合),过点B 作BF⊥DE,交射线DE于点F,连接CF.(1)如图1,当点E在线段BC上时,∠BDF=α.①按要求补全图形;②∠EBF=(用含α的式子表示);③判断线段BF,CF,DF之间的数量关系,并证明.(2)当点E在直线BC上时,直接写出线段BF,CF,DF之间的数量关系,不需证明.如图,△ABC为等边三角形,点P是线段AC上一动点(点P不与A,C重合),连接BP,过点A作直线BP的垂线段,垂足为点D,将线段AD绕点A逆时针旋转60°得到线段AE,连接DE,CE.(1)求证:BD=CE;(2)延长ED交BC于点F,求证:F为BC的中点;(3)在(2)的条件下,若△ABC的边长为1,直接写出EF的最大值.如图,在正方形ABCD 中,P 是边BC 上的一动点(不与点B ,C 重合),点B 关于直线AP 的对称点为E ,连接AE .连接DE 并延长交射线AP 于点F ,连接BF .(1)若BAP α∠=,直接写出ADF ∠的大小(用含α的式子表示);(2)求证:BF DF ⊥;(3)连接CF ,用等式表示线段AF ,BF ,CF 之间的数量关系,并证明.在Rt△ABC中,∠ACB=90°,AC=BC,CD为AB边上的中线.在Rt△AEF中,∠AEF =90°,AE=EF,AF<AC.连接BF,M,N分别为线段AF,BF的中点,连接MN.(1)如图1,点F在△ABC内,求证:CD=MN;(2)如图2,点F在△ABC外,依题意补全图2,连接CN,EN,判断CN与EN的数量关系与位置关系,并加以证明;(3)将图1中的△AEF绕点A旋转,若AC=a,AF=b(b<a),直接写出EN的最大值与最小值.如图,在正方形ABCD中,E是边BC上的一动点(不与点B、C重合),连接DE、点C关于直线DE的对称点为C′,连接AC′并延长交直线DE于点P,F是AC′的中点,连接DF.(1)求∠FDP的度数;(2)连接BP,请用等式表示AP、BP、DP三条线段之间的数量关系,并证明;(3)连接AC,若正方形的边长为,请直接写出△ACC′的面积最大值.如图,等腰直角三角形ABC中,∠ACB=90°.D为射线BC上一动点.连接AD,将线段AD绕点A逆时针旋转90°至点E,连接AE、DE.点M、N分别是AB、DE的中点,连接MN.(1)如图1,点D在线段BC上.①猜想MN与AB的位置关系,并证明你的猜想;②连接EB,猜想BE与BC的位置关系;(2)在图2中,若点D在线段BC的延长线上,BE与BC的位置关系是否改变?请你补全图形后,证明你的猜想.49(牛栏山中学)50(人大附朝阳分校)正方形ABCD的边长为3,点E,F分别在射线DC,DA上运动,且DE=DF.连接BF,作EH⊥BF所在直线于点H,连接CH.(1)如图1,若点E是DC的中点,CH与AB之间的数量关系是__________;(2)如图2,当点E在DC边上且不是DC的中点时,(1)中的结论是否成立?若成立给出证明;若不成立,说明理由;(3)如图3,当点E,F分别在射线DC,DA上运动时,连接DH,过点D作直线DH的垂线,交直线BF于点K,连接CK,请直接写出线段CK长的最大值.。
2020年北京市东城区中考数学一模试卷一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的.1.数据显示,2020年全国新建、改扩建校舍约为51 660 000平方米,全面改善贫困地区义务教育薄弱学校基本办学条件工作取得明显成果.将数据51 660 000用科学记数法表示应为()A.5.166×107B.5.166×108C.51.66×106D.0.5166×1082.下列运算中,正确的是()A.x•x3=x3B.(x2)3=x5C.x6÷x2=x4D.(x﹣y)2=x2+y23.有五张质地、大小、反面完全相同的不透明卡片,正面分别写着数字1,2,3,4,5,现把它们的正面向下,随机摆放在桌面上,从中任意抽出一张,则抽出的数字是奇数的概率是()A.B.C.D.4.甲、乙、丙、丁四人参加训练,近期的10次百米测试平均成绩都是13.2秒,方差如下表所示选手甲乙丙丁方差0.030 0.019 0.121 0.022则这四人中发挥最稳定的是()A.甲B.乙C.丙D.丁5.如图,将一块三角板的直角顶点放在直尺的一边上,当∠2=38°时,∠1=()A.52°B.38°C.42°D.60°6.如图,有一池塘,要测池塘两端A,B间的距离,可先在平地上取一个不经过池塘可以直接到达点A和B的点C,连接AC并延长至D,使CD=CA,连接BC并延长至E,使CE=CB,连接ED.若量出DE=58米,则A,B间的距离为()A.29米B.58米C.60米D.116米7.在平面直角坐标系中,将点A(﹣1,2)向右平移3个单位长度得到点B,则点B关于x轴的对称点C的坐标是()A.(﹣4,﹣2)B.(2,2)C.(﹣2,2)D.(2,﹣2)8.对式子2a2﹣4a﹣1进行配方变形,正确的是()A.2(a+1)2﹣3 B.(a﹣1)2﹣C.2(a﹣1)2﹣1 D.2(a﹣1)2﹣39.为了举行班级晚会,小张同学准备去商店购买20个乒乓球做道具,并买一些乒乓球拍做奖品.已知乒乓球每个1.5元,球拍每个25元,如果购买金额不超过200元,且买的球拍尽可能多,那么小张同学应该买的球拍的个数是()A.5 B.6 C.7 D.810.如图,点A的坐标为(0,1),点B是x轴正半轴上的一动点,以AB为边作等腰Rt △ABC,使∠BAC=90°,设点B的横坐标为x,设点C的纵坐标为y,能表示y与x的函数关系的图象大致是()A.B.C.D.二、填空题(本题共18分,每小题3分)11.分解因式:ab2﹣ac2=______.12.请你写出一个一次函数,满足条件:①经过第一、三、四象限;②与y轴的交点坐标为(0,﹣1).此一次函数的解析式可以是______.13.已知一个多边形的每个外角都是72°,这个多边形是______边形.14.为了解一路段车辆行驶速度的情况,交警统计了该路段上午7:00至9:00来往车辆的车速(单位:千米/时),并绘制成如图所示的条形统计图.这些车速的众数是______.15.《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.它的代数成就主要包括开方术、正负术和方程术.其中,方程术是《九章算术》最高的数学成就.《九章算术》中记载:“今有甲乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而钱亦五十.问甲、乙持钱各几何?”译文:“假设有甲乙二人,不知其钱包里有多少钱.若乙把自己一半的钱给甲,则甲的钱数为50;而甲把自己的钱给乙,则乙的钱数也能为50.问甲、乙各有多少钱?”设甲持钱为x,乙持钱为y,可列方程组为______.16.阅读下面材料:在数学课上,老师提出如下问题:如图,已知△ABC,AB<BC,用尺规作图的方法在BC上取一点P,使得PA+PC=BC.甲、乙、丙、丁四位同学的主要作法如下:甲同学的作法:如图甲:以点B为圆心,BA长为半径画弧,交BC于点P,则点P就是所求的点.乙同学的作法:如图乙:作线段AC的垂直平分线交BC于点P,则点P就是所求的点.丙同学的作法:如图丙:以点C为圆心,CA长为半径画弧,交BC于点P,则点P 就是所求的点.丁同学的作法:如图丁:作线段AB的垂直平分线交BC于点P,则点P就是所求的点.请你判断哪位同学的作法正确______;这位同学作图的依据是______.三、解答题(本题共72分,第17-26题,每小题5分,第27题7分,第28题7分,第29题8分)17.计算:tan60°+|﹣2|﹣(﹣1)0﹣()﹣1.18.解不等式组,并把它的解集表示在数轴上.19.已知x2﹣x﹣3=0,求代数式(x+1)2﹣x(2x+1)的值.20.如图,在△ABC中,AB=AC,BD平分∠ABC交AC于点D,AE∥BD交CB的延长线于点E.若∠BAC=40°,请你选择图中现有的一个角并求出它的度数(要求:不添加新的线段,所有给出的条件至少使用一次).21.列方程或方程组解应用题:在“春节”前夕,某花店用13 000元购进第一批礼盒鲜花,上市后很快销售一空.根据市场需求情况,该花店又用6 000元购进第二批礼盒鲜花.已知第二批所购鲜花的盒数是第一批所购鲜花的,且每盒鲜花的进价比第一批的进价少10元.问第二批鲜花每盒的进价是多少元?22.如图:在平行四边形ABCD中,用直尺和圆规作∠BAD的平分线交BC于点E(尺规作图的痕迹保留在图中了),连接EF.(1)求证:四边形ABEF为菱形;(2)AE,BF相交于点O,若BF=6,AB=5,求AE的长.23.在平面直角坐标系xOy中,直线y=k1x+b与x轴交于点B,与y轴交于点C,与反比例函数y=的图象在第一象限交于点A(3,1),连接OA.(1)求反比例函数y=的解析式;(2)若S△AOB:S△BOC=1:2,求直线y=k1x+b的解析式.24.某校为了解九年级学生近两个月“推荐书目”的阅读情况,随机抽取了该年级的部分学生,调查了他们每人“推荐书目”的阅读本数.设每名学生的阅读本数为n,并按以下规定分为四档:当n<3时,为“偏少”;当3≤n<5时,为“一般”;当5≤n<8时,为“良好”;当n≥8时,为“优秀”.将调查结果统计后绘制成不完整的统计图表:阅读本数n(本) 1 2 3 4 5 6 7 8 9人数(名) 1 2 6 7 12 x 7 y 1请根据以上信息回答下列问题:(1)求出本次随机抽取的学生总人数;(2)分别求出统计表中的x,y的值;(3)估计该校九年级400名学生中为“优秀”档次的人数.25.如图,AB为⊙O的直径,PD切⊙O于点C,与BA的延长线交于点D,DE⊥PO交PO延长线于点E,连接PB,∠EDB=∠EPB.(1)求证:PB是⊙O的切线.(2)若PB=3,DB=4,求DE的长.26.在课外活动中,我们要研究一种四边形﹣﹣筝形的性质.定义:两组邻边分别相等的四边形是筝形(如图1).小聪根据学习平行四边形、菱形、矩形、正方形的经验,对筝形的性质进行了探究.下面是小聪的探究过程,请补充完整:(1)根据筝形的定义,写出一种你学过的四边形满足筝形的定义的是______;(2)通过观察、测量、折叠等操作活动,写出两条对筝形性质的猜想,并选取其中的一条猜想进行证明;(3)如图2,在筝形ABCD中,AB=4,BC=2,∠ABC=120°,求筝形ABCD的面积.27.已知关于x的一元二次方程mx2+(3m+1)x+3=0.(1)当m取何值时,此方程有两个不相等的实数根;(2)当抛物线y=mx2+(3m+1)x+3与x轴两个交点的横坐标均为整数,且m为正整数时,求此抛物线的解析式;(3)在(2)的条件下,若P(a,y1),Q(1,y2)是此抛物线上的两点,且y1>y2,请结合函数图象直接写出实数a的取值范围.28.如图,等边△ABC,其边长为1,D是BC中点,点E,F分别位于AB,AC边上,且∠EDF=120°.(1)直接写出DE与DF的数量关系;(2)若BE,DE,CF能围成一个三角形,求出这个三角形最大内角的度数;(要求:写出思路,画出图形,直接给出结果即可)(3)思考:AE+AF的长是否为定值?如果是,请求出该值,如果不是,请说明理由.29.对于平面直角坐标系xOy中的点P和⊙C,给出如下定义:若存在过点P的直线l交⊙C于异于点P的A,B两点,在P,A,B三点中,位于中间的点恰为以另外两点为端点的线段的中点时,则称点P为⊙C 的相邻点,直线l为⊙C关于点P的相邻线.(1)当⊙O的半径为1时,①分别判断在点D(,),E(0,﹣),F(4,0)中,是⊙O的相邻点有______;②请从①中的答案中,任选一个相邻点,在图1中做出⊙O关于它的一条相邻线,并说明你的作图过程;③点P在直线y=﹣x+3上,若点P为⊙O的相邻点,求点P横坐标的取值范围;(2)⊙C的圆心在x轴上,半径为1,直线y=﹣与x轴,y轴分别交于点M,N,若线段MN上存在⊙C的相邻点P,直接写出圆心C的横坐标的取值范围.2020年北京市东城区中考数学一模试卷参考答案与试题解析一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的.1.数据显示,2020年全国新建、改扩建校舍约为51 660 000平方米,全面改善贫困地区义务教育薄弱学校基本办学条件工作取得明显成果.将数据51 660 000用科学记数法表示应为()A.5.166×107B.5.166×108C.51.66×106D.0.5166×108【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:51 660 000用科学记数法表示应为5.166×107,故选A.2.下列运算中,正确的是()A.x•x3=x3B.(x2)3=x5C.x6÷x2=x4D.(x﹣y)2=x2+y2【考点】同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方;完全平方公式.【分析】根据同底数幂的乘法底数不变指数相加;幂的乘方底数不变指数相乘;同底数幂的除法底数不变指数相减;差的平方等于平方和减积的二倍;可得答案.【解答】解:A、同底数幂的乘法底数不变指数相加,故A错误;B、幂的乘方底数不变指数相乘,故B错误;C、同底数幂的除法底数不变指数相减,故C正确;D、差的平方等于平方和减积的二倍,故D错误;故选:C.3.有五张质地、大小、反面完全相同的不透明卡片,正面分别写着数字1,2,3,4,5,现把它们的正面向下,随机摆放在桌面上,从中任意抽出一张,则抽出的数字是奇数的概率是()A.B.C.D.【考点】概率公式.【分析】根据有五张质地、大小、反面完全相同的不透明卡片,其中奇数有1,3,5,共3个,再根据概率公式即可得出答案.【解答】解:∵共有5个数字,奇数有3个,∴抽出的数字是奇数的概率是.故选C.4.甲、乙、丙、丁四人参加训练,近期的10次百米测试平均成绩都是13.2秒,方差如下表所示选手甲乙丙丁方差0.030 0.019 0.121 0.022则这四人中发挥最稳定的是()A.甲B.乙C.丙D.丁【考点】方差.【分析】根据方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布越稳定进行比较即可.【解答】解:∵0.019<0.022<0.030<0.121,∴乙的方差最小,∴这四人中乙发挥最稳定,故选:B5.如图,将一块三角板的直角顶点放在直尺的一边上,当∠2=38°时,∠1=()A.52°B.38°C.42°D.60°【考点】平行线的性质.【分析】先求出∠3,再由平行线的性质可得∠1.【解答】解:如图:∠3=∠2=38°°(两直线平行同位角相等),∴∠1=90°﹣∠3=52°,故选A.6.如图,有一池塘,要测池塘两端A,B间的距离,可先在平地上取一个不经过池塘可以直接到达点A和B的点C,连接AC并延长至D,使CD=CA,连接BC并延长至E,使CE=CB,连接ED.若量出DE=58米,则A,B间的距离为()A.29米B.58米C.60米D.116米【考点】全等三角形的应用.【分析】根据全等三角形的判定与性质,可得答案.【解答】解:在△ABC和△DEC中,,△ABC≌△DEC(SAS),∴AB=DE=58米,故选:B.7.在平面直角坐标系中,将点A(﹣1,2)向右平移3个单位长度得到点B,则点B关于x轴的对称点C的坐标是()A.(﹣4,﹣2)B.(2,2)C.(﹣2,2)D.(2,﹣2)【考点】关于x轴、y轴对称的点的坐标;坐标与图形变化-平移.【分析】首先根据横坐标右移加,左移减可得B点坐标,然后再关于x轴对称点的坐标特点:横坐标不变,纵坐标符号改变可得答案.【解答】解:点A(﹣1,2)向右平移3个单位长度得到的B的坐标为(﹣1+3,2),即(2,2),则点B关于x轴的对称点C的坐标是(2,﹣2),故选D.8.对式子2a2﹣4a﹣1进行配方变形,正确的是()A.2(a+1)2﹣3 B.(a﹣1)2﹣C.2(a﹣1)2﹣1 D.2(a﹣1)2﹣3【考点】配方法的应用.【分析】利用完全平方公式进行变形即可.【解答】解:2a2﹣4a﹣1,=2(a2﹣2a+1)﹣3,=2(a﹣1)2﹣3.故选:D.9.为了举行班级晚会,小张同学准备去商店购买20个乒乓球做道具,并买一些乒乓球拍做奖品.已知乒乓球每个1.5元,球拍每个25元,如果购买金额不超过200元,且买的球拍尽可能多,那么小张同学应该买的球拍的个数是()A.5 B.6 C.7 D.8【考点】一元一次不等式组的应用.【分析】设小张同学应该买的球拍的个数为x个,利用购买金额不超过200元得到20×1.5+25x≤200,然后解不等式后求出不等式的最大整数解即可.【解答】解:设小张同学应该买的球拍的个数为x个,根据题意得20×1.5+25x≤200,解得x≤6.8,所以x的最大整数值为6,所以小张同学应该买的球拍的个数是6个.故选B.10.如图,点A的坐标为(0,1),点B是x轴正半轴上的一动点,以AB为边作等腰Rt △ABC,使∠BAC=90°,设点B的横坐标为x,设点C的纵坐标为y,能表示y与x的函数关系的图象大致是()A.B.C.D.【考点】动点问题的函数图象.【分析】根据题意作出合适的辅助线,可以先证明△ADC和△AOB的关系,即可建立y与x的函数关系,从而可以得到哪个选项是正确的.【解答】解:作AD∥x轴,作CD⊥AD于点D,若右图所示,由已知可得,OB=x,OA=1,∠AOB=90°,∠BAC=90°,AB=AC,点C的纵坐标是y,∵AD∥x轴,∴∠DAO+∠AOD=180°,∴∠DAO=90°,∴∠OAB+∠BAD=∠BAD+∠DAC=90°,∴∠OAB=∠DAC,在△OAB和△DAC中,,∴△OAB≌△DAC(AAS),∴OB=CD,∴CD=x,∵点C到x轴的距离为y,点D到x轴的距离等于点A到x的距离1,∴y=x+1.故选A.二、填空题(本题共18分,每小题3分)11.分解因式:ab2﹣ac2=a(b+c)(b﹣c).【考点】提公因式法与公式法的综合运用.【分析】原式提取a,再利用平方差公式分解即可.【解答】解:原式=a(b2﹣c2)=a(b+c)(b﹣c),故答案为:a(b+c)(b﹣c)12.请你写出一个一次函数,满足条件:①经过第一、三、四象限;②与y轴的交点坐标为(0,﹣1).此一次函数的解析式可以是y=x﹣1(答案不唯一)..【考点】一次函数图象与系数的关系.【分析】首先根据函数经过的象限确定比例系数的符号,然后根据其与y轴的交点确定答案即可.【解答】解:∵一次函数的图象经过第一、三、四象限,∴k>0,∴设一次函数的解析式为y=x+b,∵经过点(0,﹣1),∴b=﹣1,∴解析式为y=x﹣1,故答案为:y=x﹣1(答案不唯一).13.已知一个多边形的每个外角都是72°,这个多边形是五边形.【考点】多边形内角与外角.【分析】任何多边形的外角和是360°.用外角和除以每个外角的度数即可得到边数.【解答】解:360÷72=5.故这个多边形是五边形.故答案为:五.14.为了解一路段车辆行驶速度的情况,交警统计了该路段上午7:00至9:00来往车辆的车速(单位:千米/时),并绘制成如图所示的条形统计图.这些车速的众数是70千米/时.【考点】众数;条形统计图.【分析】根据众数是出现次数最多的数直接写出答案即可;【解答】解:70千米/时是出现次数最多的,故众数是70千米/时,故答案为:70千米/时.15.《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.它的代数成就主要包括开方术、正负术和方程术.其中,方程术是《九章算术》最高的数学成就.《九章算术》中记载:“今有甲乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而钱亦五十.问甲、乙持钱各几何?”译文:“假设有甲乙二人,不知其钱包里有多少钱.若乙把自己一半的钱给甲,则甲的钱数为50;而甲把自己的钱给乙,则乙的钱数也能为50.问甲、乙各有多少钱?”设甲持钱为x,乙持钱为y,可列方程组为.【考点】由实际问题抽象出二元一次方程组.【分析】设甲持钱为x,乙持钱为y,根据题意可得,甲的钱+乙的钱的一半=50元,乙的钱+甲所有钱的=50元,据此可列方程组.【解答】解:设甲持钱为x,乙持钱为y,根据题意,可列方程组:,故答案为:.16.阅读下面材料:在数学课上,老师提出如下问题:如图,已知△ABC,AB<BC,用尺规作图的方法在BC上取一点P,使得PA+PC=BC.甲、乙、丙、丁四位同学的主要作法如下:甲同学的作法:如图甲:以点B为圆心,BA长为半径画弧,交BC于点P,则点P就是所求的点.乙同学的作法:如图乙:作线段AC的垂直平分线交BC于点P,则点P就是所求的点.丙同学的作法:如图丙:以点C为圆心,CA长为半径画弧,交BC于点P,则点P 就是所求的点.丁同学的作法:如图丁:作线段AB的垂直平分线交BC于点P,则点P就是所求的点.请你判断哪位同学的作法正确丁同学;这位同学作图的依据是垂直平分线上的点到线段两端的距离相等;等量代换.【考点】作图—复杂作图.【分析】分别利用线段垂直平分线的性质结合圆的性质分析得出答案.【解答】解:甲同学的作法:如图甲:以点B为圆心,BA长为半径画弧,交BC于点P,则点P就是所求的点.无法得出AP=BP,故无法得出PA+PC=BC,故此选项错误;乙同学的作法:如图乙:作线段AC的垂直平分线交BC于点P,则点P就是所求的点.无法得出AP=BP,故无法得出PA+PC=BC,故此选项错误;丙同学的作法:如图丙:以点C为圆心,CA长为半径画弧,交BC于点P,则点P就是所求的点.无法得出AP=BP,故无法得出PA+PC=BC,故此选项错误;丁同学的作法:如图丁:作线段AB的垂直平分线交BC于点P,则点P就是所求的点,可得:AP=BP,则PA+PC=BC.故答案为:丁;垂直平分线上的点到线段两端的距离相等;等量代换.三、解答题(本题共72分,第17-26题,每小题5分,第27题7分,第28题7分,第29题8分)17.计算:tan60°+|﹣2|﹣(﹣1)0﹣()﹣1.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】本题涉及特殊角的三角函数值、绝对值、零指数幂、负整数指数幂4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:tan60°+|﹣2|﹣(﹣1)0﹣()﹣1=+2﹣﹣1﹣2=﹣1.18.解不等式组,并把它的解集表示在数轴上.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式2(x﹣2)≤3(x﹣1),得:x≥﹣1,解不等式,得:x<3,∴不等式组的解集为﹣1≤x<3,不等式组的解集在数轴上的表示如下:19.已知x2﹣x﹣3=0,求代数式(x+1)2﹣x(2x+1)的值.【考点】整式的混合运算—化简求值.【分析】原式利用完全平方公式,单项式乘以多项式法则计算,去括号合并得到最简结果,把已知等式变形后代入计算即可求出值.【解答】解:原式=x2+2x+1﹣2x2﹣x=﹣x2+x+1,由x2﹣x﹣3=0,得到x2﹣x=3,则原式=﹣3+1=﹣2.20.如图,在△ABC中,AB=AC,BD平分∠ABC交AC于点D,AE∥BD交CB的延长线于点E.若∠BAC=40°,请你选择图中现有的一个角并求出它的度数(要求:不添加新的线段,所有给出的条件至少使用一次).【考点】等腰三角形的性质.【分析】根据等腰三角形的性质得到∠ABC=∠ACB=70°,由角平分线的性质得到∠ABD=∠CBD=35°,根据平行线的性质得到∠E=∠EAB=35°,于是得到结论.【解答】解:∠EAC=75°,∵AB=AC,∠BAC=40°,∴∠ABC=∠ACB=70°,∵BD平分∠ABC交AC于点D,∴∠ABD=∠CBD=35°,∵AE∥BD,∴∠E=∠EAB=35°,∴∠EAC=∠EAB+∠BAC=75°.21.列方程或方程组解应用题:在“春节”前夕,某花店用13 000元购进第一批礼盒鲜花,上市后很快销售一空.根据市场需求情况,该花店又用6 000元购进第二批礼盒鲜花.已知第二批所购鲜花的盒数是第一批所购鲜花的,且每盒鲜花的进价比第一批的进价少10元.问第二批鲜花每盒的进价是多少元?【考点】分式方程的应用.【分析】可设第二批鲜花每盒的进价是x元,根据等量关系:第二批所购鲜花的盒数是第一批所购鲜花的,列出方程求解即可.【解答】解:设第二批鲜花每盒的进价是x元,依题意有=×,解得x=120,经检验:x=120是原方程的解,答:第二批鲜花每盒的进价是120元.22.如图:在平行四边形ABCD中,用直尺和圆规作∠BAD的平分线交BC于点E(尺规作图的痕迹保留在图中了),连接EF.(1)求证:四边形ABEF为菱形;(2)AE,BF相交于点O,若BF=6,AB=5,求AE的长.【考点】菱形的判定与性质;平行四边形的性质;作图—基本作图.【分析】(1)由尺规作∠BAF的角平分线的过程可得,AB=AF,∠BAE=∠FAE,根据平行四边形的性质可得∠FAE=∠AEB,然后证明AF=BE,进而可得四边形ABEF为平行四边形,再由AB=AF可得四边形ABEF为菱形;(2)根据菱形的性质可得AE⊥BF,BO=FB=3,AE=2AO,利用勾股定理计算出AO的长,进而可得AE的长.【解答】(1)证明:由尺规作∠BAF的角平分线的过程可得AB=AF,∠BAE=∠FAE,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠FAE=∠AEB,∴∠BAE=∠AEB,∴AB=BE,∴BE=FA,∴四边形ABEF为平行四边形,∵AB=AF,∴四边形ABEF为菱形;(2)解:∵四边形ABEF为菱形,∴AE⊥BF,BO=FB=3,AE=2AO,在Rt△AOB中,AO==4,∴AE=2AO=8.23.在平面直角坐标系xOy中,直线y=k1x+b与x轴交于点B,与y轴交于点C,与反比例函数y=的图象在第一象限交于点A(3,1),连接OA.(1)求反比例函数y=的解析式;(2)若S△AOB:S△BOC=1:2,求直线y=k1x+b的解析式.【考点】反比例函数与一次函数的交点问题.【分析】(1)将点A的坐标代入反比例函数解析式中,得出关于k2的一元一次方程,解方程即可得出结论;(2)分两种情况考虑:①直线y=k1x+b经过第一、三、四象限,由S△AOB:S△BOC=1:2结合三角形的面积公式得出点C的坐标,由待定系数法即可求出此时直线的函数解析式;②直线y=k1x+b经过第一、二、四象限,由S△AOB:S△BOC=1:2结合三角形的面积公式得出点C的坐标,由待定系数法即可求出此时直线的函数解析式.【解答】解:(1)将点A(3,1)代入到y=中,得1=,解得:k2=3.故反比例函数的解析式为y=.(2)符合题意有两种情况:①直线y=k1x+b经过第一、三、四象限,如图1所示.∵S△AOB:S△BOC=1:2,点A(3,1),∴点C的坐标为(0,﹣2).则有,解得:.∴直线的解析式为y=x﹣2.②直线y=k1x+b经过第一、二、四象限,如图2所示.∵S△AOB:S△BOC=1:2,点A(3,1),∴点C的坐标为(0,2).则有,解得:.∴直线的解析式为y=﹣x+2.24.某校为了解九年级学生近两个月“推荐书目”的阅读情况,随机抽取了该年级的部分学生,调查了他们每人“推荐书目”的阅读本数.设每名学生的阅读本数为n,并按以下规定分为四档:当n<3时,为“偏少”;当3≤n<5时,为“一般”;当5≤n<8时,为“良好”;当n≥8时,为“优秀”.将调查结果统计后绘制成不完整的统计图表:阅读本数n(本) 1 2 3 4 5 6 7 8 9人数(名) 1 2 6 7 12 x 7 y 1请根据以上信息回答下列问题:(1)求出本次随机抽取的学生总人数;(2)分别求出统计表中的x,y的值;(3)估计该校九年级400名学生中为“优秀”档次的人数.【考点】扇形统计图;用样本估计总体.【分析】(1)根据题意当3≤n<5时为“一般”可知一般档次人数为6+7,结合其所占百分比为26%,相除可得总人数;(2)由良好档次的百分比及总人数可得良好档次的人数,减去阅读本数为5、7的人数可得x的值,将总人数减去其余各项人数可得y的值;(3)根据样本中优秀档次所占百分比乘以九年级总人数可得.【解答】解:(1)由表知被调查学生中“一般”档次的有13人,所占比例是26%,故被调查的学生数是13÷26%=50(人);(2)被调查的学生中“良好”档次的人数为50×60%=30(人),∴x=30﹣(12+7)=11(人),y=50﹣(1+2+6+7+12+11+7+1)=3(人);(3)由样本数据可知:“优秀”档次所占的百分比为×100%=8%,∴估计九年级400名学生中优秀档次的人数为:400×8%=32(人).25.如图,AB为⊙O的直径,PD切⊙O于点C,与BA的延长线交于点D,DE⊥PO交PO延长线于点E,连接PB,∠EDB=∠EPB.(1)求证:PB是⊙O的切线.(2)若PB=3,DB=4,求DE的长.【考点】切线的判定与性质.【分析】(1)由已知角相等,及对顶角相等得到三角形DOE与三角形POB相似,利用相似三角形对应角相等得到∠OBP为直角,即可得证;(2)在直角三角形PBD中,由PB与DB的长,利用勾股定理求出PD的长,由切线长定理得到PC=PB,由PD﹣PC求出CD的长,在直角三角形OCD中,设OC=r,则有OD=8﹣r,利用勾股定理列出关于r的方程,求出方程的解得到r的值,然后通过相似三角形的性质即可得到结论.【解答】(1)证明:∵在△DEO和△PBO中,∠EDB=∠EPB,∠DOE=∠POB,∴∠OBP=∠E=90°,∵OB为圆的半径,∴PB为圆O的切线;(2)解:在Rt△PBD中,PB=3,DB=4,根据勾股定理得:PD==5,∵PD与PB都为圆的切线,∴PC=PB=3,∴DC=PD﹣PC=5﹣3=2,在Rt△CDO中,设OC=r,则有DO=4﹣r,根据勾股定理得:(4﹣r)2=r2+22,解得:r=,∴OP==,∵∠E=∠PCO,∠CPO=∠CPO,∴△DEP∽△OBP,∴,∴DE=.26.在课外活动中,我们要研究一种四边形﹣﹣筝形的性质.定义:两组邻边分别相等的四边形是筝形(如图1).小聪根据学习平行四边形、菱形、矩形、正方形的经验,对筝形的性质进行了探究.下面是小聪的探究过程,请补充完整:(1)根据筝形的定义,写出一种你学过的四边形满足筝形的定义的是菱形;(2)通过观察、测量、折叠等操作活动,写出两条对筝形性质的猜想,并选取其中的一条猜想进行证明;(3)如图2,在筝形ABCD中,AB=4,BC=2,∠ABC=120°,求筝形ABCD的面积.【考点】四边形综合题.【分析】(1)根据筝形的定义解答即可;(2)根据全等三角形的判定和性质证明;(3)连接AC,作CE⊥AB交AB的延长线于E,根据正弦的定义求出CE,根据三角形的面积公式计算即可.【解答】解:(1)∵菱形的四条边相等,∴菱形是筝形,故答案为:菱形;(2)筝形是轴对称图形;筝形的对角线互相垂直;筝形的一组对角相等.已知:四边形ABCD是筝形,求证:∠B=∠D,证明:如图1,连接AC,在△ABC和△ADC中,,∴△ABC≌△ADC,∴∠B=∠D;(3)如图2,连接AC,作CE⊥AB交AB的延长线于E,∵∠ABC=120°,∴∠EBC=60°,又BC=2,∴CE=BC×sin∠EBC=,∴S△ABC=AB×CE=2,∵△ABC≌△ADC,∴筝形ABCD的面积=2S△ABC=4.27.已知关于x的一元二次方程mx2+(3m+1)x+3=0.(1)当m取何值时,此方程有两个不相等的实数根;(2)当抛物线y=mx2+(3m+1)x+3与x轴两个交点的横坐标均为整数,且m为正整数时,求此抛物线的解析式;(3)在(2)的条件下,若P(a,y1),Q(1,y2)是此抛物线上的两点,且y1>y2,请结合函数图象直接写出实数a的取值范围.【考点】抛物线与x轴的交点;二次函数图象上点的坐标特征.【分析】(1)根据一元二次方程的根的判别式,直接计算即可;(2)根据求根公式,求出两根,由抛物线与x轴的两个交点的横坐标都为正整数,求出m 的值,可得抛物线解析式;(3)画出图象,找到当y1=y2时,a的值,根据图象,直接判断即可.【解答】解:(1)由题意可知,△=b2﹣4ac=(3m+1)2﹣4m×3=(3m﹣1)2>0,解得m≠,∵mx2+(3m+1)x+3=0是一元二次方程,∴m≠0,。
2020 年北京市东城区广渠门中学中考数学模拟试卷( 3 月份)一.选择题(共8 小题)1.以下倡议节俭的图案中,属于轴对称图形的是()A .B.C.D.2.华为 Mate 30 5G 系列是近期相当火爆的5G 国产手机,它采纳的麒麟990 5G 芯片在指甲盖大小的尺寸上集成了103 亿个晶体管,将103 亿用科学记数法表示为()9 9 10D.11A .1.03× 10B .10.3× 10 C. 1.03×10 1.03× 10 3.以下各式中,计算正确的选项是()A .a 3?a2= a6B .a3+a2= a5C.( a3)2= a6D. a6÷ a3= a24.实数 a、b、c 在数轴上的对应点的地点以下图,假如a+b= 0,那么以下结论错误的选项是()A .|a|= |b|B .a+c> 0C.=﹣1D. abc>05.如图,三角板的直角极点落在矩形纸片的一边上.若∠ 1=35°,则∠ 2的度数是()A .35°B .45°C. 55°D. 65°6.已知正多边形的一个内角是135°,则这个正多边形的边数是()A .3B .4C. 6D. 87.若 a+2b= 0,则分式(+)÷的值为()A .B .C.﹣D.﹣ 3b8.以下不等式变形中,必定正确的选项是()A .若 ac> bc,则 a> bB .若 a> b,则 ac 2> bc2C.若 ac 2> bc2,则 a> bD .若 a> 0,b> 0,且,则a>b二.填空题(共8 小题)9.式子在实数范围内存心义,则实数x 的取值范围是.10.把 3a2 b﹣6ab+3b 因式分解的结果是11.请写出一个对于x 的不等式,使﹣.2, 3 都是它的解.12.已知对于x 的一元二次方程mx2+2x﹣1= 0( m 为常数)有两个不相等的实数根,则的取值范围是.13.如图,是反比率函数y=和y=(k1<k2)在第一象限的图象,直线AB∥x 并分别交两条曲线于A、 B 两点,若S△AOB= 2,则 k2﹣ k1的值为.m 轴,14.如图,用 6 个边长为 1 的小正方形结构的网格图,角α,β的极点均在格点上,则α+β=.15.如图,矩形A BCD 的边长 AD= 4,AB =3, E 为 AB 的中点, AC 分别与 DE,DB 订交于点 M,N,则 MN 的长为.16.描金又称泥金画漆,是一种传统工艺美术技艺.发源于战国期间,在漆器表面,用金色描述花纹的装修方法,常以黑漆作底,也有少量以朱漆为底.描金工作分为两道工序,第一道工序是上漆,第二道工序是描述花纹.现甲、乙两位工匠要达成 A ,B ,C 三件原料的描金工作,每件原料先由甲上漆,再由乙描述花纹.每道工序所需的时间(单位:小时)以下:原料 原料 A原料 B原料 C时间 工序上漆 10 16 13 描述花纹15812则达成这三件原料的描金工作最少需要 小时.三.解答题(共9 小题)﹣|﹣ 2cos45°+(﹣ 1)2019﹣117.计算:( 3.14﹣ π) +|1 +(﹣ )18.解不等式组,并写出不等式组的整数解.19.先化简,再求值: (﹣1)÷,而后从0, 1, 2三个数中选择一个适合的数代入求值.20.已知关子 x 的一元二次方程x 2﹣( 2a+2) x+2a+1= 0.( 1)求证:无论 a 取何实数,该方程都有两个实数根:( 2)若该方程两个根 x 1,x 2 知足 x 12﹣ x 22= 0,求 a 的值21.如图,在矩形ABCD 中,点 O 为对角线 AC 的中点,过点 O 作 EF ⊥ AC 交 BC 于点 E ,交 AD 于点 F ,连结 AE , CF .( 1)求证:四边形 AECF 是菱形;( 2)连结 OB ,若 AB =8, AF = 10,求 OB 的长.22.平面直角坐标系xOy 中,将直线y=x+b 向上平移 2 个单位长度后与函数y=(x>0)的图象交于点Q( 2,m).( 1)求 m,b 的值;( 2)已知点 P( a,0)( a> 0)是 x 轴上一动点,过点P 作平行于y 轴的直线,交直线y = x+b 于点 M,交函数y=(x>0)的图象于点N.①当 a=4 时,求 MN 的长;②若 MN> PN,联合图象,直接写出 a 的取值范围.23.如图,在平面内给定△ABC, AB =AC,点O 到△ ABC 的三个极点的距离均等于c( c 为常数),到点 O 的距离等于 c 的全部点构成图形G,过点 A 作 AB 的垂线交BC 于点 E,交图形 G 于点 D,延伸 DA,在 DA 的延伸线上存在一点F,使得∠ ABF =∠ ABC.( 1)依题意补全图形;( 2)判断直线BF 与图形 G 交点的个数并证明;( 3)若 AD = 4, cos∠ABF =,求DE的长.24.在平面直角坐标系xOy 中,抛物线 y = ax 2﹣ 4ax ﹣2a ( a ≠0)的对称轴与x 轴交于点 A ,将点A 向右平移2 个单位长度再向上平移3 个单位长度获得点B .( 1)求抛物线的对称轴及点B 的坐标;( 2)已知点C ( 1,﹣ 2a ).若抛物线与线段BC有公共点,联合函数图象,求a 的取值范围.25.如图 1,在△ ABC 中,∠ ACB = 90°, AC = BC ,点 D 是射线 CB 上一点,连结AD ,过D 作 DE ⊥AD 交射线 AB 于点 E ,以 A 为旋转中心,将线段AD 绕点 A 逆时针旋转90°得线段 AF ,过点 F 作 FG ⊥ AF 交 AC 的延伸线于点G ,连结 EG .( 1)如图 1,点 D 在 CB 上.① 依题意补全图 1;② 猜想 DE 、 EG 、 FG 之间的数目关系并证明;( 2)如图 2,点 D 在 CB 的延伸线上.请直接写出 DE 、EG 、FG 之间的数目关系为 .参照答案与试题分析一.选择题(共8 小题)1.以下倡议节俭的图案中,属于轴对称图形的是()A .B.C.D.【剖析】依据轴对称图形的观点求解.【解答】解: A、不是轴对称图形,故此选项不合题意;B、是轴对称图形,故此选项切合题意;C、不是轴对称图形,故此选项不合题意;D、不是轴对称图形,故此选项不合题意.应选: B.2.华为 Mate 30 5G 系列是近期相当火爆的5G 国产手机,它采纳的麒麟990 5G 芯片在指甲盖大小的尺寸上集成了103 亿个晶体管,将103 亿用科学记数法表示为()9 9 10D.11A .1.03× 10B .10.3× 10 C. 1.03×10 1.03× 10【剖析】科学记数法的表示形式为a× 10n的形式,此中 1≤ |a|< 10,n 为整数.确立 n的值时,要看把原数变为a 时,小数点挪动了多少位,n 的绝对值与小数点挪动的位数相同.当原数绝对值≥10 时, n 是正数;当原数的绝对值< 1 时, n 是负数.【解答】解: 103 亿= 103 0000 0000= 1.03×1010,应选: C.3.以下各式中,计算正确的选项是()3 2 6 3 2 5 3 2 6 6 3 2A .a ?a = aB .a +a = a C.( a )= a D. a ÷ a = a【剖析】直接利用整式的乘除运算法例、幂的乘方运算法例分别判断得出答案.【解答】解: A、 a 3?a2=a5,故此选项错误;B、 a 3+a2,没法计算,故此选项错误;C、(a 3)2= a6,正确;6 3 3D 、a ÷ a = a ,故此选项错误;应选: C.4.实数 a、b、c 在数轴上的对应点的地点以下图,假如a+b= 0,那么以下结论错误的选项是()A .|a|= |b|B .a+c> 0C.=﹣1D. abc>0【剖析】依据 a+b= 0,确立原点的地点,依据实数与数轴即可解答.【解答】解:∵ a+b= 0,∴原点在a, b 的中间,如图,由图可得: |a|= |b|, a+c> 0,,abc<0.因此选项 D 结论错误.应选: D .5.如图,三角板的直角极点落在矩形纸片的一边上.若∠ 1=35°,则∠ 2 的度数是()A .35°B .45°C. 55°D. 65°【剖析】求出∠ 3 即可解决问题;【解答】解:∵∠ 1+∠ 3= 90°,∠ 1= 35°,∴∠ 3= 55°,∴∠ 2=∠ 3= 55°,应选: C.6.已知正多边形的一个内角是135°,则这个正多边形的边数是()A .3B .4 C. 6 D. 8【剖析】依据正多边形的一个内角是135°,则知该正多边形的一个外角为45°,再根据多边形的外角之和为360°,即可求出正多边形的边数.【解答】解:∵正多边形的一个内角是135°,∴该正多边形的一个外角为45°,∵多边形的外角之和为360°,∴边数=,∴这个正多边形的边数是8.应选: D .7.若 a+2b= 0,则分式(+)÷的值为(A .B .C.﹣)D.﹣ 3b【剖析】先化简分式,而后依据【解答】解:原式= [=?=,a+2b= 0,代入求值.]÷∵a+2b= 0,∴ a=﹣ 2b,∴原式==.应选: A.8.以下不等式变形中,必定正确的选项是()A .若 ac> bc,则 a> bB .若 a> b,则 ac 2> bc2C.若 ac 2> bc2,则 a> bD .若 a> 0,b> 0,且,则a>b【剖析】依据不等式的基天性质分别进行判断即可得出答案.【解答】解: A.当 c< 0,不等号的方向改变.故此选项错误;B .当 c = 0 时,符号为等号,故此选项错误;C .不等式两边乘(或除以)同一个正数,不等号的方向不变,正确;D .分母越大,分数值越小,故此选项错误.应选: C .二.填空题(共 8 小题)9.式子 在实数范围内存心义,则实数 x 的取值范围是x ≠﹣ 1 .【剖析】 依据分式存心义的条件可得 x+1≠ 0,再解即可.【解答】 解:由题意得: x+1≠ 0,解得: x ≠﹣ 1,故答案为: x ≠﹣ 1.10.把 3a 2b ﹣6ab+3b 因式分解的结果是3b ( a ﹣ 1)2.【剖析】 原式提取公因式,再利用完整平方公式分解即可.【解答】 解:原式= 3b (a 2﹣ 2a+1)= 3b ( a ﹣ 1) 2,故答案为: 3b (a ﹣ 1)211.请写出一个对于 x 的不等式,使﹣ 2, 3 都是它的解x ≥﹣ 2(答案不独一) .【剖析】 写出一个对于 x 的不等式,知足题意即可.【解答】 解:依据题意得: x ≥﹣ 2(答案不独一) ,故答案为: x ≥﹣ 2(答案不独一)12.已知对于 x 的一元二次方程mx 2+2x ﹣1= 0( m 为常数)有两个不相等的实数根,则m的取值范围是 m >﹣ 1 且 m ≠ 0 .【剖析】 依据方程有两个不相等的实数根联合二次项系数不为 0,即可得出对于 m 的一元一次不等式组,解不等式组即可得出结论.【解答】 解:∵方程 mx 2+2x ﹣ 1=0( m 为常数)有两个不相等的实数根,∴,即 ,解得: m >﹣ 1 且 m ≠ 0.故答案为: m >﹣ 1 且 m ≠0.13.如图,是反比率函数y = 和 y =并分别交两条曲线于A 、B 两点,若( k 1< k 2)在第一象限的图象,直线AB ∥x 轴,S △AOB = 2,则 k 2﹣ k 1 的值为 4 .【剖析】 设 A ( a , b ),B ( c ,d ),代入双曲线获得k 1= ab ,k 2= cd ,依据三角形的面积公式求出 cd ﹣ ab = 4,即可得出答案.【解答】 解:设 A ( a ,b ), B ( c , d ),代入得: k 1= ab , k 2= cd ,∵ S △AOB = 2,∴ cd ﹣ ab = 2, ∴ cd ﹣ab = 4,∴ k 2﹣ k 1=4,故答案为: 4.14.如图,用 6 个边长为1 的小正方形结构的网格图,角 α,β的极点均在格点上,则 α+β= 45° .2 2 2 【剖析】 依据勾股定理列式求出 EB 、 EC 、 BC ,而后利用勾股定理逆定理和全等三角形的判断与性质解答,可得答案.由勾股定理得,EB 2= 12+22= 5,EC 2= 12+22=5,BC 2= 12+32=10,∴ EB 2+EC 2= BC 2,∴△ EBC 是直角三角形, ∵ EB = EC ,∴△ EBC 是等腰直角三角形,由SAS可证△ BME ≌△ ANC ,∴∠ α=∠ EBA,∴∠ α+∠ β=∠ EBA+∠ β=45°.故答案为: 45°.15.如图,矩形A BCD 的边长 AD= 4,AB =3, E 为 AB 的中点, AC 分别与 DE,DB 订交于点 M,N,则 MN 的长为.【剖析】由勾股定理求出AC 长,则 AN=AC= 2.5,证明△ AEM ∽△ CDM ,可求出 AM 长,则 MN 的长可求出.【解答】解:∵矩形ABCD 的边长 AD = 4,AB= 3,∴ AC= BD===5,∴AN= AC=× 10= 2.5,∵四边形ABCD 是矩形,∴AB∥ CD ,AB = CD=3,∴△ AEM∽△ CDM ,∴=,∴=,∴AM =,∴MN = AN﹣ AM = 2.5﹣=.故答案为:.16.描金又称泥金画漆,是一种传统工艺美术技艺.发源于战国期间,在漆器表面,用金色描述花纹的装修方法,常以黑漆作底,也有少量以朱漆为底.描金工作分为两道工序,第一道工序是上漆,第二道工序是描述花纹.现甲、乙两位工匠要达成 A,B,C 三件原料的描金工作,每件原料先由甲上漆,再由乙描述花纹.每道工序所需的时间(单位:小时)以下:原料原料 A 原料 B 原料 C时间工序上漆10 16 13描述花纹15 8 12 则达成这三件原料的描金工作最少需要54 小时.【剖析】依据剖析,甲按A、 C、 B 的次序,乙半途不会出现停留进行解答即可.【解答】解:甲按 A、 C、 B 的次序,达成这三件原料的描金工作最少需要10+13+16+15 = 54,故答案为: 54三.解答题(共 9 小题)﹣|﹣ 2cos45°+(﹣ 1)2019 ﹣117.计算:( 3.14﹣π) +|1 +(﹣)【剖析】直接利用零指数幂的性质、特别角的三角函数值以及负整数指数幂的性质分别化简得出答案.【解答】解:原式= 1+﹣1﹣2×﹣1﹣ 3=1+ ﹣ 1﹣﹣ 1﹣ 3=﹣ 4.18.解不等式组,并写出不等式组的整数解.【剖析】先求出两个不等式的解集,再求其公共解,而后写出正整数解即可.【解答】 解:,解不等式 ① 得, x ≥﹣,解不等式 ② 得, x < 3,因此,不等式组的解集是﹣≤ x <3,因此,不等式组的整数解是﹣1、 0、1、 2. 19.先化简,再求值: (﹣1)÷,而后从 0, 1, 2 三个数中选择一个适合的数代入求值.【剖析】 先依据分式的混淆运算次序和运算法例化简原式,再选用使分式存心义的x 的值代入计算可得.【解答】 解:原式=(﹣ )÷=?=,当 x = 0 时,原式=﹣ 1.20.已知关子 x 的一元二次方程 2﹣( 2a+2) x+2a+1= 0. x( 1)求证:无论 a 取何实数,该方程都有两个实数根:( 2)若该方程两个根 x 1,x 2 知足 x 12﹣ x 22= 0,求 a 的值【剖析】( 1)表示出根的鉴别式, 配方后获得根的鉴别式大于等于 0,从而确立出方程总有两个实数根;( 2)先求出方程的两根为 x 1= 2a+1, x 2= 1,再代入 x 12﹣ x 22= 0,获得对于 a 的方程,解方程即可求解.【解答】 解:( 1)证明:( 1)△=( 2a+2 )2﹣ 4×( 2a+1)= 4a 2,∵ a 2≥ 0,∴ 4a 2> 0,∴无论 a 取任何实数,该方程都有两个实数根;( 2) x 2﹣( 2a+2)x+2a+1=0,( x ﹣ 2a ﹣ 1)( x ﹣1)= 0,x 1= 2a+1, x 2= 1, ∵ x 122﹣ x 2 =0,∴( 2a+1) 2﹣ 12=0,解得: a = 0 或 a =﹣ 1.21.如图,在矩形 ABCD 中,点 O 为对角线 AC 的中点,过点交 AD 于点 F ,连结 AE , CF .( 1)求证:四边形 AECF 是菱形;( 2)连结 OB ,若 AB =8, AF = 10,求 OB 的长.O 作EF ⊥ AC交BC于点E ,【剖析】( 1)依据线段垂直均分线的性质,可得 AF = CF , AE = CE , OA = OC ,而后由四边形 ABCD 是矩形,易证得△ AOF ≌△ COE ,则可得 AF = CE ,既而证得结论;( 2)由勾股定理可求 BE , AC 的长,由直角三角形的性质可求解.【解答】 证明:( 1)∵ O 是 AC 的中点,且 EF ⊥AC ,∴ AF = CF , AE = CE , OA =OC ,∵四边形 ABCD 是矩形, ∴ AD ∥ BC ,∴∠ AFO =∠ CEO ,在△ AOF 和△ COE 中,,∴△ AOF ≌△ COE ( AAS ),∴ AF = CE ,∴ AF = CF = CE = AE ,∴四边形 AECF 是菱形;( 2)如图,∵AB= 8, AF =AE=EC =10,∴ BE===6,∴BC= 16,∴ AC===8,∵ AO= CO,∠ ABC= 90°,∴ BO=AC= 4.22.平面直角坐标系xOy 中,将直线y=x+b 向上平移 2 个单位长度后与函数y=(x>0)的图象交于点Q( 2,m).( 1)求 m,b 的值;( 2)已知点 P( a,0)( a> 0)是 x 轴上一动点,过点P 作平行于y 轴的直线,交直线y = x+b 于点 M,交函数y=(x>0)的图象于点N.①当 a=4 时,求 MN 的长;②若 MN> PN,联合图象,直接写出 a 的取值范围.【剖析】(1)将点 Q( 2,m)代入 y=中,求出m= 2,那么Q( 2,2),再将Q 的坐标代入 y= x+b+2 中,即可求出 b 的值;( 2)① 当 a= 4 时, P( 4, 0),再求出②当 MN> PN 时,存在两种状况,过点M 和P 与N 的坐标,其纵坐标的差就是 MN 的长; y轴的直线在两函数交点的双侧时,列不等式解不等式和由图象可直接得出.【解答】解:( 1)∵函数 y=经过点Q(2,m).∴m= 2.∴Q( 2, 2).∵直线 y= x+b+2 经过点 Q( 2, 2).∴2+b+2= 2.∴b=﹣ 2;( 2)① 如图 1,当 a= 4 时, P( 4, 0).∵反比率函数的表达式为y=,直线分析式为y= x﹣2.∴M( 4,2), N( 4, 1).∴MN = 2﹣ 1= 1;② ∵点 P( a, 0)( a> 0), PM∥ y 轴,∴ M( a,a﹣ 2), N( a,).由= x﹣ 2.解得: x= 1+ 或 1﹣(舍).∴交点 A( 1+ 分两种状况:①当 0<a< 1+ ,﹣ 1).时,如图2.∵MN > PN.∴﹣( a﹣ 2)>.∴a< 2.即当 0< a< 2 时, MN > PN.②当 a>1+时,如图3.∵MN > PN.∴a﹣ 2﹣>.∴a﹣ 2>.如图 4,函数 y=a﹣ 2 与 y=在第一象限的交点为B( 4, 2).∴a> 4.即a>4 时, MN > PN.综上, a 的取值范围是0<a< 2 或 a> 4.23.如图,在平面内给定△ABC, AB =AC,点O 到△ ABC 的三个极点的距离均等于c( c 为常数),到点 O 的距离等于 c 的全部点构成图形G,过点 A 作 AB 的垂线交BC 于点 E,交图形 G 于点 D,延伸 DA,在 DA 的延伸线上存在一点F,使得∠ ABF =∠ ABC.( 1)依题意补全图形;( 2)判断直线BF 与图形 G 交点的个数并证明;( 3)若 AD = 4, cos∠ABF =,求DE的长.【剖析】( 1)由题意补全图形;(2)经过证明 BF 是⊙ O 的切线可得结论;(3)由锐角三角函数可求 BD 的长,由勾股定理可求 AB 的长,经过证明△ ABE ∽△ ADB ,可求 AE 的长,即可求解.O,以 O 为圆心, OB 长为半【解答】解:( 1)如图,作AB,AC 的垂直均分线交于点径作圆,⊙ O 为图形 G;(2)直线 BF 与图形 G 交点只有一个,原因以下:∵ AD⊥AB ,∴∠ BAD= 90°,∴ BD 是直径,∠ ADB+∠ ABD =90°,∵ AB= AC,∴∠ ACB=∠ ABC,∵∠ ACB=∠ ADB ,∠ ABF =∠ABC ,∴∠ ABF =∠ ADB ,∴∠ ABF+∠ ABD = 90°,∴∠ DBF = 90°,∴ BD⊥ BF,且 OB 是半径,∴ BF 是圆 O 的切线,∴直线 BF 与图形 G 交点的只有一个;( 3)∵ cos∠ ABF = cos∠ADB ==,∴ BD= 5,∴ AB===3,∵∠ ABE=∠ ADB ,∠ BAE=∠ BAD = 90°,∴△ ABE∽△ ADB ,∴,∴∴ AE = ,∴ DE = AD ﹣AE = .24.在平面直角坐标系xOy 中,抛物线 y = ax 2﹣ 4ax ﹣2a ( a ≠0)的对称轴与x 轴交于点 A ,将点 A 向右平移 2 个单位长度再向上平移3 个单位长度获得点B .( 1)求抛物线的对称轴及点B 的坐标;( 2)已知点 C ( 1,﹣ 2a ).若抛物线与线段 BC 有公共点,联合函数图象,求a 的取值范围.【剖析】( 1)利用二次函数的性质可求出抛物线的对称轴,从而可得出点A 的坐标,再利用平移的性质可找出点B 的坐标;( 2)分 a > 0 和 a <0 两种状况考虑: ① 当 a > 0 时,察看函数图象联合二点图象上点的坐标特点可得出抛物线与 BC 无交点; ② 当 a < 0 时,察看函数图象联合二点图象上点的坐标特点可得出对于a 的一元一次不等式组,解之即可得出 a 的取值范围.综上,本题得解.【解答】 解:( 1)抛物线的对称轴为直线x =﹣= 2,∴点 A 的坐标为( 2, 0).∵将点 A 向右平移 2 个单位长度,向上平移3 个单位长度,获得点 B ,∴点 B 的坐标为( 2+2 ,0+3 ),即( 4, 3).( 2)分 a > 0 和 a < 0 两种状况考虑:① 当 a >0 时,∵点 C ( 1,﹣ 2a ),抛物线与 y 轴的交点为( 0,﹣ 2a ),∴抛物线与 BC 为交点;② 当 a <0 时,以下图.∴ 16a﹣ 16a﹣ 2a≤ 3,∴ a≥﹣;综上所述: a 的取值范围为﹣≤a< 0;25.如图1,在△ ABC 中,∠ ACB= 90°, AC= BC,点 D 是射线CB 上一点,连结AD,过D 作 DE ⊥AD 交射线 AB 于点 E,以 A 为旋转中心,将线段 AD 绕点 A 逆时针旋转 90°得线段AF ,过点 F 作 FG ⊥ AF 交 AC 的延伸线于点 G,连结 EG.(1)如图 1,点 D 在 CB 上.①依题意补全图 1;②猜想 DE、 EG、 FG 之间的数目关系并证明;( 2)如图 2,点 D 在 CB 的延伸线上.请直接写出DE 、EG、FG 之间的数目关系为EG =FG+DE .【剖析】( 1)①直接依据题意画出图形,即可得出结论;②先利用等式的性质得出∠DAE =∠ FAH,从而判断出△ ADE ≌△ AFH( ASA),得出 DE=FH , AE= AH ,再判断出∠ HAG = 45°=∠ CAB,从而判断出△ AGE≌△ AGH( SAS),得出 EG=HG ,即可得出结论;( 2)同( 1)的方法即可得出结论.【解答】解:( 1)①补全图形如图 1 所示,②FG = EG+DE ,原因:过点 A 作 AH ⊥ AB 交 FG 于 H ,∴∠ BAH= 90°,由旋转知, AD= AF ,∠ DAF = 90°=∠ BAH,∴∠ DAE=∠ FAH ,∵DE⊥ AD,FG ⊥ AF,∴∠ ADE=∠ AFH = 90°,∴△ ADE≌△ AFH( ASA),∴ DE= FH ,AE=AH,∵在△ ABC 中,∠ ACB= 90°, AC= BC,∴∠ CAB= 45°,∵∠ BAH= 90°,∴∠ HAG= 45°=∠ CAB,∵AG= AG,∴△ AGE≌△ AGH( SAS),∴EG= HG,∴FG= HG+FH = EG+DE;(2)如图 2,过点 A 作 AH⊥ AB 交 GF 的延伸线于 H,同( 1)的方法得,△ ADE≌△ AFH ( ASA),∴ DE= FH ,AE =AH,同( 1)的方法得,△ AGE≌△ AGH( SAS),∴ EG= HG,∴ EG= FG+FH =FG +DE,故答案为: EG= FG +DE .。
22年中考数学模拟试卷一.选择题(共1小题,满分3分,每小题3分) 1.若a=﹣.32,b=(﹣3)﹣2,c=(﹣)﹣2,d=(﹣),则() A.a<b<c<d B.a<b<d <c C.a<d<c<b D.c<a<d<b 2.下图中是中心对称图形而不是轴对称图形的共有()A.1个 B.2个 C.3个 D.4个 3.如图,已知AB∥DE,∠ABC=75°,∠CDE=145°,则∠BCD的值为() A.2° B.3° C.4° D.7° 4.下列运算正确的是() A.x2+x2=x4 B. a2a3=a5 C.(3x)2 =6x2 D.(mn)5÷(mn)=mn4 5.不解方程,判别方程2x2﹣3x=3的根的情况() A.有两个相等的实数根 B.有两个不相等的实数根 C.有一个实数根 D.无实数根 6.在反比例函数y=的图象的每一支位上,y随x的增大而减小,则m的取值范围是() A.m>7 B.m<7 C.m=7 D.m≠7 7.⊙O的半径是13,弦AB ∥CD,AB=24,CD=1,则AB与CD的距离是() A.7 B.17 C.7或17 D.34 8.如图所示,菱形ABCD中,对角线AC、BD相交于点O,H为AD边的中点,菱形ABCD的周长为36,则OH的长等于() A.5 B.5 C.6 D.9 9.如图,已知直线y1=k1x+m和直线y2=k2x+n交于点P(﹣1,2),则关于x的不等式(k1﹣k2)x>﹣m+n的解是() A.x >2 B.x>﹣1 C.﹣1<x<2 D.x<﹣1 1.甲、乙两个工程队分别同时开挖两段河渠,所挖河渠的长度y(m)与挖掘时间x(h)之间的关系如图所示.根据图象所提供的信息有①甲队挖掘3m时,用了3h;②挖掘6h时甲队比乙队多挖了1m;③乙队的挖掘速度总是小于甲队;④开挖后甲、乙两队所挖河渠长度相等时,x=4.其中一定正确的有() A.1个B.2个 C.3个 D.4个二.填空题(共8小题,满分32分,每小题4分) 11.若使代数式有意义,则x的取值范围是. 12.把多项式3a3b﹣27ab3分解因式的结果是. 13.已知菱形的周长为2cm,一条对角线长为6cm,则这个菱形的面积是cm2. 14.如图,在Rt△ABC中,∠ACB=9°,∠A=56°,以BC为直径的⊙O交AB于点D,E是⊙O上一点,且=,连接OE.过点E作EF⊥OE,交AC的延长线于点F,则∠F的度数为. 15.两个工程队共同参与一项筑路工程,甲队单独施工1个月完成总工程的,这时增加了乙队,两队又共同工作了半个月.总工程全部完成,设乙队单独施1个月能完成总工程的,根据题意,得方程. 16.抛物线y=﹣x2+bx+c的部分图象如图所示,则关于x的一元二次方程﹣x2+bx+c=的解为. 17.如果点(m,﹣2m)在双曲线上,那么双曲线在象限. 18.一组按规律排列的式子,﹣,,﹣,…(a≠),其中第1个式子是.三.解答题(共5小题,满分38分) 19.计算4sin6°﹣|﹣1|+(﹣1)+ 2.如图,在平面直角坐标系中,△ABC的三个顶点分别为A(﹣1,﹣1)、B(﹣3,3)、C (﹣4,1)(1)画出△ABC关于y轴对称的△A1B1C1,并写出点B的对应点B1的坐标;(2)画出△ABC绕点A按顺时针旋转9°后的△AB2C2,并写出点C的对应点C2的坐标. 21.为了测量白塔的高度AB,在D处用高为5米的测角仪 CD,测得塔顶A的仰角为42°,再向白塔方向前进12米,又测得白塔的顶端A的仰角为61°,求白塔的高度AB.(参考数据sin42°≈.67,tan42°≈.9,sin61°≈.87,tan61°≈8,结果保留整数) 22.为弘扬中华优秀传统文化,某校开展“经典诵读”比赛活动,诵读材料有《论语》、《大学》、《中庸》(依次用字母A,B,C表示这三个材料),将A,B,C分别写在3张完全相同的不透明卡片的正面上,背面朝上洗匀后放在桌面上,比赛时小礼先从中随机抽取一张卡片,记下内容后放回,洗匀后,再由小智从中随机抽取一张卡片,他俩按各自抽取的内容进行诵读比赛.(1)小礼诵读《论语》的概率是;(直接写出答案)(2)请用列表或画树状图的方法求他俩诵读两个不同材料的概率. 23.某超市对今年“元旦”期间销售A、B、C三种品牌的绿色鸡蛋情况进行了统计,并绘制如图所示的扇形统计图和条形统计图.根据图中信息解答下列问题(1)该超市“元旦”期间共销售个绿色鸡蛋,A品牌绿色鸡蛋在扇形统计图中所对应的扇形圆心角是度;(2)补全条形统计图;(3)如果该超市的另一分店在“元旦”期间共销售这三种品牌的绿色鸡蛋15个,请你估计这个分店销售的B种品牌的绿色鸡蛋的个数?四.解答题(共5小题,满分5分) 24.如图,一次函数y1=k1x+b与反比例函数的图象相交于A,B两点,且与坐标轴的交点为(﹣6,),(,6),点B的横坐标为﹣4.(1)试确定反比例函数的解析式;(2)求△AOB的面积;(3)直接写出不等式的解. 25.如图,O为菱形ABCD对角线上一点,以点O为圆心,OA长为半径的⊙O与BC相切于点M.(1)求证CD与⊙O相切;(2)若菱形ABCD的边长为2,∠ABC=6°,求⊙O的半径. 26.某商场一种商品的进价为每件3元,售价为每件4元.每天可以销售48件,为尽快减少库存,商场决定降价促销.(1)若该商品连续两次下调相同的百分率后售价降至每件34元,求两次下降的百分率;(2)经调查,若该商品每降价.5元,每天可多销售4件,那么每天要想获得51元的利润,每件应降价多少元? 27.如图,在等边△ABC中,BC=8cm,射线AG∥BC,点E从点A 出发沿射线AG以1cm/s的速度运动,同时点F从点B出发沿射线BC以2cm/s的速度运动,设运动时间为t(s).(1)连接EF,当EF经过AC边的中点D时,求证△ADE≌△CDF;(2)填空①当t为s时,以A、F、C、E为顶点的四边形是平行四边形;②当t为s时,四边形ACFE是菱形. 28.已知,抛物线y=ax2+ax+b(a≠)与直线y=2x+m有一个公共点M(1,),且a<b.(1)求b与a的关系式和抛物线的顶点D 坐标(用a的代数式表示);(2)直线与抛物线的另外一个交点记为N,求△DMN的面积与a的关系式;(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.参考答案与试题解析一.选择题(共1小题,满分3分,每小题3分)1.【分析】根据乘方的运算法则、负整数指数幂、零指数幂分别计算,再比较大小可得.【解答】解∵a=﹣.32=﹣.9, b=(﹣3)﹣2=, c=(﹣)﹣2=9, d=(﹣)=1,∴a <b<d<c,故选B.【点评】本题主要考查有理数的大小比较,解题的关键是掌握乘方的运算法则、负整数指数幂、零指数幂. 2.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解第一个图形,既是中心对称图形,又是轴对称图形,故错误;第二个图形,是轴对称图形,不是中心对称图形,故错误;第三个图形,是轴对称图形,不是中心对称图形,故错误;第四、五个是中心对称图形而不是轴对称图形,故正确.故选B.【点评】掌握好中心对称与轴对称的概念轴对称的关键是寻找对称轴,两边图象折叠后可重合,中心对称是要寻找对称中心,旋转18度后与原图重合. 3.【分析】延长ED交BC于F,根据平行线的性质求出∠MFC=∠B =75°,求出∠FDC=35°,根据三角形外角性质得出∠C=∠MFC﹣∠MDC,代入求出即可.【解答】解延长ED交BC于F,如图所示∵AB∥DE,∠ABC=75°,∴∠MFC=∠B=75°,∵∠CDE=145°,∴∠FDC=18°﹣145°=35°,∴∠C=∠MFC﹣∠MDC=75°﹣35°=4°,故选C.【点评】本题考查了三角形外角性质,平行线的性质的应用,解此题的关键是求出∠MFC的度数,注意两直线平行,同位角相等. 4.【分析】根据合并同类项、同底数幂的乘法、除法和幂的乘方计算判断即可.【解答】解A、x2+x2=2x2,错误;B、a2a3=a5 ,正确;C、(3x)2 =9x2,错误;D、(mn)5÷(mn)=(mn)4,错误;故选B.【点评】此题考查同底数幂的乘法、除法,关键是根据合并同类项、同底数幂的乘法、除法和幂的乘方法则解答. 5.【分析】先把方程化为一般式得到2x2﹣3x﹣3=,再计算△=(﹣3)2﹣4×2×(﹣3)=18+24>,然后根据△的意义判断方程根的情况.【解答】解方程整理得2x2﹣3x﹣3=,∵△=(﹣3)2﹣4×2×(﹣3)=18+24>,∴方程有两个不相等的实数根.故选B.【点评】本题考查了一元二次方程ax2+bx+c=(a≠)的根的判别式△=b2﹣4ac当△>,方程有两个不相等的实数根;当△=,方程有两个相等的实数根;当△<,方程没有实数根. 6.【分析】根据反比例函数图象的性质得到m﹣7>,由此求得m的取值范围.【解答】解∵在反比例函数y=的图象的每一支位上,y随x的增大而减小,∴m﹣7>,解得m>7.故选A.【点评】本题主要考查反比例函数的性质,当k >,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小. 7.【分析】先作出图象根据勾股定理分别求出弦AB、CD的弦心距OE、OF,再根据两弦在圆心同侧和在圆心异侧两种情况讨论.【解答】解如图,AE=AB=×24=12, CF=CD=×1=5, OE===5, OF===12,①当两弦在圆心同侧时,距离=OF﹣OE=12﹣5=7;②当两弦在圆心异侧时,距离=OE+OF=12+5=17.所以距离为7或17.故选C.【点评】先构造半径、弦心距、半弦长为边长的直角三角形,再利用勾股定理求弦心距,本题要注意分两种情况讨论. 8.【分析】可先求得AB的长,再根据三角形中位线定理可求得OH 的长.【解答】解∵四边形ABCD为菱形,且周长为36,∴AB=BC=CD=AD=9,又∵O 为BD中点,H为AD的中点,∴OH为△ABD的中位线,∴OH=AB=5,故选A.【点评】本题主要考查菱形的性质,掌握菱形的四边相等、对角线互相垂直平分是解题的关键. 9.【分析】根据图形,找出直线l1在直线l2上方部分的x的取值范围即可.【解答】解由图形可知,当x>﹣1时,k1x+m>k2x+n,即(k1﹣k2)x>﹣m+n,所以,关于x的不等式(k1﹣k2)x>﹣m+n的解集是x>﹣1.故选B.【点评】本题考查了一次函数与一元一次不等式,根据函数图象在上方的函数值比函数图象在下方的函数值大,利用数形结合求解是解题的关键. 1.【分析】根据函数图象可以判断题目中的各个小题是否正确,从而可以解答本题.【解答】解由图象可得,甲队挖掘3m时,用的时间为3÷(6÷6)=3h,故①正确,挖掘6h 时甲队比乙队多挖了6﹣5=1m,故②正确,前两个小时乙队挖得快,在2小时到6小时之间,甲队挖的快,故③错误,设≤x≤6时,甲对应的函数解析式为y=kx,则6=6k,得k =1,即≤x≤6时,甲对应的函数解析式为y=1x,当2≤x≤6时,乙对应的函数解析式为y=ax+b,,得,即2≤x≤6时,乙对应的函数解析式为y=5x+2,则,得,即开挖后甲、乙两队所挖河渠长度相等时,x=4,故④正确,由上可得,一定正确的是①②④,故选C.【点评】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利【分用函数的思想和数形结合的思想解答.二.填空题(共8小题,满分32分,每小题4分) 11.析】直接利用分式有意义则其分母不为零,进而得出答案.【解答】解∵分式有意义,∴x 的取值范围是x+2≠,解得x≠﹣2.故答案是x≠﹣2.【点评】此题主要考查了分式有意义的条件,正确把握分式的定义是解题关键. 12.【分析】先提出公因式3ab,再利用平方差公式进行因式分解.【解答】解原式=3ab(a2﹣9b2)=3ab(a+3b)(a﹣3b).故答案是3ab(a+3b)(a﹣3b).【点评】本题考查了提公因式法和公式法进行分解因式,解决本题的关键是熟记提公因式法和公式法. 13.【分析】根据菱形的性质,先求另一条对角线的长度,再运用菱形的面积等于对角线乘积的一半求解.【解答】解如图,在菱形ABCD中,BD=6.∵菱形的周长为2,BD=6,∴AB=5,BO=3,∴AO==4,AC=8.∴面积S=×6×8=24.故答案为 24.【点评】此题考查了菱形的性质及面积求法,难度不大. 14.【分析】直接利用互余的性质再结合圆周角定理得出∠COE的度数,再利用四边形内角和定理得出答案.【解答】解∵∠ACB=9°,∠A=56°,∴∠ABC=34°,∵=,∴2∠ABC=∠COE=68°,又∵∠OCF=∠OEF=9°,∴∠F=36°﹣9°﹣9°﹣68°=112°.故答案为112°.【点评】此题主要考查了圆周角定理以及四边形内角和定理,正确得出∠OCE的度数是解题关键. 15.【分析】设乙队单独施1个月能完成总工程的,根据甲队完成的任务量+乙队完成的任务量=总工程量(单位一),即可得出关于x的分式方程,此题得解.【解答】解设乙队单独施1个月能完成总工程的,根据题意得+×+=1.故答案为+×+=1.【点评】本题考查了由实际问题抽象出分式方程,找准等量关系,正确列出分式方程是解题的关键. 16.【分析】直接观察图象,抛物线与x轴交于1,对称轴是x=﹣1,所以根据抛物线的对称性可以求得抛物线与x轴的另一交点坐标,从而求得关于x的一元二次方程﹣x2+bx+c=的解.【解答】解观察图象可知,抛物线y=﹣x2+bx+c与x轴的一个交点为(1,),对称轴为x=﹣1,∴抛物线与x轴的另一交点坐标为(﹣3,),∴一元二次方程2x2﹣4x+m=的解为x1=1,x2=﹣3.故本题答案为x1=1,x2=﹣3.【点评】本题考查了用函数观点解一元二次方程的方法.一元二次方程﹣x2+bx+c=的解实质上是抛物线y =﹣x2+bx+c与x轴交点的横坐标的值. 17.【分析】根据反比例函数图象上的点的坐标特征图象上的点(x,y)的横纵坐标的积是定值k,即xy=k可得k=﹣2m2<,根据反比例函数的性质可得答案.【解答】解∵点(m,﹣2m)在双曲线(k≠)上,∴m(﹣2m)=k,解得k=﹣2m2,∵﹣2m2<,∴双曲线在第二、四象限.故答案为第二、四.【点评】此题主要考查了反比例函数图象上的点的坐标特征,以及反比例函数的性质,关键是掌握图象上的点(x,y)的横纵坐标的积是定值k,即xy=k. 18.【分析】式子的符号第奇数个是正号.偶数个是负号,分子等于序号的平方,分母中a的指数是序号的3倍减去1,据此即可求解.【解答】解∵=(﹣1)1+1,﹣=(﹣1)2+1,=(﹣1)3+1,…第1个式子是(﹣1)1+1=.故答案是.【点评】本题主要考查了式子的特征,正确理解式子的规律是解题的关键.三.解答题(共5小题,满分38分) 19.【分析】将特殊锐角三角函数值代入、计算绝对值、零指数幂、化简二次根式,再进一步计算可得.【解答】解原式=4×﹣1+1+4 =2+4 =6.【点评】本题主要考查实数的运算,解题的关键是掌握特殊锐角三角函数值、绝对值性质、零指数幂、二次根式性质. 2.【分析】(1)分别作出点A,B,C关于y 轴的对称点,再首尾顺次连接即可得;(2)分别作出点B,C绕点A按顺时针旋转9°后所得对应点,再首尾顺次连接可得.【解答】解(1)如图(1)所示,△A1B1C1即为所求,其中B1的坐标为(3,3).(2)如图(2)所示,△AB2C2即为所求,C2的坐标为(1,2).【点评】本题主要考查作图﹣旋转变换和轴对称变换,解题的关键是熟练掌握轴对称变换与旋转变换的定义和性质,并据此得出变换后的对应点. 21.【分析】设AE=x,在Rt△ACE中表示出CE,在Rt△AFE中表示出FE,再由DH=CF=12米,可得出关于x的方程,解出即可得出答案.【解答】解设AE=x,在Rt△ACE中,CE==1x,在Rt△AFE中,FE==.55x,由题意得,CF=CE﹣FE=1x﹣.55x =12,解得x=,故AB=AE+BE=+5≈23米.答这个电视塔的高度AB为23米.【点评】本题考查了解直角三角形的应用,解答本题要求学生能借助仰角构造直角三角形并解直角三角形,难度一般. 22.【分析】(1)直接利用概率公式计算;(2)画树状图展示所有9种等可能的结果数,再找出小红和小亮诵读两个不同材料的结果数,然后根据概率公式计算.【解答】解(1)小红诵读《论语》的概率=;故答案为.(2)画树状图为共有9种等可能的结果数,其中小红和小亮诵读两个不同材料的结果数为6,所以小红和小亮诵读两个不同材料的概率==.【点评】本题考查了列表法与树状图法利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率. 23.【分析】(1)用C品牌的数量除以所占的百分比,计算机求出鸡蛋的总量,再用A品牌的百分比乘以36°计算即可求出圆心角的度数;(2)求出B品牌鸡蛋的数量,然后条形补全统计图即可;(3)用B品牌所占的百分比乘以15,计算即可得解.【解答】解(1)共销售绿色鸡蛋12÷5%=24个, A品牌所占的圆心角×36°=6°;故答案为24,6;(2)B品牌鸡蛋的数量为24﹣4﹣12=8个,补全统计图如图;(3)分店销售的B种品牌的绿色鸡蛋为×15=5个.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;【分扇形统计图直接反映部分占总体的百分比大小.四.解答题(共5小题,满分5分) 24.析】(1)根据待定系数法就可以求出函数的解析式;(2)求△AOB的面积就是求A,B两点的坐标,将一次函数与反比例函数的解析式组成方程即可求得;(3)观察图象即可求得一次函数比反比例函数大的区间.【解答】解(1)设一次函数解析式为y=kx+b,∵一次函数与坐标轴的交点为(﹣6,),(,6),∴∴,∴一次函数关系式为y=x+6,∴B(﹣4,2),∴反比例函数关系式为;(2)∵点A与点B是反比例函数与一次函数的交点,∴可得x+6=﹣,解得x=﹣2或x=﹣4,∴A(﹣2,4),∴S△AOB=6×6÷2﹣6×2=6;(3)观察图象,易知的解集为﹣4<x<﹣2.【点评】此题主要考查了待定系数法求反比例函数与一次函数的解析式.此题综合性较强,注意数形结合思想的应用. 25.【分析】(1)连接OM,过点O作ON⊥CD于N.只要证明OM=ON即可解决问题;(2)设半径为r.则OC=2﹣r,OM=r,利用勾股定理构建方程即可解决问题;【解答】解(1)连接OM,过点O作ON⊥CD于N.∵⊙O与BC相切于点M,∴OM⊥BC,OM是⊙O的半径,∵AC是菱形ABCD的对角线,∴AC平分∠BCD,∵ON⊥CD,OM⊥BC,∴ON=OM=r,∴CD与⊙O相切;(2)∵四边形ABCD是菱形,∴AB=BC,∵∠ABC=6°,∴△ACB是等边三角形,∴AC=AB=2,设半径为r.则OC=2﹣r,OM=r,∵∠ACB=6°,∠OMC=9°,∴∠COM=3°,MC=,在Rt△OMC中,∠OMC=9°∵OM2+CM2=OC2 ∴r2+()2=(2﹣r)2,解得r=﹣6+4或﹣6﹣4(舍弃),∴⊙O的半径为﹣6+4.【点评】本题考查切线的判定,菱形的性质等知识,解题的关键是熟练掌握基本知识,学会利用参数构建方程解决问题,属于中考常考题型. 26.【分析】(1)设每次降价的百分率为x,(1﹣x)2为两次降价的百分率,4降至34就是方程的平衡条件,列出方程求解即可;(2)设每天要想获得51元的利润,且更有利于减少库存,则每件商品应降价y元,由销售问题的数量关系建立方程求出其解即可.【解答】解(1)设每次降价的百分率为x. 4×(1﹣x)2=34 x=1%或19%(19%不符合题意,舍去)答该商品连续两次下调相同的百分率后售价降至每件34元,两次下降的百分率啊1%;(2)设每天要想获得51元的利润,且更有利于减少库存,则每件商品应降价y元,由题意,得(4﹣3﹣y)(4×+48)=51,解得y1=5,y2=5,∵有利于减少库存,∴y=5.答要使商场每月销售这种商品的利润达到51元,且更有利于减少库存,则每件商品应降价5元.【点评】此题主要考查了一元二次方程应用,关键是根据题意找到等式两边的平衡条件,这种价格问题主要解决价格变化前后的平衡关系,列出方程,解答即可. 27.【分析】(1)由题意得到AD=CD,再由AG与BC平行,利用两直线平行内错角相等得到两对角相等,利用AAS即可得证;(2)①分别从当点F在C的左侧时与当点F在C的右侧时去分析,由当AE=CF时,以A、C、E、F为顶点四边形是平行四边形,可得方程,解方程即可求得答案;②若四边形ACFE是菱形,则有CF=AC=AE=6,由E的速度求出E运动的时间即可.【解答】(1)证明∵AG∥BC,∴∠EAD=∠DCF,∠AED=∠DFC,∵D为AC的中点,∴AD=CD,∵在△ADE和△CDF中,,∴△ADE≌△CDF(AAS);(2)解①当点F在C的左侧时,根据题意得AE=tcm,BF=2tcm,则CF=BC﹣BF=6﹣2t(cm),∵AG∥BC,∴当AE=CF时,四边形AECF是平行四边形,即t=8﹣2t,解得t=;当点F在C的右侧时,根据题意得AE=tcm,BF=2tcm,则CF=BF﹣BC=2t﹣8(cm),∵AG∥BC,∴当AE=CF时,四边形AEFC是平行四边形,即t=2t﹣8,解得t=8;综上可得当t=或8s时,以A、C、E、F为顶点四边形是平行四边形.②若四边形ACFE 是菱形,则有CF=AC=AE=8,则此时的时间t=8÷1=8(s);故答案是或8;8.【点评】此题考查了平行四边形的判定,菱形的判定,全等三角形的判定与性质,等边三角形的性质,解题的关键是理解题意,学会用分类讨论的思想思考问题. 28.【分析】(1)把M点坐标代入抛物线解析式可得到b与a的关系,可用a表示出抛物线解析式,化为顶点式可求得其顶点D的坐标;(2)把点M(1,)代入直线解析式可先求得m的值,联立直线与抛物线解析式,消去y,可得到关于x的一元二次方程,可求得另一交点N的坐标,根据a<b,判断a<,确定D、M、N的位置,画图1,根据面积和可得△DMN的面积即可;(3)先根据a的值确定抛物线的解析式,画出图2,先联立方程组可求得当GH与抛物线只有一个公共点时,t的值,再确定当线段一个端点在抛物线上时,t的值,可得线段GH 与抛物线有两个不同的公共点时t的取值范围.【解答】解(1)∵抛物线y=ax2+ax+b有一个公共点M(1,),∴a+a+b=,即b=﹣2a,∴y=ax2+ax+b=ax2+ax﹣2a=a(x+)2﹣,∴抛物线顶点D的坐标为(﹣,﹣);(2)∵直线y=2x+m经过点M(1,),∴=2×1+m,解得m=﹣2,∴y=2x﹣2,则,得ax2+(a﹣2)x﹣2a+2=,∴(x﹣1)(ax+2a﹣2)=,解得x=1或x=﹣2,∴N点坐标为(﹣2,﹣6),∵a<b,即a<﹣2a,∴a<,如图1,设抛物线对称轴交直线于点E,∵抛物线对称轴为x=﹣=﹣,∴E(﹣,﹣3),∵M(1,),N(﹣2,﹣6),设△DMN的面积为S,∴S=S△DEN+S△DEM=|(﹣2)﹣1||﹣﹣(﹣3)|=,(3)当a=﹣1时,抛物线的解析式为y=﹣x2﹣x+2=﹣(x+)2+,有,﹣x2﹣x+2=﹣2x,解得x1=2,x2=﹣1,∴G(﹣1,2),∵点G、H关于原点对称,∴H(1,﹣2),设直线GH平移后的解析式为y=﹣2x+t,﹣x2﹣x+2=﹣2x+t, x2﹣x﹣2+t=,△=1﹣4(t﹣2)=, t=,当点H平移后落在抛物线上时,坐标为(1,),把(1,)代入y=﹣2x+t, t=2,∴当线段GH与抛物线有两个不同的公共点,t的取值范围是2≤t<.【点评】本题为二次函数的综合应用,涉及函数图象的交点、二次函数的性质、根的判别式、三角形的面积等知识.在(1)中由M的坐标得到b与a的关系是解题的关键,在(2)中联立两函数解析式,得到关于x的一元二次方程是解题的关键,在(3)中求得GH与抛物线一个交点和两个交点的分界点是解题的关键,本题考查知识点较多,综合性较强,难度较大.。
东城区2020年第一次模拟检测初三数学考生须知1.本试卷共8页,共三道大题,28道小题,满分100分.考试时间120分钟.2.在试卷和答题卡上准确填写学校名称、姓名和准考证号.3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效.4.在答题卡上,选择题、作图题用2B铅笔作答,其他试题用黑色字迹签字笔作答.5.考试结束,将本试卷、答题卡和草稿纸一并交回.一、选择题(本题共16分,每小题2分)下面各题均有四个选项,其中只有一个..是符合题意的1.如图,若数轴上的点A,B分别与实数-1,1对应,用圆规在数轴上画点C,则与点C对应的实数是A. 2B.3C. 4D. 52. 当函数()212y x=--的函数值y随着x的增大而减小时,x的取值范围是A.x>0B.x<1C.1x>D.x为任意实数3.若实数a,b满足a b>,则与实数a,b对应的点在数轴上的位置可以是4.如图,O是等边△ABC的外接圆,其半径为3. 图中阴影部分的面积是A.πB.3π2C.2πD.3π5.点A(4,3)经过某种图形变化后得到点B(-3,4),这种图形变化可以是A.关于x轴对称B.关于y轴对称C.绕原点逆时针旋转90°D.绕原点顺时针旋转90°6.甲、乙两位同学做中国结,已知甲每小时比乙少做6个,甲做30个所用的时间与乙做45个所用的时间相同,求甲每小时做中国结的个数. 如果设甲每小时做x个,那么可列方程为A.30456x x=+B.30456x x=-C.30456x x=-D.30456x x=+7.第24届冬奥会将于2022年在北京和张家口举行.冬奥会的项目有滑雪(如跳台滑雪、高山滑雪、单板滑雪等)、滑冰(如短道速滑、速度滑冰、花样滑冰等)、冰球、冰壶等.如图,有5张形状、大小、质地均相同的卡片,正面分别印有跳台滑雪、速度滑冰、冰球、单板滑雪、冰壶五种不同的项目图案,背面完全相同.现将这5张卡片洗匀后正面向下放在桌子上,从中随机抽取一张,抽出的卡片正面恰好是滑雪图案的概率是A.15B.25C.12D.358.如图1是一座立交桥的示意图(道路宽度忽略不计),A为入口,F,G为出口,其中直行道为AB,CG,EF,且AB=CG=EF ;弯道为以点O为圆心的一段弧,且错误!未指定书签。
2020年北京市中考数学试卷一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.(2分)(2020•北京)如图是某几何体的三视图,该几何体是()A.圆柱B.圆椎C.三棱柱D.长方体2.(2分)(2020•北京)2020年6月23日,北斗三号最后一颗全球组网卫星从西昌卫星发射中心发射升空,6月30日成功定点于距离地球36000公里的地球同步轨道.将36000用科学记数法表示应为()A.0.36×105B.3.6×105C.3.6×104D.36×1033.(2分)(2020•北京)如图,AB和CD相交于点O,则下列结论正确的是()A.∠1=∠2B.∠2=∠3C.∠1>∠4+∠5D.∠2<∠5 4.(2分)(2020•北京)下列图形中,既是中心对称图形也是轴对称图形的是()A.B.C.D.5.(2分)(2020•北京)正五边形的外角和为()A.180°B.360°C.540°D.720°6.(2分)(2020•北京)实数a 在数轴上的对应点的位置如图所示,若实数b 满足﹣a <b <a ,则b 的值可以是( )A .2B .﹣1C .﹣2D .﹣37.(2分)(2020•北京)不透明的袋子中有两个小球,上面分别写着数字“1”,“2”,除数字外两个小球无其他差别.从中随机摸出一个小球,记录其数字,放回并摇匀,再从中随机摸出一个小球,记录其数字,那么两次记录的数字之和为3的概率是( ) A .14B .13C .12D .238.(2分)(2020•北京)有一个装有水的容器,如图所示,容器内的水面高度是10cm ,现向容器内注水,并同时开始计时,在注水过程中,水面高度以每秒0.2cm 的速度匀速增加,则容器注满水之前,容器内的水面高度与对应的注水时间满足的函数关系是( )A .正比例函数关系B .一次函数关系C .二次函数关系D .反比例函数关系二、填空题(本题共16分,每小题2分) 9.(2分)(2020•北京)若代数式1x−7有意义,则实数x 的取值范围是 .10.(2分)(2020•北京)已知关于x 的方程x 2+2x +k =0有两个相等的实数根,则k 的值是 .11.(2分)(2020•北京)写出一个比√2大且比√15小的整数 . 12.(2分)(2020•北京)方程组{x −y =13x +y =7的解为 .13.(2分)(2020•北京)在平面直角坐标系xOy 中,直线y =x 与双曲线y =mx交于A ,B 两点.若点A ,B 的纵坐标分别为y 1,y 2,则y 1+y 2的值为 .14.(2分)(2020•北京)如图,在△ABC 中,AB =AC ,点D 在BC 上(不与点B ,C 重合).只需添加一个条件即可证明△ABD ≌△ACD ,这个条件可以是 (写出一个即可).15.(2分)(2020•北京)如图所示的网格是正方形网格,A ,B ,C ,D 是网格线交点,则△ABC 的面积与△ABD 的面积的大小关系为:S △ABC S △ABD (填“>”,“=”或“<”).16.(2分)(2020•北京)如图是某剧场第一排座位分布图.甲、乙、丙、丁四人购票,所购票数分别为2,3,4,5.每人选座购票时,只购买第一排的座位相邻的票,同时使自己所选的座位号之和最小,如果按“甲、乙、丙、丁”的先后顺序购票,那么甲购买1,2号座位的票,乙购买3,5,7号座位的票,丙选座购票后,丁无法购买到第一排座位的票.若丙第一个购票,要使其他三人都能购买到第一排座位的票,写出一种满足条件的购票的先后顺序 .三、解答题(本题共68分,第17-20题,每小题5分,第21题6分,第22题5分,第23-24题,每小题5分,第25题5分,第26题6分,第27-28题,每小题5分)解答应写出文字说明、演算步骤或证明过程.17.(5分)(2020•北京)计算:(13)﹣1+√18+|﹣2|﹣6sin45°.18.(5分)(2020•北京)解不等式组:{5x −3>2x ,2x−13<x 2.19.(5分)(2020•北京)已知5x 2﹣x ﹣1=0,求代数式(3x +2)(3x ﹣2)+x (x ﹣2)的值. 20.(5分)(2020•北京)已知:如图,△ABC 为锐角三角形,AB =AC ,CD ∥AB . 求作:线段BP ,使得点P 在直线CD 上,且∠ABP =12∠BAC .作法:①以点A为圆心,AC长为半径画圆,交直线CD于C,P两点;②连接BP.线段BP就是所求作的线段.(1)使用直尺和圆规,依作法补全图形(保留作图痕迹);(2)完成下面的证明.证明:∵CD∥AB,∴∠ABP=.∵AB=AC,∴点B在⊙A上.又∵点C,P都在⊙A上,∴∠BPC=12∠BAC()(填推理的依据).∴∠ABP=12∠BAC.21.(6分)(2020•北京)如图,菱形ABCD的对角线AC,BD相交于点O,E是AD的中点,点F,G在AB上,EF⊥AB,OG∥EF.(1)求证:四边形OEFG是矩形;(2)若AD=10,EF=4,求OE和BG的长.22.(5分)(2020•北京)在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象由函数y=x的图象平移得到,且经过点(1,2).(1)求这个一次函数的解析式;(2)当x>1时,对于x的每一个值,函数y=mx(m≠0)的值大于一次函数y=kx+b 的值,直接写出m的取值范围.23.(6分)(2020•北京)如图,AB为⊙O的直径,C为BA延长线上一点,CD是⊙O的切线,D为切点,OF⊥AD于点E,交CD于点F.(1)求证:∠ADC=∠AOF;(2)若sin C=13,BD=8,求EF的长.24.(6分)(2020•北京)小云在学习过程中遇到一个函数y=16|x|(x2﹣x+1)(x≥﹣2).下面是小云对其探究的过程,请补充完整:(1)当﹣2≤x<0时,对于函数y1=|x|,即y1=﹣x,当﹣2≤x<0时,y1随x的增大而,且y1>0;对于函数y2=x2﹣x+1,当﹣2≤x<0时,y2随x的增大而,且y2>0;结合上述分析,进一步探究发现,对于函数y,当﹣2≤x<0时,y随x的增大而.(2)当x≥0时,对于函数y,当x≥0时,y与x的几组对应值如下表:x0121322523…y0116167161954872…结合上表,进一步探究发现,当x≥0时,y随x的增大而增大.在平面直角坐标系xOy 中,画出当x≥0时的函数y的图象.(3)过点(0,m)(m>0)作平行于x轴的直线l,结合(1)(2)的分析,解决问题:若直线l与函数y=16|x|(x2﹣x+1)(x≥﹣2)的图象有两个交点,则m的最大值是.25.(5分)(2020•北京)小云统计了自己所住小区5月1日至30日的厨余垃圾分出量(单位:千克),相关信息如下:a.小云所住小区5月1日至30日的厨余垃圾分出量统计图:b.小云所住小区5月1日至30日分时段的厨余垃圾分出量的平均数如下:时段1日至10日11日至20日21日至30日平均数100170250(1)该小区5月1日至30日的厨余垃圾分出量的平均数约为(结果取整数);(2)已知该小区4月的厨余垃圾分出量的平均数为60,则该小区5月1日至30日的厨余垃圾分出量的平均数约为4月的倍(结果保留小数点后一位);(3)记该小区5月1日至10日的厨余垃圾分出量的方差为s12,5月11日至20日的厨余垃圾分出量的方差为s22,5月21日至30日的厨余垃圾分出量的方差为s32.直接写出s12,s22,s32的大小关系.26.(6分)(2020•北京)在平面直角坐标系xOy中,M(x1,y1),N(x2,y2)为抛物线y =ax2+bx+c(a>0)上任意两点,其中x1<x2.(1)若抛物线的对称轴为x=1,当x1,x2为何值时,y1=y2=c;(2)设抛物线的对称轴为x=t,若对于x1+x2>3,都有y1<y2,求t的取值范围.27.(7分)(2020•北京)在△ABC中,∠C=90°,AC>BC,D是AB的中点.E为直线AC上一动点,连接DE.过点D作DF⊥DE,交直线BC于点F,连接EF.(1)如图1,当E是线段AC的中点时,设AE=a,BF=b,求EF的长(用含a,b的式子表示);(2)当点E在线段CA的延长线上时,依题意补全图2,用等式表示线段AE,EF,BF 之间的数量关系,并证明.28.(7分)(2020•北京)在平面直角坐标系xOy 中,⊙O 的半径为1,A ,B 为⊙O 外两点,AB =1.给出如下定义:平移线段AB ,得到⊙O 的弦A 'B '(A ',B ′分别为点A ,B 的对应点),线段AA '长度的最小值称为线段AB 到⊙O 的“平移距离”.(1)如图,平移线段AB 得到⊙O 的长度为1的弦P 1P 2和P 3P 4,则这两条弦的位置关系是 ;在点P 1,P 2,P 3,P 4中,连接点A 与点 的线段的长度等于线段AB 到⊙O 的“平移距离”;(2)若点A ,B 都在直线y =√3x +2√3上,记线段AB 到⊙O 的“平移距离”为d 1,求d 1的最小值;(3)若点A 的坐标为(2,32),记线段AB 到⊙O 的“平移距离”为d 2,直接写出d 2的取值范围.2020年北京市中考数学试卷参考答案与试题解析一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.(2分)(2020•北京)如图是某几何体的三视图,该几何体是()A.圆柱B.圆椎C.三棱柱D.长方体【解答】解:该几何体是长方体,故选:D.2.(2分)(2020•北京)2020年6月23日,北斗三号最后一颗全球组网卫星从西昌卫星发射中心发射升空,6月30日成功定点于距离地球36000公里的地球同步轨道.将36000用科学记数法表示应为()A.0.36×105B.3.6×105C.3.6×104D.36×103【解答】解:36000=3.6×104,故选:C.3.(2分)(2020•北京)如图,AB和CD相交于点O,则下列结论正确的是()A.∠1=∠2B.∠2=∠3C.∠1>∠4+∠5D.∠2<∠5【解答】解:A.∵∠1和∠2是对顶角,∴∠1=∠2,故A正确;B.∵∠2=∠A+∠3,∴∠2>∠3,故B错误;C.∵∠1=∠4+∠5,故③错误;D.∵∠2=∠4+∠5,∴∠2>∠5;故D错误;故选:A.4.(2分)(2020•北京)下列图形中,既是中心对称图形也是轴对称图形的是()A.B.C.D.【解答】解:A、既不是轴对称图形,也不是中心对称图形,故此选项不合题意;B、既不是轴对称图形,也不是中心对称图形,故此选项不合题意;C、不是轴对称图形,是中心对称图形,不合题意;D、既是中心对称图形,又是轴对称图形,符合题意.故选:D.5.(2分)(2020•北京)正五边形的外角和为()A.180°B.360°C.540°D.720°【解答】解:任意多边形的外角和都是360°,故正五边形的外角和的度数为360°.故选:B.6.(2分)(2020•北京)实数a在数轴上的对应点的位置如图所示,若实数b满足﹣a<b<a,则b的值可以是()A.2B.﹣1C.﹣2D.﹣3【解答】解:因为1<a <2, 所以﹣2<﹣a <﹣1, 因为﹣a <b <a , 所以b 只能是﹣1. 故选:B .7.(2分)(2020•北京)不透明的袋子中有两个小球,上面分别写着数字“1”,“2”,除数字外两个小球无其他差别.从中随机摸出一个小球,记录其数字,放回并摇匀,再从中随机摸出一个小球,记录其数字,那么两次记录的数字之和为3的概率是( ) A .14B .13C .12D .23【解答】解:列表如下:1 2 1 2 3 234由表可知,共有4种等可能结果,其中两次记录的数字之和为3的有2种结果, 所以两次记录的数字之和为3的概率为24=12,故选:C .8.(2分)(2020•北京)有一个装有水的容器,如图所示,容器内的水面高度是10cm ,现向容器内注水,并同时开始计时,在注水过程中,水面高度以每秒0.2cm 的速度匀速增加,则容器注满水之前,容器内的水面高度与对应的注水时间满足的函数关系是( )A .正比例函数关系B .一次函数关系C .二次函数关系D .反比例函数关系【解答】解:设容器内的水面高度为h ,注水时间为t ,根据题意得: h =0.2t +10,∴容器注满水之前,容器内的水面高度与对应的注水时间满足的函数关系是一次函数关系. 故选:B .二、填空题(本题共16分,每小题2分) 9.(2分)(2020•北京)若代数式1x−7有意义,则实数x 的取值范围是 x ≠7 .【解答】解:若代数式1x−7有意义,则x ﹣7≠0, 解得:x ≠7. 故答案为:x ≠7.10.(2分)(2020•北京)已知关于x 的方程x 2+2x +k =0有两个相等的实数根,则k 的值是 1 .【解答】解:∵关于x 的方程x 2+2x +k =0有两个相等的实数根, ∴△=22﹣4×1×k =0, 解得:k =1. 故答案为:1.11.(2分)(2020•北京)写出一个比√2大且比√15小的整数 2或3(答案不唯一) . 【解答】解:∵1<√2<2,3<√15<4,∴比√2大且比√15小的整数2或3(答案不唯一). 故答案为:2或3(答案不唯一).12.(2分)(2020•北京)方程组{x −y =13x +y =7的解为 {x =2y =1 .【解答】解:{x −y =1①3x +y =7②,①+②得:4x =8, 解得:x =2,把x =2代入①得:y =1, 则方程组的解为{x =2y =1.故答案为:{x =2y =1.13.(2分)(2020•北京)在平面直角坐标系xOy 中,直线y =x 与双曲线y =mx 交于A ,B 两点.若点A ,B 的纵坐标分别为y 1,y 2,则y 1+y 2的值为 0 .【解答】解:∵直线y =x 与双曲线y =mx交于A ,B 两点, ∴联立方程组得:{y =xy =m x,解得:{x 1=√m y 1=√m ,{x2=−√my2=−√m ,∴y 1+y 2=0, 故答案为:0.14.(2分)(2020•北京)如图,在△ABC 中,AB =AC ,点D 在BC 上(不与点B ,C 重合).只需添加一个条件即可证明△ABD ≌△ACD ,这个条件可以是 BD =CD (写出一个即可).【解答】解:∵AB =AC , ∴∠ABD =∠ACD , 添加BD =CD , ∴在△ABD 与△ACD 中 {AB =AC∠ABD =∠ACD BD =CD, ∴△ABD ≌△ACD (SAS ), 故答案为:BD =CD .15.(2分)(2020•北京)如图所示的网格是正方形网格,A ,B ,C ,D 是网格线交点,则△ABC 的面积与△ABD 的面积的大小关系为:S △ABC = S △ABD (填“>”,“=”或“<”).【解答】解:∵S △ABC =12×2×4=4,S △ABD =2×5−12×5×1−12×1×3−12×2×2=4, ∴S △ABC =S △ABD , 故答案为:=.16.(2分)(2020•北京)如图是某剧场第一排座位分布图.甲、乙、丙、丁四人购票,所购票数分别为2,3,4,5.每人选座购票时,只购买第一排的座位相邻的票,同时使自己所选的座位号之和最小,如果按“甲、乙、丙、丁”的先后顺序购票,那么甲购买1,2号座位的票,乙购买3,5,7号座位的票,丙选座购票后,丁无法购买到第一排座位的票.若丙第一个购票,要使其他三人都能购买到第一排座位的票,写出一种满足条件的购票的先后顺序 丙、丁、甲、乙 .【解答】解:根据题意,丙第一个购票,只能购买3,1,2,4号票, 此时,3号左边有6个座位,4号右边有5个座位,即甲、乙购买的票只要在丙的同侧,四个人购买的票全在第一排, ①第二个丁可以购买3号左边的5个座位,另一侧的座位甲和乙购买, 即丙(3,1,2,4)、丁(5,7,9,11,13)、甲(6,8)、乙(10,12,14), 或丙(3,1,2,4)、丁(5,7,9,11,13)、乙(6,8,10)、甲(12,14); ②第二个由甲或乙购买,此时,只能购买5,7号票,第三个购买的只能是丁,且只能购买6,8,10,12,14号票, 此时,四个人购买的票全在第一排,即丙(3,1,2,4)、甲(5,7)、丁(6,8,10,12,14)、乙(9,11,13), 或丙(3,1,2,4)、乙(5,7,9)、丁(6,8,10,12,14)、甲(11,13), 因此,第一个是丙购买票,丁只要不是最后一个购买票的人,都能使四个人购买的票全在第一排,故答案为:丙、丁、甲、乙.三、解答题(本题共68分,第17-20题,每小题5分,第21题6分,第22题5分,第23-24题,每小题5分,第25题5分,第26题6分,第27-28题,每小题5分)解答应写出文字说明、演算步骤或证明过程.17.(5分)(2020•北京)计算:(13)﹣1+√18+|﹣2|﹣6sin45°.【解答】解:原式=3+3√2+2﹣6×√22 =3+3√2+2﹣3√2=5.18.(5分)(2020•北京)解不等式组:{5x −3>2x ,2x−13<x 2.【解答】解:解不等式5x ﹣3>2x ,得:x >1, 解不等式2x−13<x2,得:x <2,则不等式组的解集为1<x <2.19.(5分)(2020•北京)已知5x 2﹣x ﹣1=0,求代数式(3x +2)(3x ﹣2)+x (x ﹣2)的值. 【解答】解:(3x +2)(3x ﹣2)+x (x ﹣2) =9x 2﹣4+x 2﹣2x =10x 2﹣2x ﹣4, ∵5x 2﹣x ﹣1=0, ∴5x 2﹣x =1,∴原式=2(5x 2﹣x )﹣4=﹣2.20.(5分)(2020•北京)已知:如图,△ABC 为锐角三角形,AB =AC ,CD ∥AB . 求作:线段BP ,使得点P 在直线CD 上,且∠ABP =12∠BAC . 作法:①以点A 为圆心,AC 长为半径画圆,交直线CD 于C ,P 两点; ②连接BP .线段BP 就是所求作的线段.(1)使用直尺和圆规,依作法补全图形(保留作图痕迹); (2)完成下面的证明. 证明:∵CD ∥AB , ∴∠ABP = ∠BPC . ∵AB =AC , ∴点B 在⊙A 上. 又∵点C ,P 都在⊙A 上,∴∠BPC =12∠BAC ( 同弧所对的圆周角等于圆心角的一半 )(填推理的依据). ∴∠ABP =12∠BAC .【解答】解:(1)如图,即为补全的图形;(2)证明:∵CD∥AB,∴∠ABP=∠BPC.∵AB=AC,∴点B在⊙A上.又∵点C,P都在⊙A上,∴∠BPC=12∠BAC(同弧所对的圆周角等于圆心角的一半),∴∠ABP=12∠BAC.故答案为:∠BPC,同弧所对的圆周角等于圆心角的一半.21.(6分)(2020•北京)如图,菱形ABCD的对角线AC,BD相交于点O,E是AD的中点,点F,G在AB上,EF⊥AB,OG∥EF.(1)求证:四边形OEFG是矩形;(2)若AD=10,EF=4,求OE和BG的长.【解答】解:(1)∵四边形ABCD是菱形,∴BD⊥AC,∠DAO=∠BAO,∵E是AD的中点,∴AE=OE=12AD,∴∠EAO=∠AOE,∴∠AOE=∠BAO,∴OE∥FG,∵OG∥EF,∴四边形OEFG是平行四边形,∵EF⊥AB,∴∠EFG=90°,∴四边形OEFG是矩形;(2)∵四边形ABCD是菱形,∴BD⊥AC,AB=AD=10,∴∠AOD=90°,∵E是AD的中点,∴OE=AE=12AD=5;由(1)知,四边形OEFG是矩形,∴FG=OE=5,∵AE=5,EF=4,∴AF=√AE2−EF2=3,∴BG=AB﹣AF﹣FG=10﹣3﹣5=2.22.(5分)(2020•北京)在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象由函数y=x的图象平移得到,且经过点(1,2).(1)求这个一次函数的解析式;(2)当x>1时,对于x的每一个值,函数y=mx(m≠0)的值大于一次函数y=kx+b 的值,直接写出m的取值范围.【解答】解:(1)∵一次函数y=kx+b(k≠0)的图象由直线y=x平移得到,∴k=1,将点(1,2)代入y=x+b,得1+b=2,解得b=1,∴一次函数的解析式为y=x+1;(2)把点(1,2)代入y=mx求得m=2,∵当x>1时,对于x的每一个值,函数y=mx(m≠0)的值大于一次函数y=x+1的值,∴m≥2.23.(6分)(2020•北京)如图,AB为⊙O的直径,C为BA延长线上一点,CD是⊙O的切线,D为切点,OF⊥AD于点E,交CD于点F.(1)求证:∠ADC=∠AOF;(2)若sin C=13,BD=8,求EF的长.【解答】解:(1)连接OD,∵AB为⊙O的直径,∴∠ADB=90°,∴AD⊥BD,∵OF⊥AD,∴OF∥BD,∴∠AOF=∠B,∵CD 是⊙O 的切线,D 为切点, ∴∠CDO =90°,∴∠CDA +∠ADO =∠ADO +∠BDO =90°, ∴∠CDA =∠BDO , ∵OD =OB , ∴∠ODB =∠B , ∴∠AOF =∠ADC ; (2)∵OF ∥BD ,AO =OB , ∴AE =DE , ∴OE =12BD =12×8=4, ∵sin C =OD OC =13, ∴设OD =x ,OC =3x , ∴OB =x , ∴CB =4x , ∵OF ∥BD , ∴△COF ∽△CBD , ∴OC BC =OF BD ,∴3x 4x=OF 8,∴OF =6,∴EF =OF ﹣OE =6﹣4=2.24.(6分)(2020•北京)小云在学习过程中遇到一个函数y =16|x |(x 2﹣x +1)(x ≥﹣2). 下面是小云对其探究的过程,请补充完整:(1)当﹣2≤x <0时,对于函数y 1=|x |,即y 1=﹣x ,当﹣2≤x <0时,y 1随x 的增大而 减小 ,且y 1>0;对于函数y 2=x 2﹣x +1,当﹣2≤x <0时,y 2随x 的增大而 减小 ,且y 2>0;结合上述分析,进一步探究发现,对于函数y ,当﹣2≤x <0时,y 随x 的增大而 减小 .(2)当x ≥0时,对于函数y ,当x ≥0时,y 与x 的几组对应值如下表: x 0 12 1322523… y116167161954872…结合上表,进一步探究发现,当x ≥0时,y 随x 的增大而增大.在平面直角坐标系xOy 中,画出当x ≥0时的函数y 的图象.(3)过点(0,m )(m >0)作平行于x 轴的直线l ,结合(1)(2)的分析,解决问题:若直线l 与函数y =16|x |(x 2﹣x +1)(x ≥﹣2)的图象有两个交点,则m 的最大值是73.【解答】解:(1)当﹣2≤x <0时,对于函数y 1=|x |,即y 1=﹣x ,当﹣2≤x <0时,y 1随x 的增大而减小,且y 1>0;对于函数y 2=x 2﹣x +1,当﹣2≤x <0时,y 2随x 的增大而减小,且y 2>0;结合上述分析,进一步探究发现,对于函数y ,当﹣2≤x <0时,y 随x 的增大而减小.故答案为:减小,减小,减小.(2)函数图象如图所示:(3)∵直线l 与函数y =16|x |(x 2﹣x +1)(x ≥﹣2)的图象有两个交点, 观察图象可知,x =﹣2时,m 的值最大,最大值m =16×2×(4+2+1)=73, 故答案为7325.(5分)(2020•北京)小云统计了自己所住小区5月1日至30日的厨余垃圾分出量(单位:千克),相关信息如下:a .小云所住小区5月1日至30日的厨余垃圾分出量统计图:b .小云所住小区5月1日至30日分时段的厨余垃圾分出量的平均数如下:时段 1日至10日11日至20日21日至30日平均数100170250(1)该小区5月1日至30日的厨余垃圾分出量的平均数约为 173 (结果取整数); (2)已知该小区4月的厨余垃圾分出量的平均数为60,则该小区5月1日至30日的厨余垃圾分出量的平均数约为4月的 2.9 倍(结果保留小数点后一位);(3)记该小区5月1日至10日的厨余垃圾分出量的方差为s 12,5月11日至20日的厨余垃圾分出量的方差为s 22,5月21日至30日的厨余垃圾分出量的方差为s 32.直接写出s 12,s 22,s 32的大小关系.【解答】解:(1)该小区5月1日至30日的厨余垃圾分出量的平均数约为100×10+170×10+250×1030≈173(千克),故答案为:173;(2)该小区5月1日至30日的厨余垃圾分出量的平均数约为4月的17360≈2.9(倍),故答案为:2.9;(3)由小云所住小区5月1日至30日的厨余垃圾分出量统计图知,第1个10天的分出量最分散、第3个10天分出量最为集中, ∴s 12>s 22>s 32.26.(6分)(2020•北京)在平面直角坐标系xOy 中,M (x 1,y 1),N (x 2,y 2)为抛物线y=ax2+bx+c(a>0)上任意两点,其中x1<x2.(1)若抛物线的对称轴为x=1,当x1,x2为何值时,y1=y2=c;(2)设抛物线的对称轴为x=t,若对于x1+x2>3,都有y1<y2,求t的取值范围.【解答】解:(1)由题意y1=y2=c,∴x1=0,∵对称轴x=1,∴M,N关于x=1对称,∴x2=2,∴x1=0,x2=2时,y1=y2=c.(2)∵抛物线的对称轴为x=t,若对于x1+x2>3,都有y1<y2,当x1+x2=3,且y1=y2时,对称轴x=3 2,观察图象可知满足条件的值为:t≤3 2.27.(7分)(2020•北京)在△ABC中,∠C=90°,AC>BC,D是AB的中点.E为直线AC上一动点,连接DE.过点D作DF⊥DE,交直线BC于点F,连接EF.(1)如图1,当E是线段AC的中点时,设AE=a,BF=b,求EF的长(用含a,b的式子表示);(2)当点E在线段CA的延长线上时,依题意补全图2,用等式表示线段AE,EF,BF 之间的数量关系,并证明.【解答】解:(1)∵D是AB的中点,E是线段AC的中点,∴DE∥BC,DE=12BC,∵∠ACB=90°,∴∠DEC=90°,∵DF⊥DE,∴∠EDF =90°,∴四边形CEDF 是矩形,∴DE =CF =12BC ,∴CF =BF =b ,∵CE =AE =a ,∴EF =√CF 2+CE 2=√a 2+b 2;(2)AE 2+BF 2=EF 2.证明:过点B 作BM ∥AC ,与ED 的延长线交于点M ,连接MF ,则∠AED =∠BMD ,∠CBM =∠ACB =90°,∵D 点是AB 的中点,∴AD =BD ,在△ADE 和△BDM 中,{∠AED =∠BMD∠ADE =∠BDM AD =BD,∴△ADE ≌△BDM (AAS ),∴AE =BM ,DE =DM ,∵DF ⊥DE ,∴EF =MF ,∵BM 2+BF 2=MF 2,∴AE 2+BF 2=EF 2.28.(7分)(2020•北京)在平面直角坐标系xOy 中,⊙O 的半径为1,A ,B 为⊙O 外两点,AB =1.给出如下定义:平移线段AB ,得到⊙O 的弦A 'B '(A ',B ′分别为点A ,B 的对应点),线段AA '长度的最小值称为线段AB 到⊙O 的“平移距离”.(1)如图,平移线段AB 得到⊙O 的长度为1的弦P 1P 2和P 3P 4,则这两条弦的位置关系是 P 1P 2∥P 3P 4 ;在点P 1,P 2,P 3,P 4中,连接点A 与点 P 3 的线段的长度等于线段AB 到⊙O 的“平移距离”;(2)若点A ,B 都在直线y =√3x +2√3上,记线段AB 到⊙O 的“平移距离”为d 1,求d 1的最小值;(3)若点A 的坐标为(2,32),记线段AB 到⊙O 的“平移距离”为d 2,直接写出d 2的取值范围.【解答】解:(1)如图,平移线段AB 得到⊙O 的长度为1的弦P 1P 2和P 3P 4,则这两条弦的位置关系是P 1P 2∥P 3P 4;在点P 1,P 2,P 3,P 4中,连接点A 与点P 3的线段的长度等于线段AB 到⊙O 的“平移距离”.故答案为:P 1P 2∥P 3P 4,P 3.(2)如图1中,作等边△OEF ,点E 在x 轴上,OE =EF =OF =1,设直线y =√3x +2√3交x 轴于M ,交y 轴于N .则M (﹣2,0),N (0,2√3),过点E 作EH ⊥MN 于H ,∵OM =2,ON =2√3,∴tan ∠NMO =√3,∴∠NMO =60°,∴EH =EM •sin60°=√32,观察图象可知,线段AB 到⊙O 的“平移距离”为d 1的最小值为√32.(3)如图2中,以A 为圆心1为半径作⊙A ,作直线OA 交⊙O 于M ,交⊙A 于N ,以OA ,AB 为邻边构造平行四边形ABDO ,以OD 为边构造等边△ODB ′,等边△OB ′A ′,则AB ∥A ′B ′,AA ′的长即为线段AB 到⊙O 的“平移距离”,当点A ′与M 重合时,AA ′的值最小,最小值=OA ﹣OM =52−1=32, 当点B 与N 重合时,AA ′的长最大,如图3中,过点A ′作A ′H ⊥OA 于H .由题意A ′H =√32,AH =12+52=3,∴AA ′的最大值=(32)2+32=√392, ∴32≤d 2≤√392.。
2020届初三适应性练习(二)数学试题 时间:120分钟 一.选择题(每题2分,共16分) 1.下列图形中既是轴对称图形,又是中心对称图形的是( )
A. B. C. D. 2.电影《流浪地球》中,人类计划带着地球一起逃到距地球4光年的半人马星座比邻星.已知光年是天文学中的距离单位,1光年大约是95000亿千米,则4光年约为( )亿千米。 A.9.5×104 B.95×104 C.3.8×105 D.3.8×104 3.如图是一个几何体的三视图,那么这几何体的展开图可以是( )
A. B. C. D. 4.为了从甲、乙、丙三名学生中选拔一人参加数学竞赛,在相同条件下对他们进行了10次测验,计算他们的
方差得:S甲2=13.2,S乙2=26.36,S丙2=20.5,则成绩更稳定的学生是( ) A.甲 B.乙 C.丙 D.无法确定 5.实数abc,,在数轴上的对应点的位置如图所示,若ab=,则下列结论中错误的是( ) A.0ac< B.0ac+> C.0bc+> D.0ab+> 6.如果a+b=2,那么代数式的值是( ) A. B.1 C. D.2 7.如图,二次函数y=ax2+bx+c(a≠0)的图象经过点A,B,C.现有下面四个推断: ①抛物线开口向下; ②当x=﹣2时,y取最大值; ③当m<4时,关于x的一元二次方程ax2+bx+c=m必有两个不相等的实数根;
④直线y=kx+c(k≠0)经过点A,C,当kx+c2+bx+c时,x的取值范围是
﹣4<x<0; 其中推断正确的是( ) A.①② B.①③ C.①③④ D.②③④ 8.将A,B两位篮球运动员在一段时间内的投篮情况记录如下:
abc投篮次数 10 20 30 40 50 60 70 80 90 100 A 投中次数 7 15 23 30 38 45 53 60 68 75 投中频率 0.700 0.750 0.767 0.750 0.760 0.750 0.757 0.750 0.756 0.750
B 投中次数 8 14 23 32 35 43 52 61 70 80 投中频率 0.800 0.700 0.767 0.800 0.700 0.717 0.743 0.763 0.778 0.800 ①当投篮30次时,两位运动员都投中23次,所以他们投中的概率都是0.767; ②随着投篮次数的增加,A运动员投中频率总在0.750附近摆动,显示出一定的稳定性,可以估计A运动员投中的概率是0.750; ③当投篮达到200次时,B运动员投中次数一定为160次. 上面有三个推断,其中合理的是( ) A.① B.② C.①③ D.②③ 二.填空题(每题2分,共16分) 9.若代数式有意义,则实数x的取值范围是 .
10.用一组a、b的值说明命题“对于非零实数a,b,若ab= . 11.如图,已知Rt△ABC位于第二象限,点A(﹣1,1),AB=BC=2,且两条直角边AB、BC分别平行于x轴、
y轴,写出一个函数y=(k≠0),使它的图象与△ABC有两个公共点,这个函数的表达式为 .
11题 12题 13题 12.如图,点A,B,C,D在⊙O上,=,∠CAD=30°,∠ACD=50°,则∠ADB= . 13.如图,在小正方形组成的网格中,点A、B、C、D、E都在小正方形的顶点上,则tan∠ADC= . 14.为了解早高峰期间A,B两邻近地铁站乘客的乘车等待时间(指乘客从进站到乘上车的时间),某部门在同一上班高峰时段对A、B两地铁站各随机抽取了500名乘客,收集了其乘车等待时间(单位:分钟)的数据,统计如表: 等待时的频数间 乘车等待时间 地铁站 5≤t≤10 10<t≤15 15<t≤20 20<t≤25 25<t≤30 合计
A 50 50 152 148 100 500 B 45 215 167 43 30 500 据此估计,早高峰期间,在A地铁站“乘车等待时间不超过15分钟”的概率为 ;夏老师家正好位于A,B两
DECB
A地铁站之间,她希望每天上班的乘车等待时间不超过20分钟,则她应尽量选择从 地铁站上车.(填“A”或“B”)
15.甲地有42吨货物要运到乙地,有大、小两种货车可供选择,具体收费情况如表: 类型 载重量(吨) 运费(元/车) 大货车 8 450 小货车 5 300 运完这批货物最少要支付运费 元.
16.在平行四边形ABCD中,对角线AC、BD交于点O,点E是边AD上一动点(与点A、D不重合),连接EO并延长,交BC于点F,连接BE、DF,下列说法,所有正确的序号是 . ①对于任意的E点,四边形BEDF都是平行四边形; ②当∠ABC>90°时,至少存在一个点E,使得四边形BEDF是矩形; ③当AB④当∠ADB=45°时,至少存在一个点E,使得四边形BEDF是正方形 三.解答题(17---22每题5分,23---26题,每题6分,27、28题各7分,共68分,)
17.计算:2313tan608()122 18.解不等式组:1335+12xxxx,≥.
19.关于x的一元二次方程0122xmx有两个不相等的实数根. (1)求m的取值范围; (2)若方程的两个根都是有理数,写出一个满足条件的m的值,并求出此时方程的根.
20.如图:在平面直角坐标系xOy中,点A(﹣2,2),B(4,4). (1)尺规作图:求作过A,B,O三点的圆; (2)设过A,B,O三点的圆的圆心为M,利用网格,直接写出点M的坐标; (3)若直线x=a与⊙M相交,直接写出a的取值范围. 21.四边形ABCD中,∠A=∠B= 90°,点E在边AB上,点F在AD的延长线上,且点E与点F关于直线 CD对称,过点E作EG∥AF交CD于点G,连接 FG,DE.
(1)依题意补全图形 (2)求证:四边形DEGF是菱形; (3)若AB=10,AF=BC=8,求四边形DEGF的面积.
22.为了调查A、B两个区的初三学生体育测试成绩,从两个区各随机抽取了1000名学生的成绩(满分:40分,个人成绩四舍五入向上取整数) A区抽样学生体育测试成绩的平均分、中位数、众数如下: 平均分 中位数 众数 37 36 37 B区抽样学生体育测试成绩的分布如下: 成绩 28≤x<31 31≤x<34 34≤x<37 37≤x<40 40(满分) 人数 60 80 140 m 220 请根据以上信息回答下列问题 (1)m= ; (2)在两区抽样的学生中,体育测试成绩为37分的学生,在 (填“A”或“B”)区被抽样学生中排名更靠前,说明理由; (3)如果B区有10000名学生参加此次体育测试,估计成绩不低于34分的人数.
23.在平面直角坐标系xOy中,曲线0kyxx经过点A(2,1). (1)求曲线0kyxx的表达式; (2)直线y=ax+4(a≠0)与曲线0kyxx围成的封闭区域为图象G. ①当1a时,直接写出图象G上的整数点个数是 ; (注:横,纵坐标均为整数的点称为整点,图象G包含边界.) ②当图象G内只有5个整数点时,求a的取值范围. 24.如图,AB是⊙O的直径,点C是⊙O上的一点,点D是弧BC的中点,连接AC,BD,过点D作AC的垂线EF,交AC的延长线于点E,交AB的延长线于点F. (1)依题意补全图形; (2)判断直线EF与⊙O的位置关系,并说明理由; (3)若AB=5,BD=3,求线段BF的长.
25.如图,点P是上一动点,连接AP,作∠APC=45°,交弦AB于点C.AB=6cm.小元根据学习函数的经验,分别对线段AP,PC,AC的长度进行了测量. 下面是小元的探究过程,请补充完整:
(1)下表是点P是上的不同位置,画图、测量,得到线段AP,PC,AC长度的几组值,如表: AP/cm 0 1.00 2.00 3.00 4.00 5.00 6.00 PC/cm 0 1.21 2.09 2.69 m 2.82 0 AC/cm 0 0.87 1.57 2.20 2.83 3.61 6.00 ①经测量m的值是 (保留一位小数). ②在AP,PC,AC的长度这三个量中,确定 的长度是自变量,另两个长度都是这个自变量的函数; (2)在同一平面直角坐标系xOy中,画出(1)中所确定的函数图象; (3)结合函数图象,解决问题:当△ACP为等腰三角形时,AP的长度约为 cm(保留一位小数). 26. 已知抛物线y=mx2﹣4mx+3. (1)求抛物线的对称轴及抛物线与y轴的交点坐标; (2)已知△ABC中,A(0,﹣1),B(5,﹣1),C(3,4),当抛物线与△ABC三条边共有2个交点时,求m的取值范围.
27. 如图,线段MO,NO满足:MO⊥NO于点O,且MO=NO,点A为线段NO上一点,作射线MA,过点N作射线NB,使NB⊥MA于点C,交射线MO于点B,连接CO. (1)①依题意补全图形,求证:∠M=∠N; ②求∠MCO的度数; (2)作点O关于射线NB的对称点P,连接OP,CP. ① 依据题意补全图形; ②用等式表示线段CM,CN,CP之间的数量关系并加以证明.
28. 在平面直角坐标系xOy中,已知点A(0,0),B(2,2).给出如下定义:对于平面内任意一点M,若线段AB上任意一点N,都有MN≤2,则称点M是线段AB的“临近点”.
(1) ①在点C(2,1),D(0,2),E(3,1)中,是线段AB的“临近点”的是 ; ②点P是直线y=-323x上一点,若点P是线段AB的“临近点”,请求出点P横坐标xP的取值范围. (2)若直线y=-3xb上存在线段AB的“临近点”,求b的取值范围.
.
NOM
A