第八章 一元一次不等式中考
- 格式:doc
- 大小:1.57 MB
- 文档页数:23
第八章 一元一次不等式含有“>”,“<”,“≥”,“≤”或“≠”符号的式子叫做不等式,其中“>”是“大于”,“<”是“小于,” “≥”是“不小于”,“≤”是“不大于”,“≠”是“不等”,这些符号统称不等号.从形式上看,将数或式用不等号连结就组成不等式,如52-<a ,33<-,x 105>等都是不等式,但仔细分析,这些不等式中文字允许值范围是有区别的;52-<a ,对任意实数均不成立,这样的不等式称为矛盾不等式,像73<-则是绝对不等式,x 105>只在21<x 的条件下成立,称为条件不等式,即对不等式可进行如下分类:⎪⎩⎪⎨⎧条件不等式矛盾不等式绝对不等式不等式 对绝对不等式,涉及的多是证明题,对条件不等式,涉及的多是解不等式,为了学习这些内容,必须掌握不等式的三条基本性质.性质1 不等式两边都加(或减去)同一个数或同一个整式,不等号的方向不变. 性质2 不等式两边都乘以(或除以)同一个正数,不等号的方向不变. 性质3 不等式两边都乘以(或除以)同一个负数,不等号的方向改变.第一节 比大小给两个数或式比大小,能够很好地训练观察力和计算能力,要依据下面的基本途径. Ⅰ.要证A ≥B ,必须且只须证A -B ≥0. Ⅱ.若A >0,B >0,要证A ≥B 只须证BA ≥1. Ⅲ.若A ≥B ,且B ≥C ,则有A ≥C ,因此,要证A ≥C ,只须找到一个B ,使得A ≥B 且B ≥C 成立.Ⅳ.对于正负数的比较,正数大于0和负数,两个负数绝对值小的其值较大,绝对值大的其值较小.例1 比较19941996199419801994199519941979与的大小.解:设19941995=a ,19941979=b ,显然0>>b a , 则111994199619941980,1994199519941979++==a b a b由于11++-a b a b =)1()1()1(++-+a a b a a b =)1(+--+a a a ab b ab =0)1(<+-a a a b . 所以11++<a b a b . 即 19941996199419801994199519941979<. 说明:一般情况下,a ,b 都是正数,a>b ,此时ab是一个真分数,例1已经证明:11++<a b a b 表明一个正的真分数的分子分母同时加1所得的新的真分数其值大于原来的那个真分数. 证明途径采用1,“作差比较法”.例2 比较3033与4542的大小.解:这是两个正整数方幂比大小的问题,我们利用途径Ⅱ去作较为有利.23)2()3(22332315131512453302454303⋅=⋅⋅==12389151>⋅⎪⎭⎫⎝⎛, ∴ 45430323>. 例3 试比较14111731与哪个较大?分析:17与1624=接近,31与3225=接近,因此,设法找一个2的方幂为中介去进行比较为宜.解:56141421617=> 56551111223231<=<. ∴ 11143117>.说明:本题中562就是基本途径Ⅲ中的“B ”,本题实际上是按基本途径Ⅲ去解决的. 例4 四个互不相等的正数,a ,b ,c ,d 中,a 最大,d 最小,且bc b a ≥. 试确定c bd a ++与的大小关系.解:因为0,0,0,0>>>>d c b a 且a最大,d最小,因此d c d b d a c a b a >>>>>,,,,.由d c b a ≥ 有 11-≥-d cb a (性质1) 即 b b a -≥db c -, ∴d bd c b a ≥--. (性质2) 因为 10>⇒>>d b d b , 所以1>≥--dbd c b a ,即d c b a ->-, 因此有c b d a +>+.答:c b d a ++与的大小关系是c b d a +>+.例5 证明:101100999897654321<⨯⨯⨯⨯⨯ . 证明:设100999897654321⨯⨯⨯⨯⨯= A , 99989796765432⨯⨯⨯⨯⨯= B 因为 98979998,,6576,4354,2132>>>> ,100991001001>=,相乘可知 A B >,于是⎪⎭⎫ ⎝⎛⨯⨯⨯⨯⨯⨯=⨯10099100989897654321 B A ×⎪⎭⎫ ⎝⎛⨯⨯⨯⨯⨯99989796765432=10011009998975465433221=⨯⨯⨯⨯⨯⨯⨯ . 由B A <可得 10012<A , 所以 101<A .即 101100999897654321<⨯⨯⨯⨯⨯ . 例 6 给定正数0a ,1a ,2a ,…,99a ,100a 且已知01a a >,01223a a a -=,12323a a a -=,……,989910023a a a -=,求证:991002>a .证明:由01a a >,且0a ,1a ,均为正整数. 所以有1a -0a ≥1由 01223a a a -=得 )(20112a a a a -=- ① 由 12323a a a -=得 )(21223a a a a -=- ② 同理可得)(22334a a a a -=- ③ )(23445a a a a -=- ④ ……)(297989899a a a a -=-)(2989999100a a a a -=-①×②×…× × 得990199991002)(2≥-=-a a a a∴ 99999910022>+≥a a .例7 由200个学生排成一个矩形方阵,每一横行10个人,每一纵列20个人,在每一纵列里选一个身材最高的学生(如果同时最高有几个人,任选其一即可),然后从选取出的10个人取其中身高最矮的一个人为A ;另一方面,在每一横行里选取身材最矮的学生,然后从选出的20个矮子中取其中最高的一个人为B . 求证:A 的身高≥B 的身高.证明:设学生A 是从每一纵列中选出身材最高的10名学生中的最矮者,学生B 是从每一横行中选出的身材最矮的学生中的最高者,这时找A 所在列与B 所在行交点处的学生C ,由A 的选择知,A 的身高≥C 的身高.由B 的选择知C 的身高≥B 的身高, 因此,A 的身高≥B 的身高. 说明:例7的证明实质上是A ≥C ,C ≥B A ⇒≥B 的一个应用.习题8.11.下列各命题中正确的一个是 ( )(A)如果b a <,那么0>-b a . (B)如果b a -<,那么0>+a b .(C) 如果0<<b a ,那么02>-ab a . (D)如果b a >,那么05>-b a .2.已知3344555,4,3===c b a ,则有 ( )(A )c b a << (B )a b c << (C )b a c << (D )b c a << 3.试比较11131113⋅与13111113⋅的大小. 4.比较199119911991与1111的大小. 5.比较199199999119与的大小. 6.求证:111.0100019991121111101099.022222<+++++<.第二节 解一次不等式(组)最简单的不等式,是只含一个未知数且次数是1,系数不等于0的不等式,叫做一元一次不等式,它的标准式是0<+b ax 或 0>+b ax )0(≠a显然,由0<+b ax ,有 b ax -<. 若0>a ,则a b x -<.若0<a ,则ab x ->, 对0>+b ax 也可作类似的讨论.因此,对一元一次不等式,首先要化简成为标准式,然后进行求解.例1 解不等式 x x x x x >++++168421 解:由 x xx x x >++++168421 得 116842<----x x x x x , 得 116<x,即16<x . 例2满足31222-≥+x x 的x 值中,绝对值不超过11的那些整数之和等于多少? 解:由31222-≥+x x 去分母,得 )12(2)2(3-≥+x x , 去括号,得 2436-≥+x x移项,得 6243--≥-x x , 合并同类项8-≥-x ,于是8≤x 其中绝对值不超过11的整数之和为 30)11()10()9(-=-+-+-. 例3 已知不等式03≤-a x 的正整数解恰是1,2,3,求a 的取值范围. 解:由03≤-a x ,得3a x ≤. 由于x 取整数解1,2,3,表明x 不小于3且x 小于4,可见433<≤a,于是129<≤a . 答:a 的取值范围是129<≤a .例5 满足不等式31222-≥+x x 的所有非负整数的乘积等于多少? 解1:本题的直接不等式解见例2,可求得8≤x .所以满足不等式31222-≥+x x 的非负数解为0,1,2,3,4,5,6,7,8.这九个数的乘积为0.解2:根据问题特点,以0代入不等式两边,左边为1,右边为31-,显然311->,所以0是满足不等式31222-≥+x x 的一个非负整数解,所以满足不等式31222-≥+x x 的所有非负整数解的积等于0.说明:例2及例4都源于代数第一册(下)第66页例2,在课本例题的基础上又有一定变化,这样可以训练思维的灵活性与知识的综合性,许多“希望杯”数学邀请赛的试题都是这样编拟的.例5 如果关于x 的不等式 05)2(>-+-b a x b a 的解为710<x . 问关于x 的不等式b ax >的解是什么?解:由已知得 a b x b a ->-5)2( ①它与107->-x ②为同解不等式,比较,得 ⎩⎨⎧-=--=-10572a b b a 解得⎩⎨⎧-=-=35b a 所以关于x 的不等式35->-x 的解为53<x . 对于一元一次不等式组,都可分别化为以下三种基本形式 (Ⅰ)a x b a b x a x >>⎩⎨⎧>>其解为)(.(Ⅱ)b x b a bx ax <>⎩⎨⎧<<其解为)(.(Ⅲ)无解)(b a b x a x >⎩⎨⎧<>. (Ⅳ)a x b b a b x a x <<>⎩⎨⎧><其解为)(.例6 求满足不等式组 ⎪⎪⎩⎪⎪⎨⎧-->+-+≤->+--1411752253401321x x x x xx 的所有整数的和是多少?解:原不等式组可化为 ⎪⎩⎪⎨⎧+->--+≤->+--x x x x x x 11421028253406233 解之得 ⎪⎪⎩⎪⎪⎨⎧<≤->32143x x x故原不等式组的解是3213<<-x . 其间的整数只有-2,-1,0,1,其和为(-2)+(-1)+0+1=-2. 答:满足题设不等式组的所有整数之和为-2.说明:解一次不等式组,在综合解的区间时,如我们所示的方法,利用数轴表示,即直观又准确,应该很好掌握.例7 已知x 满足32537213xx x +-≥-- 并且|2||3|+--x x 的最大值为p ,最小值为q ,求pq 之值. 解:由不等式32537213x x x +-≥-- 解得 x ≥1(解的过程自己补足)下面对|2||3|+--=x x y 依31<≤x 和3≥x 进行讨论.(1) 当31<≤x 时,02,03>+<-x x ,此时1223+-=---=x x x y . (2) 当x ≥3时,x -3≥0,x +2>0,此时523-=---=x x y ,所以当x =1时,|2||3|+--x x 取最大值1-=p ,当3=x 时|2||3|+--x x 取最小值5-=q .所以5)5()1(=-⨯-=pq .说明:一元一次不等式及不等式组,掌握解法之后,其综合运用一般表现在求整数解,或求参数的取值范围,也可以与解方程组或绝对值知识进行综合运用,这时分情况说明及分类讨论则是非常重要的手段.习题8.21. 解关于x 的一次不等式:1)1(->-x x a .2. 解不等式组 ⎩⎨⎧->-->-.94632352x x xx3. 求不等式组⎪⎩⎪⎨⎧+<->-3473160103x x x 的所有正整数解.4. 解关于x 的不等式:bx b a b a ax +-+>))((.5. 求适合下列混合组的所有正整数解 ⎪⎩⎪⎨⎧<++=+-=-+.7822423z y x x y x z y x第三节 一次不等式的应用举例在某些应用问题中,需要应用一次不等式估值,或者列出方程与一次不等式混合求解,作为课外活动内容应当有所引深.例1有甲、乙、丙、丁四位同学去林中采蘑菇,平均每人采得蘑菇的个数约是一个十位数字为3的两位数,又知甲采的数量是乙的54,乙采的数量是丙的23倍,丁比甲多采了3个蘑菇,求每人各采了多少蘑菇?解:设丙采蘑菇数为x ,依题意乙采蘑菇数为x 23,甲采蘑菇数为x x 562354=⋅.丁采蘑菇数为356+x . 四人合采蘑菇为 310493565623+=++++x x x x x 四人采蘑菇平均数为⎪⎭⎫⎝⎛+3104941x ,依题意这是一个近似为首位是3的两位整数,因此,由近似数的表示有:4.3931049415.29≤⎪⎭⎫⎝⎛+≤x 6.157********≤+≤x ,6.1541049115≤≤x 49106.1544910115⨯≤≤⨯x ,5.315.23≤≤x … 因x 是整数,x 只能从24,25,26,27,28,29,30,31中选取.又x 1049必须是整数,x 是10的倍数,因此只能有30=x ,即丙采30个蘑菇,此时乙采45个蘑菇,甲采36个蘑菇,丁采39个蘑菇.检验得,4人采蘑菇平均为5.374150=,依四舍五入,约为38是个十位数是3的两位数.例2把若干个苹果分给几个孩子,如果每人分3个,则余8个;每人分给5个,则最后一人分得的数不足5个,问共有多少个孩子?多少个苹果?解:设有小孩子x 人,y 个苹果,由“每人分3个余8个”,可得83+=x y ,由“每人分5个,则最后一人分得的数不足5个”可列出不等式:x y x 5)1(5<<-于是 ⎩⎨⎧->+<+)1(583583x x x x解之得 5.64<<x . 所以小孩数是5或6当5=x 时,23853=+⨯=y ,当6=x 时,26863=+⨯=y .答:有5个孩子,23个苹果,或6个孩子,26个苹果.例3 有一个四位数,它满足下述条件:① 个位上的数字的2倍与2的和小于十位上的数字的一半;② 个位上的数字与千位上的数字,十位上的数字与百位上的数字同时对调,所得的新四位数与原四位数相同;③ 个位数字与十位数字之和等于10,求这个四位数.解:由条件②可设这个四位数为xyyx (其中x ,y 为整数数码),且1≤x ≤9,1≤y ≤9.依题意,有⎪⎩⎪⎨⎧<+=+22210y x y x由①得,x y -=10, ③以③代入②,得22210+>-x x即 4410+>-x x ,解得 56<x .但1≤x ≤9,x 是整数,可知x =1,此时y =9,所求四位数是1991.例4 如图,甲、乙两人在周长为800米的正方形水池相邻的两角上同时同向出发绕池边行走,乙在甲后,甲每分钟走50米,乙每分钟走40米,问甲乙两人自出发后经几分钟,才能初次在正方形水池的同一边上行走?解:设甲、乙两人初次在同一边上时,乙已走了x 条边,那么甲便走了(x +3)条边.也就是甲走了)3(200+x 米,乙走了4050)3(200⨯+x 米.要注意,当甲、乙同在一边时,乙所走的距离已超过了200x米;又因为甲前乙后,甲若到了另一边的端点,乙肯定没到相邻的端点,所以乙走的距离又应小于200(x +1)米.所以列出不等式如下:)1(2004050)3(200200+<⨯+<x x x .解之得 127<<x .因为要求初次在同一边上走的时间,所以应该选取满足127<<x 的最小整数x =8,这时需经过的时间为4450)38(200=+分钟. 答:甲、乙两人自出发后经过44分钟,才能初次在正方形水池的同一边上行走.习题8.31. 小王有一个哥哥和一个弟弟,哥哥的年龄是20岁,小王的年龄的2倍加上他弟弟年龄的5倍等于97,问小王和他弟弟的年龄各是多少?2. 某次数学测验,共有16道选择题,评分办法是:答对一题得6分,答错一题扣2分,不答不给分,某学生有一题未答,那么这个学生至少答对多少道题,成绩才能在60分以上?3. 货轮上卸下若干只箱子,其总重量为10吨,每只箱子的重量不超过1吨,为了保证能把这些箱子一次运走,问至少需要多少辆载重3吨的汽车? 4. 要使方程组(x ,y )是未知数⎩⎨⎧=+=+1135y x py x 有正整数解,试确定p 的值.第四节 简单的不等式证明给出两个由文字与数字组成的式子,证明它们之间存在确定的不等关系,叫做证明不等式,比如a 、b 是任意实数,22b a +与2ab 是两个代数式,证明成立22b a +≥2ab 就是证明不等式.其实,如果想到,对任意实数a ,b ,总成立2)(b a -≥0.则0222≥+-b ab a ,进而得出22b a +≥2ab ,写出上述的过程就是这个不等式的证明,这个证明过程是依据不等量公理,不等式的性质,代数式的恒等变形等知识依逻辑规则来实现的,当然,已被证明的不等式也可作为定理来引用.例1 若a ,b 均为正数,求证:ba ab +≥2 分析:要证baa b +≥2, 只须 aba b 22+≥2, (由于)0,0,0>>>ab b a只须 22b a +≥2ab只须 2)(b a -≥0,这是基本事实,到此思路已经沟通,即可写出证明.证明:a 、b 均为实数,则有22b a +≥2ab , 由于0,0>>b a ,所以0>ab .两边同除ab 得abb a 22+≥2. 也就是 a b b a +≥2.说明 ①a 、b 均为实数,22b a +≥2ab 是最基本的不等式,可以作为定理应用. ②例1的结论对a <0且b <0时,也是正确的,它表明一个正数与其倒数之和不小于2. 例2若0,0>>b a ,求证ab ba ≥+2. 分析:要证ab ba ≥+2, 只须 ab b a 2≥+ 只须ab b a 4)(2≥+, 只须 ab b ab a 4222≥++只须 ab b a 222≥+.这是基本的不等式,至此思路已经沟通,可以写出证明. 证明:因为ab b a 222≥+所以ab b ab a 4222≥++,即 ab b a 4)(2≥+. 由于0,0,0>>>ab b a 所以两边开平方可得ab b a 2≥+,也就是ab ba ≥+2. 说明:本例的2b a +称为a 、b 的算术平均数,ab 称为a 、b 的几何平均数,2ba +≥ab 表明两个正数的算术平均不小于它们的几何平均,这个结论也是非常重要的.例3对正数a ,b ,c ,求证ca bc ab c b a ++≥++222. 证明:对a ,b 而言,ab b a 222≥+对b ,c 而言 bc c b 222≥+, 对c ,a 而言 ca a c 222≥+相加得 )(2)(2222ca bc ab c b a ++≥++,所以 ca bc ab c b a ++≥++222例4 求证:对任意实数a ,b 都有 221215132555b b aa +-≤++. 分析:左边的式子只与a 有关,右边的式子只与b 有关,可以单独考虑,若c aa ≤++255521,而221513b b c +-≤,即可得证.104 证明:由于22215)5(552555+⋅=++a aa a 由于5525)5(22⋅⋅≥+aa ,所以21555522≤+⋅a a . ① 又 221513b b +-=21)2552(2121211252122++⋅-=++-b b b b =2121)5(212≥+-b ② 综合①,②可得 221215132555b b a a +-≤++. 例4 若a 、b 、c 、d 都是实数,求证 ))(()(22222d c b a bd ac ++≤+. 分析:要证 ))(()(22222d c b a bd ac ++≤+只须 2222222222222d b d a c b c a d b abcd c a +++≤++只须 22222d a c b abcd +≤,只须 222220d a abcd c b +-≤只须 2)(0ad bc -≤即可.这是显然成立的事实,倒过来写就是本题的证明.证明:由a ,b ,c ,d 均为实数,显然 0)(2≥-ad bc . 即 022222≥+-d a a b c d c b .也就是 22222d a c b abcd +≤. 两边都加2222d b c a +得 2222222222222d b d a c b c a d b abcd c a +++≤++ 两端因式分解,即得证 ))(()(22222d c b a bd ac ++≤+.说明:在不等式的证明中,分析是非常重要的,因此,学习不等式的证明,要点在学会分析. 习题8.41. 若0>>b a ,求证 2233ab b a b a +>+. 2. a ,b 均为正数,求证a b b a 22≥+. 3. a ,b 均为正数,求证b a a b b a +≥+22. 4. a ,b 均为正数,求证22222⎪⎭⎫ ⎝⎛+≥+b a b a . 5.若12222=+by a x ,求证 222)(y x b a +≥+.。
中考数学中如何求解一元一次不等式关键信息项1、一元一次不等式的定义及一般形式名称:____________________________解释:____________________________2、求解一元一次不等式的基本步骤步骤 1:____________________________步骤 2:____________________________步骤 3:____________________________步骤 4:____________________________步骤 5:____________________________3、常见的不等式符号及其含义符号 1:____________________________含义 1:____________________________符号 2:____________________________含义 2:____________________________符号 3:____________________________含义 3:____________________________4、不等式的性质性质 1:____________________________性质 2:____________________________性质 3:____________________________11 一元一次不等式的定义一元一次不等式是指只含有一个未知数,且未知数的次数是 1,不等号两边都是整式的不等式。
其一般形式为:$ax + b > 0$(或$ax + b < 0$,$ax + b \geq 0$,$ax + b \leq 0$),其中$a$、$b$为常数,且$a \neq 0$。
111 与一元一次方程的区别一元一次方程是等式,而一元一次不等式是用不等号连接的式子。
方程的解是使等式成立的未知数的值,而不等式的解是使不等式成立的未知数的取值范围。
八年级数学下册第8章一元一次不等式必考点解析考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,A 、B 、M 、N 四人去公园玩跷跷板.设M 和N 两人的体重分别为m 、n ,则m 、n 的大小关系为( )A .m <nB .m >nC .m =nD .无法确定2、已知关于x 的分式方程()()232626mx x x x x +=----无解,且关于y 的不等式组()4434m y y y ->⎧⎨-≤+⎩有且只有三个偶数解,则所有符合条件的整数m 的乘积为( )A .1B .2C .4D .83、若数a 使关于x 的不等式组()324263x x x a ⎧+<+⎨-≤⎩有且仅有5个整数解,且使关于y 的分式方程312122y a y y++=--有整数解,则满足条件的所有a 的值之和是( ) A .﹣21 B .﹣12 C .﹣14 D .﹣184、如果关于x 的方程35122x a x x ++=--有正整数解,且关于x 的不等式组2()641115x a x a x x +≤+-⎧⎪-⎨-<⎪⎩的解集为6x <-,则符合条件的所有整数a 之和为( )A .4B .3C .2D .15、若x y >,则下列不等式一定成立的是( )A .x y ->-B .22x y <C .66x y <D .44x y +>+6、若关于x 的一元一次不等式组()23242741x m x x x -+⎧⎪⎨⎪++⎩的解集为32x ,且关于y 的方程2(53)322m y y ---=的解为非负整数,则符合条件的所有整数m 的和为( )A .2B .7C .11D .107、某矿泉水每瓶售价1.5元,现甲、乙两家商场 给出优 惠政策:甲商场全部9折,乙商场20瓶以上的部分8折.老师要小明去买一些矿泉水,小明想了想觉得到乙商场购买比较优惠.则小明需要购买的矿泉水的数量x 的取值范围是( )A .x >20B .x >40C .x ≥40D .x <408、若x y <,且()()33->-a x a y ,则a 的取值范围是( )A .3a <B .3a >C .3a ≥D .3a ≤9、若方程组233x y k x y +=⎧⎨-=-⎩的解满足20x y +>,则k 的值可能为( ) A .-1 B .0 C .1 D .210、如果关于x 的分式方程3111ax x x =---的解为整数,且关于y 的不等式组()322242y y y y a +⎧≥+⎪⎨⎪+>+⎩有解,则符合条件的所有整数a 的和为( )A .-1B .0C .1D .4第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、某测试共有20道题,每答对一道得5分,每答错一道题扣1分,若小明得分要超过90分,设小明答对x 道题,可列不等式 _____.2、不等式组5202131x x x <⎧⎨-<+⎩的解集为_________. 3、如果关于x 的不等式mx ﹣2m >x ﹣2的解集是x <2,那么m 的取值范围是______.4、某种商品的进价为500元,售价为750元,由于换季,商店准备打折销售,但要保持该商品的利润率不低于20%,那么最多可以打______折.5、关于x 的不等式组1(25)131(3)2x x x x a ⎧+>+⎪⎪⎨⎪+≤+⎪⎩的所有整数解的和为﹣5,则a 的取值范围是 _____. 三、解答题(5小题,每小题10分,共计50分)1、已知:A =222111x x x x x -+--+. (1)化简A ;(2)若x 为不等式a +1≥3的最小整数解,求A 的值.2、先化简,再求值:(x -1-1x x +)÷221x x x ++,其中x 是不等式组()213324x x x ⎧⎨≥⎩-<++的整数解. 3、六•一前夕,某幼儿园园长到厂家选购A 、B 两种品牌的儿童服装,每套A 品牌服装进价比B 品牌服装每套进价多25元, 已知用2000元购进A 种服装的数量是用750元购进B 种服装数量的2倍.(1)求A 、B 两种品牌服装每套进价分别为多少元?(2)该服装A 品牌每套售价为130元,B 品牌每套售价为95元,服装店老板决定,购进B 品牌服装的数量比购进A 品牌服装的数量的2倍还多4套,两种服装全部售出后,可使总的获利超过1200元, 则最少购进A 品牌的服装多少套?4、对于数轴上给定两点M 、N 以及一条线段PQ ,给出如下定义:若线段MN 的中点R 在线段PQ 上(点R 能与点P 或Q 重合),则称点M 与点N 关于线段PQ “中位对称”.如图为点M 与点N 关于线段PQ“中位对称”的示意图.已知:点O为数轴的原点,点A表示的数为﹣1,点B表示的数为2(1)若点C、D、E表示的数分别为﹣3,1.5,4,则在C、D、E三点中,与点A关于线段OB“中位对称”;点F表示的数为t,若点A与点F关于线段OB“中位对称”,则t的最大值是;(2)点H是数轴上一个动点,点A与点B关于线段OH“中位对称”,则线段OH的最小值是;(3)在数轴上沿水平方向平移线段OB,得到线段O'B',设平移距离为d,若线段O'B'上(除端点外)的所有点都与点A关于线段O'B'“中位对称”,请你直接写出d的取值范围.5、为了更安全地开展冰上运动某校决定购进一批护肘及护膝.已知用900元购进护膝的数量比用400元购进护肘的数量多10副,且每副护膝价格是每副护肘价格的1.5倍.(1)每副护肘和护膝的价格分别是多少元;(2)若学校决定用不超过8000元购进两种护具共300副,且护肘数量不多于102副,求有哪几种购买方案;(3)在(2)的条件下,若已知商家每副护肘的进价为15元,每副护膝的进价为20元,为支持学校的冰上运动,该商家准备正好用去方案中的最大利润的10%再次购进两种护具赠送给学校,请直接写出最多可赠送护膝多少副?-参考答案-一、单选题1、A【解析】【分析】设A,B两人的体重分别为a,b,根据题意列出等式和不等式,即可得出答案.【详解】解:设A ,B 两人的体重分别为a ,b ,根据题意得:a +m =n +b ,a >b ,∴m <n ,故选:A .【点睛】本题考查了不等式的性质,根据题意列出等式和不等式是解题的关键.2、B【解析】【分析】分式方程无解的情况有两种,第一种是分式方程化成整式方程后,整式方程无解,第二种是分式方程化成整式方程后有解,但是解是分式方程的增根,以此确定m 的值,不等式组整理后求出解集,根据有且只有三个偶数解确定出m 的范围,进而求出符合条件的所有m 的和即可.【详解】解:分式方程去分母得:()22()63mx x x +-=-,整理得:6(10)m x --=,分式方程无解的情况有两种,情况一:整式方程无解时,即10m -=时,方程无解,∴1m =;情况二:当整式方程有解,是分式方程的增根,即x =2或x =6,①当x =2时,代入6(10)m x --=,得:280m -=解得:得m =4.②当x =6时,代入6(10)m x --=,得:6120m -=,解得:得m=2.综合两种情况得,当m=4或m=2或1m=,分式方程无解;解不等式443(4)m yy y->⎧⎨-≤+⎩,得:48 y my<-⎧⎨≥-⎩根据题意该不等式有且只有三个偶数解,∴不等式组有且只有的三个偶数解为−8,−6,−4,∴−4<m−4≤−2,∴0<m≤2,综上所述当m=2或1m=时符合题目中所有要求,∴符合条件的整数m的乘积为2×1=2.故选B.【点睛】此题考查了分式方程的无解的问题,以及一元一次不等式组的偶数解,其中分式方程无解的情况有两种情况,一种是分式方程化成整式方程后整式方程无解,另一种是化成整式方程后有解,但是解为分式方程的增根,易错点是容易忽略某种情况;对于已知一元一次不等式组解,求参数的值,找到参数所表示的代数式的取值范围是解题关键.3、B【解析】【分析】先解不等式组,根据不等式组的有且仅有5个整数解确定a的范围,根据分式方程的解为整数,确定a的值,进而即可求解.【详解】解:324(2)63x x x a +<+⎧⎨-≤⎩①②解不等式①得:6x >- 解不等式②得:36a x +≤ ∵不等式组有且仅有5个整数解, ∴3106a +-≤< 解得93a -≤<-解3(12)2y a y -+=- 解得102a y +=, 1022a +≠且y 为整数,又93x -≤<- ∴a =−8,−48412--=-故选B【点睛】本题考查了解分式方程,解一元一次不等式组,掌握解分式方程,解一元一次不等式组是解题的关键.4、C【解析】【分析】分式方程去分母转化为整式方程,表示出整式方程的解,由分式方程的解为正整数求出a 的范围,再由不等式组的解集确定出a 的范围,进而求出a 的具体范围,确定出整数a 的值,求出之和即可.【详解】解:分式方程去分母得:3(5)2x a x -+=-, 解得:32a x +=, 由分式方程的解为正整数,得到30a +>,即3a >-,2x ≠, ∴232a +≠,1a ≠, 不等式2()641115x a x a x x +≤+-⎧⎪-⎨-<⎪⎩,整理得:636x a x ≤-⎧⎨<-⎩, 由不等式的解集为6x <-,得到636a -≥-,即4a ≤,a ∴的范围是34a -<≤,且1a ≠ a 是整数,a ∴的值为2-,1-,0, 2,3,4,把2a =-代入32a x +=,得:223x -+=,即12x =,不符合题意; 把1a =-代入32a x +=,得:123x -+=,即1x =,符合题意; 把0a =代入32a x +=,得:320x +=,即32x =,不符合题意; 把2a =代入32a x +=,得:322x +=,即52x =,不符合题意; 把3a =代入32a x +=,得:323x +=,即3x =,符合题意; 把4a =代入32a x +=,得:324x +=,即72x =,不符合题意; ∴符合条件的整数a 取值为1-,3,之和为2,故选:C .【点睛】本题考查了解一元一次不等式组,以及解分式方程,熟练掌握运算法则是解本题的关键.5、D【解析】【分析】根据不等式的性质逐一进行判断即可得到答案.【详解】选项A ,在不等式x >y 两边都乘以-1,不等号的方向改变得<x y --,故选项A 不正确; 选项B ,在不等式x >y 两边都乘上2,不等号的方向不变得22>x y ,故选项B 不正确;选项C ,在不等式x >y 两边都除以6,不等号的方向不变得66>x y ,故选项C 不正确; 选项D ,在不等式x >y 两边都加以4,不等号的方向不变得44x y +>+,故选项D 正确. 故选D .【点睛】本题主要考查了不等式的相关知识质,熟练掌握不等式的性质是解题的关键.6、B【解析】【分析】先解关于x 的一元一次不等式组()23242741x m x x x -+⎧⎪⎨⎪++⎩,再根据其解集是32x ,得m 小于5;再解方程,根据其有非负整数解,得出m 的值,再求积即可. 【详解】解:由2324x m x -+,得:310x m ,由()2741x x ++,得:32x , 不等式组的解集为32x , ∴33102m , 解得5m ;解关于y 的方程得:213m y -=, 方程的解为非负整数,210m ∴-=或3或6或9,解得0.5m =或2或3.5或5,所以符合条件的所有整数m 的和257+=,故选:B .【点睛】此题考查了解一元一次不等式组及一元一次方程的解,熟练掌握各自的解法是解本题的关键.7、B【解析】略8、A【解析】【分析】根据不等式的性质求解即可.【详解】解:∵x y <,且()()33->-a x a y ,∴a -3<0,∴a <3,故选A .【点睛】本题考查了不等式的性质:①把不等式的两边都加(或减去)同一个整式,不等号的方向不变;②不等式两边都乘(或除以)同一个正数,不等号的方向不变;③不等式两边都乘(或除以)同一个负数,不等号的方向改变.9、D【解析】【分析】将两个方程组相加得到:233+=-x y k ,再由330->k 即可求出1k >进而求解.【详解】解:由题意可知:233x y k x y +=⎧⎨-=-⎩①②, 将①+②得到:233+=-x y k ,∵20x y +>,∴330->k ,解得1k >,故选:D .【点睛】本题考查二元一次方程组的解法及不等式的解法,解题关键是求出233+=-x y k ,进而求出k 的取值范围.10、A【解析】【分析】先解分式方程,根据分式方程有整数解求解a的值,再根据一元一次不等式组有解,求解a的取值范围,从而可得答案.【详解】解:3111axx x=---13,ax x12, a x关于x的分式方程3111axx x=---的解为整数,1,a∴≠则2,1xa11a∴-=±或12,a解得:2a=或0a=或3a=或1,a=-又10,x则1,x≠即21,1a3,a∴≠所以2a=或0a=或1,a=-()322242yyy y a①②+⎧≥+⎪⎨⎪+>+⎩由①得:2y≥由②得:42,y a关于y的不等式组()322242yyy y a+⎧≥+⎪⎨⎪+>+⎩有解,422,a1,a综上:0a=或1,a=-∴符合条件的所有整数a的和为 1.-故选A【点睛】本题考查的是分式方程的整数解,根据一元一次不等式组有解求解参数的取值范围,掌握“解分式方程及分式方程的整数解的含义,一元一次不等式组有解的含义”是解本题的关键.二、填空题1、5x−(20−x)>90【解析】【分析】设小明答对x道题,则答错(20−x)道题,根据小明的得分=5×答对的题目数−1×答错的题目数结合小明得分要超过90分,即可得出关于x的一元一次不等式.【详解】解:设小明答对x道题,则答错(20−x)道题,依题意,得: 5x−(20−x)>90,故答案为:5x−(20−x)>90.【点睛】本题考查了一元一次不等式的应用,根据各数量之间的关系,正确列出一元一次不等式是解题的关键.2、故答案为:【点睛】本题主要考查了一元一次不等式的应用,解题的关键是理解题意,找到题目蕴含的不等关系,并据此列出不等式.7.﹣2<x <4【解析】【分析】分别求出每一个不等式的解集,然后取交集,即可解题.【详解】解:解不等式5x <20,得:x <4,解不等式2x ﹣1<3x +1,得:x >﹣2,则不等式组的解集为﹣2<x <4,故答案为:﹣2<x <4.【点睛】本题考察了解不等式组的知识,在取交集时牢记口诀:同大取大、同小取小、大小小大中间找、大大小小无解了来确定不等式组的解集.3、m <1【解析】【分析】根据不等式的基本性质,两边都除以1m -后得到2x <,可知10m -<,解之可得.【详解】解:22mx m x ->-,移项得,22mx x m ->-,∴()()121m x m ->-,∵不等式22mx m x ->-的解集为2x <,∴10m -<,即1m <,故答案为:1m <.【点睛】题目主要考查不等式的性质及解不等式,熟练掌握不等式的性质是解题关键.4、八##8【解析】【分析】设该商品打x 折销售,根据利润=售价-进价,结合要保持利润不低于20%,即可得出关于x 的一元一次不等式,解之取其中的最小值即可得出结论.【详解】解:设该商品打x 折销售, 依题意得:750×10x -500≥500×20%, 解得:x ≥8.故答案为:八.【点睛】本题考查了一元一次不等式的应用,根据各数量之间的关系,正确列出一元一次不等式是解题的关键.5、732a ≤<【解析】【分析】根据不等式组所有整数解之和为﹣5可知,比2小的连续整数之和为﹣5的情况为,10(1)(2)+(3)=5++-+---,最小整数为﹣3,故323a -≤-且324a ->-,解出解集即可.【详解】 解:不等式()12513x x +>+,解集为:2x <, 不等式()132x x a +≤+ ,的解集为:32a x -≤, ∵不等式组所有整数解之和为﹣5,10(1)(2)+(3)=5++-+---,∴ 323a -≤-且324a ->-,解得:3a ≥,72a <, 综上所述,732a ≤< , 故答案为:732a ≤<. 【点睛】本题考查解一元一次不等式组的解集,以及数形结合思想,能够熟练应用数形结合思想是解决本题的关键.三、解答题1、 (1)﹣11x + (2)﹣13【解析】【分析】(1)先将分式的分子分母分解因式,然后约分,再根据分式的减法计算即可;(2)根据x 为不等式a +1≥3的最小整数解,可以得到x 的值,然后代入(1)中的结果,即可得到A 的值.(1)A=222111 x x x x x-+--+=2(1)(1)(1)xx x-+-﹣1xx+=11xx-+﹣1xx+=11 x x x--+=11x-+;(2)由不等式a+1≥3可得,a≥2,∵x为不等式a+1≥3的最小整数解,∴x=2,由(1)知,A化简后的式子是﹣11x+,当x=2时,原式=﹣121+=﹣13,即A的值是﹣13,【点睛】本题考查了分式的化简求值,求一元一次不等式的整数解,正确的计算是解题的关键.2、321x xx--,2-【解析】【分析】根据分式的减法和除法可以化简题目中的式子,然后根据x 是不等式组()213324x x x ⎧⎨≥⎩-<++的整数解,可以得到x 的整数值,再从x 的整数值中选取使得原分式有意义的值代入化简后的式子即可解答本题.【详解】 解:2(1)121x x x x x x --÷+++ 2(1)(1)(1)1x x x x x x-+-+=⋅+ 221(1)1x x x x x--+=⋅+ 2(1)(1)x x x x--+= 321x x x--=, 由不等式组()213324x x x ⎧⎨≥⎩-<++得,-1≤x <2, ∴x 的整数值为-1,0,1,∵x ≠0,x +1≠0,∴x ≠0,-1,∴x =1, ∴原式3121121-⨯-==-. 【点睛】本题考查了分式的化简求值、一元一次不等式组的整数解,解答本题的关键是明确分式化简求值的方法.3、 (1)A 、B 两种品牌服装的进价分别为100元和75元;(2)最少购进A 品牌的服装16套【分析】(1)首先设B 品牌服装每套进价为x 元,则A 品牌服装每套进价为(x+25)元,根据关键语句“用2000元购进A 种服装数量是用750元购进B 种服装数量的2倍”列出方程,解方程即可;(2)首先设购进A 品牌的服装a 套,则购进B 品牌服装(2a +4)套,根据“可使总的获利超过1200元”可得不等式(130-100)a +(95-75)(2a +4)≥200,再解不等式即可.(1)设B 品牌服装每套进价为x 元种,则A 品牌服装每套进价为(x +25)元根据题意得:2000750225x x=⨯+, 解得:x =75经检验:x =75是原方程的解,x +25=100,答:A 、B 两种品牌服装的进价分别为100元和75元;(2)设购买A 种品牌服装a 件,则购买B 种品牌服装(2a +4)件,根据题意得:(130-100)a +(95-75)(2a +4)≥1200解得:a ≥16,∴a 取最小值是16,答:最少购进A 品牌的服装16套.【点睛】本题考查了分式方程的应用和一元一次不等式的应用,弄清题意,表示出A 、B 两种品牌服装每套进价,根据购进的服装的数量关系列出分式方程,求出进价是解决问题的关键.4、 (1)D 、E ;5(2)0.5(3)13d <<【分析】(1)根据“中位对称”的定义求出中点再去判断即可;(2)根据“中位对称”的定义求出中点再去判断即可;(3)分别表示出O B ''、表示的数,再分别求O B ''、与点A 关于线段O 'B '“中位对称”,对称时的d 值即可,需要注意向左或右两种情况.(1)点A 表示的数为﹣1,点B 表示的数为2,点C 、D 、E 表示的数分别为﹣3,1.5,4∴线段AC 的中点表示的数为-2,不在线段OB 上,不与点A 关于线段OB “中位对称”; 线段AD 的中点表示的数为0.25,在线段OB 上,D 与点A 关于线段OB “中位对称”; 线段AE 的中点表示的数为1.5,在线段OB 上,E 与点A 关于线段OB “中位对称”; ∴D 、E 与点A 关于线段OB “中位对称”;∵点F 表示的数为t∴线段AF 的中点表示的数为12t -+ ∴若点A 与点F 关于线段OB “中位对称”,∴点F 在线段OB 上,∴当AF 中点与B 重合时 t 最大,此时122t -+=,解得5t =,即t 的最大值是5 (2)∵点A 表示的数为﹣1,点B 表示的数为2∴线段AE 的中点表示的数为0.5,∵点A 与点B 关于线段OH “中位对称”,∴0.5在线段OH 上∴线段OH 的最小值是0.5(3)当向左平移时,O '表示的数是d -,B '表示的数是2d -线段AO '的中点表示的数为12d --,线段AB '的中点表示的数为12d -, 当O '与点A 关于线段O 'B '“中位对称”时,∴线段AO '的中点在O B ''上, ∴122d d d ---<<- ∴15d <<当B '与点A 关于线段O 'B '“中位对称”时,线段AB '的中点在O B ''上, ∴122d d d --<<- ∴13d -<<∵线段O 'B '上(除端点外)的所有点都与点A 关于线段O 'B '“中位对称”∴当向左平移时,13d <<同理,当向右平移时,d 不存在综上若线段O 'B '上(除端点外)的所有点都与点A 关于线段O 'B '“中位对称”13d <<【点睛】本题考查数轴上的动点问题,解题的关键是根据“中位对称”的定义进行解题,同时熟记数轴上中点公式也是解题的关键点.5、 (1)每副护肘的价格是20元,每副护膝的价格的价格是30元(2)方案1:购进护肘100副,护膝200副;方案2:购进护肘101副,护膝199副;方案3:购进护肘102副,护膝198副(3)最多可赠送护膝11副【解析】【分析】1)设每副护肘的价格是x元,则每副护膝的价格的价格是1.5x元,利用数量=总价÷单价,结合用900元购进护膝的数量比用400元购进护肘的数量多10副,即可得出关于x的分式方程,解之经检验后即可求出每副护肘的价格,再将其代入1.5x中即可求出每副护膝的价格;(2)设购进护肘m副,则购进护膝(300﹣m)副,利用总价=单价×数量,结合总价不超过8000元且购进护肘数量不多于102副,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围,再结合m为正整数,即可得出各购买方案;(3)利用总利润=每副的销售利润×购进数量,即可求出选择各方案获得的销售总利润,比较后可得出最大利润,设可赠送护膝a副,护肘b副,利用总价=单价×数量,即可得出关于a,b的二元一次方程,结合a,b均为正整数可得出最多可赠送护膝11副.(1)解:设每副护肘的价格是x元,则每副护膝的价格的价格是1.5x元,依题意得:900400101.5x x-=,解得:x=20,经检验,x=20是原方程的解,且符合题意,∴1.5x=1.5×20=30.答:每副护肘的价格是20元,每副护膝的价格的价格是30元.(2)解:设购进护肘m副,则购进护膝(300﹣m)副,依题意得:2030(300)8000102m mm+-≤⎧⎨≤⎩,解得:100≤m≤102.又∵m为正整数,∴m可以取100,101,102,∴共有3种购买方案,方案1:购进护肘100副,护膝200副;方案2:购进护肘101副,护膝199副;方案3:购进护肘102副,护膝198副.(3)解:方案1获得的利润为(20﹣15)×100+(30﹣20)×200=2500(元);方案2获得的利润为(20﹣15)×101+(30﹣20)×199=2495(元);方案3获得的利润为(20﹣15)×102+(30﹣20)×198=2490(元).∵2500>2495>2490,∴选择方案1获得的利润最大,最大利润为2500元.设可赠送护膝a副,护肘b副,依题意得:20a+15b=2500×10%,化简得:a=5034b-.又∵a,b均为正整数,∴112ab=⎧⎨=⎩或86ab=⎧⎨=⎩或510ab=⎧⎨=⎩或{a=2a=14,∴最多可赠送护膝11副.【点睛】本题考查了分式方程的应用、一元一次不等式组的应用以及二元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式组;(3)找准等量关系,正确列出二元一次方程.。
中考重点一元一次不等式的解法中考重点:一元一次不等式的解法一元一次不等式是中考数学中的重点内容之一。
学好一元一次不等式的解法,不仅能帮助我们正确解题,还能夯实数学基础,为进一步学习奠定坚实的基础。
本文将介绍一元一次不等式的解法,帮助同学们更好地掌握这一知识点。
1. 一元一次不等式的基本概念一元一次不等式是指只含有一个变量(未知数)的一次不等式。
它的一般形式为ax + b > c(或 < c,或≥ c,或≤ c),其中a、b、c为已知的实数,且a ≠ 0。
解一元一次不等式就是要找出符合不等式条件的x的取值范围。
2. 解一元一次不等式的基本步骤解一元一次不等式的基本步骤如下:(1)将不等式转化为等价的形式。
对于大于(或大于等于)的不等式,可以通过加减、乘除、去分数等方法将不等号移到一边,得到等价的形式;对于小于(或小于等于)的不等式,可以通过加减、乘除、去分数等方法将不等号移到一边,并改变不等号的方向,得到等价的形式。
(2)利用性质求解。
常用的性质包括:性质1:不等式两边同时加(或减)一个相等的数,不等式的方向不变。
性质2:不等式两边同时乘(或除)一个正数,不等式的方向不变。
性质3:不等式两边同时乘(或除)一个负数,不等式的方向改变。
(3)求解不等式。
根据所得的等价不等式,结合性质进行求解,确定符合不等式条件的变量 x的取值范围。
3. 实例解析为了更好地理解和掌握一元一次不等式的解法,下面通过实例进行解析。
例题:求解不等式2x - 5 > 3x + 1。
解析:首先,将不等式转化为等价的形式:2x - 5 - 3x - 1 > 0。
然后,合并同类项,得到-x - 6 > 0。
根据性质3,将不等号改变方向:x + 6 < 0。
接下来,求解不等式: x < -6。
所以,符合不等式2x - 5 > 3x + 1的解为x的取值范围是x < -6。
4. 注意事项解一元一次不等式时,需要注意以下几点:(1)当两个不等式同时表示时,可以通过画数轴的方法将其解集表示出来。
第8讲 一元一次不等式(组)1.(2019株洲中考)已知实数a ,b 满足a +1>b +1,则下列选项错误的为( D ) A .a >b B .a +2>b +2 C .-a <-b D .2a >3b2.(2019杭州中考)若x +5>0,则( D ) A .x +1<0 B .x -1<0 C.x5<-1 D .-2x <12 3.(2019毕节中考)关于x 的一元一次不等式m -2x3≤-2的解集为x≥4,则m 的值为( D )A .14B .7C .-2D .24.(2019通辽中考)若关于x 的一元二次方程(k +1)x 2+2(k +1)x +k -2=0有实数根,则k 的取值范围在数轴上表示正确的是( A )5.(2019通辽中考)不等式组⎩⎪⎨⎪⎧2x +1>-1,2x -13≥x-1的整数解是__0,1,2__.6.(2019黔东南中考)解不等式组⎩⎪⎨⎪⎧x -3(x -2)≥4,①2x -15<x +12,②并把解集在数轴上表示出来.解:由①得:-2x≥-2,即x≤1.由②得:4x -2<5x +5,即x >-7. 所以-7<x≤1. 在数轴上表示为:7.(2019东营中考)为解决中小学大班额问题,东营市各县区今年将改扩建部分中小学,某县计划对A ,B 两类学校进行改扩建,根据预算,改扩建2所A 类学校和3所B 类学校共需资金7 800万元,改扩建3所A 类学校和1所B 类学校共需资金5 400万元.(1)改扩建1所A 类学校和1所B 类学校所需资金分别是多少万元?(2)该县计划改扩建A 、B 两类学校共10所,改扩建资金由国家财政和地方财政共同承担.若国家财政拨付资金不超过11 800万元;地方财政投入资金不少于4 000万元,其中地方财政投入到A ,B 两类学校的改扩建资金分别为每所300万元和500万元.请问共有哪几种改扩建方案?解: (1)设改扩建1所A 类和1所B 类学校所需资金分别为x 万元和y 万元.由题意得⎩⎪⎨⎪⎧2x +3y =7 800,3x +y =5 400 ,解得⎩⎪⎨⎪⎧x =1 200,y =1 800. 答:改扩建1所A 类学校和1所B 类学校所需资金分别为1 200万元和1 800万元;(2)设今年改扩建A 类学校a 所,则改扩建B 类学校(10-a)所.由题意得:⎩⎪⎨⎪⎧(1 200-300)a +(1 800-500)(10-a )≤11 800,300a +500(10-a )≥4 000, 解得⎩⎪⎨⎪⎧a≥3,a ≤5,∴3≤a ≤5.∵a 取整数,∴a =3,4,5. 即共有3种方案:方案一:改扩建A 类学校3所,B 类学校7所; 方案二:改扩建A 类学校4所,B 类学校6所; 方案三:改扩建A 类学校5所,B 类学校5所.8.早晨,小明步行到离家900 m 的学校去上学,到学校时发现眼镜忘在家中,于是他立即按原路步行回家,拿到眼镜后立即按原路骑自行车返回学校.已知小明步行从学校到家所用的时间比他骑自行车从家到学校所用的时间多10 min ,小明骑自行车的速度是步行速度的3倍.(1)求小明步行的速度(单位:m/min)是多少;(2)下午放学后,小明骑自行车回到家,然后步行去图书馆,如果小明骑自行车和步行的速度不变,小明步行从家到图书馆的时间不超过骑自行车从学校到家时间的2倍,那么小明家与图书馆之间的路程最多是多少米?解:(1)设小明步行的速度是x m/min ,则骑自行车的速度为3x m/min.由题意得:900x -10=9003x ,解得:x =60. 经检验,x =60是原分式方程的解. 答:小明步行的速度是60 m/min.(2)设小明家与图书馆之间的路程是y m .根据题意可得:y 60≤900180×2,解得:y≤600. 答:小明家与图书馆之间的路程最多是600 m .2019-2020学年数学中考模拟试卷一、选择题1.如图,一次函数y 1=x 与二次函数y 2=ax 2+bx +c 图象相交于P 、Q 两点,则函数y =ax 2+(b -1)x +c 的图象可能是( )A. B. C. D.2.下表是某水库一周内水位高低的变化情况(用正数记水位比前一日上升数,用负数记下降数).那么本周星期几水位最低( ) 星期 一 二 三 四 五 六 日 水位变化/米 0.12﹣0.02﹣0.13 ﹣0.20﹣0.08 ﹣0.020.32A.星期二B.星期四C.星期六D.星期五3.抛物线2y ax bx c =++上部分点的横坐标x ,纵坐标y 的对应值如下表:小聪观察上表,得出下面结论:①抛物线与x 轴的一个交点为(3,0); ②函数2y ax bx c =++的最大值为6;③抛物线的对称轴是12x =;④在对称轴左侧,y 随x 增大而增大.其中正确有( ) A .①②B .①③C .①②③D .①③④4.目前世界上能制造的芯片最小工艺水平是5纳米,而我国能制造芯片的最小工艺水平是16纳米,已知1纳米=10﹣9米,用科学记数法将16纳米表示为( ) A .1.6×10﹣9米B .1.6×10﹣7米C .1.6×10﹣8米D .16×10﹣7米5.如图,点A 是双曲线y=kx上一点,过A 作AB ∥x 轴,交直线y=-x 于点B ,点D 是x 轴上一点,连接BD 交双曲线于点C ,连接AD ,若BC :CD=3:2,△ABD 的面积为114,tan ∠ABD=95,则k 的值为( )A .-34B .-3C .-2D .346.若二次函数y =x 2﹣2x+2在自变量x 满足m≤x≤m+1时的最小值为6,则m 的值为( ) A .5,5,15,12-+- B .5,51-+ C .1D .5,15--7.直线y=2x 关于x 轴对称的直线是( ) A .1y x 2=B .1y x 2=-C .y 2x =D .y 2x =-8.受益于电子商务发展和法治环境改善等多重因素,“快递业”成为我国经济的一匹“黑马”,2016年我国快递业务量为300亿件,2018年快递量将达到450亿件,若设快递量平均每年增长率为x ,则下列方程中,正确的是( ) A .()3001x 450+= B .()30012x 450+= C .2300(1x)450+=D .2450(1x)300-=9.四川省是全国重要的蔬菜主产区、“南菜北运”和冬春蔬菜优势区,位于成都市彭州濛阳镇的四川省农产品交易中心,日交量超过5000吨,年交易额超过150亿元,是省内设施最先进,交易量最大的蔬菜专业批发市场,也是全国第二大蔬菜产地交易中心。
青岛版八年级下册第8章一元一次不等式1.若a≤b,则(1)≤,(2) 2c-a≥2c-b,上述两个结论中()A. 只有(1)正确B. 只有(2)正确C. (1)(2)都正确D. (1)(2)都不正确2.三个连续自然数的和小于15,这样的自然数组共有()A. 6组B. 5组C. 4组D. 3组3.点A(m-4,1-2m)在第三象限,则m的取值范围是()A. m>B. m<4C. <m<4D. m>44.一元一次不等式组的解集为x>a,且a≠b,则a与b的关系是()A. a>bB. a<bC. a>b>0D. a<b<05.下列命题中正确的是()A. 若m≠n,则|m|≠|n|B. 若a+b=0,ab>0C. 若ab<0,且a<b,则|a|<|b|D. 互为倒数的两数之积为正6.无论x取什么数,下列不等式总成立的是()A. x+5>0B. x+5<0C. -(x+5)2<0D. (x-5)2≥07.若=-1,则x的取值范围是()A. x>1B. x≤1C. x≥1D. x<18.解集在数轴上表示为如图所示的不等式组是()A. B. C. D.9.关于x的不等式2x-a≤-1的解集如图所示,则a的取值是()A. 0B. -3C. -2D. -110.已知关于x的不等式(1-a)x>2的解集为x<,则a的取值范围是()A. a>0B. a>1C. a<0D. a<111.如果不等式组无解,则a的取值范围是()A. a>1B. a≥1C. a<1D. a≤112.已知关于x的不等式组的解集为3≤x<5,则的值为()A. -2B. -C. -4D. -13.如果不等式组有一个整数解,那么m的取值范围是______ .14.当x<a<0时,x2与ax的大小关系是x2______ ax.15.如果a(x-1)>x+1-2a的解集是x<-1,则a的取值范围是______ .16.不等式-1>的解集为______ .17.若点P(1-m,m)在第二象限,则(m-1)x>1-m的解集为______ .18.已知不等式组的解集是-1<x<1,则(a+1)(b+1)的值是的______.19.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打______折.20.已知关于x的不等式组的整数解共有6个,则a的取值范围是______ .21.已知0≤x≤4,那么|x-2|-|3-x|的最大值为______ .22.一堆玩具分给若干个小朋友,若每人分3件,则剩余3件;若前面每人分5件,则最后一人得到的玩具不足3件.则小朋友的人数为______ 人.23.解下列不等式(组),并把解集表示在数轴上.(1)≥;(2).24.解不等式组-2≤<4,并写出该不等式组的整数解.25.已知不等式(x-m)>3-m的解集为x>1,求m的值.26.“二广”高速在益阳境内的建设正在紧张地进行,现有大量的沙石需要运输.“益安”车队有载重量为8吨、10吨的卡车共12辆,全部车辆运输一次能运输110吨沙石.(1)求“益安”车队载重量为8吨、10吨的卡车各有多少辆?(2)随着工程的进展,“益安”车队需要一次运输沙石165吨以上,为了完成任务,准备新增购这两种卡车共6辆,车队有多少种购买方案,请你一一写出.27.义洁中学计划从荣威公司购买A、B两种型号的小黑板,经洽谈,购买一块A型小黑板比买一块B型小黑板多用20元.且购买5块A型小黑板和4块B型小黑板共需820元.(1)求购买一块A型小黑板、一块B型小黑板各需要多少元?(2)根据义洁中学实际情况,需从荣威公司购买A、B两种型号的小黑板共60块,要求购买A、B两种型号小黑板的总费用不超过5240元.并且购买A型小黑板的数量应大于购买A、B种型号小黑板总数量的.请你通过计算,求出义洁中学从荣威公司购买A、B两种型号的小黑板有哪几种方案?答案和解析1.【答案】C【解析】【解答】解:(1)∵a≤b,>0,∴≤,故(1)正确;(2)∵a≤b,∴-a≥-b,2c-a≥2c-b,故(2)正确.故选C.【分析】(1)可根据不等式的基本性质2解答;(2)可根据不等式的基本性质1和3解答.本题考查的是不等式的基本性质,解答此题的关键是熟知以下知识:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.2.【答案】C【解析】解:设这三个连续自然数为:x-1,x,x+1,则0<x-1+x+x+1<15,即0<3x<15,∴0<x<5,因此x=1,2,3,4.共有4组.故选:C.本题可设三个连续自然数分别为x-1,x,x+1,然后将三者相加令其的和大于0而小于15,解出x的取值,再在x的取值中找出自然数的个数即可知道有几组.本题考查了一元一次不等式的运用,解此类题目时常常是设中间的数为x,然后根据题意列出不等式,解出x的取值.3.【答案】C【解析】解:∵点A(m-4,1-2m)在第三象限,∴,解得<m<4.故选:C.点在第三象限的条件是:横坐标是负数,纵坐标是负数.坐标平面被两条坐标轴分成了四个象限,每个象限内的点的坐标符号各有特点.该知识点是中考的常考点,常与不等式、方程结合起来求一些字母的取值范围,比如本题中求m的取值范围.4.【答案】A【解析】解:∵的解集为x>a,且a≠b,∴a>b.故选:A.根据不等式组解集的“同大取较大”的原则,a≥b,由已知得a>b.本题考查了不等式组解集的四种情况:①同大取较大,②同小取较小,③小大大小中间找,④大大小小解不了.5.【答案】D【解析】解:A、可举例子-1≠1,则|-1|=|1|,故本选项错误;B、可举例子a=-1,b=1,ab<0,故本选项错误;C、可举例子a=-5,b=1,|-5|>|1|,故本选项错误;D、互为倒数的两数之积为1,所以互为倒数的两数之积为正,故本选项正确.故选D.A、可举反例-1≠1,则|-1|=|1|,B、a=-1,b=1,ab<0,C、a=-5,b=1,ab<0,且a<b,则|a|>|b|D、互为倒数的两数之积为1,所以为正.本题考查了有理数的绝对值,倒数,乘积等知识,可用反例来说明问题.6.【答案】D【解析】解:A、x>-5时成立;B、x<-5时成立;C、根据非负数的性质,-(x+5)2≤0;D、根据非负数的性质,(x-5)2为非负数,所以(x-5)2≥0成立.故选:D.通过解不等式可得A、B中x的取值范围;根据非负数的性质,可对C、D进行判断.解答此题不仅要会解不等式,还要知道非负数的性质.7.【答案】D【解析】分析本题考查了解一元一次不等式,关键是根据题意,判断出x-1<0,此题属于基础题.根据=-1,可得x-1<0,解不等式即可.解答解:由题意得,x-1<0,解得:x<1.故选D.8.【答案】D【解析】解:根据数轴得到不等式的解集是:-3<x≤2.A、不等式组的解集是x≥2,故A选项错误;B、不等式组的解集是x<-3,故B选项错误;C、不等式组无解,故C选项错误.D、不等式组的解集是-3<x≤2,故D选项正确.故选:D.由数轴可以看出不等式的解集在-3到2之间,且不能取到-3,能取到2,即-3<x≤2.在数轴上表示不等式组解集时,实心圆点表示“≥”或“≤”,空心圆圈表示“>”或“<”.9.【答案】D【解析】解:不等式2x-a≤-1,解得x≤,由数轴可知,x≤-1,所以=-1,解得a=-1.故选:D.首先根据不等式的性质,解出x≤,由数轴可知,x≤-1,所以,=-1,解出即可.本题主要考查了不等式的解法和在数轴上表示不等式的解集,在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.10.【答案】B【解析】解:∵不等式(1-a)x>2的解集为x<,又∵不等号方向改变了,∴1-a<0,∴a>1;故选:B.化系数为1时,不等号方向改变了,利用不等式基本性质可知1-a<0,所以可解得a的取值范围.解不等式要依据不等式的基本性质:在不等式的两边同时加上或减去同一个数或整式不等号的方向不变;在不等式的两边同时乘以或除以同一个正数不等号的方向不变;在不等式的两边同时乘以或除以同一个负数不等号的方向改变.11.【答案】C【解析】解:整理不等式组得,∵不等式组无解,∴a<1,故选C.整理不等式组得,由题意得a<1,选择答案即可.通过不等式组无解,确定a的取值范围,这是此题的突破口.12.【答案】A【解析】解:不等式组由①得,x≥a+b,由②得,x<,∴,解得,∴=-2.故选:A.先解不等式组,解集为a+b≤x<,再由不等式组的解集为3≤x<5,转化成关于a,b的方程组来解即可.本题是一道综合性的题目.考查了不等式组和二元一次方程组的解法,是中考的热点,要灵活运用.13.【答案】6≤m<7【解析】解:的解集是m<x<8,∵不等式组有一个整数解,∴6≤m<7,故答案为:6≤m<7.求出不等式组的解集m<x<8,根据已知得出6≤m<7即可得到答案.本题主要考查对解一元一次不等式组,一元一次不等式组的整数解等知识点的理解和掌握,能根据不等式组的解集和已知得出6≤m<7是解此题的关键.14.【答案】>【解析】解:∵x<a<0两边同时乘以负数x得到:x2>ax.故答案为:>.原不等式两边都乘负数x即可.解决本题的关键是,能够理解从已知的式子是如何变化到所要求的式子的,理解不等号的方向何时不变,何时变化.15.【答案】a<1【解析】解:去括号得,ax-a>x+1-2a,移项得,ax-x>1-2a+a,合并得,(a-1)x>1-a,∵a(x-1)>x+1-2a的解集是x<-1,∴a-1<0,即a<1,故答案为:a<1.先将不等式整理成ax>b的形式,再根据解集,求出a的取值范围.本题考查了不等式解集的求法,注意不等式两边同乘以(或除以)同一个负数,不等号的方向改变.16.【答案】x<【解析】【分析】利用不等式的基本性质,先去分母,再去括号,然后移项、合并同类项、化系数为1即可求出不等式的解集.解不等式依据不等式的基本性质,在不等式的两边同时加上或减去同一个数或整式不等号的方向不变;在不等式的两边同时乘以或除以同一个正数不等号的方向不变;在不等式的两边同时乘以或除以同一个负数不等号的方向改变.特别是在系数化为1这一个过程中要注意不等号的方向的变化.【解答】解:去分母得3x+15-6>6x+4,移项合并同类项得3x<5,化系数为1得x<.所以不等式-1>的解集为x<.17.【答案】x>-1【解析】解:∵点P(1-m,m)在第二象限,∴1-m<0,即m-1>0;∴不等式(m-1)x>1-m,∴(m-1)x>-(m-1),不等式两边同时除以m-1,得:x>-1.第二象限的点的横坐标小于0,纵坐标大于0,即1-m<0,则m-1>0;解这个不等式组就是不等式左右两边同时除以m-1,因为m-1>0,不等号的方向不变.解不等式,系数化为1的过程中,一定要先判断两边所除的式子的符号.18.【答案】-2【解析】解:,由①得,x<,由②得,x>2b+3,所以,不等式组的解集是2b+3<x<,∵不等式组的解集是-1<x<1,∴2b+3=-1,=1,解得a=1,b=-2,所以,(a+1)(b+1)=(1+1)(-2+1)=-2.故答案为:-2.先求出两个不等式的解集,再求其公共解,然后根据不等式组的解集列出求出a、b的值,再代入代数式进行计算即可得解.本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).19.【答案】7【解析】解:设至多打x折则1200×-800≥800×5%,解得x≥7,即最多可打7折.故答案为:7.利润率不低于5%,即利润要大于或等于800×5%元,设打x折,则售价是1200x元.根据利润率不低于5%就可以列出不等式,求出x的范围.本题考查一元一次不等式的应用,正确理解利润率的含义,理解利润=进价×利润率,是解题的关键.20.【答案】-5≤a<-4【解析】解:由不等式组可得:a<x<1.5.因为有6个整数解,可以知道x可取-4,-3,-2,-1,0,1,因此-5≤a<-4.故答案为:-5≤a<-4.先解出不等式组的解,然后确定x的取值范围,根据整数解的个数可知a的取值.本题考查不等式组中不等式的未知字母的取值,利用数轴能直观的得到,易于理解.21.【答案】1【解析】解:根据绝对值的几何意义,令t=|x-2|-|3-x|=|x-2|-|x-3|,其几何意义为x表示的点到点2与点3的距离之差,根据数轴分析可得,当x≥3时,t=1,取得最大值,故答案为1.令t=|x-2|-|3-x|=|x-2|-|x-3|,根据绝对值的几何意义可得,t的几何意义为x表示的点到点2与点3的距离之差,根据数轴分析可得答案.本题考查绝对值的几何意义,|a-b|即两实数a、b表示两个点间的距离.22.【答案】3【解析】【分析】本题考查理解题意能力,关键是找到最后一人得到的玩具不足3件这个不等量关系,列不等式组求解.设小朋友的人数为x人,则玩具数为(3x+3),根据若前面每人分5件,则最后一人得到的玩具不足3件.可列一元一次不等式组求解.【解答】解:设小朋友的人数为x人.,解得:2.5<x<4,故x=3.故答案为3.23.【答案】解:(1)去分母得:6+3x≥4x-2,移项合并得:x≤8;(2),由①得:x≤1;由②得:x>-2,则不等式组的解集为-2<x≤1,【解析】(1)不等式去分母,去括号,移项合并,将x系数化为1,即可求出解集;(2)分别求出不等式组中两不等式的解集,找出解集的公共部分即可.此题考查了解一元一次不等式组,熟练掌握运算法则是解本题的关键.24.【答案】解:解不等式≥-2得,x≤5,解不等式<4得,x>-4,则该不等式组的解集为:-4<x≤5,故该不等式组的整数解为:-3,-2,-1,0,1,2,3,4,5.【解析】分别求解两个不等式,然后求其交集,最后找出不等式组的整数解.本题考查了解一元一次不等式和不等式组的整数解,关键是掌握解一元一次不等式的步骤:①去分母;②去括号;③移项;④合并同类项;⑤化系数为1.25.【答案】解:去分母得,x-m>3(3-m),去括号得,x-m>9-3m,移项,合并同类项得,x>9-2m,∵此不等式的解集为x>1,∴9-2m=1,解得m=4.【解析】本题考查了解一元一次不等式,关键是掌握解一元一次不等式的步骤:①去分母;②去括号;③移项;④合并同类项;⑤化系数为1.先根据一元一次不等式的解法求解不等式,然后根据不等式的解集为x>1,得出9-2m=1,求出m的值.26.【答案】解:(1)设“益安”车队载重量为8吨、10吨的卡车分别有x辆、y辆,根据题意得:,解之得:.答:“益安”车队载重量为8吨的卡车有5辆,10吨的卡车有7辆;(2)设载重量为8吨的卡车增加了z辆,依题意得:8(5+z)+10(7+6-z)>165,解之得:z<,∵z≥0且为整数,∴z=0,1,2;∴6-z=6,5,4.∴车队共有3种购车方案:①载重量为8吨的卡车购买1辆,10吨的卡车购买5辆;②载重量为8吨的卡车购买2辆,10吨的卡车购买4辆;③载重量为8吨的卡车不购买,10吨的卡车购买6辆.【解析】(1)根据“‘益安’车队有载重量为8吨、10吨的卡车共12辆,全部车辆运输一次能运输110吨沙石”分别得出等式组成方程组,求出即可;(2)利用“‘益安’车队需要一次运输沙石165吨以上”得出不等式求出购买方案即可.此题主要考查了二元一次方程组的应用以及不等式的应用,根据已知得出正确的不等式关系是解题关键.27.【答案】解:(1)设购买一块A型小黑板需要x元,一块B型为(x-20)元,5x+4(x-20)=820,x=100,x-20=80,购买A型100元,B型80元;(2)设购买A型小黑板m块,则购买B型小黑板(60-m)块,,∴20<m≤22,而m为整数,所以m为21或22.当m=21时,60-m=39;当m=22时,60-m=38.所以有两种购买方案:方案一购买A21块,B 39块、方案二购买A 22块,B38块.【解析】(1)设购买一块A型小黑板需要x元,一块B型为(x-20)元,根据,购买一块A型小黑板比买一块B型小黑板多用20元.且购买5块A型小黑板和4块B型小黑板共需820元可列方程求解.(2)设购买A型小黑板m块,则购买B型小黑板(60-m)块,根据需从荣威公司购买A、B两种型号的小黑板共60块,要求购买A、B两种型号小黑板的总费用不超过5240元.并且购买A型小黑板的数量应大于购买A、B种型号小黑板总数量的,可列不等式组求解.本题考查理解题意的能力,关键根据购买黑板块数不同钱数的不同求出购买黑板的钱数,然后要求购买A、B两种型号小黑板的总费用不超过5240元.并且购买A型小黑板的数量应大于购买A、B种型号小黑板总数量的,列出不等式组求解.。
说课稿《一元一次不等式与不等式组》复习课金兰中学一、中考分析:《一元一次不等式与不等式组》是华东师大版义务教育课程标准实验教科书数学七年级下册第八章第三节的内容,是中考的必考内容之一,中考将会以填空、选择或解答题的方式考查不等式与不等式组的基本性质、解集的概念和把解集在数轴上表示出来,不等式的应用题还是近年中考的热点内容,考查可能与日常生活相联系,也可能与其它章节内容,如方程、函数及几何内容相结合。
因此本节课熟练掌握与否直接影响到不等式组的解法以及不等式应用题的掌握。
本节课为复习课,因此可在学生“三基”(基本知识,基本技能,基本方法)巩固的条件下向纵深发展,使知识结构化,网络化。
二、复习目标:1、知识与技能目标。
会用不等式的基本性质变形不等式,从而求出不等式(组)的解集;会将不等式(组)的解集在数轴上表示出来;会利用不等式(组)的知识解决简单的实际问题。
2、情感、态度、价值观目标。
通过自主学习与合作交流,把课堂交给学生,让他们成为学习的主人。
三、复习的重点和难点:1、复习重点:一元一次不等式(组)的解法及简单应用。
2、复习难点:熟练、正确的解一元一次不等式(组),并解决简单的实际问题。
四、说复习方法本节课增加形象思维的操作,从中感悟到自我建构知识的乐趣。
同时又注意培养学生学习的自信心,学习兴趣。
通过手势、眼神、语言、表情等多种教学媒体,来激发学生参与的积极性。
1、指导——自主学习法。
新课程要求改变学生的学习方式,教师根据学生的最近发展区实施分层教学。
同时注重培养学生的主体性,让不同层次的学生完成难度不等的题目是该课题的特色之一。
2、讨论式教学法。
“就是把学生从智力的惰性中挽救出来,就是要使学生在某一件事情上把自己的知识显示出来,在智力活动中表现自己。
”道出了小组讨论的重要性和优越性。
我在本节课里让同一层次的学生分组讨论,并上黑板展示讨论成果,激发了学生的学习积极性。
3、多媒体辅助教学法。
新课程标准指出:……现代教育手段和技术将有效的改善教学方式,提高教学效益。
第8章一元一次不等式一、选择题(共30小题)1.(2013•红河州)不等式组的解集在数轴上表示为()A B C D2.(2013•河池)把不等式组的解集表示在数轴上,正确的是()A B C D3.(2013•太原)不等式组的解集在数轴上表示为()A B C D4.(2013•东莞市)不等式5x﹣1>2x+5的解集在数轴上表示正确的是()A B C D5.(2013•铁岭)如图,在数轴上表示不等式组的解集,其中正确的是()A B C D6.(2013•丽水)若关于x的不等式组的解表示在数轴上如图所示,则这个不等式组的解集是()A.x≤2B.x>1 C.1≤x<2 D.1<x≤27.(2013•锦州)不等式组的解集在数轴上表示正确的是()A B C D8.(2013•内江)把不等式组的解集表示在数轴上,下列选项正确的是()A B C D9.(2013•随州)不等式2x+3≥1的解集在数轴上表示为()A B C D10.(2013•日照)如果点P(2x+6,x﹣4)在平面直角坐标系的第四象限内,那么x的取值范围在数轴上可表示为()A B C D11.(2014•宁夏)已知不等式组,其解集在数轴上表示正确的是()A B C D12.(2014•梧州)不等式组的解集在数轴上表示正确的是()A.B.C.D.13.(2014•恩施州)关于x的不等式﹣x+a≥1的解集如图所示,则a的值为()A.﹣1 B.0 C.1 D.214.(2014•鞍山)不等式组的解集在数轴上表示为()A B C D15.(2014•沈阳)一元一次不等式x﹣1≥0的解集在数轴上表示正确的是()A.B.C.D.16.(2014•邵阳)不等式组的解集在数轴上表示正确的是()A B C D17.(2014•仙桃)把不等式组的解集在数轴上表示,正确的是()A.B.C.D.18.(2014•南充)不等式组的解集在数轴上表示正确的是()A. B.C.D.19.(2014•临沂)不等式组﹣2≤x+1<1的解集,在数轴上表示正确的是()A.B.C.D.20.(2014•贺州)不等式的解集在数轴上表示正确的是()A.B.C.D.21.(2014•长沙)一个关于x的一元一次不等式组的解集在数轴上的表示如图,则该不等式组的解集是()A.x>1 B.x≥1C.x>3 D.x≥322.(2014•营口)不等式组的解集在数轴上表示正确的是()A B C D23.(2014•陕西)把不等式组,的解集表示在数轴上,正确的是()A.B. C.D.24.(2014•铁岭)不等式1﹣x>0的解集在数轴上表示正确的是()A B C D25.(2014•德州)不等式组的解集在数轴上可表示为()A B C D26.(2014•威海)已知点P(3﹣m,m﹣1)在第二象限,则m的取值范围在数轴上表示正确的是()A.B. C. D.27.(2014•日照)关于x的一元二次方程x2+2x+k+1=0的两个实根x1,x2,满足x1+x2﹣x1x2<﹣1,则k的取值范围在数轴上表示为()A.B.C.D.28.(2014•来宾)不等式组的解集在数轴上表示正确的是()A.B.C.D.29.(2015•庆阳)已知点P(a+1,﹣+1)关于原点对称的点在第四象限,则a的取值范围在数轴上表示正确的是()A. B.C.D.30.(2015•日照)不等式组的解集在数轴上表示正确的是()A.B.C. D.参考答案与试题解析一、选择题(共30小题)1.(2013•红河州)不等式组的解集在数轴上表示为()A.B.C.D.【考点】在数轴上表示不等式的解集.【分析】把不等式组中每一个不等式的解集,表示在数轴上即可【解答】解:不等式组的解集在数轴上表示.故选C.【点评】把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.2.(2013•河池)把不等式组的解集表示在数轴上,正确的是()A.B.C.D.【考点】在数轴上表示不等式的解集.【分析】把各不等式的解集在数轴上表示出来即可.【解答】解:不等式组的解集在数轴上表示为:故选B.【点评】本题考查的是在数轴上表示不等式组的解集,熟知实心圆点与空心圆点的区别是解答此题的关键.3.(2013•太原)不等式组的解集在数轴上表示为()A.B.C.D.【考点】在数轴上表示不等式的解集;解一元一次不等式组.【分析】分别求出各不等式的解集,再求出其公共解集并在数轴上表示出来即可.【解答】解:,解不等式①得,x≥2,解不等式②得,x<3,故不等式的解集为:2≤x<3,在数轴上表示为:.故选:C.【点评】本题考查的是解一元一次不等式组及在数轴上表示不等式组的解集,熟知实心圆点与空心圆点的区别是解答此题的关键.4.(2013•东莞市)不等式5x﹣1>2x+5的解集在数轴上表示正确的是()A.B.C.D.【考点】在数轴上表示不等式的解集;解一元一次不等式.【专题】存在型.【分析】先求出不等式的解集,再在数轴上表示出来即可.【解答】解:移项得,5x﹣2x>5+1,合并同类项得,3x>6,系数化为1得,x>2,在数轴上表示为:故选A.【点评】本题考查了在数轴上表示不等式的解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.5.(2013•铁岭)如图,在数轴上表示不等式组的解集,其中正确的是()A.B.C.D.【考点】在数轴上表示不等式的解集;解一元一次不等式组.【专题】计算题.【分析】求出不等式的解集,表示在数轴上即可.【解答】解:,由①得:x<1,由②得:x≥﹣1,则不等式的解集为﹣1≤x<1,表示在数轴上,如图所示:故选C【点评】此题考查了在数轴上表示解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.6.(2013•丽水)若关于x的不等式组的解表示在数轴上如图所示,则这个不等式组的解集是()A.x≤2B.x>1 C.1≤x<2 D.1<x≤2【考点】在数轴上表示不等式的解集.【专题】计算题.【分析】根据数轴表示出解集即可.【解答】解:根据题意得:不等式组的解集为1<x≤2.故选D【点评】此题考查了在数轴上表示不等式的解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.7.(2013•锦州)不等式组的解集在数轴上表示正确的是()A.B.C.D.【考点】在数轴上表示不等式的解集;解一元一次不等式组.【专题】计算题.【分析】求出不等式组的解集,表示在数轴上即可.【解答】解:,由①得:x<1;由②得:x≤4,则不等式组的解集为x<1,表示在数轴上,如图所示故选C【点评】此题考查了在数轴上表示不等式的解集,以及解一元一次不等式组,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.8.(2013•内江)把不等式组的解集表示在数轴上,下列选项正确的是()A.B.C.D.【考点】在数轴上表示不等式的解集.【分析】求得不等式组的解集为﹣1<x≤1,所以B是正确的.【解答】解:由第一个不等式得:x>﹣1;由x+2≤3得:x≤1.∴不等式组的解集为﹣1<x≤1.故选B.【点评】不等式组解集在数轴上的表示方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.9.(2013•随州)不等式2x+3≥1的解集在数轴上表示为()A.B. C.D.【考点】在数轴上表示不等式的解集;解一元一次不等式.【专题】计算题.【分析】求出不等式的解集,表示在数轴上即可.【解答】解:不等式2x+3≥1,解得:x≥﹣1,表示在数轴上,如图所示:故选C【点评】此题考查了在数轴上表示不等式的解集,以及解一元一次不等式,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.10.(2013•日照)如果点P(2x+6,x﹣4)在平面直角坐标系的第四象限内,那么x的取值范围在数轴上可表示为()A.B.C.D.【考点】在数轴上表示不等式的解集;解一元一次不等式组;点的坐标.【专题】计算题.【分析】根据P为第四象限点,得到横坐标大于0,纵坐标小于0,列出关于x的不等式组,求出不等式组的解集,表示在数轴上即可得到结果.【解答】解:根据题意得:,由①得:x>﹣3;由②得:x<4,则不等式组的解集为﹣3<x<4,表示在数轴上,如图所示:.故选C.【点评】此题考查了在数轴上表示不等式组的解集,解一元一次不等式组,以及点的坐标,列出不等式组是本题的突破点.11.(2014•宁夏)已知不等式组,其解集在数轴上表示正确的是()A.B.C.D.【考点】在数轴上表示不等式的解集;解一元一次不等式组.【专题】数形结合.【分析】求出每个不等式的解集,找出不等式组的解集,再在数轴上把不等式组的解集表示出来,即可得出选项.【解答】解:∵解不等式①得:x>3,解不等式②得:x≥﹣1,∴不等式组的解集为:x>3,在数轴上表示不等式组的解集为:故选:B.【点评】本题考查了在数轴上表示不等式组的解集,解一元一次不等式(组)的应用,关键是能正确在数轴上表示不等式组的解集.12.(2014•梧州)不等式组的解集在数轴上表示正确的是()A. B.C. D.【考点】在数轴上表示不等式的解集;解一元一次不等式组.【分析】先求出不等式组的解集,再在数轴上表示出来即可.【解答】解:,由②得,x>2,故此不等式组的解集为x>2,在数轴上表示为:.故选B.【点评】本题考查的是在数轴上表示不等式的解集,熟知“小于向左,大于向右”是解答此题的关键.13.(2014•恩施州)关于x的不等式﹣x+a≥1的解集如图所示,则a的值为()A.﹣1 B.0 C.1 D.2【考点】在数轴上表示不等式的解集.【分析】先用a表示出不等式的解集,再根据数轴上x的取值范围即可得出结论.【解答】解:解关于x的不等式﹣x+a≥1得,x≤a﹣1,∵数轴上1处是实心原点,且折线向左,∵x≤1,∴a﹣1=1,解得a=2.故选D.【点评】本题考查的是在数轴上表示不等式的解集,熟知“小于向左,大于向右”是解答此题的关键.14.(2014•鞍山)不等式组的解集在数轴上表示为()A.B.C.D.【考点】在数轴上表示不等式的解集;解一元一次不等式组.【专题】计算题.【分析】求出不等式组的解集,表示在数轴上即可.【解答】解:不等式组,由①得:x>1;由②得:x≤3,∴不等式组的解集为1<x≤3,表示在数轴上,如图所示:故选A【点评】此题考查了在数轴上表示不等式的解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.15.(2014•沈阳)一元一次不等式x﹣1≥0的解集在数轴上表示正确的是()A.B.C.D.【考点】在数轴上表示不等式的解集;解一元一次不等式.【专题】数形结合.【分析】先求出不等式的解集,再在数轴上表示出来即可.【解答】解:移项得,x≥1,故此不等式组的解集为:x≥1.在数轴上表示为:.故选:A.【点评】本题考查的是在数轴上表示不等式的解集,熟知“小于向左,大于向右”是解答此题的关键.16.(2014•邵阳)不等式组的解集在数轴上表示正确的是()A.B.C.D.【考点】在数轴上表示不等式的解集;解一元一次不等式组.【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分,然后把不等式的解集表示在数轴上即可.【解答】解:,解得,故选:B.【点评】把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.17.(2014•仙桃)把不等式组的解集在数轴上表示,正确的是()A.B.C.D.【考点】在数轴上表示不等式的解集;解一元一次不等式组.【专题】计算题.【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分,然后把不等式的解集表示在数轴上即可.【解答】解:解得,故选:B.【点评】本题考查了在数轴上表示不等式的解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.18.(2014•南充)不等式组的解集在数轴上表示正确的是()A.B.C.D.【考点】在数轴上表示不等式的解集;解一元一次不等式组.【分析】解不等式组得到解集为﹣2<x≤3,将﹣2<x≤3表示成数轴形式即可.【解答】解:解不等式得:x≤3.解不等式x﹣3<3x+1得:x>﹣2所以不等式组的解集为﹣2<x≤3.故选:D.【点评】考查了在数轴上表示不等式的解集,不等式组解集在数轴上的表示方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.19.(2014•临沂)不等式组﹣2≤x+1<1的解集,在数轴上表示正确的是()A.B.C.D.【考点】在数轴上表示不等式的解集;解一元一次不等式组.【分析】先求出不等式组的解集,再求出其公共解集,并在数轴上表示出来即可.【解答】解:∵由题意可得,由①得,x≥﹣3,由②得,x<0,∴﹣3≤x<0,在数轴上表示为:.故选:B.【点评】本题考查的是在数轴上表示不等式的解集,熟知““小于向左,大于向右”是解答此题的关键.20.(2014•贺州)不等式的解集在数轴上表示正确的是()A.B.C.D.【考点】在数轴上表示不等式的解集;解一元一次不等式组.【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分,然后把不等式的解集表示在数轴上即可【解答】解:,解得,即:﹣1<x<3,在数轴上表示不等式的解集:.故选:A.【点评】把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.21.(2014•长沙)一个关于x的一元一次不等式组的解集在数轴上的表示如图,则该不等式组的解集是()A.x>1 B.x≥1C.x>3 D.x≥3【考点】在数轴上表示不等式的解集.【分析】根据不等式组的解集是大于大的,可得答案.【解答】解:一个关于x的一元一次不等式组的解集在数轴上的表示如图,则该不等式组的解集是x>3.故选:C.【点评】本题考查了不等式组的解集,不等式组的解集是大于大的.22.(2014•营口)不等式组的解集在数轴上表示正确的是()A. B.C.D.【考点】在数轴上表示不等式的解集;解一元一次不等式组.【专题】数形结合.【分析】分别求出①②的解集,再找到其公共部分即可.【解答】解:,由①得,x≤3,由②得,x>﹣2,不等式组的解集为﹣2<x≤3,在数轴上表示为:,故选:B.【点评】本题考查了解一元一次不等式(组)的解集和在数轴上表示不等式的解集,不等式的解集在数轴上表示出来的方法:“>”空心圆点向右画折线,“≥”实心圆点向右画折线,“<”空心圆点向左画折线,“≤”实心圆点向左画折线.23.(2014•陕西)把不等式组,的解集表示在数轴上,正确的是()A.B. C.D.【考点】在数轴上表示不等式的解集;解一元一次不等式组.【专题】计算题.【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分,然后把不等式的解集表示在数轴上即可【解答】解:解得,故选:D.【点评】把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.24.(2014•铁岭)不等式1﹣x>0的解集在数轴上表示正确的是()A.B.C.D.【考点】在数轴上表示不等式的解集;解一元一次不等式.【分析】根据解不等式的方法,可得不等式的解集,根据不等式的解集在数轴上的表示方法,可得答案.【解答】解;1﹣x>0,解得x<1,故选:A.【点评】本题考查了在数轴上表示不等式的解集,在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.25.(2014•德州)不等式组的解集在数轴上可表示为()A.B.C.D.【考点】在数轴上表示不等式的解集;解一元一次不等式组.【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分,然后把不等式的解集表示在数轴上即可.【解答】解:,解得,故选:D.【点评】本题考查了在数轴表示不等式的解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.26.(2014•威海)已知点P(3﹣m,m﹣1)在第二象限,则m的取值范围在数轴上表示正确的是()A.B. C. D.【考点】在数轴上表示不等式的解集;解一元一次不等式组;点的坐标.【专题】数形结合.【分析】根据第二象限内点的坐标特点,可得不等式,根据解不等式,可得答案.【解答】解:已知点P(3﹣m,m﹣1)在第二象限,3﹣m<0且m﹣1>0,解得m>3,m>1,故选:A.【点评】本题考查了在数轴上不等式的解集,先求出不等式的解集,再把不等式的解集表示在数轴上.27.(2014•日照)关于x的一元二次方程x2+2x+k+1=0的两个实根x1,x2,满足x1+x2﹣x1x2<﹣1,则k的取值范围在数轴上表示为()A.B.C.D.【考点】在数轴上表示不等式的解集;根的判别式;根与系数的关系.【专题】判别式法.【分析】根据根的判别式和根与系数的关系列出不等式,求出解集.【解答】解:∵关于x的一元二次方程x2+2x+k+1=0有两个实根,∴△≥0,∴4﹣4(k+1)≥0,解得k≤0,∵x1+x2=﹣2,x1•x2=k+1,∴﹣2﹣(k+1)<﹣1,解得k>﹣2,不等式组的解集为﹣2<k≤0,在数轴上表示为:,故选:D.【点评】本题考查了根的判别式、根与系数的关系,在数轴上找到公共部分是解题的关键.28.(2014•来宾)不等式组的解集在数轴上表示正确的是()A.B.C.D.【考点】在数轴上表示不等式的解集;解一元一次不等式组.【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分,然后把不等式的解集表示在数轴上即可【解答】解:解得﹣3<x≤4,故选:D.【点评】本题考查了在数轴上表示不等式的解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.29.(2015•庆阳)已知点P(a+1,﹣+1)关于原点对称的点在第四象限,则a的取值范围在数轴上表示正确的是()A. B.C.D.【考点】在数轴上表示不等式的解集;解一元一次不等式组;关于原点对称的点的坐标.【分析】首先根据题意判断出P点在第二象限,再根据第二象限内点的坐标符号(﹣,+),可得到不等式a+1<0,﹣+1>0,然后解出a的范围即可.【解答】解:∵P(a+1,﹣+1)关于原点对称的点在第四象限,∴P点在第二象限,∴a+1<0,﹣+1>0,解得:a<﹣1,则a的取值范围在数轴上表示正确的是.故选:C.【点评】此题主要考查了关于原点对称的点的坐标特点,以及各象限内点的坐标符号,关键是判断出P点所在象限.30.(2015•日照)不等式组的解集在数轴上表示正确的是()A.B.C.D.【考点】在数轴上表示不等式的解集;解一元一次不等式组.【分析】分别求出各不等式的解集,并在数轴上表示出来即可.【解答】解:,由①得,x≤﹣1,由②得,x>﹣5,故﹣5<x≤﹣1.在数轴上表示为:.故选A.【点评】本题考查的是在数轴上表示不等式组的解集,熟知“小于向左,大于向右”是解答此题的关键.。