北师大版八年级数学下册 一元一次不等式 教案
- 格式:doc
- 大小:43.37 KB
- 文档页数:4
北师大版八年级下册第二章一元一次不等式和一元一次不等式组课程设计一、课程设计目标通过本次课程设计,学生将会掌握以下知识和能力:1.理解一元一次不等式和一元一次不等式组的概念与性质;2.掌握一元一次不等式和一元一次不等式组的解法;3.能够运用所学知识解决日常生活中的实际问题;4.培养解决问题的思维能力和团队合作精神。
二、教学内容本次课程设计的教学内容包括:1.不等式的定义和基本性质;2.一元一次不等式的解法及其应用;3.一元一次不等式组的解法及其应用。
三、教学方法本次课程设计采用以下教学方法:1.观察、实验和猜想法:通过小组合作的方式进行探究,让学生明确知识点和解题方法;2.讲解、演示和引导法:通过示例讲解、演示和引导学生运用所学知识解决实际问题;3.合作学习法:通过小组合作的方式,培养学生的团队合作精神和解决问题的能力;4.评价和反思法:通过课后作业、小组讨论和课堂反馈等方式,促进学生评价和反思所学知识和能力。
四、教学步骤第一步:引入引导学生了解一元一次不等式及其解法,激发学生学习的兴趣。
第二步:理解不等式的定义和基本性质通过例题引导学生了解不等式的概念和基本性质。
让学生探究一元一次不等式的概念,并进一步加深对不等式性质的理解。
第三步:学习一元一次不等式的解法及其应用通过例题讲解和练习,使学生掌握一元一次不等式的解法,包括图像法、代数法等,并通过实际问题的解题练习进一步掌握一元一次不等式的应用。
第四步:学习一元一次不等式组的解法及其应用引导学生理解一元一次不等式组的概念和解法,学习一元一次不等式组的解法,包括代数法、消元法等。
通过实际问题的解题练习,进一步掌握一元一次不等式组的应用。
第五步:团队合作练习组织小组合作完成练习题和探究活动,促进学生合作学习和解决问题的能力。
第六步:课堂总结通过梳理本节课的内容和思考问题,进一步巩固学生对所学内容的掌握。
五、教学评价本次课程设计的教学评价主要分为以下几个方面:1.课程设计和教学组织的质量评价;2.学生的学习情况及表现的评价;3.学生解决问题的能力和思维方式的评价;4.小组合作和团队精神的评价。
一元一次不等式组课型:新授课课时:1课时教学目标:1、知识与技能目标理解一元一次不等式组解集的概念,掌握一元一次不等式组的解法;会利用数轴较简单的一元一次不等式组;通过练习理解并掌握一元一次不等式组解集的几种情况。
2、过程与方法目标通过利用数轴来寻求不等式组的解,培养学生的观察能力、分析能力;让学生从练习中发现不等式组解集的四种情况,以培养学生归纳总结能力。
3、情感、态度与价值观目标将不等式组的解法和归纳留给学生在交流、讨论中完成,培养学生养成良好的学习习惯和转变一种观念------将老师与学生伙伴看成是自己有利的学习资源。
教学重点:在紧密联系不等式的同时,理解不等式组解集的意义。
教学难点:借助数形结合的方法找出不等式的解集。
教学准备:课件教学过程:(一)回顾旧知学生解下列不等式,并把各解集在数轴上表示出来。
(1)2x+3>5 (2)6x-5≤1让学生上台演示,注意指导其解题的规范性。
(二)探索新知,讨论发展出示题目:用每分钟可抽30吨水的抽水机来抽污水管道里积存的污水,估计积存的污水在1200吨到1500吨之间,那么大约需要多长时间才能将污水抽完?学生分组讨论,小组派代表分析:设需要X分钟才能将污水抽完,那么总的抽水量应为30X 吨。
由题意,积存的污水在1200吨到1500吨之间,故有1200≤30x≤1500设计意图:通过一个具体的问题引入一元一次式组的概念。
学生在研究这一具体问题时,自然感知到要解决的问题同时满足两个约束条件,而这两个约束条件都是不等式。
这样引入不等式比较自然。
上式实际上包括了两个不等式30x≥1200 和30x≤1500它说明要这个实际问题中,未知量X应同时满足这两个条件。
我们把这两个一元一次不等式合在一起,就得到一个一元一次不等式组:30x≥120030x≤1500询问学生:你能尝试找出符合上面医院一次不等式组的未知数的值吗?与同伴交流。
学生可以通过列表、画数轴图的方法,寻求不等式组的解。
第一章一元一次不等式和一元一次不等式组备课时间:开学第二周上课时间:第三周第11课时:回顾与思考教学目标是:知识与技能1.掌握不等式的基本性质,理解不等式(组)的解及解集的含义,会解简单的一元一次不等式(组),并能在数轴上表示其解集。
2.利用一元一次不等式解决实际问题.3.理解一元一次不等式与一次函数之间的关系。
过程与方法通过回顾本章内容,经历将一些实际问题抽象为不等式的过程,体会不等式也是刻画现时世界中量与量之间关系的有效方法,感受不等式、方程、函数之间的联系与区别,研究用不等式解决实际问题的方法。
情感态度与价值观关注学生的学习情感,鼓励学生从不同的角度思考问题、解决问题,发展学生个性,使每个学生都能体会学习数学的价值,增进学生对数学的理解和学好数学的信心。
教学重点建立知识框架教学难点利用不等式和不等式组解决问题教学过程第一环节:课前准备,整理知识(5分钟,展示整理结果)学生提前把本章的知识内容进行整理,画出本章知识联系图。
要求学生认真完成知识整理和知识联系图。
将学生的知识联系图先收集起来,通过展台投影,让全班同学一起来进行评比。
大部分学生的知识联系图比较符合要求,基本体现了学生自主研究学习的过程与能力。
但是,有少部分学生完成的质量较差。
在教学中要注意这部分学生的态度。
第二环节:问题情景(5分钟,学生建立知识框架)投影展示部分同学所画的知识联系图,让全班同学进行评比,并说明联系图画得比较好的地方与不足之处。
然后教师将本章的知识联系图进行投影。
投影“本章知识结构图”教师根据知识结构图,要求学生对每个方框中的知识内容进行回顾,对学生感觉有一定难度的内容,鼓励学生之间进行交流、讨论,互相补充,然后教师给以适当的帮助。
第三环节:共同研究,解决问题(20分钟,师生共同梳理知识)通过对本章知识结构图的分析和理解,学生对本章的知识点已经有了一个全面的理解,本章主要从以下几方面对有关不等式的知识进行研究:由现实生活中的不等关系推导出不等式的意义,并能根据条件列出不等式;类比等式的性质,推导不等式的有关性质以及等式性质与不等式性质的异同;根据不等式的性质求解不等式,并能利用不等式解决实际问题;一元一次不等式与一次函数;一元一次不等式组及其应用.重点知识讲解:投影“等式的基本性质”和“不等式的基本性质”,学生对这两个性质进行对比。
《一元一次不等式》教学设计教学模式介绍:“传递-接受”教学模式源于赫尔巴特的四段教学法,后来由前苏联凯洛夫等人进行改造传入我国。
在我国广为流行,很多教师在教学中自觉不自觉地都用这种方法教学。
该模式以传授系统知识、培养基本技能为目标。
其着眼点在于充分挖掘人的记忆力、推理能力与间接经验在掌握知识方面的作用,使学生比较快速有效地掌握更多的信息量。
该模式强调教师的指导作用,认为知识是教师到学生的一种单向传递的作用,非常注重教师的权威性。
“传递-接受”教学模式的课程环节:复习旧课——激发学习动机——讲授新知识——巩固运用——检查评价——间隔性复习第一课时设计思路说明:1.复习一元一次方程和解一元一次方程的基本步骤。
本课使用类比教学的方法,从方程到不等式。
2.通过观察不等式的共同特征,并给这一类不等式起名字引入新课。
从一元一次方程的判断到一元一次不等式的判断,学生思维具有连贯性。
3.通过类比,学习一元一次不等式的定义和解法。
巩固运用环节,给出相关习题,提高学生对于知识点的合并认知,检查学生对于知识点的掌握情况,同时提高课堂效率。
在课堂结尾,随机抽查同学提问关于本节课的认识,让学生自己总结知识点,本课重难点,加深学生对本课内容的印象,同时锻炼学生对于知识的归纳总结能力。
布置课后作业,并在后面的教学过程中进行间隔性复习。
教材分析这是北师大版数学教材八年级下册第二章,在理解不等关系的基础上学习一元一次不等式和一元一次不等式组的解法。
培养学生的符号意识和计算能力。
教学目标【知识与能力目标】1.经历一元一次不等式概念的形成过程。
2.能解数字系数的一元一次不等式,并能在数轴上表示出解集。
【过程与方法目标】通过复习和小组活动,理清学习的思路,增强动手实践的能力,提高学生的计算能力。
【情感态度价值观目标】1.培养学生跟他人交流合作的意识和用实验解决问题的方法与能力;2.培养学生的计算能力,提高数学素养。
教学重难点 【教学重点】1.能解数字系数的一元一次不等式,并能在数轴上表示出解集。
北师大版八年级下册6一元一次不等式组课程设计一、教学目标1.掌握一元一次不等式组的概念、解法及其应用。
2.培养学生应用代数知识解决实际问题的能力。
3.提高学生的数学思维能力和解题能力。
二、教学内容1.不等式组的概念2.对两个一元一次不等式组的解法3.一元一次不等式组的应用三、教学重点和难点1.不等式组的概念及解法2.一元一次不等式组的应用四、教学方法1.讲授与练习相结合2.引导学生自主学习3.鼓励学生思考五、教学过程预习复习阶段1.复习一元一次方程组的概念、解法及其应用。
2.引出不等式组的概念。
新知引入阶段1.通过举例子,引出一元一次不等式组的概念。
2.引入对两个一元一次不等式组的解法。
讲授与练习阶段1.讲解不等式组的解法。
2.演示解一元一次不等式组的应用题。
3.学生自主完成作业,巩固所学知识。
巩固拓展阶段1.解答学生提出的疑问。
2.引导学生拓展应用一元一次不等式组的知识。
3.组织课外活动,进一步提高学生的数学思维能力。
六、教学评价1.小测验2.组织学生参加竞赛3.个人总结和学生评价七、教学资源教科书、练习册、课件、黑板、粉笔、计算器八、教学反思通过本次课程设计,我意识到教师的课程设计要注重学生的主体地位,充分考虑学生的认知特点和思维方式,采用多样的教学方法和手段,激发学生学习的兴趣,提高学生的学习效果,才能达到最好的教学效果。
同时也发现了自己在教学设计和教学实践中仍需加强。
本次课程设计还存在不足之处,需要进一步完善。
北师大版八年级下册第二章一元一次不等式与一次函数教课方案一元一次不等式与一次函数教课方案表一、基本信息学校课名一元一次不等式与一次函数教师姓名学科(版本)北师大版章节第二章第五节学时1课时年级八年级下册二、教课目的1、经过察看函数图象、求方程的解和不等式的解集,从中领会、理解一元一次方程、不等式与一次函数图象的内在联系。
2、能够用图像法解一元一次不等式。
3、理解两种方法的关系,会选择适合的方法解一元一次不等式。
三、学习者剖析:学生的知识技术基础:学生已经学习了一次函数和一元一次不等式的有关知识,为本节研究一元一次不等式与一次函数的关系确立了必需的知识基础。
学生活动经验基础:经过前方有关知识的学习,学生已经会利用一次函数和一元一次不等式解决一些简单的实质问题,感觉到了用数学知识解决实质问题的必需性和作用;同时在从前的学习中,经过经历合作学习的过程,拥有了必定的合作学习的经验,提高了合作与沟通的能力四、教课重难点剖析及解决举措教课重难点:要点:一元一次不等式、一次函数与一元一次方程关系的研究.难点:综合运用不等式和函数的知识解决实质问题.1/5北师大版八年级下册第二章一元一次不等式与一次函数教课方案解决举措:针对教课重难点,联合学生实质,借助几何画板软件动向课件,电子白板标明、聚光灯、拖拽,等功能,实现教课中的数与形的联合,让学生在动向、交互感观中打破教课重难点。
五、教课方案教课环节起止时间学生活媒体作用及分环节目标(’”教课内容析动’”)回首引入0’05”-3’02”上节课我们类比一元在回首中一次方程的解法,根学生思导入新据不等式的基天性考、并学课,同时质,学习了一元一次习本节浸透数学不等式的解法,本节课的学中的类比课我们来研究一元一习目标。
思想。
次不等式与一次函数的关系。
播放PPT,借助幻灯片展现学习目标,利用白板标明,齐集学生注意力。
函数y=2x-5的图经过察看象,察看图象回答下列问题。
函数图电子白板标明象,进一功能,提高学步理解一生注意力次函数的(1)x取哪些值时,2.活动探有关知2x-5=0?究、合作学识,让学习生从整体上感觉利2)x取哪些值时,学生先用一次函2x-5<0?合作交流,再总数图像可结提炼以帮助解升华决一元一(3)x取哪些值时,次方程、2x-5>0?几何画板动画一元一次课件,白板拖2/53’03”-22’25”不等式的动功能,直观问题。
《4 一元一次不等式》教案
第1课时
教学目标
知识目标:
1、掌握一元一次不等式的概念;
2、熟练掌握较为简单的一元一次不等式的解法,并能正确地将不等式的解集表示在数轴上. 过程性目标:
1、介绍一元一次不等式的概念;
2、引导学生体会通过综合利用不等式的概念和基本性质解一元一次不等式. 情感态度目标:
通过实例让学生经历求一元一次不等式的解的过程,探索一元一次不等式的解法与一元一次方程解法的异同,从中感受到新旧知识的迁移和更新.
教学重难点
重点:一元一次不等式的解法.
难点:解一元一次不等式时,去分母及化系数为1,这两步当乘数是负数时改变不等号的方向.
教学过程
一、课前练习:
1、直接写出下列一元一次不等式的解集.
(1)-x <2; (2)1-x <x -1;
(3)2x -3>1; (4)5
x ≤x . 2、解下列不等式,并把解集在数轴上表示出来.
(1)3
1x <-1; (2)6-(x -1)<1. 二、一元一次不等式的概念:
问:这些不等式中含有几个未知数,未知数的次数是多少,含有未知数的式子是什么样的代数式?
答:这些不等式有一个共同的特点:
只含有一个未知数,并且未知数的最高次数是1,系数不等于0,这样的不等式叫做一元一次不等式.
说明:它们都只含有一个未知数,且含未知数的式子是整式,未知数的次数是1.
三、解不等式:
解下列不等式并把它的解集在数轴上表示出来:
(1)x-8<3;(2)3x>7;
(要求学生能够说出变形的方法和其依据)
问:通过以上例题的解答,我们来总结一下一元一次不等式的解法,并和一元一次方程的解法作一下比较,看看他们有哪些类似之处?有什么不同?(可安排学生进行讨论和交流.)由学生得出以下结论,教师作适当的总结.
(1)解一元一次不等式的一般步骤:去分母,去括号,移项,合并同类项,系数化为1.(2)解一元一次不等式和解一元一次方程步骤类似,但要注意在不等式两边都乘以(或除以)同一个负数时,不等号方向必须改变.
四、检测反馈:
1、解下列不等式,并把解集在数轴上表示出来:
(1)2x+1>3;(2)2-x<1;
(3)2(x+1)<3x;(4)3(2x+2)≥4(x-1)+7.
2、a取什么值时,代数式4a+2的值
(1)大于1?(2)等于1?(3)小于1?
3、甲、乙两家体育用品商店出售同样的乒乓球拍和乒乓球,乒乓球拍每副定价20元,乒乓球定价每盒5元,现两家商店搞促销活动,甲店:每买一副乒乓球拍赠送一盒乒乓球;乙店:按定价的九折优惠.某边需购球拍4副,乒乓球若干盒(不少于4盒).
设购买乒乓球盒数为x(盒),在甲商店付款为y
甲(元),在乙商店付款为y
乙
(元),分别
写出y
甲,y
乙
与x的关系式;就乒乓球盒数讨论去哪家商店买合算?
第2课时
教学目标
知识目标:
1、较熟练的解一元一次不等式.
2、会求不等式的整数解.
3、会用一元一次不等式解决简单的实际问题.
过程性目标:
1、引导学生体会通过综合利用不等式的概念和基本性质解一元一次不等式;
2、指导学生将文字表达转化为数学语言,从而解决实际问题.
情感态度目标:
在进行实际问题讨论的过程中,让学生体验合作交流精神,探索运用数学知识解决实际问题的方法与途径,提高学生参与数学活动的兴趣.
教学重难点
重点:一元一次不等式的解法以及将实际问题转化成一元一次不等式的数量关系. 难点:在实际问题中建立一元一次不等式的数量关系.
教学过程
一、复习练习:
1、解下列不等式,并把解集在数轴上表示出来.
14-4x >0;
2、只含有一个未知数,并且未知数的最高次数是1,系数不为0,这样的不等式叫做一元一次不等式.
3、(1)解一元一次不等式的一般步骤:去分母,去括号,移相,合并同类项,系数化为1.
(2)解一元一次不等式和解一元一次方程步骤类似,但要注意在不等式两边都乘以(或除以)同一个负数时,不等号方向必须改变.
二、新课讲解:
例1、解不等式,并把它解集在数轴上表示出来:
24+x +3
12+x ≥0 由学生得出以下结论,教师作适当的总结.
(1)解法步骤类似: 去分母,去括号,移项,合并同类项,系数化为1.
(2)求一元一次不等式的整数解比求一元一次方程的解集多一个步骤:就是在解集中找出整数解.
例2、张玲有1元和5角的硬币共15枚,这些硬币的总数大于10.5元.问张玲至少有多少枚1元的硬币?
分析:以“硬币的总数大于10.5元”为不等量关系,列不等式.
三、交流反思:
师生共同回顾:
用一元一次不等式解决简单的实际问题时,先要设出未知数,再根据题中不等量关系列出不等式,最后解一元一次不等式.
四、检测反馈:
1、a <0时,ax -b ≥0的解集为_______.
2、当x 时_______,4
23x + 的值是非正数. 3、求3)3(2-x ≤6
45-x -1的负整数解. 4、一个工程队原定在10天内至少要挖土600m 3,在前两天一共完成了120m 3,由于整个
工程调整工期,要求提前两天完成挖土任务.问以后6天内平均每天至少要挖土多少m3.五、课堂总结:
如何求不等式的特殊解?应用解不等式解决实际问题的方法和步骤是什么?谈自己的收获和体会.。