这种最短网络称为最小生成树
- 格式:ppt
- 大小:725.00 KB
- 文档页数:32
斯坦纳树算法路径选择斯坦纳树算法,是用于网络优化中的一种算法,通常用于求最小生成树。
斯坦纳树算法主要用于寻找网络中的一些特定节点,这些节点被称为“终端节点”,并通过一些路径连接起来。
斯坦纳树算法的基本思路是通过构建一棵最小生成树,将终端节点连接起来。
在最小生成树的构建过程中,算法会假设所有的节点都是终端节点,并尝试找到一些最小的路径使得这些节点之间连接起来,然后将这些路径添加到最小生成树中。
斯坦纳树算法的步骤如下:1. 确定终端节点。
在开始算法之前,需要确定网络中的一些节点作为终端节点。
通常终端节点是预先指定的,它们可以是网络中的一些特定节点或者是一些已知的关键节点。
2. 构造所有终端节点之间的路径。
使用一些最短路径算法,如 Dijkstra 算法或Floyd 算法,来构造所有终端节点之间的路径,并计算它们之间的距离。
这个过程可以比较耗时,需要使用一些常用的优化技巧来提高效率。
3. 寻找最小生成树。
使用一些最小生成树算法(如 Kruskal 算法)来找到包含所有终端节点的最小生成树。
4. 将路径加入最小生成树中。
将第二步中构造的所有路径加入到最小生成树中,形成一棵新的斯坦纳树。
这个过程通常需要进行一些捆绑(bundling)和压缩(compression)操作,以减少斯坦纳树的复杂度。
5. 循环优化。
从最小生成树的根节点开始,逐级向下遍历,找到每个非终端节点的最短路径,并将这个路径添加到斯坦纳树中。
这个过程需要循环执行,直到所有非终端节点都被连接起来,或者直到满足一些停止条件为止。
总的来说,斯坦纳树算法是一种比较复杂的算法,需要一些高级的数据结构和算法知识。
但是它在一些网络优化问题中具有显著的优势,可以为网络设计提供更优秀的方案。
第二章树教学安排的说明章节题目:§2.1树的特性;§2.2割边与割点,§2.3生成树学时分配:共2课时本章教学目的与要求:会正确表述关于树的一些基本概念(如树、生成树、割边与割点),会用避圈法和破圈法找生成树,会用树的方法描述一些简单的实际问题.课 堂 教 学 方 案课程名称:§2.1树的特性;§2.2割边与割点;§2.3 生成树授课时数:2学时授课类型:理论课教学方法与手段:讲授法教学目的与要求:会正确表述关于树的一些基本概念(如树、生成树、割边与割点),会用避圈法和破圈法找生成树,会用树的方法描述一些简单的实际问题. 教学重点、难点:(1) 理解树的概念以及树的等价命题;(2) 掌握割边与割点的概念;(3) 理解生成树的定义;(4) 掌握找生成树的两种方法——避圈法和破圈法。
教学内容:树是图论中的一个重要概念。
树是一种极为简单而又非常重要的特殊图,它在计算机科学以及其它许多领域都有广泛的应用。
在1847年克希霍夫就用树的理论来研究电网络,1857年凯莱在计算有机化学中222n C H 的同分异构物数目时也用到了树的理论。
各类网络的主干网通常都是树的结构。
本节介绍树的基本知识,其中谈到的图都假定是简单图。
2.1 树的特性定义2.1.1 连通无圈的无向图称为无向树,简称为树(Undirected tree )。
记作T ,树中的悬挂点(或称T 中度数为1的顶点)又称为树叶(leave )(或叶顶点),其它顶点称为树枝(Branch Point 或内点(Inner Point))。
诸连通分支均为树的图称为森林(forest ),树是森林。
例1 图1中(a ),(b )为树,(c )为森林。
图1由于树无环也无重边(否则它有圈),因此树必定是简单图。
树还有等价命题:设T 是一个无向(,)n m 图,则以下关于T 的命题是等价的。
(1) T 是树;(2)T 无圈且1m n =-;(3) T 连通且1m n =-;(4)T 无圈,但增加任一新边,得到且仅得到一个圈。
数据结构练习(二)答案一、填空题:1.若一棵树的括号表示为A(B(E,F),C(G(H,I,J,K),L),D(M(N))),则该树的度为(1)4,树的深度为(2)4 ,树中叶子结点的个数为(3)8。
2.一棵满二叉树中有m个叶子,n个结点,深度为h,请写出m、n、h之间关系的表达式(4)n=2h-1,m=n+1-2h-1 n=2m-1 。
3.一棵二叉树中如果有n个叶子结点,则这棵树上最少有(5)2n-1 个结点。
一棵深度为k的完全二叉树中最少有2k-1(6)个结点,最多有(7)2k-1个结点。
4.具有n个结点的二叉树,当它是一棵(8)完全二叉树时具有最小高度(9) log2n」+1,当它为一棵单支树时具有高度(10) n 。
5.对具有n个结点的完全二叉树按照层次从上到下,每一层从左到右的次序对所有结点进行编号,编号为i的结点的双亲结点的编号为_(11)__[i/2]__,左孩子的编号为___2i____,右孩子的编号为__2i+1______。
6.若具有n个结点的二叉树采用二叉链表存储结构,则该链表中有__2n_个指针域,其中有_n-1_个指针域用于链接孩子结点,__n+1_个指针域空闲存放着NULL 。
7.二叉树的遍历方式通常有__先序__、___中序__、__后序__和___层序___四种。
8.已知二叉树的前序遍历序列为ABDCEFG,中序遍历序列为DBCAFEG,其后序遍历序列为___DCBFGEA__。
9.已知某完全二叉树采用顺序存储结构,结点的存放次序为A,B,C,D,E,F,G,H,I,J,该完全二叉树的后序序列为___HIDJEBFGCA____。
10.若具有n个结点的非空二叉树有n0个叶结点,则该二叉树有__n0-1_个度为2的结点,____n-2n0+1____个度为1的结点。
11.任何非空树中有且仅有一个结点没有前驱结点,该结点就是树的__根____。
度为k的树中第i层最多有___k i-1_______个结点(i>=1),深度为h的k叉树最多有___k0+k1+....+k h-1____个结点。
四类基本模型1 优化模型1.1 数学规划模型线性规划、整数线性规划、非线性规划、多目标规划、动态规划。
1.2 微分方程组模型阻滞增长模型、SARS 传播模型。
1.3 图论与网络优化问题最短路径问题、网络最大流问题、最小费用最大流问题、最小生成树问题(MST)、旅行商问题(TSP)、图的着色问题。
1.4 概率模型决策模型、随机存储模型、随机人口模型、报童问题、Markov 链模型。
1.5 组合优化经典问题● 多维背包问题(MKP)背包问题:n 个物品,对物品i ,体积为i w ,背包容量为W 。
如何将尽可能多的物品装入背包。
多维背包问题:n 个物品,对物品i ,价值为i p ,体积为i w ,背包容量为W 。
如何选取物品装入背包,是背包中物品的总价值最大。
多维背包问题在实际中的应用有:资源分配、货物装载和存储分配等问题。
该问题属于NP 难问题。
● 二维指派问题(QAP)工作指派问题:n 个工作可以由n 个工人分别完成。
工人i 完成工作j 的时间为ij d 。
如何安排使总工作时间最小。
二维指派问题(常以机器布局问题为例):n 台机器要布置在n 个地方,机器i 与k 之间的物流量为ik f ,位置j 与l 之间的距离为jl d ,如何布置使费用最小。
二维指派问题在实际中的应用有:校园建筑物的布局、医院科室的安排、成组技术中加工中心的组成问题等。
● 旅行商问题(TSP)旅行商问题:有n 个城市,城市i 与j 之间的距离为ij d ,找一条经过n 个城市的巡回(每个城市经过且只经过一次,最后回到出发点),使得总路程最小。
● 车辆路径问题(VRP)车辆路径问题(也称车辆计划):已知n 个客户的位置坐标和货物需求,在可供使用车辆数量及运载能力条件的约束下,每辆车都从起点出发,完成若干客户点的运送任务后再回到起点,要求以最少的车辆数、最小的车辆总行程完成货物的派送任务。
TSP 问题是VRP 问题的特例。
● 车间作业调度问题(JSP)车间调度问题:存在j 个工作和m 台机器,每个工作由一系列操作组成,操作的执行次序遵循严格的串行顺序,在特定的时间每个操作需要一台特定的机器完成,每台机器在同一时刻不能同时完成不同的工作,同一时刻同一工作的各个操作不能并发执行。
设计一个用破圈法求最小生成树的算法
破圈法是一种求解最小生成树的算法,它基于Prim算法,用于求解最小生成
树(Minimum Spanning Tree, MST)问题。
破圈法同样也能解决切分图中(Cutting)边缘权重最小化的问题,是一种创建适应性结构的方法。
破圈法的原理可以理解为迭代式的选择最小边界的策略,其包括核心算法思想:
1. 首先计算图中的26未访问节点的最小边权重。
2. 然后添加最小权重边,将最小权重边连接的两个点打破圈。
3. 重复步骤1,其中只考虑不在圈中的节点的最小边权重,直至无节点可添加,完成最小生成树的构建。
破圈法具有稳定、高效和低内存占用特点。
它类似于Prim算法,但是它比
Prim算法更快,因为它节省了比较步骤,即只考虑不在圈中的节点的最小边权重。
破圈法可广泛用于互联网开发中的多种应用,比如路由器的简化、家庭网络构建、通信系统构建以及计算机科学和生物信息学中的最短路径问题等。
其优越性是,在构建复杂、动态网络中,能够准确地表示相互联系,加快了最短路径检索的过程;而且,它由于不需要建立额外的树结构,因此内存消耗比较小。
破圈法是最小生成树问题的一种很好的解决方案,它能够有效地避免圈死现象,构建一个没有重复的树或图;它的实现思路也比较简单,可以用来解决复杂网络中的最短路径问题。
复杂⽹络基本概念1.复杂⽹络:随机⽹络,⼩世界⽹络和⽆标度⽹络2.⼩世界⽹络的属性:平均路径长度(Average Path Length,APL)⼩于正则⽹络的;⼩世界⽹络具有较低的平均聚类系数(Average Clustering Coefficient,ACC)3.复杂⽹络⾯对的挑战:⾼数据量;物理系统到真实复杂⽹络模型映射过程中的复杂性;⾼计算复杂性4.图信号处理将经典信号处理中的概念和⼯具(如平移,卷积,傅⾥叶变换,滤波器组和⼩波变换)扩展应⽤于任意⽹络中的数据5.加权图,有向图6.图在计算机的存储器中⽤矩阵表⽰,如邻接矩阵,关联矩阵,权重矩阵,度矩阵以及拉普拉斯矩阵等。
7.如果在两个节点之间存在多条边,称该图为多重图(multigraph);如果存在⾃环,则称该图为伪图(pseudograph)8.包含原始图所有顶点的⼦图称为⽣成⼦图(spanning subgraph)9.图g的补图是指与图G具有同样的顶点集,但边集中的边则由那些在图g中不存在的边组成,也称为反向图(inverse graph)10.图在计算机中以矩阵或者链表的⽅式存储11.权重矩阵:图的权重矩阵包含图中相应边的权重。
权重矩阵是图的拓扑结构的完整表⽰。
所有的其他矩阵(邻接,度,拉普拉斯)都可以通过权重矩阵推导得出。
对于⾮加权图,权重矩阵和邻接矩阵是⼀样的。
12.邻接矩阵:包含图连接的N*N矩阵13.关联矩阵:每⼀⾏对应图中的⼀个顶点,⽽每⼀列对应图中的⼀条边。
14.度矩阵:是⼀个对⾓线矩阵,在对⾓线上包含了顶点的度。
节点的度是所有与该节点相关联的边的权重之和。
⼀些⼤的⽹络通常通过度的频率分布来刻画。
15.拉普拉斯矩阵:L=D-W,D是图的度矩阵,W是图的权重矩阵。
具有正边权重的⽆向图的拉普拉斯矩阵的基本性质:对称性;每⼀⾏之和为0,具有奇异性,det(L)=0;半正定;其特征值是⾮负实数。
16.归⼀化拉普拉斯矩阵:L(norm)=D(-1/2)LD^(-1/2)17.有向拉普拉斯矩阵:L=Din-W; Din是⼊度矩阵18.基本图测度:平均邻居度(AND),平均聚类系数(ACC,局部连通性属性),平均路径长度(APL,全局⽹络属性),平均边长度(AEL),图的直径和体积。
数学建模最小生成树例题例题1:某城市计划建设一条高速公路,需要在若干个村庄之间选择一条最优路径。
已知各个村庄之间的距离,请使用最小生成树算法为高速公路选择最优路径。
参考答案:最小生成树算法可以用于解决此类问题。
常用的最小生成树算法有Kruskal算法和Prim算法。
1. Kruskal算法:按照边的权重从小到大排序,依次将边加入生成树,如果加入的边与已选择的边不构成环,则加入,否则不加入。
2. Prim算法:首先选择权重最小的边加入生成树,然后从剩余的边中选择一条与已选择的边相连且权重最小的边加入生成树,直到所有边都加入生成树。
例题2:一个通信网络由若干个节点和边组成,节点代表城市,边代表通信线路。
已知各个城市之间的距离和通信需求,请使用最小生成树算法为该通信网络设计一个最优的通信线路网。
参考答案:最小生成树算法可以用于解决此类问题。
通过最小生成树算法,我们可以找到一个包含所有节点且边的总权重最小的树形结构,以满足各个城市之间的通信需求。
常用的最小生成树算法有Kruskal算法和Prim算法。
1. Kruskal算法:按照边的权重从小到大排序,依次将边加入生成树,如果加入的边与已选择的边不构成环,则加入,否则不加入。
2. Prim算法:首先选择权重最小的边加入生成树,然后从剩余的边中选择一条与已选择的边相连且权重最小的边加入生成树,直到所有边都加入生成树。
例题3:一个城市的电力网由多个节点和边组成,节点代表发电厂或变电站,边代表输电线路。
已知各个节点之间的电抗和传输功率,请使用最小生成树算法为该城市电力网设计一个最优的输电线路。
参考答案:最小生成树算法可以用于解决此类问题。
通过最小生成树算法,我们可以找到一个包含所有节点且边的总电抗最小的树形结构,以满足各个节点之间的电力传输需求。
常用的最小生成树算法有Kruskal算法和Prim算法。
1. Kruskal算法:按照边的电抗从小到大排序,依次将边加入生成树,如果加入的边与已选择的边不构成环,则加入,否则不加入。
最小生成树课程设计一、课程目标知识目标:1. 学生能够理解最小生成树的概念,掌握其定义和性质;2. 学生能够掌握两种常见的最小生成树算法:普里姆(Prim)算法和克鲁斯卡尔(Kruskal)算法;3. 学生能够运用最小生成树解决实际问题,如网络设计、电路设计等。
技能目标:1. 学生能够运用图论知识,分析并解决最小生成树问题;2. 学生能够编写和调试实现最小生成树的算法程序;3. 学生能够通过小组合作,共同探讨并解决最小生成树相关问题。
情感态度价值观目标:1. 学生通过学习最小生成树,培养对图论的兴趣,激发探索数学问题的热情;2. 学生在合作解决问题的过程中,学会沟通、协作,培养团队精神;3. 学生能够认识到数学知识在实际生活中的广泛应用,增强学习的积极性和主动性。
课程性质:本课程为计算机科学、信息技术等相关专业的高年级学生设计,旨在帮助学生掌握最小生成树的基本原理和算法,提高解决实际问题的能力。
学生特点:学生已经具备一定的图论基础,熟悉基本的算法和数据结构,具有一定的编程能力。
教学要求:通过讲解、示例、练习和小组讨论等形式,使学生掌握最小生成树的相关知识,提高编程实践能力和解决问题的能力。
同时,注重培养学生的团队合作精神和数学思维。
二、教学内容1. 最小生成树概念与性质- 定义、性质和判定条件- 最小生成树的应用场景2. 普里姆(Prim)算法- 算法原理与步骤- 代码实现与调试- 算法性能分析3. 克鲁斯卡尔(Kruskal)算法- 算法原理与步骤- 代码实现与调试- 算法性能分析4. 最小生成树算法比较与应用- 普里姆与克鲁斯卡尔算法的优缺点对比- 实际问题中的应用案例分析5. 小组讨论与练习- 分组讨论最小生成树相关算法及应用- 编写和调试最小生成树算法程序- 解决实际问题,如网络设计、电路设计等教学内容安排与进度:第一周:最小生成树概念与性质,普里姆算法原理与实现第二周:普里姆算法性能分析,克鲁斯卡尔算法原理与实现第三周:克鲁斯卡尔算法性能分析,最小生成树算法比较与应用第四周:小组讨论与练习,解决实际问题教材章节:《离散数学及其应用》第6章:图论《数据结构与算法分析》第9章:图论算法《计算机算法设计与分析》第4章:最小生成树与最短路径三、教学方法本课程将采用以下多样化的教学方法,以激发学生的学习兴趣和主动性:1. 讲授法:教师通过生动的语言、形象的比喻和具体的案例,讲解最小生成树的概念、性质和算法原理,使学生系统掌握理论知识。