数学三大难题
- 格式:rtf
- 大小:4.58 KB
- 文档页数:1
世界近代三大数学难题之一数学是人类精神发展的重要标志。
在历史上,曾经出现过许多数学难题,这些难题充满了神秘和挑战,一度困扰了各国的数学家。
其中,世界近代三大数学难题之一,作为这一类问题中的代表,让人们耳目一新,感受到数学的魅力和力量。
世界近代三大数学难题之一,即费马大定理,又叫费马最后定理。
这个定理由法国数学家费马在17世纪末提出,该定理表述如下:对于任意大于二的自然数n,关于x、y、z的方程x^n+y^n=z^n没有正整数解。
这个问题之所以成为世界近代三大数学难题之一,是因为它的解答过程引发了顶尖数学家们的长期研究和探究,耗费了无数岁月和精力。
费马最后定理一直是数学家心中的一个难题,直到20世纪才得以解决。
在数学界,证明该定理的人被认为是最伟大的数学家之一。
证明费马最后定理的人是英国数学家安德鲁·怀尔斯(Andrew Wiles),他花了七年的时间证明了这个定理。
怀尔斯证明费马最后定理的过程是令人惊叹的。
他是在1986年开始思考这个问题的,在证明过程中,他运用了许多数学理论,尤其是代数几何和调和分析等数学分支中较为先进的理论,并在1993年终于完成了证明。
怀尔斯证明费马最后定理的过程中,透露出了他在数学研究方面的卓越才华。
他发现了一组复杂的代数变换,将费马最后定理转化为了一个新理论,这个理论可以依赖一些已有的数学理论来进行证明。
尽管他在证明中宝刀未出鞘,但他的谨慎和不断的尝试,使得他最终成功地找到了证明该定理的方法。
费马最后定理的解决彰显了数学的力量和神秘,也为数学研究开辟了新的探索方向。
对于普通人来说,虽然这个定理有些抽象和难以理解,但它背后的思想和精神却值得我们去领悟和尊重。
古典难题的挑战——几何三大难题及其解决位于欧洲南部的希腊,是著名的欧洲古国,几何学的故乡。
这里的古人提出的三大几何难题,在科学史上留下了浓浓的一笔。
这延续了两千多年才得到解决的世界性难题,也许是提出三大难题的古希腊人所不曾预料到的。
三大难题的提出传说大约在公元前400年,古希腊的雅典流行疫病,为了消除灾难,人们向太阳神阿波罗求助,阿波罗提出要求,说必须将他神殿前的立方体祭坛的体积扩大1倍,否则疫病会继续流行。
人们百思不得其解,不得不求教于当时最伟大的学者柏拉图,柏拉图也感到无能为力。
这就是古希腊三大几何问题之一的倍立方体问题。
另外两个著名问题是三等分任意角和化圆为方问题。
用数学语言表达就是:三等分角问题:将任一个给定的角三等分。
倍立方体问题:求作一个正方体的棱长,使这个正方体的体积是已知正方体体积的二倍。
化圆为方问题:求作一个正方形,使它的面积和已知圆的面积相等。
然而,一旦改变了作图的条件,问题则就会变成另外的样子。
比如直尺上如果有了刻度,则倍立方体和三等分任意角就都是可作的了。
这三大难题在《几何原本》问世之前就提出了,随着几何知识的传播,后来便广泛留传于世。
貌似简单其实难从表面看来,这三个问题都很简单,它们的作图似乎该是可能的,因此,2000多年来从事几何三大难题的研究颇不乏人。
也提出过各种各样的解决办法,例如阿基米德、帕普斯等人都发现过三等分角的好方法,解决立方倍积问题的勃洛特方法等等。
可是,所有这些方法,不是不符合尺规作图法,便是近似解答,都不能算作问题的解决。
其间,数学家还把问题作种种转化,发现了许多与三大难题密切相关的一些问题,比如求等于圆周的线段、等分圆周、作圆内接正多边形等等。
可是谁也想不出解决问题的办法。
三大作图难题就这样绞尽了不少人的脑汁,无数人做了无数次的尝试,均无一人成功。
后来有人悟及正面的结果既然无望,便转而从反面去怀疑这三个问题是不是根本就不能由尺规作出?数学家开始考虑哪些图形是尺规作图法能作出来的,哪些不能?标准是什么?界限在哪里?可这依然是十分困难的问题。
世界近代三大数学难题之一----哥德巴赫猜想哥德巴赫是德国一位中学教师,也是一位著名的数学家,生于1690年,1725年当选为俄国彼得堡科学院院士。
1742年,哥德巴赫在教学中发现,每个不小于6的偶数都是两个素数(只能被和它本身整除的数)之和。
如6=3+3,12=5+7等等。
1742年6月,哥德巴赫写信将这个问题告诉给意大利大数学家欧拉,并请他帮助作出证明。
欧拉在6月30日给他的回信中说,他相信这个猜想是正确的,但他不能证明。
叙述如此简单的问题,连欧拉这样首屈一指的数学家都不能证明,这个猜想便引起了许多数学家的注意。
他们对一个个偶数开始进行验算,一直算到3.3亿,都表明猜想是正确的。
但是对于更大的数目,猜想也应是对的,然而不能作出证明。
欧拉一直到死也没有对此作出证明。
从此,这道著名的数学难题引起了世界上成千上万数学家的注意。
200年过去了,没有人证明它。
哥德巴赫猜想由此成为数学皇冠上一颗可望不可及的“明珠”。
到了20世纪20年代,才有人开始向它靠近。
1920年、挪威数学家布爵用一种古老的筛选法证明,得出了一个结论:每一个比大的偶数都可以表示为(99)。
这种缩小包围圈的办法很管用,科学家们于是从(9十9)开始,逐步减少每个数里所含质数因子的个数,直到最后使每个数里都是一个质数为止,这样就证明了“哥德巴赫”。
1924年,数学家拉德马哈尔证明了(7+7);1932年,数学家爱斯尔曼证明了(6+6);1938年,数学家布赫斯塔勃证明了(5十5),1940年,他又证明了(4+4);1956年,数学家维诺格拉多夫证明了(3+3);1958年,我国数学家王元证明了(2十3)。
随后,我国年轻的数学家陈景润也投入到对哥德巴赫猜想的研究之中,经过10年的刻苦钻研,终于在前人研究的基础上取得重大的突破,率先证明了(l十2)。
世界近代三大数学难题之一----哥德巴赫猜想哥德巴赫是德国一位中学教师,也是一位著名的数学家,生于1690年,1725年当选为俄国彼得堡科学院院士。
1742年,哥德巴赫在教学中发现,每个不小于6的偶数都是两个素数(只能被和它本身整除的数)之和。
如6=3+3,12=5+7等等。
1742年6月,哥德巴赫写信将这个问题告诉给意大利大数学家欧拉,并请他帮助作出证明。
欧拉在6月30日给他的回信中说,他相信这个猜想是正确的,但他不能证明。
叙述如此简单的问题,连欧拉这样首屈一指的数学家都不能证明,这个猜想便引起了许多数学家的注意。
他们对一个个偶数开始进行验算,一直算到3.3亿,都表明猜想是正确的。
但是对于更大的数目,猜想也应是对的,然而不能作出证明。
欧拉一直到死也没有对此作出证明。
从此,这道著名的数学难题引起了世界上成千上万数学家的注意。
200年过去了,没有人证明它。
哥德巴赫猜想由此成为数学皇冠上一颗可望不可及的“明珠”。
到了20世纪20年代,才有人开始向它靠近。
1920年、挪威数学家布爵用一种古老的筛选法证明,得出了一个结论:每一个比大的偶数都可以表示为(99)。
这种缩小包围圈的办法很管用,科学家们于是从(9十9)开始,逐步减少每个数里所含质数因子的个数,直到最后使每个数里都是一个质数为止,这样就证明了“哥德巴赫”。
1924年,数学家拉德马哈尔证明了(7+7);1932年,数学家爱斯尔曼证明了(6+6);1938年,数学家布赫斯塔勃证明了(5十5),1940年,他又证明了(4+4);1956年,数学家维诺格拉多夫证明了(3+3);1958年,我国数学家王元证明了(2十3)。
随后,我国年轻的数学家陈景润也投入到对哥德巴赫猜想的研究之中,经过10年的刻苦钻研,终于在前人研究的基础上取得重大的突破,率先证明了(l十2)。
世界数学十大未解难题(其中“一至七”为七大“千僖难题”;附录“希尔伯特23个问题里尚未解决的问题”)一:P(多项式算法)问题对NP(非多项式算法)问题在一个周六的晚上,你参加了一个盛大的晚会。
由于感到局促不安,你想知道这一大厅中是否有你已经认识的人。
你的主人向你提议说,你一定认识那位正在甜点盘附近角落的女士罗丝。
不费一秒钟,你就能向那里扫视,并且发现你的主人是正确的。
然而,如果没有这样的暗示,你就必须环顾整个大厅,一个个地审视每一个人,看是否有你认识的人。
生成问题的一个解通常比验证一个给定的解时间花费要多得多。
这是这种一般现象的一个例子。
与此类似的是,如果某人告诉你,数13,717,421可以写成两个较小的数的乘积,你可能不知道是否应该相信他,但是如果他告诉你它可以因子分解为3607乘上3803,那么你就可以用一个袖珍计算器容易验证这是对的。
不管我们编写程序是否灵巧,判定一个答案是可以很快利用内部知识来验证,还是没有这样的提示而需要花费大量时间来求解,被看作逻辑和计算机科学中最突出的问题之一。
它是斯蒂文·考克(StephenCook)于1971年陈述的。
二:霍奇(Hodge)猜想二十世纪的数学家们发现了研究复杂对象的形状的强有力的办法。
基本想法是问在怎样的程度上,我们可以把给定对象的形状通过把维数不断增加的简单几何营造块粘合在一起来形成。
这种技巧是变得如此有用,使得它可以用许多不同的方式来推广;最终导至一些强有力的工具,使数学家在对他们研究中所遇到的形形色色的对象进行分类时取得巨大的进展。
不幸的是,在这一推广中,程序的几何出发点变得模糊起来。
在某种意义下,必须加上某些没有任何几何解释的部件。
霍奇猜想断言,对于所谓射影代数簇这种特别完美的空间类型来说,称作霍奇闭链的部件实际上是称作代数闭链的几何部件的(有理线性)组合。
三:庞加莱(Poincare)猜想如果我们伸缩围绕一个苹果表面的橡皮带,那么我们可以既不扯断它,也不让它离开表面,使它慢慢移动收缩为一个点。
难题”之一:P(多项式算法)问题对NP(非多项式算法)问题难题”之二:霍奇(Hodge)猜想难题”之三: 庞加莱(Poincare)猜想难题”之四:黎曼(Riemann)假设难题”之五:杨-米尔斯(Yang-Mills)存在性和质量缺口难题"之六:纳维叶-斯托克斯(Navier—Stokes)方程的存在性与光滑性难题"之七:贝赫(Birch)和斯维讷通-戴尔(Swinnerton—Dyer)猜想难题”之八:几何尺规作图问题难题”之九:哥德巴赫猜想难题"之十:四色猜想美国麻州的克雷(Clay)数学研究所于2000年5月24日在巴黎法兰西学院宣布了一件被媒体炒得火热的大事:对七个“千僖年数学难题”的每一个悬赏一百万美元.以下是这七个难题的简单介绍。
“千僖难题”之一:P(多项式算法)问题对NP(非多项式算法)问题在一个周六的晚上,你参加了一个盛大的晚会。
由于感到局促不安,你想知道这一大厅中是否有你已经认识的人.你的主人向你提议说,你一定认识那位正在甜点盘附近角落的女士罗丝。
不费一秒钟,你就能向那里扫视,并且发现你的主人是正确的.然而,如果没有这样的暗示,你就必须环顾整个大厅,一个个地审视每一个人,看是否有你认识的人。
生成问题的一个解通常比验证一个给定的解时间花费要多得多。
这是这种一般现象的一个例子。
与此类似的是,如果某人告诉你,数13,717,421可以写成两个较小的数的乘积,你可能不知道是否应该相信他,但是如果他告诉你它可以因子分解为3607乘上3803,那么你就可以用一个袖珍计算器容易验证这是对的.不管我们编写程序是否灵巧,判定一个答案是可以很快利用内部知识来验证,还是没有这样的提示而需要花费大量时间来求解,被看作逻辑和计算机科学中最突出的问题之一。
它是斯蒂文·考克(StephenCook)于1971年陈述的。
“千僖难题”之二:霍奇(Hodge)猜想二十世纪的数学家们发现了研究复杂对象的形状的强有力的办法。
几何三大难题如果不知道远溯古希腊前辈所建立和发展的概念、方法和结果,我们就不可能理解近50年来数学的目标,也不可能理解它的成就.Herm a nn Weyl§ 1 问题的提出和解决1.1 数学的心脏数学是由什么组成的?公理吗?定义吗?定理吗?证明吗吗?公式吗?诚然,没有这些组成部分数学就不存在,它们都数数学的必要组成部分,但是,它们中间的任一个都不是数学的心脏.数学家存在的主要理由就是提出问题和解决问题.因此,数学的真正组成部分是问题和解.两千多年以来,数学就是在解决各种问题中进行的.那么,什么样的问题是好问题呢?对此希尔伯特有一段精彩的论述:“要想预先正确判断一个问题的价值是困难的,并且常常是不可能的;因为最终的判断取决于科学从该问题获得的收益,虽说如此,我们仍然要问:是否存在一个一般准则,可以借以鉴别好的数学问题,一个老的法国数学家曾经说过:一种数学理论应该这样清晰,使你能向大街上遇到的第一个人解释它.在此以前,这一理论不能认为是完善的.这里对数学理论所坚持的清晰性和易懂性,我想更应该把它作为一个数学问题堪称完善的要求.因为清楚地、易于理解的问题吸引着人们的兴趣,而复杂的问题却使我们望而却步.”“其次,为了具有吸引力,一个数学问题应该是困难的,但却不能是完全不可解决的,使我们白费力气.在通向哪隐藏的真理的曲折道路上,它应该是指引我们前进的一盏明灯,最终以成功的喜悦作为我们的报偿.”在数学史上这样的例子是不胜枚举的.本章介绍的几何作图三大问题就是最著名的问题之一.1.2 希腊古典时期数学发展的路线希腊前300年的数学沿着三条不同的路线发展着.第一条是总结在欧几里得得《几何原本》中的材料.第二条路线是有关无穷小、极限以及求和过程的各种概念的发展,这些概念一直到近代,微积分诞生后才得以澄清.第三条路线是高等几何的发展,即园和直线以外的曲线以及球和平面以外的曲面的发展.令人惊奇的是,这种高等几何的大部分起源于解几何作图三大问题.1.3 几何作图三大问题古希腊人在几何学上提出著名的三大作图问题,它们是:( 1) 三等分任意角.( 2) 化园为方:求作一正方形,使其面积等于一已知园的面积.( 3) 立方倍积:求作一立方体,使其体积是已知立方体体积的两倍.解决这三大问题的限制是,只许使用没有刻度的直尺和圆规,并在有限次内完成.1.4问题的来源这三个问题是如何提出来的呢?由于年代久远,已无文献可查.据说,立方倍积问题起源于两个神话.厄拉多赛(Eratoshenes of Cyrene,约公元前27―约前194)是古希腊著名的科学家、天文学家、数学家和诗人.他是测量过地球周长的第一人.在他的《柏拉图》一书里,记述了一个神话故事.说是鼠疫袭击了爱琴海南部的一个小岛,叫提洛岛.一个预言者说,他得到了神的谕示:须将立方形的阿波罗祭坛体积加倍,瘟疫方能停息.建筑是很为难,不知道怎样才能使体积加倍.于是去请教哲学家柏拉图.柏拉图说,神的真正意图不在于神坛的加倍,而是想使希腊人因忽视几何学而羞愧.另一个故事也是厄多拉塞记述的.说古代一位悲剧诗人描述克里特国王米诺斯为他的儿子克劳科斯修坟的事.他嫌坟修造得太小,命令有关人必须把坟的体积加倍,但要保持立方的形状.接着又说,“赶快将每边的长都加倍.”厄拉多塞指出,这是错误的,因为边长加倍,体积就变成原来的8倍.这两个传说都表明,立方倍积问题起源于建筑的需要.三等分任意角的问题来自正多边形作图.用直尺和圆规二等分一个角是轻而易举的.由此可以容易地作出正4边形、正8边形,以及正2n次方边形,其中n ≥2是自然数.很自然地,人们会提出三等分一个角的问题.但这却是一个不可能用尺规解决的问题.圆和正方形都是最基本的几何图形,怎样做一个正方形和一个已知圆有相同的面积呢?这就是化园为方的问题.历史上恐怕没有一个几何问题像这个问题那样强烈地吸引人们的兴趣.早在公元前5世纪,就有很多人研究这个问题了,都想在这个问题上大显身手.化园为方的问题相当于用直尺和圆规作出√π的值.这个问题的最早研究者是安那克萨哥拉,可惜他的关于化圆为方的问题的研究没有流传下来,以后的研究者有希波克拉茨(Hippocrates of Chios,公元前约460年).他在化圆为方的研究中求出了某些月牙形的面积 .此外.还有安提丰,他提出了一种穷竭法,具有划时代的意义,是近代极限论的先声.1.5 “规”和“矩”的规矩在欧几里得几何学中,几何作图的特定工具是直尺和圆规,而且直尺上没有刻度.直尺、在欧几里得几何学中,几何作图的特定工具是直尺和圆规,而且直尺上没有刻度.直尺、圆规的用场是直尺:(1)已知两点作一直线;(2)无限延长一已知直线.圆规:已知点O,A,以O为心,以OA为半径作圆.希腊人强调,几何作图只能用直尺和圆规,其理由是:(1)希腊几何的基本精神是,从极少数的基本假定——定义、公理、公设——出发,推导出尽可能多的命题.对作图工具也相应地限制到不能再少的程度.(2)受柏拉图哲学思想的深刻影响.柏拉图特别重视数学在智力训练方面的作用,他主张通过几何学习达到训练逻辑思维的目的,因此对工具必须进行限制,正像体育竞赛对运动器械有限制一样.(3)毕达哥拉斯学派认为圆是最完美的平面图形,圆和直线是几何学最基本的研究对象,因此规定只使用这两种工具.1.6问题的解决用直尺和圆规能不能解决三大问题呢?答案是否定的,三大问题都是几何作图不能解决的.证明三大问题不可解决的工具本质上不是几何的而是代数的,再带舒缓没有发展到一定水平时是不能解决这些问题的.1637年迪卡儿创立了解析几何,沟通了几何学和代数学这两大数学分支,从而为解决尺规作图问题奠定了基础.1837年法国数学家旺策尔(Pierre L.W Antzel )证明了,三等分任意角和立方倍积问题都是几何作图不能解决的问题,化圆为方问题相当于用尺规作出的值.1882年法国数学家林得曼证明了∏是超越数,不是任何整系数代数方程的根,从而证明了化圆为方的不可能性.但是,正是在研究这些问题的过程中促进了数学的发展.两千多年来.三大几何难题起了许多数学家的兴趣,对它们的深入研究不但给予希腊几何学以巨大影响,而且引出了大量的新发现.例如,许多二次曲线、三次曲线以及几种超越曲线的发现,后来又有关于有理数域、代数数与超越数、群论等的发展在化圆为方的研究中几乎从一开始就促进了穷竭法的发展,二穷竭法正是微积分的先导.§2 放弃“规矩”之后问题的难处在于限制用直尺和圆规.两千多年来,数学家为解决三大问题投入了热大量精力.如果解除这一限制,问题很容易解决.2. 1 帕普斯的方法帕普斯(Pappus ,约300―350前后)是希腊亚历山大学派晚期的数学家.他把希腊自古以来各名家的著作编为《数学汇编》,共8卷.其中也包括了他自己的创作.在第4 卷中,他讨论了三等分任意角的问题.下面的方法就是帕普斯的.设ОА=α,过点А做角α的另一边的垂线АВ.过点А作ОВ的平行线.考虑过点О的一条直线,它交АВ于点С,交平行线于D,并使СD=2a.这时∠СОВ=13α. 证 如图15-1所示,只要证明了∠AOG=2∠COB,那么∠COB就是13α. 设G是CD的中点,并作GE⊥AD,从而直线GE与AB并行.由CG=GD=a AE=ED, 可知△AGE≌△DGE,从而∠GDA=∠GAD,AG=GD=图 15-1DGE BC A Oa.又∠GDA与∠COB是内错角,所以∠GDA=∠COB.注意到,△AOG是等腰三角形,于是,∠AOG=∠AGO=∠GDA+∠GAD=2∠COB.这就是说,OD三等分了角α.这种作法的关键一步是,使СD=2ОА.这只能使用有刻度的直尺才能实现,它违反了欧几里得几何学作图的规则.具体做法是这样的:在直尺上标出一段线段PQ,其长为2ОА,然后调整直尺的位置,使它过点O,并且P在АВ上,Q在过А的平行线上.这种办法叫“插入原则”.2. 2 阿基米德的方法在图15-2上,是任意给定的一个角,其顶点在点.我们的目的是三等分这个角.在该角的一边上取一点,然后以点为心,以为半径做一圆,圆与的延长线交于点C,与角的另一边交于点B.作图的关键步骤是,使用“插入原则”.在直尺上标出两点L和R,并且使LR=.现在上直尺过点B,且使直尺上的点R在圆弧CB上,然后移动直尺,使R沿圆周运动,直到点L落在OC的延长线上.直线EDB表示这时直尺的位置,即直尺过点B,且DE=.设.因为是等腰三角形,所以.同时,是的外角,从而这就证明了是的三分之一.2. 3 时钟也会三等分任意角大家知道,时钟面上有时针、分针和秒针,秒针用不到,只看时针和分针.分针走一圈,时针就走一个字.也就是,分针转过角,时针转过角的12分之1,即转过角.注意到12是3的倍数,我们就可以利用时钟三等分一个任意角了.具体作法如下.把要三等分的任意角画在一张透明纸上.开始时,把时针和分针并在一起,设它们正好图15-2BAOCED在12的位置上(图15-3).把透明纸铺到钟面上,使角的顶点落在针的轴心上,角的一边通过12的位置.然后把分针拨到和角的另一边重合的位置.这时时针转动了一个角,在透明纸上把时针的现在位置记下来.我们知道,时针所走过的∠AOC一定是∠AOB的12分之1.把∠AOC放大4倍就是∠AOB的3分之1.这种解法出现在前苏联别莱利曼的著作《趣味几何学》中,这是一本很好的科普读物,它告诉我们如何把几何知识用到实际中去.2. 4 达芬奇的化圆为方如何化圆为方的问题曾被欧洲文艺复兴时期的大师达·芬奇用以种巧妙的方法给出解答:取一圆柱,使其底和已知圆相等,高时底面半径r的一半.将圆柱滚动一周,产生一个矩形,其面积为2πr×r/2=π.这正好是圆的面积.再将矩形化为正方形,问题就解决了.§ 3从几何到代数3.1用直尺圆规可以作什么图用欧几里得的直尺圆规可以完成哪些作图呢?下面的5种基本作图是可以胜任的(图15-4):(1) 用一条直线连接两点. (2) 求两条直线的交点.(3) 以一点为心,定长为半径作一圆(4) 求一个圆与一条直线的交点,或切点. (5) 求两个圆的交点,或切点.还有,用直尺圆规作图必须在有限次内完成,不允许无限次地作下去.换言之,不允许采取极限手段完成作图.O12 1 2 3456 7 89 10 11 A BC图 15-3图15-4根据直尺的基本功能,我们有下面的重要结论:一个作图题可否用直尺完成,决定于是否能反复使用上面5种基本作图经有限次而完成.这就是用直尺圆规可能与不可能的基本依据.具体说来,用尺规作什么图呢?(1)二等分已知线段.(2)二等分已知角.(3)已知直线L和L外一点P,过P作直线垂直L.(4)任意给定自然数n,作已知线段的n倍,n等分已知线段.(5)已知线段,可做其做法如图15-5所示.接着r 也可做,这里r是正有理数.这样做:设都是自然数,因此.先做的p倍,再做p,这样就做出来了.上面各条告诉我们,已知线段的加、减、乘、除能用几何作图来实现.图15-5另一方面,代数学告诉我们,从0,1出发利用四则运算可以构造出全部有理数.事实上,1+1=2,1+2=3,.因此,我们通过加法可以得到全体自然数.0减去任何一+bb1bb1个自然数都得到负整数,因此,借助减法可以得到全体负整数.从整数出发,借助除法,我们可以得到全体有理数.现在我们知道了,只要给定单位1,我们可以用尺规作出数轴上的全部有理点.几何与代数在这里达到了完全的统一.(6) 已知线段可作.这一条超出了有理作图的范围.如图15-6,OA a =,以OB 为直径作圆.过 A 作OB 的垂直线交圆周于C .直角三角形OA C 与直角三角形OBC 有一个公共角∠COB ,由 此可得,∠OCA =∠ABC. 这样一来,我们有, ∆OCA ∽∆ABC. 设AC =我们有,3.2域的定义近代代数是研究运算性质的,它把普通实数满足的运算法则推广到更大的范围中去.本段给出域的定义,为后面研究可构造数域做些准备.设R 是一个集合,下面的公理对R 中的任何元素,b ,都成立. 公理1 (1); (2); (3)存在唯一得元素,使得; (4)对任意的,都存在惟一的,使得. 公理2 (1); (2)(3)存在惟一的元素1,使得. (4)对任意的(除外),都存在惟一的,使得 公理3我们把满足这些公理的集合R 叫做一个域.全体有理数对加法和乘法构成一个域,叫做有理数域.全体实数对加法和乘法构成一个域,叫做实域,全体复数也是一个域,叫复数域.3.3可构造数域在下面的讨论中,我们假定最初只给了一个元素,即单位长1.由1出发,我们用直尺和圆规通过有理运算——加、减、乘、除——能做出所有的有理数,这里r 和s 是整数,即做出整个有理数域.进而我们能做出平面上的所有有理点,即两个坐标皆为有理数的点.我们还能做出新的无理数,如,它不属于有理数域.从出发,通过“有理”作图,可以做出所有形如(15-1) 的数,这里是有理数.同样地,我们可以做出所有形如CO A B 图 15-6的数,这里,b,是有理数.但这些数总可以写成(15-1)的形式.例如这里是有理数,且分母不可能是零(为什么?).同样,这里是有理数.因此,由的作图,我们产生了全部形如(15-1)的数集,其中,b是任意有理数.由此得命题1形如(15-1)形成一个域.这个域比有理数域大.事实上在(15-1)中取就可得到有理数域.有理数域是它的一部分,称为它的子域.但是,它显然小于全体实数数域.将有理数域记为F,这个构造的数域记为,称它为F的扩域.中的数都可用直尺和圆规做出来.现在我们继续扩充可作数的范围.在中取一个数,如.求它的平方根而得到可作图的数用它可以得到由所有形如的数,它们也形成一个域.称为的扩域,记为,现在可以是中的任意数,即,q形如,,b 为有理数.从出发,我们还可以进一步扩充作图的范围.这种办法一直继续下去.用这种办法得到的数都是可用直尺圆规作出来的.3.4进一步的讨论代数研究的对象是数、数偶(即坐标)、一次方程式、二次方程式等.几何研究的对象是点、直线、圆、曲线、等.通过坐标法,几何的对象与代数的对象紧密的联系在一起了.现在面临一个这样的问题:用直尺圆规作出来的数是不是都在有理数域的诸扩域中呢?会不会超出这个范围呢?下面来回答这一问题.假定我们可用直尺圆规作出某个数域F 中的所有数.命题2 从数域F出发,只用直尺作不出数域F 以外的数.证设∈F.过点(),()的直线方程是或它的系数是由F 中的数作成的有理式.今有两条以F 中的数为系数的直线:解此联立方程,可得交点坐标它们都是F中数.这样一来,只用直尺的作图不能使我们超出F的范围.易见,用圆规可作出F以外的数.只需在F中取一数k,使不在F中.我们能作出,因而可作出所有形如(15-2)的数,其中,b在F中.所有形如(15-1)的数形一个域,它是F的扩域.命题3给定数域F,用圆规和直尺只能作出F扩域中的数.证首先指出,圆规在作图中所起的作用只是确定一个圆与一条直线的交点或切点,或一个圆与另一个圆的交点或切点.通过解联立方程可以把交点或切点求出来.以(,)为中心,以r为半径的圆的方程是设,,r.将上式展开得其中,,在F内.求圆与直线的交点或切点就是解联立方程组其中,,cF内.从第二个方程解出代入第一个方程,得到一个二次方程其中,,.其解为它们可以化为形式,p,q,k F.易见,是F的扩域.交点的y坐标由(15-3)给出,明显地,也在扩域中.这就是说,圆和直线的交点的坐标都在扩域中.接着我们研究两个圆的交点或切点.再带书上就是接二元一次联立方程:从第一个方程减去第二方程,得和前面一样,把它与第一个圆的方程联立起来求出,y.它们都不超出F的扩域.无论是哪一种情形,作图所产生的一个或两个新点的x坐标和y坐标,其量的形式都是.在特殊情况下,本身也可以属于F(例如,在有理数域中取k=4,那么仍在有理数域中)图 15-7这样,我们证明了;(1)如果开始给定域中的F一些量,那么从这些量出发,只用直尺经有限次有理运算可生成域F的任何量,但不能超出域F.(2)用圆规和直尺能把可作图的量扩充到F的扩域上.这种构造扩域的过程可以不断进行,而得出扩域最后,我们得到结论:可作图的量是而且仅仅是这一系列扩域中的数.例 1 说明数的构造过程.解设F表示有理数域.取得到域,取,得到,又知,取,得到 .因为,自然也有取,得到()取,得到,进而这样,域包含我们所要求的数.3.5 可作图的书都是代数数如果起始数域是有理数域F,那么所有可作图的数就都代数数(图15-7).扩域,中的数是以有理数位系数的2次方程的根,扩域中的数是以有理数位系数的4次方程的根,,一般地,扩域中的数是以有理数位系数的次方程的根.例2 证明是4次方程的根.证我们有展开,得到图 15-7或最后,我们有这是一个整系数的4次方程§4几个代数定理代数数超越数可代数数有理数作图数4.1根和系数的关系只要知道了二次方程的两个根就可将它分解因式:由此不难得出著名的伟达公式:利用代数基本定理我们可以得到更一般的公式.代数基本定理设是一个元n次多项式,它的系数是实数和复数,那么方程至少有一实数和复数根有了代数基本定理,我们就可以断言,一元n次多项式在复数域中有n个根,从而它可分解成一次因式的连成积,即这里为实数或复数,它们都是多项式(15-4)的根.事实上,设式方程的一个根,用()去除,由于除式是一次的,所以余数就是一个常数R,我们有恒等式式中是一个次多项式.因为是的一个根,所以把代入上式,就得到于是这就是说,()能整除此多项式.同样的道理,我们有n次分解之后,我们得到(15-5)式.把(15-5)式乘开,并比较系数就得到伟达公式:当代数方程的次数时,就是我们熟知的二次方程的根与系数的关系,当时,对三次方程我们有这就是三次方程的韦达公式,下面要用到此结果.定理 1 若整系数的一元n次方程有有理根(既约分数),则a是的因数,是的因数.证将有理根代入方程(15-9),得两边乘以,得移项,并提出公因数:记着a与b是互素的,所以a是的因数.同样,用提出公因数b的方法可证明,b是的因数.同样,用提出公因数b的方法可证明,b是的因数.系设整系数的一元n次方程的首项系数为1,即若它有理根,则此根一定是整数,且为常数项的因数.4.2 3次方程的根考虑有理系数的一元3次方程只需作变换,就可以把上面的方程化为缺项的3次方程(参考第九章4):(15-10)这个方程的系数还是有理数.为简单计,我们考虑缺项的方程(15-10).设方程(15-10)没有有理数,但有一个可作的数为根,那么将属于某一串扩域中最后的一个域.因为(15-10)没有有理根,所以k>0.于是可以写成下面的形式:其中.今指出,也是方程(15-10)的根.为了证明这一点,只需做些计算.事实上把代入方程(15-10)得展开、合并同类项,得到其中,且.这时,若,必有与假设矛盾.所以一定有,从而也有.另一方面,把代入(15-10),并做同样的计算.在计算中,只需把换成,从而得到由此我们知道,是方程(15-10).这个结论对方程(15-7)也是成立的.总之,我们证明了以下命题.命题4 若是(15-7)的根,则也是(15-7)的根.将上面结果应用到两个特殊方程上面去.例1证明方程(15-11)没有有理根.证有定理1的系知,如果(15-11)有有理根,则此根必是整数,而且是2的因数.直接验证就知道1,2不是方程(15-11)的根.这样一来,方程(15-11)没有有理根.例2 证明方程(15-12)没有有理根证如果方程(15-12)有有理根,则a是1的因子,b是8的因子.这样一来,方程(15-12)的有理根不外是直接验证知道它们都不是.因此,方程(15-12),没有有理根.定理2 如果一个有理系数的3次方程没有有理根,则它没有一个根是由有理数域F出发的可作图的数.证我们用反证法来证明这个定理.假设是方程(15-7)的一个可作图的根,则将属于某一串扩域中的最后一个域,我们可以假定,k是使得扩域包含3次方程(15-7)的根的最小正整易次方程(15-7)的根的最小正整数.易见,k>0.因此,可以写成下面的形式:其中.前面已指出,也是方程(15-7)的根.有韦达定理,方程的第3个根是:但,这指出,这里消失了,所以是中的数,这和k是使得扩域包含3次方程(15-9)的根的最小正整数的假设相矛盾.因此假设是错误的,在这种域中不可能有3次方程(15-7)的根.推论方程(15-11),(15-12)都没有可作图的数作为它们的根.§ 5 几何作图三大问题的解有了上面的准备,我们来解三大几何难题.5.1 倍积问题设给定立方体的边长是a.若体积为这立方体的两倍的立方体的边长是x(图15-8),则所以本题就是求满足下面方程的:取,则此方程化为更简单的形式:如果立方倍积问题可解,则我们一定能用直尺和圆规构造出长度为的线段.但是前面已证这是不可能的.这样一来,立方倍积问题是不可解的.5.2三等分任意角我们现在要证明只用直尺和圆规三等分任意一般说来是不可能的.当然,像和那样的角是可以三等分的.我们要说明的是,对每一个角的三等分都有效的办法是不存在的.为了证明这一点,只要证明有一个角不能三等分就足够了,因为一个合理的一般方法必须适用于每一种情况.因此如果我们能够证明角只用直尺和圆规不能三等分,那就证明了一般方法是不存的.如果15-9所示,我们从角着手.设,并设线段的长度为1.假定三等分任意角是可能的.如图设∠ROP=θ=,那么,点R的纵坐标一定是有理数或可作图的数.这相当于说是有理数或可作图的数.我们需要公式现在,所以令并代人上式,得到这正是前面讨论过的方程(15-12).这个方程没有有理根,也没有可作图的根.这说明我们的假定是不对的.这就证明了三等分任意角是不可能的.我们知道,角可作,因而正六边形可作,若角可三等分,则正18边形可作,从而正9边形也可作.刚才已经证明,角不可三等分,因而正9边形不能只用直尺和圆规作出来.当然,这个结论是指一般情形而言.若等于某些特殊的值,则作图还是可能的,例如,当时,而,我们得到方程yaQRO P图15-8 图15-9。
世界数学十大未解难题世界数学十大未解难题(其中“一至七”为七大“千僖难题”;附录“希尔伯特23个问题里尚未解决的问题”)一:P(多项式算法)问题对NP(非多项式算法)问题在一个周六的晚上,你参加了一个盛大的晚会。
由于感到局促不安,你想知道这一大厅中是否有你已经认识的人。
你的主人向你提议说,你一定认识那位正在甜点盘附近角落的女士罗丝。
不费一秒钟,你就能向那里扫视,并且发现你的主人是正确的。
然而,如果没有这样的暗示,你就必须环顾整个大厅,一个个地审视每一个人,看是否有你认识的人。
生成问题的一个解通常比验证一个给定的解时间花费要多得多。
这是这种一般现象的一个例子。
与此类似的是,如果某人告诉你,数13,717,421可以写成两个较小的数的乘积,你可能不知道是否应该相信他,但是如果他告诉你它可以因子分解为3607乘上3803,那么你就可以用一个袖珍计算器容易验证这是对的。
不管我们编写程序是否灵巧,判定一个答案是可以很快利用内部知识来验证,还是没有这样的提示而需要花费大量时间来求解,被看作逻辑和计算机科学中最突出的问题之一。
它是斯蒂文·考克(StephenCook)于1971年陈述的。
二:霍奇(Hodge)猜想二十世纪的数学家们发现了研究复杂对象的形状的强有力的办法。
基本想法是问在怎样的程度上,我们可以把给定对象的形状通过把维数不断增加的简单几何营造块粘合在一起来形成。
这种技巧是变得如此有用,使得它可以用许多不同的方式来推广;最终导至一些强有力的工具,使数学家在对他们研究中所遇到的形形色色的对象进行分类时取得巨大的进展。
不幸的是,在这一推广中,程序的几何出发点变得模糊起来。
在某种意义下,必须加上某些没有任何几何解释的部件。
霍奇猜想断言,对于所谓射影代数簇这种特别完美的空间类型来说,称作霍奇闭链的部件实际上是称作代数闭链的几何部件的(有理线性)组合。
三:庞加莱(Poincare)猜想如果我们伸缩围绕一个苹果表面的橡皮带,那么我们可以既不扯断它,也不让它离开表面,使它慢慢移动收缩为一个点。
哥德巴赫猜想—数学皇冠上的明珠哥德巴赫猜想是世界近代三大数学难题之一.这道著名的数学难题引起了世界上成千上万数学家的注意.200多年过去了,没有人证明它.哥德巴赫猜想由此成为数学皇冠上一颗可望不可及的"明珠".哥德巴赫是一个德国数学家,生于1690年,从1725年起当选为俄国彼得堡科学院院士.在彼得堡,哥德巴赫结识了大数学家欧拉,两人书信交往达30多年.他有一个著名的猜想,就是在和欧拉的通信中提出来的.这成为数学史上一则脍炙人口的佳话.有一次,哥德巴赫研究一个数论问题时,他写出:3+3=6,3+5=8,3+7=10,5+7=12,3+11=14,3+13=16,5+13=18,3+17=20,5+17=22,……看着这些等式,哥德巴赫忽然发现:等式左边都是两个质数的和,右边都是偶数.于是他猜想:任意两个奇质数的和是偶数,这当然是对的,但可惜这只是一个平凡的命题.对—般的人,事情也许就到此为止了.但哥德巴赫不同,他特别善于联想,善于换个角度看问题.他运用逆向思维,把等式逆过来写:6=3+3, 8=3+5, 10=3+7, 12=5+7, 14=3+11,16=3+13, 18=5=13,20=3+17, 22=5+17,……这说明什么?哥德巴赫自问,然后自答:从左向右看,就是6~22这些偶数,每一个数都能“分拆”成两个奇质数之和.在一般情况下也对吗?他又动手继续试验:24=5+19, 26=3+23,28=5+23, 30=7+23,32=3+29, 34=3+31, 36=5+31, 38=7+31,……一直试到100,都是对的,而且有的数还不止一种分拆形式,如24=5+19=7+17=11+13,26=3+23=7+19=13+1334=3+31=5+29=11+23=17+17100=3+97=11+89=17+83=29+71=41+59=47+53.这么多实例都说明偶数可以(至少可用一种方法)分拆成两个奇质数之和.在一般情况下对吗?他想说:对!于是他企图找到一个证明,几经努力,但没有成功;他又想找到一个反例,说明它不对,冥思苦索,也没有成功.于是1742年6月7日,哥德巴赫提笔给欧拉写了一封信,叙述了他的猜想:(1)每一个偶数是两个质数之和;(2)每一个奇数或者是一个质数,或者是三个质数之和.(注意,由于哥德巴赫把“1”也当成质数,所以他认为2=1+1,4=1+3也符合要求,欧拉在复信中纠正了他的说法.)同年6月30日,欧拉复信说,“任何大于(或等于)6的偶数都是两个奇质数之和,虽然我还不能证明它,但我确信无疑,它是完全正确的定理.”欧拉是数论大家,这个连他也证明不了的命题,可见其难度之大,自然引起了各国数学家的注意.人们称这个猜想为哥德巴赫猜想,并比喻说,如果说数学是科学的皇后,那么哥德巴赫猜想就是皇冠上的明珠.二百多年来,为了摘取这颗耀眼的明珠,成千上万的数学家付出了巨大的艰苦劳动.1920年,挪威数学家布朗创造了一种新的“筛法”,证明了每一个充分大的偶数都可以表示成两个数的和,而这两个数又分别可以表示为不超过9个质因数的乘积.我们不妨把这个命题简称为“9+9”.这是一个转折点.沿着布朗开创的路子,932年数学家证明了“6+6”.1957年,我国数学家王元证明了“2+3”,这是按布朗方式得到的最好成果.布朗方式的缺点是两个数都不能确定为质数,于是数学家们又想出了一条新路,即证明“1+C”.1962年,我国数学家潘承洞和另一位苏联数学家,各自独立地证明了“1+5”,使问题推进了一大步.1966年至1973年,陈景润经过多年废寝忘食,呕心沥血的研究,终于证明了“1+2”:对于每一个充分大的偶数,一定可以表示成一个质数及一个不超过两个质数的乘积的和.即 : 偶数=质数+质数×质数你看,陈景润的这个结果,离哥德巴赫猜想的最后解决只有一步之遥了!人们称赞“陈氏定理”是“辉煌的定理”,是运用“筛法”的“光辉顶点”.(附)哥德巴赫猜想进展情况如下:1920年,挪威的布朗(Brun)证明了“9 + 9 ”.1924年,德国的拉特马赫(Rademacher)证明了“7 + 7 ”.1932年,英国的埃斯特曼(Estermann)证明了“6 + 6 ”.1937年,意大利的蕾西(Ricei)先後证明了“5 + 7 ”, “4 + 9 ”, “3 + 15 ”和“2 + 366 ”.1938年,苏联的布赫夕太勃(Byxwrao)证明了“5 + 5 ”.1940年,苏联的布赫夕太勃(Byxwrao)证明了“4 + 4 ”.1948年,匈牙利的瑞尼(Renyi)证明了“1 + c ”,其中c是一很大的自然数. 1956年,中国的王元证明了“3 + 4 ”.1957年,中国的王元先後证明了“3 + 3 ”和“2 + 3 ”.1962年,中国的潘承洞和苏联的巴尔巴恩(BapoaH)证明了“1 + 5 ”,中国的王元证明了“1 + 4 ”.1965年,苏联的布赫夕太勃(Byxwrao)和小维诺格拉多夫(BHHopappB),及意大利的朋比利(Bombieri)证明了“1 + 3 ”.1966年,中国的陈景润证明了“1 + 2 ”.最终会由谁攻克“1 + 1 ”这个难题呢?现在还没法预测.。
世界近代三大数学难题之一----哥德巴赫猜想哥德巴赫是德国一位中学教师,也是一位著名的数学家,生于1690年,1725年当选为俄国彼得堡科学院院士。
1742年,哥德巴赫在教学中发现,每个不小于6的偶数都是两个素数(只能被和它本身整除的数)之和。
如6=3+3,12=5+7等等。
1742年6月,哥德巴赫写信将这个问题告诉给意大利大数学家欧拉,并请他帮助作出证明。
欧拉在6月30日给他的回信中说,他相信这个猜想是正确的,但他不能证明。
叙述如此简单的问题,连欧拉这样首屈一指的数学家都不能证明,这个猜想便引起了许多数学家的注意。
他们对一个个偶数开始进行验算,一直算到3.3亿,都表明猜想是正确的。
但是对于更大的数目,猜想也应是对的,然而不能作出证明。
欧拉一直到死也没有对此作出证明。
从此,这道著名的数学难题引起了世界上成千上万数学家的注意。
200年过去了,没有人证明它。
哥德巴赫猜想由此成为数学皇冠上一颗可望不可及的“明珠”。
到了20世纪20年代,才有人开始向它靠近。
1920年、挪威数学家布爵用一种古老的筛选法证明,得出了一个结论:每一个比大的偶数都可以表示为(99)。
这种缩小包围圈的办法很管用,科学家们于是从(9十9)开始,逐步减少每个数里所含质数因子的个数,直到最后使每个数里都是一个质数为止,这样就证明了“哥德巴赫”。
1924年,数学家拉德马哈尔证明了(7+7);1932年,数学家爱斯尔曼证明了(6+6);1938年,数学家布赫斯塔勃证明了(5十5),1940年,他又证明了(4+4);1956年,数学家维诺格拉多夫证明了(3+3);1958年,我国数学家王元证明了(2十3)。
随后,我国年轻的数学家陈景润也投入到对哥德巴赫猜想的研究之中,经过10年的刻苦钻研,终于在前人研究的基础上取得重大的突破,率先证明了(l十2)。
至此,哥德巴赫猜想只剩下最后一步(1+1)了。
陈景润的论文于1973年发表在中国科学院的《科学通报》第17期上,这一成果受到国际数学界的重视,从而使中国的数论研究跃居世界领先地位,陈景润的有关理论被称为“陈氏定理”。
世界十大数学猜想:NP完全问题、霍奇猜想、庞加莱猜想、黎曼假设、杨-米尔斯理论、纳卫尔-斯托可方程、BSD猜想费尔马大定四色问题哥德巴赫猜想
世界近代三大数学难题
1、费尔马大定理
2、四色问题
3、哥德巴赫猜想
世界七大数学难题
一、P(多项式时间)问题对NP(nondeterministic polynomial time,非确定多项式时间)问题
二、霍奇(Hodge)猜想
三、庞加莱(Poincare)猜想
四、黎曼(Riemann)假设
五、杨-米尔斯(Yang-Mills)存在性和质量缺口
六、纳维叶-斯托克斯(Navier-Stokes)方程的存在性与光滑性
七、贝赫(Birch)和斯维讷通-戴尔(Swinnerton-Dyer)猜想
有待破解的数学难题
除了上述著名数学难题外,还有以下著名数学难题有待破解。
Abc猜想
考拉兹猜想
周氏猜测(梅森素数分布猜测)
阿廷猜想(新梅森猜想)
哥德巴赫猜想
孪素数猜想
克拉梅尔猜想
哈代-李特尔伍德第二猜想六空间理论。
平面几何三大难题平面何三大难难几目难难藏[]尺难作难的限定三大何难难几难难难明难明难难本段 []尺难作难的限定平面何作难限制只能用直尺、难难~而难里所难的直尺是指有刻度只能直难的尺。
几没画用直尺难难然可以做出难多难之难形~但有些难形如正七难形、正九难形就做不出。
有些难难看起好像难难~但难与当来来很真正做出却困难~难些难难之中最有名的就是所难的三大难难。
来很难难本段 []三大何难难几化难难方,求作一正方形使其面难等于一已知难~ 1.三等分任意角~ 2.倍立方,求作一立方使其难是一已知立方的二倍。
体体体3.难难本段 []难难难明难正方形都是常难的何难形~但如何作一正方形和已知难等面难,若已知难的半难与几个呢径难其面难难~1π²所以化难难方的难难等于去求一正方形其面难难~也就是用尺难做出难度难的难段;或者是的难段,。
三大难难ππ½π的第二是三等分一角的难难。
难于某些角如个个、三等分不难~但是否所有角都可以三等分,例如并呢~若90?180?60?能三等分难可以做出。
的角~那难正难形及正九难形也都可以做出了;注,难接一正十八难形每一难所难的难周角来内2018难,。
其难三等分角的难难是由求作正多难形难一难难难所引起的。
来360?/18?=20?第三难难是倍立方。
埃拉托塞尼;公元前个年公元前年,曾难难述一神难提到难有一先知者得到神难必个个276~195难立方形的祭难的难加倍~有人主难每难难加倍~但我难都知道那是难难的~因难难已难难成原的将体将体来倍。
难些难难困难数8学决家一千多年都不得其解~而难难上难三大难难都不可能用直尺难难难有限步难可解的。
年笛难建解析何以后卡儿几~1637难多何难难都可以难化难代难难难难究。
几数来研年旺策难难出三等分任一角及倍立方不可能用尺难作难的难明。
1837(Wantzel) 年林得曼;,也难明了的超越性;即不难任何整系多次式的根,~化难难方的不可能性数数1882Lindermanππ也得以立。
数学三大难题
古代数学史上有世界三大难题(倍立方体、方圆、三分角)。
近代数学史又有第五公设、费马大定理、任一大偶数表两素之和。
这些都已为前人攻破的攻破,将突破的将突破。现代发达国家的数学家们又在钻研什么呢?21世纪
数学精英们又攻什么呢?
现代数学上的三大难题:
一是有20棵树,每行四棵,古罗马、古希腊在16世纪就完成了16行的排列,18世纪高斯猜想能排18
行,19世纪美国劳埃德完成此猜想,20世纪末两位电子计算机高手完成20行纪录,跨入21世纪还会
有新突破吗?
二是相邻两国不同着一色,任一地图着色最少可用几色完成着色?五色已证出,四色至今仅美国阿
佩尔和哈肯,罗列了很多图谱,通过电子计算机逐一理论完成,全面的逻辑的人工推理证明尚待有
志者。
三是任三人中可证必有两人同性,任六人中必有三人互相认识或互相不认识(认识用红线连,不认
识用蓝线连,即六质点中二色线连必出现单色三角形)。近年来国际奥林匹克数学竞赛也围绕此类
热点题型遴选后备攻坚力量。(如十七个科学家讨论三课题,两两讨论一个题,证至少三个科学家
讨论同一题;十八个点用两色连必出现单色四边形;两色连六个点必出现两个单色三角形,等等。)
单色三角形研究中,尤以不出现单色三角形的极值图谱的研究更是难点中之难点,热门中之热门。
20棵树植树问题,四色绘地图问题,单色三角形问题通称现代数学三大难题。