电液控制系统
- 格式:pdf
- 大小:85.15 KB
- 文档页数:2
电液伺服系统电液伺服系统是一种将电气信号转换为液压能量的控制系统。
它通过控制液压阀的开启和关闭来调节液压执行器的工作状态,从而实现对机械装置的精确控制。
本文档将详细介绍电液伺服系统的结构、工作原理、常见问题及解决方案等内容。
一、系统结构1.1 主机部分主机部分是电液伺服系统的核心组成部分,包括电液转换器、伺服阀、传感器等。
其中,电液转换器将电信号转换为液压能量,伺服阀通过控制液压流量来控制液压执行器的运动,传感器用于监测执行器的位置和速度。
1.2 液压执行器液压执行器是电液伺服系统中的重要组成部分,主要包括液压缸和液压马达两种。
液压缸可将液压能量转换为机械能,实现直线运动;液压马达则可将液压能量转换为机械能,实现旋转运动。
1.3 控制部分控制部分由控制器和信号处理器组成,用于接收、处理和传输控制信号。
控制器可根据输入信号的变化调节伺服阀的开启度,从而实现对电液伺服系统的精确控制。
二、工作原理2.1 系统工作流程电液伺服系统的工作流程一般包括输入信号采样、信号处理、控制指令、伺服阀控制和液压执行器动作等步骤。
具体流程如下:(1)输入信号采样:传感器将液压执行器的位置和速度等信息转换为电信号,并传输给信号处理器。
(2)信号处理:信号处理器对输入信号进行滤波、放大等处理,将其转换为控制系统可识别的信号。
(3)控制指令:控制器根据输入信号的变化相应的控制指令。
(4)伺服阀控制:控制器根据控制指令调节伺服阀的开启度,控制液压系统的流量大小。
(5)液压执行器动作:伺服阀的控制信号作用于液压执行器,使其按照要求的位置和速度进行运动。
2.2 系统控制策略电液伺服系统可采用位置控制、速度控制和力控制等不同的控制策略。
其中,位置控制可实现对执行器位置的精确控制;速度控制可实现对执行器速度的精确控制;力控制可实现对执行器施加的力或扭矩的精确控制。
三、常见问题及解决方案3.1 液压系统压力不稳定可能原因:(1)供油系统压力不稳定。
第七章 电液伺服控制系统的应用实例 7.1 引例图7-1 阀控油缸闭环控制系统原理图此图为采用电液伺服阀控制的液压缸速度闭环控制系统。
这一系统不仅使液压缸速度能任意调节,而且在外界干扰很大(如负载突变)的工况下,仍能使系统的实际输出速度与设定速度十分接近,即具有很高的控制精度和很快的响应性能。
工作原理如下:在某一稳定状态下,液压缸速度由测速装置测得(齿条1、齿轮2和测速发电机3)并转换为电压。
这一电压与给定电位计4输入的电压信号进行比较。
其差值经积分放大器放大后,以电流输入给电液伺服阀6。
电液伺服阀按输入电流的大小和方向自动地调节其开口量的大小和移动方向,控制输出油液的流量大小和方向。
对应所输入的电流,电液伺服阀的开口量稳定地维持在相应大小,伺服阀的输出流量一定,液压缸速度保持为恒值。
如果由于干扰的存在引起液压缸速度增大,则测速装置的输出电压改变,而使放大器输出电流减小,电液伺服阀开口量相应减小,使液压缸速度降低,直到液压缸恢复原来的速度时,调节过程结束。
按照同样原理,当输入给定信号电压连续变化时,液压缸速度也随之连续地按同样规律变化,即输出自动跟踪输入。
通过分析上述伺服系统的工作原理,可以看出伺服系统的特点如下:(1)反馈系统:把输出量的一部分或全部按一定方式回送到输入端,并和输入信号比较,这就是反馈作用。
在上例中,反馈电压和给定电压是异号的,即反馈信号不断地抵消输入信号,这就是负反馈。
自动控制系统中大多数反馈是负反馈。
(2)靠偏差工作:要使执行元件输出一定的力和速度,伺服阀必须有一定的开口量,因此输入和输出之间必须有偏差信号。
执行元件运动的结果又试图消除这个误差。
但在伺服系统工作的任何时刻都不能完全消除这一偏差,伺服系统正是依靠这一偏差信号进行工作的。
(3)放大系统:执行元件输出的力和功率远远大于输入信号的力和功率。
其输出的能量是液压能源供给的。
7.2 车床液压仿形刀架图7-2 车床液压仿形刀架车削圆锥面时,触销沿样件的圆锥段滑动,使杠杆向上偏摆,从而带动阀芯上移,打开阀口,压力油进入液压缸上腔,推动缸体连同阀体和刀架轴向后退。
电液伺服控制系统概述摘要:电液伺服控制是液压领域的重要分支。
多年来,许多工业部门和技术领域对高响应、高精度、高功率——重量比和大功率液压控制系统的需要不断扩大,促使液压控制技术迅速发展。
特别是控制理论在液压系统中的应用、计算及电子技术与液压技术的结合,使这门技术不论在原件和系统方面、理论与应用方面都日趋完善和成熟,并形成一门学科。
目前液压技术已经在许多部门得到广泛应用,诸如冶金、机械等工业部门及飞机、船舶部门等。
关键词:电液伺服控制液压执行机构伺服系统又称随机系统或跟踪系统,是一种自动控制系统。
在这种系统中,执行元件能以一定的精度自动地按照输入信号的变化规律动作。
液压伺服系统是以液压为动力的自动控制系统,由液压控制和执行机构所组成。
一、电液控制系统的发展历史液压控制技术的历史最早可以追溯到公元前240年,一位古埃及人发明的液压伺服机构——水钟。
而液压控制技术的快速发展则是在18世纪欧洲工业革命时期,在此期间,许多非常实用的发明涌现出来,多种液压机械装置特别是液压阀得到开发和利用,使液压技术的影响力大增。
18世纪出现了泵、水压机及水压缸等。
19世纪初液压技术取得了一些重大的进展,其中包括采用油作为工作流体及首次用电来驱动方向控制阀等。
第二次世界大战期间及战后,电液技术的发展加快。
出现了两级电液伺服阀、喷嘴挡板元件以及反馈装置等。
20世纪50~60年代则是电液元件和技术发展的高峰期,电液伺服阀控制技术在军事应用中大显身手,特别是在航空航天上的应用。
这些应用最初包括雷达驱动、制导平台驱动及导弹发射架控制等,后来又扩展到导弹的飞行控制、雷达天线的定位、飞机飞行控制系统的增强稳定性、雷达磁控管腔的动态调节以及飞行器的推力矢量控制等。
电液伺服驱动器也被用于空间运载火箭的导航和控制。
电液控制技术在非军事工业上的应用也越来越多,最主要的是机床工业。
在早些时候,数控机床的工作台定位伺服装置中多采用电液系统(通常是液压伺服马达)来代替人工操作,其次是工程机械。
第十章汽机热工部分第四节数字式电液控制系统(DEH)的设备结构、工作原理及逻辑功能汽轮机数字式电液控制系统DEH是电厂汽轮发电机组不可或缺的组成部分,是汽轮机启动、停止、正常运行和事故工况下的调节控制器,DEH系统与EH系统组成的电液控制系统,通过控制汽轮机主汽门和调门的开度,实现对汽轮发电机组的转速与负荷的控制。
我厂4台机组的DEH控制系统是上海新华控制公司的XDPS控制系统——DEH-ⅢA。
XDPS是英语XINHUA Distributed Processing System的缩写,中文含义为新华分布处理系统;DEH-IIIA是新华生产的汽轮机数字电液控制系统DEH (Digital Electric-Hydraulic Control System)的升级产品。
它集计算机控制技术与液压技术于一体,其计算机部分是由集计算机控制技术与液压技术于一体,其计算机部分是由XDPS-400分散控制系统组成的DEH-IIIA,其液压部分是采用高压抗燃油的电液伺服控制系统EH。
由DEH-IIIA与EH组成的数字电液控制系统通过控制汽轮机主汽门和调门的开度,实现汽轮发电机组的转速与负荷的实时控制。
DEH系统流程图见图1。
图1:DEH系统流程图一、DEH系统的设备结构DEH系统主要由一个操作员站、一个工程师站、一个控制柜、一个端子柜,一个手动操作盘组成。
1.操作员站操作员站由一台Pentium工业控制机、一台大尺寸彩色监视器CRT、一个薄膜键盘、一个跟踪球(鼠标)组成。
操作员站是运行操作人员与DEH人机接口。
运行人员可通过薄膜键盘或跟踪球对DEH进行各种操作。
2.工程师站工程师站配置与操作员站相同。
可由热工人员通过工程师站对DEH系统进行在线或离线组态修改、维护。
同时,所有运行情况和控制逻辑均可在工程师站上查看。
3.控制柜主要由电源、一对冗余DPU、三个基本控制模拟量输入I/O站、一个OPC超速保护站及一个伺服控制系统站组成,完成对汽轮机的基本控制功能,即转速控制、负荷控制及超速保护功能。
电液控的基本原理电液控制(Electro-hydraulic control)是一种基于电力和液压的控制技术,用于控制和调节机械系统的运动和操作。
它是将电力信号转换为液压能量,并利用液压传动来实现机械系统的运动控制。
电液控制广泛应用于工业生产和机械设备中,具有高效、可靠、快速和精确的特点。
电液控制系统主要由电源、电控信号传输、电液转换、执行器和反馈传感器等组成。
其中,电源提供电能;电控信号传输将控制信号传达给电液转换部分;电液转换部分将电控信号转换为液压能量;执行器接收液压能量,并将其转换为机械力或运动;反馈传感器用于监测执行器的位置、速度或力量,并将其反馈给电控系统,以实现闭环控制。
在电液控制系统中,电液转换部分是关键组成部分。
它由液压泵、液压阀、液压缸和油管等组成。
液压泵将电能转换为液压能,通过压力油管输送液压能量到液压阀。
液压阀根据接收的电控信号控制液压能量的流动方向、流量和压力等参数。
液压缸是执行器的一种形式,通过液压能量驱动活塞进行线性或旋转运动。
液压缸的运动通过连杆或机构与要控制的机械系统连接,从而实现位置、速度和力量等的控制。
电液控制系统的工作原理是通过电控信号控制液压能量的流动和分配,从而控制执行器的运动。
控制信号可以是电压、电流或数字信号等形式。
当控制信号变化时,电控系统会根据预设的控制算法调整液压阀的工作状态,以实现预期的机械运动。
电液控制系统可以实现多种控制方式,包括位置控制、速度控制和力控制等。
位置控制是通过控制液压阀的开关状态来控制液压缸的位置。
速度控制是通过控制液压阀的流量来控制液压缸的运动速度。
力控制是通过控制液压阀的压力来控制液压缸的输出力量。
这些控制方式可以单独应用,也可以结合使用,以实现更复杂的机械运动控制需求。
电液控制系统的优点在于其高效、可靠、快速和精确的特点。
由于液压系统具有较大的功率密度和传动效率,能够在短时间内提供大量的力矩和功率输出。
同时,液压系统具有较好的响应速度和控制精度,能够实现高速运动和精确控制。
简易控制系统
前言
目前国内市场上应用的电液控制系统主要集中在高端支架。
高端支架占支架市场的10-15%。
绝大多数的新建工作面仍采用手动控制。
电液控制系统的优势在于提高生产效率,降低工人劳动强度,安全生产。
其劣势也非
常明显,价格高,投资大。
对于如何扩大电液控制系统的市场容量,许多电液控制系统供应商希望通过降低成
本,生产经济型电液控制系统的方法,比如marco公司在韩城地区提供的简易型电液
控制系统,天玛公司提供的SAC型电液控制系统,以及通过进行国产化降低生产成
本。
上述的经济型电液控制系统仍旧在原有的电液控制系统的基础上进行简单的删减。
如何从技术的角度上,真正的设计出适合目前国内大多数煤矿工矿和生产条件的经济
型电液控制系统是目前扩大市场容量的关键所在.。
Marco公司自从2010年自己进行市场开发以来,根据中国市场的情况,研发出真正意
义上的简易经济型电液控制系统:pm32/vt简易电液控制系统。
系统配置
液压主阀,按键型驱动器,附属设备(电源箱,耦合器,邻架电缆)
系统功能
可以完成支架上所有的液压功能,可以进行单键单动作
,邻架动作,隔架动作。
根据操作人员的井下观察,通过按键对液压主阀进行控制。
和其他形式的控制系统比较
1. 和手动片阀的比较
简易控制系统大幅度降低了工人的劳动强度,将从前的手动操作片阀,变成简单的进
行按键操作。
copy© 2009 Marco Systemanalyse und Entwicklung GmbH Seite 1 / 2
显著的提高支架动作速度,提高采煤机的割煤速度,从而增加生产效率。
在提高效率的同时,也减少支架操作人员的人数,为安全生产提供保证。
2. 和手动先导控制的比较
不存在着复杂的邻架控制管路。
通过和左右邻架相连的电缆,对左右邻架以及再相邻
的邻架进行控制,即可以对四个支架进行直接的控制。
大幅度的提高控制的效率。
3. 和经济型电液控制系统的比较
在目前的很多井下综采工作面上,支架操作人员通过直接的观察对支架进行控制。
在这种情况下,传感器的利用率不高。
控制器是通过对传感器的测量数值进行计算,
从而来控制液压主阀的动作。
如上所说,在实际情况下,传感器的使用效率也很低。
简易控制系统的程序可以为手动模式,进行邻架控制,
本架控制和隔架控制。
这就
满足了绝大多数井下采煤的要求。
4. 和电液控制系统的比较
简易型控制系统的成本为标准电液控制系统的50%。
增加控制器后,可以方便的改造
将简易型控制系统转化成成标准电液控制系统。
copy© 2009 Marco Systemanalyse und Entwicklung GmbH Seite 2 / 2。