部编版2020高中数学 第一章 三角函数 1.1 任意角和弧度制 1.1.1 任意角学案 新人教A版必修4
- 格式:doc
- 大小:254.54 KB
- 文档页数:8
1.1 任意角和弧度制 2自我小测1.下列说法中错误的是( )A .半圆所对的圆心角是π radB .周角的大小等于2πC .1弧度的圆心角所对的弧长等于该圆的半径D .长度等于半径的弦所对的圆心角的大小是1弧度2.下列转化结果错误的是( )A .67°30′化成弧度为38π B .-74π化成角度为-315° C .-240°化成弧度为-43π D. 712π化成角度为75° 3.在半径为1的圆中,面积为1的扇形的圆心角的弧度数为( ) A .1B .2C .3D .4 4.已知集合A ={α|2k π≤α≤(2k +1)π,k ∈Z },B ={α|-4≤α≤4},则A ∩B 等于( )A .{α|-4≤α≤4}B .{α|0≤α≤π}C .{α|-4≤α≤-π,或0≤α≤π}D .∅ 5.已知角α=k π-23π,k ∈Z ,则角α的终边在第__________象限. 6.已知扇形AOB 的面积为6π,且圆心角为60°,则该扇形的弧长为__________.7.已知下列各组角: ①32π和2k π-32π,k ∈Z ;②-5π和225π;③-79π和119π;④203π和-103π. 其中终边相同的序号为__________.8.已知α=-800°.(1)把α改写成β+2k π(k ∈Z,0≤β<2π)的形式,并指出α是第几象限角;(2)求角γ,使γ与角α的终边相同,且γ∈,22ππ⎛⎫- ⎪⎝⎭. 9.一条铁路在转弯处成圆弧形,圆弧的半径为2 km ,一列火车用每小时30 km 的速度通过,求火车10 s转过的弧度数.参考答案1. 解析:根据弧度的定义及角度与弧度的换算知A ,B ,C 正确,D 错误. 答案:D2. 解析:712π×180π⎛⎫ ⎪⎝⎭°=105°,故D 不正确. 答案:D3. 解析:由S =12αr 2得1=12α,∴α=2. 答案:B4. 解析:当k =0时,A ={α|0≤α≤π},此时A ∩B ={α|0≤α≤π};当k =-1时,A ={α|-2π≤α≤-π},此时A ∩B ={x |-4≤α≤-π},故所求集合A ∩B ={α|0≤α≤π,或-4≤α≤-π}.答案:C5. 解析:当k =2n ,n ∈Z 时,α=2n π-23π, ∴角α的终边与-23π角的终边相同. 又∵-23π角的终边在第三象限, ∴α的终边在第三象限;当k =2n +1,n ∈Z 时,α=2n π+3π, ∴角α的终边与3π角的终边相同. 又∵3π角的终边在第一象限, ∴α的终边在第一象限.综上所述,角α的终边在第一或三象限.答案:一或三6.解析:∵α=60°=3π,∴由扇形面积公式可得l =2Sα=123ππ=36.答案:367. 解析:对①,∵2k π-32π的终边与-32π的终边相同,而32π与-32π的终边不相同,∴①组中角的终边不同; 对②,∵225π=4π+25π,-5π和25π终边不同, ∴②组中角的终边不同; 对③,∵-79π=-2π+119π, ∴-79π与119π的终边相同; 对④,∵203π=6π+23π,-103π=-4π+23π, ∴203π和-103π的终边相同. 答案:③④8. 解:(1)∵-800°=-3×360°+280°,280°=149π, ∴α=149π+(-3)×2π. ∵角α与149π终边相同, ∴角α是第四象限角. (2)∵与角α终边相同的角可写为2k π+149π,k ∈Z 的形式,而γ与α终边相同, ∴γ=2k π+149π,k ∈Z . 又γ∈,22ππ⎛⎫-⎪⎝⎭, ∴-2π<2k π+149π<2π,k ∈Z ,解得k =-1.∴γ=-2π+149π=-49π.9. 分析:先利用速度和时间求出路程,即得圆弧的弧长,再由弧长公式可得圆心角的大小.因为火车前进的方向未知,所以将圆心角的大小加上绝对值.解:∵圆弧半径r为2 km=2 000 m,火车速度v=30 km/h=253m/s,则火车10 s走过的弧长l为2503m,∴火车10 s转过的弧度数|α|=lr=25032000⨯=124,即火车10 s转过的弧度数是1 24.。
第一章三角函数1.1 任意角和弧度制1.1.1 任意角一、教学目标:1、知识与技能(1)推广角的概念、引入大于360 角和负角;(2)理解并掌握正角、负角、零角的定义;(3)理解任意角以及象限角的概念;(4) 掌握所有与角终边相同的角(包括角)的表示方法;(5)树立运动变化观点,深刻理解推广后的角的概念;(6)揭示知识背景,引发学生学习兴趣. (7)创设问题情景,激发学生分析、探求的学习态度,强化学生的参与意识.2、过程与方法通过创设情境:“转体720 ,逆(顺)时针旋转”,角有大于360 角、零角和旋转方向不同所形成的角等,引入正角、负角和零角的概念;角的概念得到推广以后,将角放入平面直角坐标系,引入象限角、非象限角的概念及象限角的判定方法;列出几个终边相同的角,画出终边所在的位置,找出它们的关系,探索具有相同终边的角的表示;讲解例题,总结方法,巩固练习.3、情态与价值通过本节的学习,使同学们对角的概念有了一个新的认识,即有正角、负角和零角之分. 角的概念推广以后,知道角之间的关系. 理解掌握终边相同角的表示方法,学会运用运动变化的观点认识事物.二、教学重、难点重点: 理解正角、负角和零角的定义,掌握终边相同角的表示法.难点: 终边相同的角的表示.三、学法与教学用具之前的学习使我们知道最大的角是周角, 最小的角是零角. 通过回忆和观察日常生活中实际例子, 把对角的理解进行了推广. 把角放入坐标系环境中以后, 了解象限角的概念. 通过角终边的旋转掌握终边相同角的表示方法. 我们在学习这部分内容时, 首先要弄清楚角的表示符号, 以及正负角的表示. 另外还有相同终边角的集合的表示等.教学用具: 电脑、投影机、三角板四、教学设想【创设情境】思考: 你的手表慢了 5 分钟,你是怎样将它校准的?假如你的手表快了 1.25小时,你应当如何将它校准?当时间校准以后,分针转了多少度?[ 取出一个钟表, 实际操作] 我们发现,校正过程中分针需要正向或反向旋转,有时转不到一周,有时转一周以上, 这就是说角已不仅仅局限于0 360 之间,这正是我们这节课要研究的主要内容——任意角.【探究新知】1.初中时,我们已学习了0 360 角的概念,它是如何定义的呢?[ 展示投影] 角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形. 如图 1.1-1 ,一条射线由原来的位置OA ,绕着它的端点O 按逆时针方向旋转到终止位置OB ,就形成角. 旋转开始时的射线OA 叫做角的始边,OB 叫终边,射线的端点O 叫做叫的顶点.2. 如上述情境中所说的校准时钟问题以及在体操比赛中我们经常听到这样的术语:“转1体720 ”(即转体 2 周),“转体1080 ”(即转体 3 周)等, 都是遇到大于360 的角以及按不同方向旋转而成的角. 同学们思考一下: 能否再举出几个现实生活中“大于360 的角或按不同方向旋转而成的角”的例子, 这些说明了什么问题?又该如何区分和表示这些角呢?[ 展示课件] 如自行车车轮、螺丝扳手等按不同方向旋转时成不同的角, 这些都说明了我们研究推广角概念的必要性. 为了区别起见,我们规定: 按逆时针方向旋转所形成的角叫正角(positive angle), 按顺时针方向旋转所形成的角叫负角(negative angle). 如果一条射线没有做任何旋转, 我们称它形成了一个零角(zero angle).[ 展示课件] 如教材图 1.1.3(1) 中的角是一个正角, 它等于750 ;图 1.1.3(2) 中,正角210 ,负角150 , 660 ;这样,我们就把角的概念推广到了任意角(anyangle ), 包括正角、负角和零角. 为了简单起见,在不引起混淆的前提下,“角”或“”可简记为.3. 在今后的学习中,我们常在直角坐标系内讨论角,为此我们必须了解象限角这个概念.角的顶点与原点重合,角的始边与x轴的非负半轴重合。
1.1.1 任意角学习目标:1.理解任意角的概念.2.掌握终边相同角的含义及其表示.(重点、难点)3.掌握轴线角、象限角及区间角的表示方法.(难点、易错点)[自主预习·探新知]1.角的概念:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形.2.角的表示:如图111,图111(1)始边:射线的起始位置OA,(2)终边:射线的终止位置OB,(3)顶点:射线的端点O.这时,图中的角α可记为“角α”或“∠α”或简记为“α”.3.任意角的分类(1)按旋转方向分(2)按角的终边位置分①前提:角的顶点与原点重合,角的始边与x轴的非负半轴重合②分类:[基础自测]1.思考辨析(1)第二象限角大于第一象限角.( )(2)第二象限角是钝角.( )(3)终边相同的角不一定相等,但相等的角终边一定相同.( )(4)终边相同的角有无数个,它们相差360°的整数倍.( )[解析](1)错误.如第二象限角100°小于第一象限角361°.(2)错误.如第二象限角-181°不是钝角.(3)(4)都正确.[答案](1)×(2)×(3)√(4)√2.50°角的始边与x轴的非负半轴重合,把终边按顺时针方向旋转2周,所得角是________.-670°[由题意知,所得角是50°-2×360°=-670°.]3.已知0°≤α<360°,且α与600°角终边相同,则α=________,它是第________象限角.240°三[因为600°=360°+240°,所以240°角与600°角终边相同,且0°≤240°<360°,故α=240°,它是第三象限角.][合作探究·攻重难]①锐角都是第一象限角;②第一象限角一定不是负角;③小于180°的角是钝角、直角或锐角;④始边和终边重合的角是零角.其中正确说法的序号为________(把正确说法的序号都写上).(2)已知角的顶点与坐标原点重合,始边与x轴的非负半轴重合,作出下列各角,并指出它们是第几象限角.①420°.②855°.③-510°. 【导学号:84352000】(1)①[(1)①锐角是大于0°且小于90°的角,终边落在第一象限,是第一象限角,所以①正确;②-350°角是第一象限角,但它是负角,所以②错误;③0°角是小于180°的角,但它既不是钝角,也不是直角或锐角,所以③错误;④360°角的始边与终边重合,但它不是零角,所以④错误.](2)作出各角的终边,如图所示:由图可知:①420°是第一象限角.②855°是第二象限角.③-510°是第三象限角.[规律方法] 1.判断角的概念问题的关键与技巧:(1)关键:正确理解象限角与锐角、直角、钝角、平角、周角等概念.(2)技巧:判断命题为真需要证明,而判断命题为假只要举出反例即可.2.象限角的判定方法:(1)在坐标系中画出相应的角,观察终边的位置,确定象限.(2)第一步,将α写成α=k·360°+β(k∈Z,0°≤β<360°)的形式;第二步,判断β的终边所在的象限;第三步,根据β的终边所在的象限,即可确定α的终边所在的象限.提醒:理解任意角这一概念时,要注意“旋转方向”决定角的“正负”,“旋转幅度”决定角的“绝对值大小”.[跟踪训练]1.已知集合A={第一象限角},B={锐角},C={小于90°的角},则下面关系正确的是( )A.A=B=C B.A⊆CC.A∩C=B D.B∪C⊆CD[由已知得B C,所以B∪C=C,故D正确.]2.给出下列四个命题:①-75°是第四象限角;②225°是第三象限角;③475°是第二象限角;④-315°是第一象限角.其中正确的命题有( )【导学号:84352001】A.1个B.2个C.3个D.4个D[-90°<-75°<0°,180°<225°<270°,360°+90°<475°<360°+180°,-360°<-315°<-270°.所以这四个命题都是正确的.]________.(2)写出与α=-1 910°终边相同的角的集合,并把集合中适合不等式-720°≤β<360°的元素β写出来.[思路探究](1)根据-885°与k·360°,k∈Z的关系确定k.(2)先写出与α终边相同的角k·360°+α,k∈Z,再由已知不等式确定k的可能取值.(1)(-3)×360°+195° [(1)-885°=-1 080°+195°=(-3)×360°+195°.](2)与α=-1 910°终边相同的角的集合为{β|β=k ·360°-1 910°,k ∈Z }.∵-720°≤β<360°,即-720°≤k ·360°-1 910°<360°(k ∈Z ),∴31136≤k <61136(k ∈Z ),故取k =4,5,6. k =4时,β=4×360°-1 910°=-470°;k =5时,β=5×360°-1 910°=-110°;k =6时,β=6×360°-1 910°=250°.[规律方法] 1.在0°到360°范围内找与给定角终边相同的角的方法(1)一般地,可以将所给的角α化成k ·360°+β的形式(其中0°≤β<360°,k ∈Z ),其中的β就是所求的角.(2)如果所给的角的绝对值不是很大,可以通过如下方法完成:当所给角是负角时,采用连续加360°的方式;当所给角是正角时,采用连续减360°的方式,直到所得结果达到要求为止.2.运用终边相同的角的注意点所有与角α终边相同的角,连同角α在内可以用式子k ·360°+α,k ∈Z 表示,在运用时需注意以下四点:(1)k 是整数,这个条件不能漏掉.(2)α是任意角.(3)k ·360°与α之间用“+”连接,如k ·360°-30°应看成k ·360°+(-30°),k ∈Z .(4)终边相同的角不一定相等,但相等的角终边一定相同,终边相同的角有无数个,它们相差周角的整数倍.提醒:表示终边相同的角,k ∈Z 这一条件不能少.[跟踪训练]3.下面与-850°12′终边相同的角是( )A .230°12′B .229°48′C .129°48′D .130°12′B [与-850°12′终边相同的角可表示为α=-850°12′+k ·360°(k ∈Z ),当k =3时,α=-850°12′+1 080°=229°48′.]4.在-360°~360°之间找出所有与下列各角终边相同的角,并判断各角所在的象限. ①790°;②-20°. 【导学号:84352002】[解] ①∵790°=2×360°+70°=3×360°-290°,∴在-360°~360°之间与它终边相同的角是70°和-290°,它们都是第一象限的角.②∵-20°=-360°+340°,∴在-360°~360°之间与它终边相同的角是-20°和340°,它们都是第四象限的角.[1.若射线OA 的位置是k ·360°+10°,k ∈Z ,射线OA 绕点O 逆时针旋转90°经过的区域为D ,则终边落在区域D (包括边界)的角的集合应如何表示?提示:终边落在区域D 包括边界的角的集合可表示为{α|k ·360°+10°≤α≤k ·360°+100°,k ∈Z }.2.若角α与β的终边关于x 轴、y 轴、原点、直线y =x 对称,则角α与β分别具有怎样的关系?[提示] (1)关于x 轴对称:若角α与β的终边关于x 轴对称,则角α与β的关系是β=-α+k ·360°,k ∈Z .(2)关于y 轴对称:若角α与β的终边关于y 轴对称,则角α与β的关系是β=180°-α+k ·360°,k ∈Z .(3)关于原点对称:若角α与β的终边关于原点对称,则角α与β的关系是β=180°+α+k ·360°,k ∈Z .(4)关于直线y =x 对称:若角α与β的终边关于直线y =x 对称,则角α与β的关系是β=-α+90°+k ·360°,k ∈Z .(1)若α是第一象限角,则-α2是( ) A .第一象限角B .第一、四象限角C .第二象限角D .第二、四象限角(2)已知,如图112所示.图112①分别写出终边落在OA ,OB 位置上的角的集合.②写出终边落在阴影部分(包括边界)的角的集合.[思路探究] (1)由α的范围写出α2的范围→确定α2是第几象限角→ 根据角终边的对称性确定-α2是第几象限角 (2)①观察图形→确定终边落在OA ,OB 位置上的角②由小到大分别标出起始和终止边界对应的角→加上360°的整数倍,得所求集合(1)D [(1)因为α是第一象限角,所以k ·360°<α<k ·360°+90°,k ∈Z ,所以k ·180°<α2<k ·180°+90°,k ∈Z , 所以α2是第一、三象限角, 又因为-α2与α2的终边关于x 轴对称, 所以-α2是第二、四象限角.] (2)①终边落在OA 位置上的角的集合为{α|α=90°+45°+k ·360°,k ∈Z }={α|α=135°+k ·360°,k ∈Z };终边落在OB 位置上的角的集合为{α|α=-30°+k ·360°,k ∈Z }.②由题干图可知,阴影部分(包括边界)的角的集合是由所有介于[-30°,135°]之间的与之终边相同的角组成的集合,故该区域可表示为{α|-30°+k ·360°≤α≤135°+k ·360°,k ∈Z }.母题探究:1.若将本例(2)改为如图113所示的图形,那么终边落在阴影部分(包括边界)的角的集合如何表示?图113[解] 在0°~360°范围内,终边落在阴影部分(包括边界)的角为60°≤β<105°与240°≤β<285°,所以所有满足题意的角β为{β|k ·360°+60°≤β<k ·360°+105°,k ∈Z }∪{β|k ·360°+240°≤β<k ·360°+285°,k ∈Z }={β|2k ·180°+60°≤β<2k ·180°+105°,k ∈Z }∪{β|(2k +1)·180°+60°≤β<(2k +1)·180°+105°,k ∈Z }={β|n ·180°+60°≤β<n ·180°+105°,n ∈Z }.故角β的取值集合为{β|n ·180°+60°≤β<n ·180°+105°,n ∈Z }.2.若将本例(2)改为如图114所示的图形,那么阴影部分(包括边界)表示的终边相同的角的集合如何表示?图114[解] 在0°~360°范围内,阴影部分(包括边界)表示的范围可表示为:150°≤β≤225°,则所有满足条件的角β为{β|k ·360°+150°≤β≤k ·360°+225°,k ∈Z }.[规律方法] 1.表示区间角的三个步骤:第一步:先按逆时针的方向找到区域的起始和终止边界;第二步:按由小到大分别标出起始和终止边界对应的-360°~360°范围内的角α和β,写出最简区间{x |α<x <β},其中β-α<360°;第三步:起始、终止边界对应角α,β再加上360°的整数倍,即得区间角集合.2.n α或αn所在象限的判断方法: (1)用不等式表示出角n α或αn 的范围;(2)用旋转的观点确定角n α或αn所在象限. 例如:k ·120°<α3<k ·120°+30°,k ∈Z . 由0°<α3<30°,每次逆时针旋转120°可得α3终边的位置. 提醒:表示区间角时要注意实线边界与虚线边界的差异.[当 堂 达 标·固 双 基]1.下列说法正确的是( )A .三角形的内角是第一象限角或第二象限角B .第四象限的角一定是负角C .60°角与600°角是终边相同的角D .将表的分针拨慢10分钟,则分针转过的角为60°D [A 错误,90°角既不是第一象限角也不是第二象限角;B 错误,280°角是第四象限角,但它不是负角;C 错误,600°-60°=540°不是360°的倍数;D 正确,分针转一周为60分钟,转过的角度为-360°,将分针拨慢是逆时针旋转,拨慢10分钟转过的角为360°×16=60°.] 2.下列各个角中与2 017°终边相同的是( )A .-147°B .677°C .317°D .217°D [因为2 017°=360°×5+217°,所以与2 017°终边相同的角是217°.]3.已知角α的终边在如图115阴影表示的范围内(不包含边界),那么角α的集合是________. 【导学号:84352004】图115{α|k ·360°+45°<α<k ·360°+150°,k ∈Z } [观察图形可知,角α的集合是{α|k ·360°+45°<α<k ·360°+150°,k ∈Z }.]4.角α,β的终边关于y 轴对称,若α=30°,则β=________.150°+k ·360°,k ∈Z [∵30°与150°的终边关于y 轴对称,∴β的终边与150°角的终边相同.∴β=150°+k ·360°,k ∈Z .]5.在0°到360°范围内,找出与下列各角终边相同的角,并判断它们是第几象限的角:(1)-120°;(2)640°.【导学号:84352005】[解] (1)与-120°终边相同的角的集合为M ={β|β=-120°+k ·360°,k ∈Z }. 当k =1时,β=-120°+1×360°=240°,∴在0°到360°范围内,与-120°终边相同的角是240°,它是第三象限的角.(2)与640°终边相同的角的集合为M ={β|β=640°+k ·360°,k ∈Z }. 当k =-1时,β=640°-360°=280°,∴在0°到360°范围内,与640°终边相同的角为280°,它是第四象限的角.。