选修3-5模块检测
- 格式:doc
- 大小:276.00 KB
- 文档页数:8
模块综合检测(时间:90分钟满分:100分)一、选择题(本题包含10小题,每小题4分,共40分。
在每小题给出的四个选项中,1~6题只有一个选项符合题目要求,7~10题有多个选项符合题目要求。
全部选对的得4分,选不全的得2分,有错选或不答的得0分)1.下列说法正确的是()A.α射线是高速运动的氦原子B.核聚变反应方程中表示质子C.从金属表面逸出的光电子的最大初动能与入射光的频率成正比D.玻尔将量子观念引入原子领域,其理论能够解释氢原子光谱的特征解析:α射线是高速运动的氦原子核,选项A错误表示中子,选项B错误;根据光电效应方程E k=hν-W0可知光电子最大初动能与入射光的频率成线性关系而非正比关系,选项C错误;根据玻尔的原子理论可知,选项D正确。
答案:D2.下列四幅图所反映的物理过程中,系统动量守恒的是()A.只有甲、乙正确B.只有丙、丁正确C.只有甲、丙正确D.只有乙、丁正确解析:甲中子弹和木块组成的系统所受外力为零,故动量守恒;乙中剪断细线时,墙对系统有作用力,故动量不守恒;丙中系统所受外力为零,故系统动量守恒;丁中斜面固定,系统所受外力不为零,动量不守恒,故只有选项C正确。
答案:C3.氢原子核外电子从外层轨道(半径为r b)向内层轨道(半径为r a)跃迁时(r a<r b),电子动能的增量ΔE k=E k a-E k b,电势能增量ΔE p=E p a-E p b,则根据玻尔的理论,下列表述正确的是()A.ΔE k<0,ΔE p<0,ΔE k+ΔE p=0B.ΔE k<0,ΔE p>0,ΔE k+ΔE p=0C.ΔE k>0,ΔE p<0,ΔE k+ΔE p>0D.ΔE k>0,ΔE p<0,ΔE k+ΔE p<0解析:根据向心力公式得k即半径越大动能越小,所以ΔE k>0;由于核外电子和核内质子是相互吸引的,当电子从外层轨道向内层轨道跃迁时,电场力做正功,电势能减小,所以ΔE p<0;又由于内层轨道比外层轨道原子的能级低,所以ΔE k+ΔE p<0。
模块标准测评(时间:90分钟满分:110分)题型选择题填空题计算题总分得分,有的只有一个选项正确,有的有多个选项正确,全部选对的得4分,选不全的得2分,错选的或不选的不得分)1.(多选)下列说法正确的是()A.随着温度的升高,一方面各种波长的辐射强度都会增加;另一方面辐射强度的极大值向波长较短的方向移动B.在康普顿效应中,当入射光子与晶体中的电子碰撞时,把一部分动量转移给电子,因此光子散射后波长变短C.根据海森伯提出的不确定性关系可知,不可能同时准确地测定微观粒子的位置和动量D.物质波和光波都是概率波ACD解析依据黑体辐射的规律得选项A正确;碰撞遵循动量守恒和能量守恒,光子散射后的能量减小,波长变长,选项B错误;对于微观粒子,牛顿运动定律不再适用,不可能同时准确确定粒子的位置和动量,选项C正确;物质波和光波都是概率波,选项D正确.2.图甲所示为氢原子的能级图,图乙所示为氢原子的光谱.已知谱线a是氢原子从n =4的能级跃迁到n=2的能级时的辐射光,则谱线b是氢原子()A.从n=3的能级跃迁到n=2的能级时的辐射光B.从n=5的能级跃迁到n=2的能级时的辐射光C.从n=4的能级跃迁到n=3的能级时的辐射光D.从n=4的能级跃迁到n=2的能级时的辐射光B解析由氢原子光谱可得a谱线比b谱线波长长,由E=hν得辐射a光谱对应能量应小于辐射b光谱对应能量.由能级间跃迁知识可知,选项B正确.3.(多选)如图所示,质量相等的两个滑块位于光滑水平桌面上.其中弹簧两端分别与静止的滑块N和挡板P相连接,弹簧与挡板的质量均不计;滑块M以初速度v0向右运动,它与挡板P碰撞(不黏连)后开始压缩弹簧,最后,滑块N以速度v0向右运动.在此过程中( )A .M 的速度等于0时,弹簧的弹性势能最大B .M 与N 具有相同的速度时,两滑块动能之和最小C .M 的速度为错误!时,弹簧的长度最长D .M 的速度为错误!时,弹簧的长度最短BD 解析 M 、N 两物体碰撞过程中动量守恒,当M 与N 具有相同的速度v 02时,系统动能损失最大,损失的动能转化为弹簧的弹性势能,即弹簧弹性势能最大,选项A 错误,B 正确;M 的速度为错误!时,弹簧的压缩量最大,弹簧的长度最短,选项D 正确,C 错误.4.如图所示,弹簧的一端固定在竖直墙上,质量为m 的光滑弧形槽静止在光滑水平面上,底部与水平面平滑连接,一个质量也为m 的小球从槽高h 处开始自由下滑,则( )A .在以后的运动过程中,小球和槽的动量始终守恒B .在下滑过程中小球和槽之间的相互作用力终始不做功C .被弹簧反弹后,小球和槽都做速率不变的直线运动D .被弹簧反弹后,小球和槽的机械能守恒,小球能回到槽高h 处C 解析 小球下滑过程中,小球和槽组成的系统在水平方向动量守恒,相互作用力分别对小球和槽做正功,小球到达水平面后和槽的速率相等,故小球也不可能回到槽上,选项C 正确,A 、B 、D 均错误.5.2006年美国和俄罗斯的科学家利用回旋加速器,通过钙48轰击锎249发生核反应,成功合成了第118号元素,这是迄今为止门捷列夫元素周期表中原子序数最大的元素.实验表明,该元素的原子核先放出3个相同的粒子x ,再连续经过3次α衰变后,变成质量数为282的第112号元素的原子核,则上述过程中的粒子x 是( )A .中子B .质子C .电子D .α粒子A 解析 118号元素的质量数为297,三次α衰变后电荷数由118变为112,因三次α衰变减少的质量数为12,而由297变为282质量数少15,说明先放出的3个相同的粒子x 是不带电的中子.6.(多选)关于核反应方程错误!Th→错误!Pa +X +ΔE (ΔE 为释放出的核能,X 为新生成粒子),已知错误!Th 的半衰期为T ,则下列说法正确的是( )A .错误!Pa 没有放射性B .错误!Pa 比错误!Th 少1个中子,X 粒子是从原子核中射出的,此核反应为β衰变C.N0个错误!Th经2T时间因发生上述核反应而放出的核能为错误!N0ΔE(N0数值很大)D.234 90Th的比结合能为错误!BC解析由质量数和核电荷数守恒可得X为错误!e,故此核反应为β衰变,选项B 正确;经过2T时间,有错误!N0个错误!Th发生β衰变,释放的核能为错误!N0·ΔE,选项C正确;错误!Pa仍具有放射性,选项A错误;ΔE为错误!Th发生β衰变释放的核能小于错误!Th的结合能,因此错误!Th的比结合能大于错误!,选项D错误。
高中物理学习材料(鼎尚**整理制作)模块综合检测(时间:90分钟满分:100分)一、选择题(本题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,第1~6题只有一个选项正确,7~10题有多个选项正确,全部选对的得4分,选对但不全的得2分,有选错或不答的不得分) 1.我国女子短道速滑队在2013年世锦赛上实现女子3 000 m接力三连冠。
观察发现,“接棒”的运动员甲提前站在“交棒”的运动员乙前面,并且开始向前滑行,待乙追上甲时,乙猛推甲一把,使甲获得更大的速度向前冲出。
在乙推甲的过程中,忽略运动员与冰面间在水平方向上的相互作用,则()A.甲对乙的冲量一定等于乙对甲的冲量B.甲、乙的动量变化一定大小相等、方向相反C.甲的动能增加量一定等于乙的动能减少量D.甲对乙做多少负功,乙对甲就一定做多少正功解析:甲对乙的冲量与乙对甲的冲量大小相等,方向相反,选项A错误;甲、乙组成的系统动量守恒,动量变化量等大反向,选项B正确;甲、乙相互作用时,虽然她们之间的相互作用力始终大小相等,方向相反,但相互作用过程中,她们的对地位移不一定相同,所以甲的动能增加量不一定等于乙的动能减少量,那么甲对乙做的功就不一定等于乙对甲做的功,选项C、D错误。
答案:B2.如图甲是α、β、γ三种射线穿透能力的示意图,图乙是工业上利用射线的穿透性来检查金属内部的伤痕的示意图,请问图乙中的检查是利用了哪种射线()A.α射线B.β射线C.γ射线D.三种射线都可以解析:由题图甲可知α射线和β射线都不能穿透钢板,γ射线的穿透力最强,可用来检查金属内部的伤痕,答案为C。
答案:C3.如图所示,弹簧的一端固定在竖直墙上,质量为m的光滑弧形槽静止在光滑水平面上,底部与水平面平滑连接,一个质量也为m的小球从槽高h处开始下滑,则()A.在以后的运动过程中,小球和槽的动量始终守恒B.在下滑过程中小球和槽之间的相互作用力始终不做功C.被弹簧反弹后,小球和槽的机械能守恒,小球能回到槽高h处D.被弹簧反弹后,小球和槽都做速率不变的直线运动解析:小球在槽上运动时,由于小球受重力,故两物体组成的系统外力之和不为零,故动量不守恒,当小球与弹簧接触后,小球受外力,故动量不再守恒,故A错误;下滑过程中两物体都有水平方向的位移,而力是垂直于球面的,故力和位移夹角不垂直,故两力均做功,故B错误;小球脱离弧形槽时,水平方向动量守恒,可得两者速度大小相等,故小球脱离弧形槽后,槽向后做匀速运动,而小球被弹簧反弹后也做匀速运动,小球追不上弧形槽,故C错,D正确。
河北省秦皇岛中学高二年级物理模块检测-选修(3-5)系列学校:___________姓名:___________班级:___________考号:___________一、多选题1.以下有关近代物理内容的若干叙述,正确的是( )A.紫外线照射到金属锌板表面时能够发生光电效应,则当增大紫外线的照射强度时,从锌板表面逸出的光电子的最大初动能也随之增大B.质子和中子结合成新原子核一定有质量亏损,释放出能量C.有10个放射性元素的原子核,当有5个原子核发生衰变所需的时间就是该放射性元素的半衰期D.氢原子的核外电子由较高能级跃迁到较低能级时,要释放一定频率的光子,同时氢原子的电势能减小,电子的动能增大2.关于光电效应,下列说法正确的是A.极限频率越大的金属材料逸出功越大B.只要光照射的时间足够长,任何金属都能产生光电效应C.从金属表面出来的光电子的最大初动能与入射光的频率成正比D.若发生了光电效应且入射光的频率一定时,光强越强,单位时间内逸出的光电子数就越多二、单选题3.下表给出了四种放射性同位素的辐射线和半衰期.在医疗技术中,常用放射线治疗肿瘤,其放射线必须满足:①具有较强的穿透能力,以辐射到体内的肿瘤处;②在较长时间内具有相对稳定的辐射强度.为此所选择的放射源应为( )A.钋210 B.锝99 C.钴60 D.锶904.下列说法正确的是( )A.根据ΔE=Δmc2可知,在核裂变过程中减少的质量转化成了能量B.太阳辐射的能量主要来自太阳内部的核裂变C.卢瑟福首先发现了铀和含铀矿物的天然放射现象D.由氢原子能级示意图知,处于基态的氢原子至少要吸收13.60 eV的能量才能发生电离5.下图中曲线a、b、c、d为气泡室中某放射物质发生衰变放出的部分粒子的经迹,气泡室中磁感应强度方向垂直纸面向里.以下判断可能正确的是A.a、b为β粒子的经迹B.a、b为γ粒子的经迹C.c、d为α粒子的经迹D.c、d为β粒子的经迹6.以往我们认识的光电效应是单光子光电效应,即一个电子极短时间内能吸收到一个光子而从金属表面逸出.强激光的出现丰富了人们对于光电效应的认识,用强激光照射金属,由于其光子密度极大,一个电子在短时间内吸收多个光子成为可能,从而形成多光子电效应,这已被实验证实.光电效应实验装置示意如图.用频率为v的普通光源照射阴极k,没有发生光电效应,换同样频率为v的强激光照射阴极k,则发生了光电效应;此时,若加上反向电压U,即将阴极k接电源正极,阳极A接电源负极,在k、A 之间就形成了使光电子减速的电场,逐渐增大U,光电流会逐渐减小;当光电流恰好减小到零时,所加反向电压U可能是下列的(其中W为逸出功,h为普朗克常量,e为电子电量)A .U =hv e -w eB .U =2hv e-we C .U =2hv-W D .U =5hv 2e -we7.如图所示,物体由静止开始做直线运动,0~4s 内其合外力随时间变化的关系为某一正弦函数,下列表述不.正确的是A .0~2s 内合外力的冲量一直增大B .0~4s 内合外力的冲量为零C .2s 末物体的动量方向发生改变D .0~4s 内物体的动量方向一直不变8.某城市创卫工人用高压水枪冲洗墙面上的广告,如图所示,若水柱截面为S ,水流以速v 垂直射到墙面上,之后水速减为零,已知水的密度为p ,则水对墙面的冲力为( )A .Sv ρB .2Sv ρC .22Sv ρD .2Svρ9.将质量为1.00 kg 的模型火箭点火升空,50 g 燃烧的燃气以大小为600 m/s 的速度从火箭喷口在很短时间内喷出.在燃气喷出后的瞬间,火箭的动量大小为(喷出过程中重力和空气阻力可忽略) A .30kg m/s ⋅ B .5.7×102kg m/s ⋅ C .6.0×102kg m/s ⋅D .6.3×102kg m/s ⋅10.仔细观察氢原子的光谱,发现它只有几条分离的不连续的亮线,其原因是( ) A .氢原子只有几个能级 B .氢原子只能发出平行光 C .氢原子有时发光,有时不发光D .氢原子辐射的光子的能量是不连续的,所以对应的光的频率也是不连续的 11.在自然界生态系统中,蛇与老鼠等生物通过营养关系构成食物链,在维持生态平衡方面发挥着重要作用,蛇是老鼠的天敌,它通过接收热辐射来发现老鼠的存在.假设老鼠的体温约为37 ℃,它发出的最强的热辐射的波长为λmax ,根据热辐射的理论,λmax 与辐射源的绝对温度T (T =t +273 K)的关系近似为λmax T =2.90×10-3m·K .则老鼠发出的最强的热辐射的波长为( ) A .7.8×10-5 m B .9.4×10-6 m C .1.16×10-4 mD .9.7×10-8 m12.典型的铀核裂变是生成钡和氪,同时放出x 个中子:235114489192056360U n Ba Kr n x +→++,铀235质量为m 1,中子质量为m 2,钡144质量为m 3,氪89的质量为m 4.下列说法正确的是( ) A .该核反应类型属于人工转变 B .该反应放出能量(m 1-xm 2-m 3-m 4)c 2 C .x 的值是3D .该核反应比聚变反应对环境的污染较少三、解答题13.如图所示,质量为m 、半径为r 的小球,放在内半径为R ,质量为3m 的大空心球内,大球开始静止在光滑水平面上,当小球由图中位置无初速度释放沿内壁滚到最低点时,大球移动的距离为________。
人教版高中物理选修3—5模块过关测评试题(时间:90分钟满分:100分)一、选择题(本题共12小题,每小题4分,共48分.其中1~8题为单项选择题,9~12题为多项选择题)1.光电效应实验中,下列表述正确的是()A.光照时间越长,光电流越大B.入射光足够强就可以有光电流C.遏止电压与入射光的频率无关D.入射光频率大于截止频率时才能产生光电子2.如图所示,我国自主研发制造的热核聚变核心部件在国际上率先通过权威机构认证,这是我国对国际热核聚变项目的重大贡献.下列核反应方程中属于聚变反应的是()A.21H+31H→42He+10nB.147N+42He→178O+11HC.42He+2713Al→3015P+10nD.23592U+10n→14456Ba+8936Kr+310n3.下列说法正确的是()A.只要照射到金属表面上的光足够强,金属就一定会发出光电子B.42He+147N→168O+11H是卢瑟福发现质子的核反应方程C.放射性物质的半衰期不会随温度的升高而缩短D.一个处于量子数n=4能级的氢原子,最多可辐射出6种不同频率的光子4.在核反应方程42He+147N→178O+X中,X表示的是()A.质子B.中子C.电子D.α粒子5.关于图中四幅图的有关说法中正确的是()A .图甲中的α粒子散射实验说明了原子核是由质子与中子组成B .图乙中若改用绿光照射,验电器金属箔片一定不会张开C .图丙一群氢原子处于n =4的激发态,最多能辐射6种不同频率的光子D .图丁原子核C 、B 结合成A 时会有质量亏损,要释放能量6.小球质量为2m ,在光滑的水平面上以速度v 沿水平方向撞击竖直墙壁,以0.8v 的速度反弹回来,球与墙的撞击时间为t ,则在撞击过程中,球对墙的平均作用力的大小是( ) A.2m v 5t B.18m v 5t C.8m v 25t D.18mg 25t7.如图所示,光滑圆形管道固定在竖直面内,直径略小于管道内径、可视为质点的小球A 、B 的质量分别为m A 、m B ,A 球从管道最高处由静止开始沿管道下滑,与静止于管道最低处的B 球相碰,碰后A 球速度反向,且A 、B 球均能刚好到达与管道圆心O 等高处,则A 、B 小球的质量比值为( )A.2+1B.2-1 C .1 D. 28.氢原子能级图如图所示,已知可见光光子的能量在1.61~3.10eV 范围内,则下列说法正确的是( )A .氢原子能量状态由n =2能级跃迁到n =1能级,放出的光子为可见光B .大量氢原子处于n =4能级时,向低能级跃迁最多能发出10种不同频率的光子C .处于基态的氢原子电离需要释放13.6eV 能量D .氢原子处于n =2能级时,可吸收2.86eV 能量的光子跃迁到高能级9.如图所示,质量相等的两个滑块位于光滑水平桌面上.其中弹簧两端分别与静止的滑块N 和挡板P 相连接,弹簧与挡板的质量均不计,滑块M 以初速度v 0向右运动,它与挡板P 碰撞后开始压缩弹簧,最后滑块N 以速度v 0向右运动.在此过程中( )A .M 的速度等于0时,弹簧的弹性势能最大B .M 与N 具有相同的速度时,两滑块动能之和最小C .M 的速度为v 02时,弹簧的长度最长D .M 的速度为v 02时,弹簧的长度最短10.在图甲所示的装置中,K 为一金属板,A 为金属电极,都密封在真空玻璃管中,B 为由石英片封盖的窗口,单色光可通过石英片照射到金属板K 上,E 为输出电压可调的直流电源,其负极与电极A 相连,是电流表,实验发现,当用某种频率的单色光照射到K 时,K 会发出电子(光电效应),这时,即使A 、K 之间的电压等于零,回路中也有电流.当A 的电势低于K 时,而且当A 比K 的电势低到某一值U c 时,电流消失,U c 称为遏止电压,当改变照射光的频率ν后,遏止电压U c 也将随之改变,其关系如图乙所示,如果某次实验我们测出了画出这条图线所需的一系列数据,又知道电子的电荷量,则( )A .可求得该金属的截止频率B .可求得电子的质量C .可求得普朗克常量D .可求得该金属的逸出功11.如图所示,两个完全相同的小球A 、B 用等长的细线悬于O 点,线长为L ,若将A 由图示位置静止释放,则B 球被碰撞后第一次速度为零时距最低点的高度可能是( )A.L 2B.L 4C.L 8D.L 1012.图甲为研究光电效应的电路图,图乙为静止在匀强磁场中的某种放射性元素的原子核A Z X 衰变后产生的新核Y 和某种射线的径迹,下列说法正确的是( )A .利用能够产生光电效应的两种(或多种)频率已知的光进行图甲实验可测出普朗克常量B .图甲电源的正负极对调,在光照不变的情况下,可研究得出光电流存在饱和值C .图乙对应的衰变方程为A Z X →42He +A -4Z -2Y D .图乙对应的衰变方程为A Z X →0-1e + A Z +1Y二、实验题(本题共6分)13.(8分)碰撞一般分为弹性碰撞和非弹性碰撞,发生弹性碰弹时系统的动量守恒、机械能也守恒,发生非弹性碰撞时,系统动量守恒,但机械能不再守恒.为了判断碰撞的种类,某兴趣实验小组设计了如下实验.(1)按照如图所示的实验装置图,安装实物图.(2)用石蜡打磨轨道,使ABC 段平整光滑,其中AB 段是曲面,BC 段是水平面,C 端固定一重垂线.(3)O 是C 的投影点,OC =H ,在轨道上固定一挡板D ,从贴紧挡板D 处由静止释放质量为m 1的小球1,小球1落在M 点,用刻度尺测得M 点与O 点的距离为2l .(4)在C 的末端放置一个大小与小球1相同的小球2,其质量为m 2.现仍从D 处静止释放小球1,小球1与小球2发生正碰,小球2落在N 点,小球1落在P 点,测得OP 为l ,ON 为3l .(5)根据实验步骤和上述实验数据,可以得出小球1与2的质量之比m 1m 2=________.(6)若两小球均看成质点,以两球为系统,碰前系统初动能E k0=________,碰后系统末动能E k =________(用题目中字母H 、m 2、l 和重力加速度g 表示),则系统机械能________(填“守恒”或“不守恒”),可以得出两球的碰撞是________碰撞. 三、计算题(本题共5小题,共44分)14.一个静止的母核发生α衰变,产生的α粒子和子核的动能之和称为这个母核的α衰变能. (1)若在一次α衰变中静止的母核放出的α粒子动能为E ,又知α粒子质量为m ,子核Y 的质量为M ,求母核的α衰变能.(2)若母核释放的核能全部转化为α粒子和子核的动能,试分别判断6429Cu 和21284Po 能否发生α衰变?若能,求出其α衰变能(1u 相当于931.5MeV ,结果保留三位有效数字). 一些原子核的静止质量15.如图所示,质量为M =4kg 的长木板A 静止放在光滑水平地面上,质量为m 1=4kg 的小物块B 位于木板A 的左端,质量为m 2=4kg 的物块C 位于木板A 的右端,物块B 与木板A 间的动摩擦因数为μ=0.5,C 物块下表面光滑.某时刻,使物块B 以速度v 1=2m/s 的速度从左到右运动,同时使物块C 以速度v 2=2m/s 从右向左运动,已知当A 、B 速度相等时,B 、C 发生碰撞,碰后粘在一起运动,重力加速度g 取10m/s 2,B 、C 均看成质点,则:(1)木板A 的最大速度为多少? (2)A 、B 间摩擦产生的热量为多少?16.如图所示,水平光滑的地面上有A、B、C三个可视为质点的木块,质量分别为1kg、6kg、6kg.木块A的左侧有一半径R=0.1m的固定的竖直粗糙半圆弧轨道,一开始B、C处于静止状态,B、C之间的弹簧处于原长.给木块A一个水平向右的初速度,大小为v1=8m/s,与木块B碰撞后,A被反弹,速度大小变为v2=4m/s.若A恰好能通过圆弧轨道的最高点,重力加速度g取10m/s2,求:(1)木块A克服圆弧轨道摩擦所做的功;(2)弹簧具有的最大弹性势能.17. 如图所示,物体A置于静止在光滑水平面上的平板小车B的左端,在A的上方O点用细线悬挂一小球C(可视为质点),线长L=0.8 m.现将小球C拉至水平无初速度释放,并在最低点与A物体发生水平正碰,碰撞后小球C反弹的最大高度为h=0.2 m.已知A、B、C的质量分别为m A=4 kg、m B=8 kg和m C=1 kg,A、B间的动摩擦因数μ=0.2,A、C碰撞时间极短,且只碰一次,取重力加速度g=10 m/s2.(1)求小球C与物体A碰撞前瞬间受到细线的拉力大小;(2)求A、C碰撞后瞬间A的速度大小;(3)若物体A未从小车B上掉落,小车B的最小长度为多少?18.如图所示,粗糙的水平面与一个竖直半圆形光滑轨道相切于P点,半圆轨道半径R=0.5m,水平面上有一个质量为m=0.1kg的小球A以初速度v0=6.0m/s向右运动,另一个质量为M =0.3kg的小球B以一定初速度从半圆轨道的最高点Q无碰撞地进入半圆轨道并恰能沿半圆轨道运动,小球A经时间t=1.0s与小球B在P点相碰,碰后瞬间成为一个整体C,设小球A、B及整体C均可以看做质点,已知小球A及整体C与水平面间的动摩擦因数均为μ=0.3,g 取10m/s2,求:(1)两小球碰前A的速度大小;(2)小球B运动到半圆轨道最低点P时,对半圆轨道的压力大小;(3)整体C在水平面上滑行的距离.参考答案1D 2A 3C 4A 5C 6B 7B 8D 9BD 10ACD 11ABC 12ABD13. 答案 (5)3∶1(2分) (6)3m 2gl 2H (2分) 3m 2gl 2H(2分) 守恒(1分) 弹性(1分)解析 (5)设球1运动到C 端的速度为v 1,之后在空中做平抛运动.水平方向2l =v 1t ,竖直方向H =12gt 2,由于球1两次均从同一高度自由下滑,到C 端动能一样,速度均为v 1,设球1与球2碰撞后速度分别为v 1′和v 2′,碰撞前后系统动量守恒,以向右为正方向,由动量守恒定律得:m 1v 1=m 1v 1′+m 2v 2′,碰后两球均在空中做平抛运动,球1水平方向:l =v 1′t ,球2水平方向:3l =v 2′t ,解得m 1m 2=3∶1. (6)以两球为系统,碰前系统初动能E k0=12m 1v 12=3m 2gl 2H ,碰后系统末动能E k =12m 1v 1′2+12m 2v 2′2=3m 2gl 2H ,则E k0=E k ,碰撞过程系统机械能守恒,两球碰撞是弹性碰撞. 14. 答案 (1)见解析解析 (1)在原子核衰变过程中,由动量守恒定律得0=mv 1-Mv 2,(1分) 又由动能表达式:E =12mv 12,(1分)得子核的动能:E Y =12Mv 22,(1分)联立可得母核的α衰变能为E ′=E +E Y =⎝ ⎛⎭⎪⎫1+m M E .(1分)(2)若6429Cu 发生α衰变,方程为6429Cu→6027Co +42He质量亏损Δm =63.9298u -59.9338u -4.0026u =-0.0066u ,质量增加,故6429Cu 不能发生α衰变.(2分)若21284Po 发生α衰变,方程为21284Po→20882Pb +42He质量亏损Δm ′=211.9889u -4.0026u -207.9766u =0.0097u ,故21284Po 能发生α衰变(1分) 由质能方程ΔE =Δmc 2,得21284Po 的α衰变能是ΔE =0.0097×931.5MeV≈9.04MeV.(2分) 15. 答案 (1)1m/s (2)7J解析 (1)B 、C 碰撞前,A 做加速运动;B 、C 碰撞后,A 做减速运动.故A 、B 速度相等时,A 的速度最大,对A 、B 系统,以向右为正方向,由动量守恒定律:m 1v 1=(m 1+M )v (2分)解得v =1m/s.(1分)(2)以水平向右为正方向,B 、C 碰撞过程动量守恒得:m 1v -m 2v 2=(m 1+m 2)v ′(1分)解得v ′=-0.5m/s(1分)碰撞过程中能量损失ΔE 1=12m 1v 2+12m 2v 22-12(m 1+m 2)v ′2=9J ,(1分)当A 、B 、C 相对静止时有:m 1v 1-m 2v 2=(M +m 1+m 2)v ″(1分)解得v ″=0,(1分)A 、B 间摩擦产生的热量Q =12m 1v 12+12m 2v 22-ΔE 1=7J .(2分)16. 答案 (1)5.5J (2)6J解析 (1)由木块A 恰好能通过圆弧轨道最高点有m A g =m A v A 2R(1分)解得v A =1m/s(1分)木块A 从最低点到最高点的过程,由动能定理得 -m A g ·2R -W f =12m A v A 2-12m A v 22(2分)解得W f =5.5J(1分)(2)以水平向右为速度的正方向,根据动量守恒定律得m A v 1=m B v B -m A v 2(1分)解得v B =2m/s(1分)弹簧压缩至最短时,B 、C 速度相同,根据动量守恒定律得m B v B =(m B +m C )v (1分) 解得v =1m/s(1分) 弹簧具有的最大弹性势能E p =12m B v B 2-12(m B +m C )v 2=6J .(2分)17. 答案 (1)30 N (2)1.5 m/s (3)0.375 m(或38 m)解析 (1)小球碰撞前在竖直平面内做圆周运动 根据机械能守恒定律,得m C gL =12m C v 02由牛顿第二定律,得F -m C g =m C v 20L解得v 0=4 m/s ,F =30 N(2)设A 、C 碰撞后的速度大小分别为v A 、v C ,由能量守恒和动量守恒,得12m C v C 2=m C ghm C v 0=m A v A -m C v C解得v C =2 m/s ,v A =1.5 m/s(3)设A 在B 上相对滑动的最终速度为v ,相对位移为x ,由动量守恒和能量守恒,得m A v A =(m A +m B )vμm A gx =12m A v A 2-12(m A +m B )v 2解得x =0.375 m要使A 不从B 车上滑下,小车的最小长度为0.375 m(或38 m)18.答案 见解析解析 (1)以向右为正方向,碰前对小球A 由动量定理有-μmgt =mv A -mv 0(2分) 代入数值得碰前A 的速度大小v A =3m/s(1分)(2)因小球B 能从Q 点无碰撞地进入半圆轨道并恰能沿半圆轨道运动,所以在Q 点有Mg =M v B 02R(1分) 从Q 点到P 点由动能定理得 Mg ·2R =12Mv B 2-12Mv B 02(2分)解得小球B 运动到半圆轨道最低点P 时的速度大小v B =5m/s由牛顿第二定律知F N -Mg =M v B 2R(1分)代入数值得F N =18N(1分)由牛顿第三定律得,小球B 运动到半圆轨道最低点P 时,对半圆轨道的压力大小为18N . (1分)(3)小球A 、B 碰撞时满足动量守恒,即有Mv B -mv A =(M +m )v C (1分) 解得碰后瞬间整体C 的速度大小v C =3m/s(1分) 由动能定理得-μ(M +m )gs =0-12(M +m )v C 2(2分)解得整体C 在水平面上滑行的距离s =1.5m .(1分)。
答案:B5.一个放电管发光,在其光谱中测得一条谱线的波长为1.22×10-7 m,已知氢原子的能级示意图如图所示,普朗克常量h=6.63×10-34 J·s,则该谱线所对应的氢原子的能级跃迁是( )A.从n=5的能级跃迁到n=3的能级B.从n=4的能级跃迁到n=2的能级C.从n=3的能级跃迁到n=1的能级D.从n=2的能级跃迁到n=1的能级解析:波长为1.22×10-7 m的光子能量E=h=J≈1.63×10-18 J≈10.2 eV,从图中给出的氢原子能级图可以看出,这条谱线是氢原子从n=2的能级跃迁n=1的能级的过程中释放的,故D项正确.答案:D6.红宝石激光器的工作物质红宝石含有铬离子的三氧化二铝晶体,利用其中的铬离子产生激光.铬离子的能级图如图所示,E1是基态,E2是亚稳态,E3是激发态,若以脉冲氙灯发出的波长为λ1的绿光照射晶体,处于基态的铬离子受到激发而跃迁到E3,然后自发地跃迁到E2,释放波长为λ2的光子,处于亚稳态E2的离子跃迁到基态时辐射出的光就是激光,这种激光的波长为( )A. B.λ1λ2λ1-λ2C.黑体辐射电磁波的强度按波长的分布只与黑体温度有关D.黑体能够完全吸收入射的各种波长的电磁波解析:一般物体辐射仅与温度有关,而黑体辐射除与温度外,还与频率及波长有关.答案:B9.在光滑的水平面上,两个质量均为m的完全相同的滑块以大小均为p的动量相向运动,发生正碰,碰后系统的总动能不可能是( )A.0 B.2p2 mC. D.p2 m解析:碰撞前系统的总动能Ek=2×=,由于碰撞后系统总动能不增加,所以选项B是不可能的.答案:B10.质量为M的砂车,沿光滑水平面以速度v0做匀速直线运动,此时从砂车上方落入一个质量为m的大铁球,如图所示,则铁球落入砂车后,砂车将( )A.立即停止运动B.仍匀速运动,速度仍为v0C.仍匀速运动,速度小于v0D.做变速运动,速度不能确定解析:砂车及铁球组成的系统,水平方向不受外力,水平方向动量守恒,所以有Mv0=(M+m)v,得v=v0<v0,故选C.答案:C二、多项选择题(本题共4小题,每小题4分,共16分.每小题有多个选项是正确的,全选对得4分,漏选得2分,错选或不选得0分)11.下列四幅图涉及不同的物理知识,其中说法正确的是( )图甲图乙图丙图丁A.图甲的远距离输电,可以降低输电电压来降低输电线路上的能量损耗B.图乙的霓虹灯,各种气体原子的能级不同但跃迁时发射能量相同的光子C.图丙的14C测年技术,根据植物体内的放射性强度变化推算其死亡时间D.图丁的核反应堆,通过镉棒插入的深浅调节中子数目以控制反应速度解析:图甲的远距离输电,可以提高输电电压来降低输电线路上的电流,从而减小输电线的能量损耗,选项A错误;各种气体原子的能级不同,由于发射光子的能量等于两个能级的能级差,故跃迁时发射能量不相同的光子,选项B错误;图丙的14C测年技术,根据植物体内的放射性强度变化推算其死亡时间,选项C正确;图丁的核反应堆,通过镉棒插入的深浅调节中子数目以控制反应速度,选项D正确.答案:CD12.带电粒子进入云室会使云室中的气体分子电离,从而显示其运动轨迹.如图是在有匀强磁场的云室中观察到的粒子的轨道,a和b 是轨迹上的两点,匀强磁场B垂直纸面向里.该粒子在运动时,其质量和电量不变,而动能逐渐减少,下列说法正确的是( )A.粒子先经过a点,再经过b点B.粒子先经过b点,再经过a点C.粒子带负电D.粒子带正电解析:由r=可知,粒子的动能越小,圆周运动的半径越小,结合粒子运动轨迹可知,粒子先经过a点,再经过b点,选项A正确;根据左手定则可以判断粒子带负电,选项C正确.答案:AC13.如图所示,一个质量为0.18 kg的垒球,以25 m/s的水平速度飞向球棒,被球棒击打后反向水平飞回,速度大小变为45 m/s,设球棒与垒球的作用时间为0.01 s.下列说法正确的是( )A.球棒对垒球的平均作用力大小为1 260 NB.球棒对垒球的平均作用力大小为360 NC.球棒对垒球做的功为126 JD.球棒对垒球做的功为36 J解析:设球棒对垒球的平均作用力为F,由动量定理,得F·t=m(vt-v0),取vt=45 m/s,则v0=-25 m/s,代入上式,得F=1 260 N,由动能定理,得W=mv-mv=126 J,选项A、C正确.答案:AC14.在光滑水平面上,两球沿球心连线以相等速率相向而行,并发生碰撞,下列现象可能的是( )A.若两球质量相同,碰后以某一相等速率互相分开B.若两球质量相同,碰后以某一相等速率同向而行C.若两球质量不同,碰后以某一相等速率互相分开D.若两球质量不同,碰后以某一相等速率同向而行解析:本题考查运用动量守恒定律定性分析碰撞问题.光滑水平面上两小球的对心碰撞符合动量守恒的条件,因此碰撞前、后两小球组成的系统总动量守恒.碰撞前两球总动量为零,碰撞后也为零,动量守恒,所以A项是可能的;若碰撞后两球以某一相等速率同向而行,则两球的总动量不为零,而碰撞前两球总动量为零,所以B项不可能;碰撞前、后系统的总动量的方向不同,所以动量不守恒,C项不可能;碰撞前总动量不为零,碰后也不为零,方向可能相同,所以,D项是可能的.答案:AD二、非选择题(本题共5小题,共54分.把答案填在题中的横线上或按照题目要求作答.解答时应写出必要的文字说明、方程式和重要的演算步骤,只写出最后答案的不能得分.有数值计算的题,答案中必须明确写出数值和单位)15.(6分)在“探究碰撞中的不变量”实验中,装置如图所示,两个小球的质量分别为mA和mB.(1)现有下列器材,为完成本实验,哪些是必需的?请将这些器材前面的序号填在横线上________.①秒表②刻度尺③天平④圆规(2)如果碰撞中动量守恒,根据图中各点间的距离,则下列式子可能成立的有________.①=②=OM MP③=④=OM MN解析:(1)由实验原理可知,需要测小球质量,测OM、OP、ON距离,为准确确定落点,用圆规把多次实验的落点用尽可能小的圆圈起,把圆心作为落点,所以需要天平、刻度尺、圆规.(2)根据动量守恒定律有:mAOP=mAOM+mBON,即mA(OP-OM)=mBON,①正确.答案:(1)②③④(2)①16.(9分)某同学用如图所示装置验证动量守恒定律,用轻质细线将小球1悬挂于O点,使小球1的球心到悬点O的距离为L,被碰小球2放在光滑的水平桌面上.将小球1从右方的A点(OA与竖直方向的夹角为α)由静止释放,摆到最低点时恰与小球2发生正碰,碰撞后,小球1继续向左运动到C位置,小球2落到水平地面上到桌面边缘水平距离为x的D点.(1)实验中已经测得上述物理量中的α、L、x,为了验证两球碰撞过程动量守恒,还应该测量的物理量有_____________________(要求填写所测物理量的名称及符号).(2)请用测得的物理量结合已知物理量来表示碰撞前后小球1、小球2的动量: p1=________;p′1=________;p2=__________;p′2=__________.解析:(1)为了验证两球碰撞过程动量守恒,需要测量小球1质量m1和小球2质量m2,小球1碰撞前后的速度可以根据机械能守恒定律能发出光谱线分别为3→2,2→1,3→1共三种,能级图如图所示.(3)由E3向E1跃迁时发出的光子频率最大,波长最短.hν=Em -En,又知ν=,则有λ== m=1.03×10-7 m.答案:(1)13.6 eV (2)如解析图所示(3)1.03×10-7 m19.(12分)如图所示,光滑的水平面上有一木板,在其左端放有一重物,右方有一竖直的墙,重物的质量为木板质量的2倍,重物与木板间的动摩擦因数为μ=0.2.使木板与重物以共同的速度v0=6m/s向右运动,某时刻木板与墙发生弹性碰撞,碰撞时间极短.已知木板足够长,重物始终在木板上,重力加速度为g=10 m/s2.求:木板从第一次与墙碰撞到第二次与墙碰撞所经历的时间.解析:第一次与墙碰撞后,木板的速度反向,大小不变,此后木板向左做匀减速运动,重物向右做匀减速运动,最后木板和重物达到共同的速度v.设木板的质量为m,重物的质量为2m,取向右为动量的正向,由动量守恒,得2mv0-mv0=3mv,①设从第一次与墙碰撞到重物和木板具有共同速度v所用的时间为t1,对木板应用动量定理,得2μmgt1=mv-m(-v0),②。
模块综合检测(二)选修3-5(45分钟100分)1.(4分)某人站在平板车上,与车一起在光滑水平面上做直线运动,当人相对于车竖直向上跳起时,车的速度大小将( )A.增大B.减小C.不变D.无法判断2.(4分)如图所示,光滑水平面上有大小相同的A、B两球在同一直线上运动。
两球质量关系为m B=2m A,规定向右为正方向,A、B两球的动量均为6kg·m/s,运动中两球发生碰撞,碰撞后A 球的动量增量为-4kg·m/s,则( )A.左方是A球,碰撞后A、B两球速度大小之比为2∶5B.左方是A球,碰撞后A、B两球速度大小之比为1∶10C.右方是A球,碰撞后A、B两球速度大小之比为2∶5D.右方是A球,碰撞后A、B两球速度大小之比为1∶103.(4分)氢原子从基态跃迁到激发态时,下列论述中正确的是( )A.动能变大,势能变小,总能量变小B.动能变小,势能变大,总能量变大C.动能变大,势能变大,总能量变大D.动能变小,势能变小,总能量变小4.(4分)如图所示,用a、b两种不同频率的光分别照射同一金属板,发现当a光照射时验电器的指针偏转,b光照射时指针未偏转,以下说法正确的是( )A.增大a光的强度,验电器的指针偏角一定减小B.a光照射金属板时验电器的金属小球带负电C.a光在真空中的波长小于b光在真空中的波长D.若a光是氢原子从n=4的能级向n=1的能级跃迁时产生的,则b光可能是氢原子从n=5的能级向n=2的能级跃迁时产生的5.(4分)利用光子说对光电效应的理解,下列说法正确的是( )A.金属表面的一个电子只能吸收一个光子B.电子吸收光子后一定能从金属表面逸出,成为光电子C.金属表面的一个电子吸收若干个光子,积累了足够的能量才能从金属表面逸出D.无论光子能量大小如何,电子吸收光子并积累了能量后,总能逸出成为光电子6.(2013·重庆高考)(4分)铀是常用的一种核燃料,若它的原子核发生了如下的裂变反应:23592U n a+b+n,则a+b可能是( )A.14054Xe Kr B.14156Ba KrC.14156Ba Sr D.14054Xe Sr7.(2012·北京高考)(4分)一个氢原子从n=3能级跃迁到n=2能级。
模块综合测评(满分:100分;时间:90分钟)一、选择题(每小题4分,共44分)1.(多选)关于近代物理,下列说法错误的是( )A.β射线是高速运动的电子B.核聚变反应方程12H+13H→24He+01n中,01n表示中子C.从金属表面逸出的光电子的最大初动能与入射光的频率成正比D.玻尔将量子观念引入原子领域,其理论能够解释所有原子光谱的特征2.(多选)下列四幅图涉及不同的物理知识,其中说法正确的是( )A.图(甲):普朗克通过研究黑体辐射提出能量子的概念,成为量子力学的奠基人之一B.图(乙):玻尔理论指出氢原子能级是分立的,所以氢原子发射光子的频率也是不连续的C.图(丙):卢瑟福通过分析α粒子散射实验结果,发现了质子和中子D.图(丁):根据电子束通过铝箔后的衍射图样,可以说明电子具有粒子性3.(多选)一质量为m的物块从某高度处以速度v0水平抛出,在抛出点其动能为重力势能的3倍,取水平地面为重力势能的参考平面,不计空气阻力,则以下结论正确的是( )A.物块落地时的速度方向与水平方向的夹角为π6B.物块落地时的速度方向与水平方向的夹角为π3C.下落过程中重力的冲量大小为√3mv03D.下落过程中重力的冲量大小为2√3mv034.核电站核泄漏的污染物中含有碘131和铯137。
碘131的半衰期约为8天,会释放β射线;铯137是铯133的同位素,半衰期约为30年,发生衰变时会辐射γ射线。
下列说法正确的是( )A.碘131释放的β射线由氦核组成B.铯137衰变时辐射出的γ光子能量小于可见光光子能量C.与铯137相比,碘131衰变更慢D.铯133和铯137含有相同的质子数5.下列说法正确的是( )A. 92238U→90234Th+X中X为中子,核反应类型为衰变B. 12H+13H→24He+Y中Y为中子,核反应类型为人工核转变C. 92235U+01n→54136Xe+3890Sr+K,其中K为10个中子,核反应类型为重核裂变D. 714N+24He→817O+Z,其中Z为氢核,核反应类型为轻核聚变6.(多选)如图为氢原子光谱在可见光区域内的四条谱线Hα、Hβ、Hγ和Hδ,都是氢原子中电子从量子数n>2的能级跃迁到n=2的能级发出的光,根据此图可以判定( )A.Hα对应的原子前后能级之差最小B.同一介质对Hα的传播速度最大C.Hδ光子的动量最大D.用Hγ照射某一金属能发生光电效应,则用Hβ照射同一金属一定不能产生光电效应7.(多选)已知氘核的比结合能是1.09 MeV,氚核的比结合能是2.78 MeV,氦核的比结合能是7.03 MeV。
模块综合检测(二)(时间:90分钟满分:100分)一、单项选择题(本大题共10小题,每小题3分,共30分.每小题给出的四个选项中,只有一个选项正确)1.关于下列四幅图说法不正确的是()A.原子中的电子绕原子核高速运转时,运行轨道的半径是任意的B.光电效应实验说明了光具有粒子性C.电子束通过铝箔时的衍射图样证实了电子具有波动性D.发现少数α粒子发生了较大偏转,说明原子的质量绝大部分集中在很小空间范围内解析:原子中的电子绕核旋转的轨道是特定的,不是任意的,选项A错误.易知B正确.电子能通过铝箔衍射,说明电子也有波动性,C正确. 发现少数α粒子大角度偏转,说明原子的正电荷和大部分质量集中在很小空间范围内,D正确.答案:A2.当具有5.0 eV能量的光子照射到某金属表面后,从金属表面逸出的电子具有最大的初动能是 1.5 eV .为了使这种金属产生光电效应,入射光的最低能量为( )A .1.5 eVB .3.5 eVC .5.0 eVD .6.5 eV解析:本题考查光电效应方程及逸出功.由E k =hν-W ,得W=hν-E k =5.0 eV -1.5 eV =3.5 eV ,则入射光的最低能量为hνmin =W =3.5 eV ,故正确选项为B.答案:B3.已知氢原子的基态能量为E 1,激发态能量为E n ,其中n =2,3….用h 表示普朗克常量,c 表示真空中的光速.能使氢原子从第一激发态电离的光子的最大波长为( )A.4hc 3E 1B.2hc E 1C.4hc E 1D.9hc E 1解析:对于量子数n =2的氢原子,其电离能为0-E 14,则由-E 14=h c λ知C 项正确. 答案:C4.238 92U 放射性衰变有多种途径,其中一种途径是先衰变成210 83Bi ,而210 83Bi 可以经一次衰变变成210a X(X 代表某种元素),也可以经一次衰变变成 b 81Tl ,210a X 和 b 81Tl 最后都衰变变成206 82Pb ,衰变路径如图所示,则可知图中( )A .过程①是β衰变,过程③是α衰变;过程②是α衰变,过程④是β衰变B .过程①是β衰变,过程③是α衰变;过程②是β衰变,过程④是α衰变C .过程①是α衰变,过程③是β衰变;过程②是α衰变,过程④是β衰变D .过程①是α衰变,过程③是β衰变;过程②是β衰变,过程④是α衰变解析:在210 83Bi 衰变变成210a X 的过程中质量数不变,过程①是β衰变;210a X 衰变变成206 82Pb 过程中质量数减少4,过程③是α衰变;210 83Bi 衰变变成 b 81Tl ,核电荷数减少2,过程②是α衰变; b 81Tl 衰变变成206 82Pb ,核电荷数增加1,过程④是β衰变,所以选项A 正确.答案:A5.如图所示,质量为0.5 kg 的小球在距离车底面高20 m 处以一定的初速度向左平抛,落在以7.5 m/s 速度沿光滑水平面向右匀速行驶的敞篷小车中,车底涂有一层油泥,车与油泥的总质量为 4 kg ,设小球在落到车底前瞬间速度是25 m/s ,则当小球与小车相对静止时,小车的速度是( )A.5 m/sB.4 m/sC.8.5 m/sD.9.5 m/s解析:小球抛出后做平抛运动,根据动能定理得:mgh =12m v 2-12m v 20 解得:v 0=15 m/s ,小球和车作用过程中,水平方向动量守恒,则有:-m v 0+MV =(M +m )v ′,解得:v ′=5 m/s ,故选A.答案:A6.两球A 、B 在光滑水平面上沿同一直线,同一方向运动,m A=1 kg ,m B =2 kg ,v A =6 m/s ,v B =2 m/s.当A 追上B 并发生碰撞后,两球A ,B 速度的可能值是( )A .v ′A =5 m/s ,v ′B =2.5 m/sB .v ′A =2 m/s ,v ′B =4 m/sC .v ′A =-4 m/s ,v ′B =7 m/sD .v ′A =7 m/s ,v ′B =1.5 m/s解析:这是一道同向追击碰撞问题,在分析时应注意考虑三个方面的问题:动量是否守恒,机械能是否增大,是否符合实际物理情景.针对这三点,要逐一验证.取两球碰撞前的运动方向为正,则碰撞前,系统总动量p =m A v A +m B v B =10 kg ·m/s ,逐一验证各个选项,发现碰撞后,四个选项均满足动量守恒.碰前,系统总动能E k =12m A v 2A +12m B v 2B =22 J .碰后系统总动能应不大于碰前总动能,即E ′k ≤22 J ,把各选项代入计算,知选项C 、D 不满足,被排除.对于选项A ,虽然满足机械能不增加的条件,但仔细分析,发现v ′A >v ′B ,显然不符合实际情况,故本题正确答案为选项B.答案:B7.如图所示,AB 为固定的光滑圆弧轨道,O 为圆心,AO 水平,BO 竖直,轨道半径为R ,将质量为m 的小球(可视为质点)从A 点由静止释放,在小球从A 点运动到B 点的过程中,( )A.小球所受合力的冲量方向为弧中点指向圆心B.小球所受支持力的冲量为0C.小球所受重力的冲量大小为m2gRD.小球所受合力的冲量大小为m2gR解析:小球受到竖直向下的重力,和垂直切面指向圆心的支持力,所以合力不指向圆心,故合力的冲量也不指向圆心,A错误;小球的支持力不为零,作用时间不为零,故支持力的冲量不为零,B错误;小球在运动过程中只有重力做功,所以根据机械能守恒可得mgR=12 m v2B,故v B=2gh,根据动量定理可得I合=Δp=m v B=m2gR,故C错误;D正确.答案:D8.我国科学家潘建伟院士预言十年左右量子通信将“飞”入千家万户.在通往量子论的道路上,一大批物理学家做出了卓越的贡献,下列有关说法正确的是()A.玻尔在1900年把能量子引入物理学,破除了“能量连续变化”的传统观念B.爱因斯坦最早认识到了能量子的意义,提出光子说,并成功地解释了光电效应现象C.德布罗意第一次将量子观念引入原子领域,提出了定态和跃迁的概念D.普朗克大胆地把光的波粒二象性推广到实物粒子,预言实物粒子也具有波动性解析:普朗克在1900年把能量子引入物理学,破除了“能量连续变化”的传统观念,故A错误;爱因斯坦最早认识到了能量子的意义,为解释光电效应的实验规律提出了光子说,并成功地解释了光电效应现象,故B正确;玻尔第一次将量子观念引入原子领域,提出了定态和跃迁的概念,故C错误;德布罗意大胆地把光的波粒二象性推广到实物粒子,预言实物粒子也具有波动性,故D错误;故选B.答案:B9.在自然生态系统中,蛇与老鼠等生物通过营养关系构成食物链,在维持生态平衡方面发挥着重要作用.蛇是老鼠的天敌,它通过接收热辐射来发现老鼠的存在.假设老鼠的体温约为37 ℃,它发出的最强的热辐射的波长为λmax,根据热辐射理论,λmax与辐射源的绝对温度T的关系近似为λmax T=2.90×10-3m·K.则老鼠发出的最强的热辐射的波长为()A.7.8×10-5 m B.9.4×10-6 mC.1.16×10-4 m D.9.7×10-8 m解析:体温为37 ℃时,热力学温度T=310 K,根据λmax T=2.90×10-3 m·K,得λmax=2.90×10-3310m=9.4×10-6 m.答案:B10.如图所示,质量为3 kg的木板放在光滑的水平地面上,质量为1 kg的木块放在木板上,它们之间有摩擦,木板足够长,两者都以大小v=4 m/s的初速度向相反方向运动.当木板的速度为2.4 m/s 时,木块()A.处于匀速运动阶段B.处于减速运动阶段C.处于加速运动阶段D.静止不动解析:木板和木块组成的系统动量守恒,设它们相对静止时的共同速度为v′,以木板运动的方向为正方向,则:M v-m v=(M+m)v′,所以v′=M v-m vM+m=2 m/s,方向与木板运动方向相同.在此之前,木板一直做匀减速运动,木块先做匀减速运动,当相对地面的速度为零时,再反向向右做匀加速运动,直到速度增大到2 m/s.设当木块对地速度为零时,木板速度为v″,则:M v-m v=M v″,v″=M v-m vM=2.67 m/s,大于2.4 m/s,故木板的速度为2.4 m/s时,木块处在反向向右加速运动阶段,C正确.答案:C二、多项选择题(本大题共4小题,每小题4分,共16分.在每小题给出的四个选项中有多个选项正确,全选对得4分,漏选得2分,错选或不选得0分)11.大量处于基态的氢原子吸收了某种单色光的能量后能发出3种不同频率的光子,分别用它们照射一块逸出功为W0的金属板时,只有频率为ν1和ν2(ν1>ν2)的两种光能发生光电效应.下列说法正确的是()A.金属板的极限频率为W0 hB.光电子的最大初动能为h(ν1+ν2)-W0C.吸收光子的能量为h(ν1+ν2)D.另一种光的光子能量为h(ν1-ν2)解析:A.金属板的极限频率为hν=W0,得ν=W0h,A正确;B.频率为ν1的光子照射到金属板时逸出的光电子初动能最大,则光电子的最大初动能为E k=hν1-W0,B错误;C.吸收光子的能量为hν1,C错误;D.逸出的三种光子能量关系为:hν1=hν2+hν3,所以另一种光的光子能量为h(ν1-ν2),D正确.故选:AD.答案:AD12.如图所示,质量为m的小球从距离地面高H的A点由静止开始释放,落到地面上后又陷入泥潭中,由于受到阻力作用到达距地面深度为h的B点速度减为零.不计空气阻力,重力加速度为g.关于小球下落的整个过程,下列说法中正确的是()A.小球的机械能减少了mg(H+h)B.小球克服阻力做的功为mghC.小球所受阻力的冲量大于m2gHD.小球动量的改变量等于所受阻力的冲量解析:由动能定理mg(H+h)-W f=0,则W f=-mg(H+h),所以小球的机械能减少了mg(H+h),所以A选项正确,B选项错误;小球自由落下至地面过程,机械能守恒,mgH=12m v2,v=2gH,落到地面后又陷入泥潭中,由动量定理I G-I f=0-m v,所以I f=I G +m v=I G+m2gH,小球所受阻力的冲量大于m2gH,所以C选项正确;由动量定理知小球动量的改变量等于合外力的冲量,所以D 选项错误.答案:AC13.如图所示,在光滑水平面上质量分别为m A=2 kg、m B=4 kg,速率分别为v A=5 m/s、v B=2 m/s 的A、B两小球沿同一直线相向运动并发生对心碰撞,则()A.它们碰撞后的总动量是18 kg·m/s,方向水平向右B .它们碰撞后的总动量是2 kg ·m/s ,方向水平向右C .它们碰撞后B 小球向右运动D .它们碰撞后B 小球可能向左运动解析:根据动量守恒,设向右为正方向,碰后它们的总动量p ′=p =m A v A +m B v B =2×5 kg ·m/s -4×2 kg ·m/s =2 kg ·m/s ,故A错、B 对;因总动量向右,所以碰后B 球一定向右运动,C 对、D 错.答案:BC14.如图所示,光滑的水平面上,质量为m 1的小球以速度v 与质量为m 2的静止小球正碰,碰后两小球的速度大小都为12v ,方向相反,则两小球质量之比m 1∶m 2和碰撞前后动能变化量之比ΔE k1∶ΔE k2为( )A .m 1∶m 2=1∶3B .m 1∶m 2=1∶1C .ΔE k1∶ΔE k2=1∶3D .ΔE k1∶ΔE k2=1∶1 解析:以原来m 1的速度v 方向为正方向,根据动量守恒定律,得m 1v =-12m 1v +12m 2v ,所以m 1m 2=13,故A 正确、B 错误;两球碰撞前后动能变化量分别为:ΔE k1=12m 1⎝ ⎛⎭⎪⎫v 22-12m 1v 2=38m 1v 2,ΔE k2=12m 2⎝ ⎛⎭⎪⎫v 22-0=18m 2v 2,所以ΔE k 1ΔE k2=3m 1m 2=11,故C 错误、D 正确. 答案:AD二、非选择题(本题共5小题,共54分.把答案填在题中的横线上或按照题目要求作答.解答时应写出必要的文字说明、方程式和重要的演算步骤,只写出最后答案的不能得分.有数值计算的题,答案中必须明确写出数值和单位)15.(6分)质量为m=0.10 kg的小钢球以v0=2.0 m/s的水平速度抛出,下落h=0.6 m时撞击一钢板,撞后速度恰好反向,则钢板与水平面的夹角θ=________.刚要撞击钢板时小球的动量大小为________(取g=10 m/s2).解析:小球撞击后速度恰好反向,说明撞击前速度与钢板垂直.利用平抛运动规律可求得此时竖直方向的速度为2 3 m/s,小球与钢板撞击前的速度大小v=2v0=4 m/s,钢板与水平面的夹角θ=30°,其动量的大小为p=m v=0.4 kg·m/s.答案:30°0.4 kg·m/s16.(8分)用图示实验装置探究“碰撞中的不变量”实验,除了图示装置中的实验仪器外,下列仪器中还需要的是W.A.秒表B.天平C.刻度尺D.直流电源E.交流电源若实验中得到一条纸带如图所示,已知A、B车的质量分别为m A、m B,则该实验需要验证的表达式是(用图中物理量和已给出的已知量表示).解析:该实验需要测量小车的质量,需要天平;需要测量各计数点间距,需要刻度尺;打点计时器有计时功能,无需秒表;而打点计时器工作电源是交流电源,无需直流电源,故选BCE;小车A碰前做匀速运动,打在纸带上的点间距是均匀的,故求碰前小车A 的速度应选BC 段,碰后两车一起做匀速运动,打出的点也是间距均匀的,故选DE 段来计算碰后速度,在误差允许的范围内,需要验证的表达式是m A v A =(m A +m B )v AB ,即m A x AB =(m A +m B )x DE .答案:BCE m A x AB =(m A +m B )x DE17.(11分)如图所示,一物体从固定斜面顶端由静止开始经过1 s 下滑到底端,已知斜面的倾角θ=37°,斜面长度L =2.5 m ,sin 37°=0.6,cos 37°=0.8,取重力加速度g =10 m/s 2,求:(1)物体与斜面间的动摩擦因数μ;(2)下滑过程中损失的机械能与减少的重力势能的比值;(3)下滑过程中合外力冲量的大小与重力冲量大小的比值.解析:(1)根据L =12at 2,解得a =5 m/s 2,根据牛顿第二定律,得mg sin θ-μmg cos θ=ma ,解得μ=0.125.(2)损失的机械能等于克服摩擦力做的功,即ΔE =μmg cos θL ,减少的重力势能ΔE p =mg sin θL ,故损失的机械能与减少的重力势能的比值为:ΔE ΔE p =μtan θ=0.125tan 37°=16. (3)设物体下滑到斜面底端时速度大小为v ,有v =at =5 m/s ,根据动量定理,得合外力冲量的大小为:I 合=m v -0=5 m (N ·s),下滑过程中,重力的冲量I G =mgt =10 m (N ·s),所以下滑过程中合外力冲量的大小与重力冲量大小的比值I 合∶I G =1∶2.答案:(1)0.125 (2)16(3)1∶2 18.(12分)一个静止在磁场中的226 88Ra (镭核),发生α衰变后转变为氡核(元素符号为Rn ).已知衰变中释放出的α粒子的速度方向跟匀强磁场的磁感线方向垂直.设镭核、氡核和α粒子的质量一次是m 1、m 2、m 3,衰变的核能都转化为氡核和α粒子的动能.求:(1)写出衰变方程;(2)氡核和α粒子在匀强磁场中做匀速圆周运动的轨道半径之比;(3)氡核的动能E k .解析:(1)衰变方程为: 226 88Ra →222 86Rn +42He(2)根据q v B =m v 2r 得, r =m v qB两个粒子动量等大,由半径公式r =m v qB ∝1q ,得r 1r 2=286=143. (3)由质能方程得:ΔE =(m 1-m 2-m 3)c 2,因为E k =p 22m ,可知两粒子动能跟质量成反比,因此氡核分配到的动能为E =(m 1-m 2-m 3)m 3c 2m 2+m 3. 答案:(1)衰变方程为: 226 88Ra →222 86Rn +42He(2)43∶1(3)氡核的动能为E =(m 1-m 2-m 3)m 3c 2m 2+m 319.(15分)如图所示,一轻质弹簧的一端固定在滑块B 上,另一端与滑块C 接触但未连接,该整体静止放在离地面高为H =5 m 的光滑水平桌面上.现有一滑块A 从光滑曲面上离桌面h =1.8 m 高处由静止开始滑下,与滑块B 发生碰撞并粘在一起压缩弹簧推动滑块C 向前运动,经一段时间,滑块C 脱离弹簧,继续在水平桌面上匀速运动一段后从桌面边缘飞出. 已知m A =1 kg ,m B =2 kg ,m C =3 kg ,g =10 m/s 2,求:(1)滑块A 与滑块B 碰撞结束瞬间的速度;(2)被压缩弹簧的最大弹性势能;(3)滑块C 落地点与桌面边缘的水平距离.解析:(1)滑块A 从光滑曲面上h 高处由静止开始滑下的过程,机械能守恒,设其滑到底面的速度为v 1, 由机械能守恒定律有:m A gh =12m A v 21,解得:v 1=6 m/s. 滑块A 与B 碰撞的过程,A 、B 系统的动量守恒,碰撞结束瞬间具有共同速度设为v 2,由动量守恒定律有:m A v 1=(m A +m B )v 2,解得:v 2=13v 1=2 m/s. (2)滑块A 、B 发生碰撞后与滑块C 一起压缩弹簧,压缩的过程机械能守恒,被压缩弹簧的弹性势能最大时,滑块A 、B 、C 速度相等,设为速度v 3,由动量守恒定律有:m A v 1=(m A +m B +m C )v 3,解得:v 3=16v 1=1 m/s. 由机械能守恒定律有:E p =12(m A +m B )v 22-12(m A +m B +m C )v 23. 解得:E p =3 J.(3)被压缩弹簧再次恢复自然长度时,滑块C 脱离弹簧,设滑块A 、B 的速度为v 4,滑块C 的速度为v 5,分别由动量守恒定律和机械能守恒定律有:(m A +m B )v 2=(m A +m B )v 4+m C v 5.12(m A +m B )v 22=12(m A +m B )v 24+12m C v 25. 解得:v 4=0,v 5=2 m/s.滑块C 从桌面边缘飞出后做平抛运动:s =v 5t ,H =12gt 2. 解得:s =2 m.答案:(1)2 m/s (2)3 J (3)2 m精美句子1、善思则能“从无字句处读书”。
高中物理选修3-5模块检测一、选择题1.木块a和b用一根轻弹簧连接起来,放在光滑水平面上,a紧靠在墙壁上,在b上施加向左的水平力使弹簧压缩,如图1所示,当撤去外力后,下列说法中正确的是[ ]A.a尚未离开墙壁前,a和b系统的动量守恒B.a尚未离开墙壁前,a与b系统的动量不守恒C.a离开墙后,a、b系统动量守恒D.a离开墙后,a、b系统动量不守恒2.甲球与乙球相碰,甲球的速度减少5m/s,乙球的速度增加了3m/s,则甲、乙两球质量之比m甲∶m乙是[ ]A.2∶1B.3∶5C.5∶3D.1∶23.A、B两球在光滑水平面上相向运动,两球相碰后有一球停止运动,则下述说法中正确的是[ ]A.若碰后,A球速度为0,则碰前A的动量一定大于B的动量B.若碰后,A球速度为0,则碰前A的动量一定小于B的动量C.若碰后,B球速度为0,则碰前A的动量一定大于B的动量D.若碰后,B球速度为0,则碰前A的动量一定小于B的动量4.在光滑水平面上有A、B两球,其动量大小分别为10kg·m/s与15kg·m/s,方向均为向东,A球在B球后,当A球追上B球后,两球相碰,则相碰以后,A、B两球的动量可能分别为[ ]A.10kg·m/s,15kg·m/s B.8kg·m/s,17kg·m/sC.12kg·m/s,13kg·m/s D.-10kg·m/s,35kg·m/s5.分析下列情况中系统的动量是否守恒[ ]A.如图2所示,小车停在光滑水平面上,车上的人在车上走动时,对人与车组成的系统B.子弹射入放在光滑水平面上的木块中对子弹与木块组成的系统(如图3)C.子弹射入紧靠墙角的木块中,对子弹与木块组成的系统D.斜向上抛出的手榴弹在空中炸开时6.质量为M 的原子核,原来处于静止状态,当它以速度V 放出一个质量为m 的粒子时,剩余部分的速度为 [ ]A .mV/(M-m)B .-mV/(M —m)C .mV/(M+m)D .-mV/(M +m)7.如图4所示,光滑水平面上两小车中间夹一压缩了的轻弹簧,两手分别按住小车,使它们静止,若以两车及弹簧组成系统,则下列说法中正确的是 [ ]A .两手同时放开后,系统总量始终为零B .先放开左手,后放开右手后动量不守恒C .先放开左手,后放开右手,总动量向左D .无论何时放手,只要两手放开后在弹簧恢复原长的过程中,系统总动量都保持不8.船静止在水中,若水的阻力不计,当先后以相对地面相等的速率,分别从船头与船尾水平抛出两个质量相等的物体,抛出时两物体的速度方向相反,则两物体抛出以后,船的状态是 [ ] A .仍保持静止状态 B .船向前运动 C .船向后运动 D .无法判断 9如图所示,一个木箱原来静止在光滑水平面上,木箱内粗糙的底板上放着一个小木块。
木箱和小木块都具有一定的质量。
现使木箱获得一个向右的初速度0v ,则 。
(填选项前的字母)A .小木块和木箱最终都将静止B .小木块最终将相对木箱静止,二者一起向右运动C .小木块在木箱内壁将始终来回往复碰撞,而木箱一直向右运动D .如果小木块与木箱的左壁碰撞后相对木箱静止,则二者将一起向左运动10、原子核23892经放射性衰变①变为原子23490Th ,继而经放射性衰变②变为原子核23491Pa ,再经放射性衰变③变为原子核23492。
放射性衰变①、②和③依次为A .α衰变、β衷变和β衰变B .β衰变、α衷变和β衰变C .β衰变、β衰变和α衰变D .α衰变、β衰变和α衰变11、原子核AZ X 与氘核21H 反应生成一个α粒子和一个质子。
由此可知 A .A=2,Z=1 B. A=2,Z=2 C. A=3,Z=3 D. A=3,Z=212、 (5分)用频率为0v 的光照射大量处于基态的氢原子,在所发射的光谱中仅能观测到频率分别为123v v v 、、的三条谱线,且321v v v >>,则 。
(填入正确选项前的字母)A .01v v <B .321v v v =+C .0123v v v v =++ D.123111v v v =+ 13、.太阳因核聚变释放出巨大的能量,同时其质量不断减少。
太阳每秒钟辐射出的能量约为4×1026 J ,根据爱因斯坦质能方程,太阳每秒钟减少的质量最接近 A.1036 kg B.1018 kg C.1013 kg D.109 kg 14、卢瑟福提出原子的核式结构模型。
这一模型建立的基础是()(A )α粒子的散射实验(B )对阴极射线的研究 (C )天然放射性现象的发现(D )质子的发现15、.现已建成的核电站发电的能量来自于()(A )天然放射性元素放出的能量 (B )人工放射性同位素放出的能量 (C )重核裂变放出的能量(D )化学反应放出的能量16、某放射性元素经过114天有7/8的原子核发生了衰变,该元素的半衰期为()(A )11.4天(B )7.6天(C )5.7天(D )3.8天17、 能量为i E 的光子照射基态氢原子,刚好可使该原子中的电子成为自由电子.这一能 i E 称为氢的电离能.现用一频率为ν的光子从基态氢原子中击出了一电子,该电子在远离核以后速度的大小为_______________(用光子频率ν、电子质量m 、氢原子的电离能i E 和普朗克常量h 表示)。
18、列说法正确的是A .α粒子大角度散射表明α粒子很难进入原子内部 C .裂变反应有质量亏损,质量数不守恒 D .γ射线是一种波长很短的电磁波19、关于核衰变和核反应的类型,下列表述正确的有A .238234492902U Th He →+是α衰变B .1441717281N He O H +→+是β衰变 C .23411120H H He n +→+是轻核聚变 D .82820343612Se Kr e -→+是重核裂变20、(1)14C 测年法是利用14C 衰变规律对古生物进行年代测定的方法。
若以横坐标t 表示时间,纵坐标m 表示任意时刻14C 的质量,0m 为t =0时0m 的质量。
下面四幅图中能正确反映14C 衰变规律的是 。
(填选项前的字母)21、下列关于原子和原子核的说法正确的是 A .β衰变现象说明电子是原子核的组成部分 B .玻尔理论的假设之一是原子能量的量子化 C .放射性元素的半衰期随温度的升高而变短D .比结合能越小表示原子核中的核子结合得越牢固 22、((1)大量氢原子处于不同能量激发态,发生跃迁时放出三种不同能量的光子,其能量值分别是:1.8910.212.09eV eV eV 、、。
跃迁发生前这些原子分布在 个激发态能级上,其中最高能级的能量值是 eV (基态能量为13.6eV )。
三、计算题23.一个稳定的原子核质量为M ,处于静止状态,它放出一个质量为m 的粒子后,做反冲运动,已知放出的粒子的速度为v 0,则反冲核速度为多少?24、如图所示,滑块A 、C 质量均为m ,滑块B 质量为32m 。
开始时A 、B 分别以12v v 、的速度沿光滑水平轨道向固定在右侧的挡板运动,现将C 无初速地放在A 上,并与A 粘合不再分开,此时A 与B 相距较近,B 与挡板碰撞将以原速率反弹,A 与B 碰撞将粘合在一起。
为使B 能与挡板碰撞两次,12v v 、应满足什么关系?25.甲、乙两个小孩各乘一辆冰车在水平冰面上游戏。
甲和他的冰车的质量共为M =30kg ,乙和它的冰车总质量也是30kg ,游戏时,甲推着一个质量为m=15kg 的箱子,和他一起以大小为v 0=2m/s 的速度滑行,乙以同样大小的速度迎面滑来。
为了避免相撞,甲突然将箱子沿冰面推给乙,箱子滑到乙处时乙迅速把它抓住。
若不计冰面的摩擦力。
求甲至少要以多大的速度(相对于地面)将箱子推出,才能避免与乙相撞。
26.如图所示,光滑水平面上有物块M 、m ,在其中静止的物块m 上固定一轻弹簧,M 以v 0的速度向右运动,求弹簧压缩量最大时,两者的速度各为多大?27在核反应堆中,常用减速剂使快中子减速.假设减速剂的原子核质量是中子的k 倍.中子与原子核的每次碰撞都可看成是弹性正碰.设每次碰撞前原子核可认为是静止的,求N 次碰撞后中子速率与原速率之比.一、选择题1.B C 2.B 3.A D 4.B 5.A B D 6.B 7.A C D 8.A 9. B10、【答案】A 【解析】2382349290U Th →,质量数少4,电荷数少2,说明①为α衰变238234492902U Th He →+。
2342349091Th Pa →,质子数加1,说明②为β衰变,中子转化成质子234234090911Th Pa e -→+。
2342349192Pa U →,质子数加1,说明③为β衰变,中子转化成质子234234091921Pa U e -→+。
11、【答案】D 【解析】核反应方程为241121A Z X H He H +→+,应用质量数与电荷数的守恒A+2=4+1,Z+1=2+1,解得A=3,Z=2,选项D 正确。
12答案】B 【解析】大量氢原子跃迁时只有三个频率的光谱,这说明是从n=3能级向低能级跃迁,根据能量守恒有,321h h h ννν=+,解得:321v v v =+,选项B 正确13、【答案】D 【解析】根据爱因斯坦的质能方程,269282410 4.410(310)E m kg kg c ∆⨯∆===⨯⨯,选项D 正确14、【答案】A.【解析】卢瑟福根据α粒子的散射实验结果,提出了原子的核式结构模型:原子核聚集了原子的全部正电荷和几乎全部质量,电子在核外绕核运转。
15、【答案】C 【解析】核电站发电的能量来自于重核的裂变,选项C 正确。
16、【答案】D 【解析】根据t 11()28τ=,3tτ=,因为11.4t =天,所以11.4 3.83τ==天,选项D 正确。
17、【解析】由能量守恒得 212i m h E ν=-v ,解得电子速度为=v 。
18【答案】D 【解析】α粒子散射实验现象表明大多数α粒子不发生偏转,说明穿过了原子,少数α粒子发生偏转,说明无法穿过原子核,A 错误。
裂变反应有质量亏损是由于核子的平均密度变化引起的,但核子的总数不变,即质量数守恒,C 错误。
γ射线是频率很大、波长很短的电磁波,D 正确。
19、答案】AC 【解析】B 选项的核反应方程是卢瑟福发现质子的核反应方程,B 错误。
选项D 核反应方程是β衰变,D 错误20、【答案】C 【解析】由公式01()2tm m τ=可知C 答案正确。
21【答案】B 【解析】β衰变是原子核中的质子转化为中子和电子,但电子不是原子核的组成部分,A 错误。