高中数学选修2-1期末考试试题及答案
- 格式:doc
- 大小:895.00 KB
- 文档页数:8
高二数学空间向量测试题第一卷一 选择题(每道题的四个选择答案中有且只有一个答案是正确的) 1、在以下命题中:①假设向量a 、b 共线,那么a 、b 所在的直线平行;②假设向量a 、b 所在的直线是异面直线,那么a 、b 一定不共面; ③假设a 、b 、c 三向量两两共面,那么a 、b 、c 三向量一定也共面;④三向量a 、b 、c ,那么空间任意一个向量p 总可以唯一表示为p =x a +y b +z c . 其中正确命题的个数为 〔 〕A .0 B. 1 C. 2 D. 3 2、空间四边形ABCD 中,,,,c AD b BC a AB ===那么=CD ( )A .c b a -+B.c b a --C .c b a +--D .c b a ++-3、平行四边形ABCD 中,A (4,1,3)、B (2,-5,1)、C (3,7,-5),那么顶点D 的坐标为( )A .)1,4,27(-B .(2,3,1)C .(-3,1,5)D .(5,13,-3)4、a =(-1,-5,-2),b =(2,2,+x x ),假设b a ⊥,那么x =( )A .0B .314-C .-6D .±65、设a =(2,1,-m ),b =(n ,4,3-),假设b a //,那么m ,n 的值分别为( )A .43,8 B .43-,—8 C .43-,8 D .43,-8 6、向量a (0,2,1),b (-1,1,-2),那么a 与b 的夹角为( )A .0°B .45°C .90°D .180°7、假设斜线段AB 是它在平面α 内的射影长的2倍,那么AB 与α 所成的角为( )A .60°B .45°C .30°D .120°8、a =〔2,-1,3〕,b =〔-1,4,-2〕,c =〔7,5,λ〕,假设a 、b 、c 三向量共面,那么实数λ等于 〔 〕A .627 B. 637 C. 647 D. 6579、在正三角形ABC 中,AD ⊥BC 于D ,沿AD 折成二面角B -AD -C 后,AB BC 21=,这时二面角B -AD -C 的大小为( )A .60°B .45°C .90°D .120°10、矩形ABCD 中,AB =1,2=BC ,P A ⊥平面ABCD ,P A =1,那么PC 与平面ABCD 所成的角是( ) A .30°B .45°C .60°D .90°11、设A 、B 、C 、D 是空间不共面的四点,且满足0,0,0=⋅=⋅=⋅AD AC AD AB AC AB那么△BCD 是 〔 〕 A .钝角三角形 B. 直角三角形 C. 锐角三角形 D. 不确定12、P A 、PB 、PC 是从P 点引出的三条射线,每两条的夹角为60°,那么直线PC 与平面APB所成角的余弦值为( )A .21 B .36 C .33 D .23第二卷二、填空题13、向量a =(4,-2,-4),b =(6,-3,2),那么a 在b 方向上的投影是______. 14、)1,1,2(),2,0,1(==AC AB ,那么平面ABC 的一个法向量为____________.15、∠BOC 在平面α 内,OA 是平面α 的一条斜线,假设∠AOB =∠AOC =60°,OA =OB =OC =a ,BC =2a ,那么OA 与平面α 所成的角是______.16、以下命题中:(1)0=⋅b a 那么a =0或b =0;(2)==⋅⋅⋅⋅⋅22||||)3();()(q p c b a c b a2)(q p ⋅;(4)假设a 与b c a c b a ⋅⋅⋅⋅-)()(均不为0,那么它们必垂直.其中真命题的序号是______.三、解答题17、如图,在平行六面体ABCD -A 1B 1C 1D 1中,1,,AA b AD a AB ==,2,MC AM c ==ND N A 21=,试用基底},,{c b a 表示.MN18、如图,底面ABCD 为矩形,侧棱P A ⊥底面ABCD ,3=AB ,BC =1,P A =2,求直线AC与PB 所成角的余弦值.19、一条线段夹在一个直二面角的两个面内,它和两个面所成的角都是30°,求这条线段与这个二面角的棱所成的角。
常用逻辑用语一、选择题1.命题“如果x≥a 2+b 2,那么x≥2ab”的逆否命题是( ) A .如果x<a 2+b 2,那么x<2ab B .如果x≥2ab,那么x≥a 2+b 2 C .如果x<2ab,那么x<a 2+b 2 D .如果x≥a 2+b 2,那么x<2ab 2.三角形全等是三角形面积相等的( ) A .充分但不必要条件 B .必要但不充分条件 C .充要条件 D .既不充分又不必要条件 3.下列四个命题中,真命题是( ) A .2是偶数且是无理数 B .8≥10 C .有些梯形内接于圆 D .∀x ∈R,x 2-x+1≠0 4.命题“所有奇数的立方是奇数”的否定是( ) A .所有奇数的立方不是奇数 B .不存在一个奇数,它的立方是偶数 C .存在一个奇数,它的立方是偶数 D .不存在一个奇数,它的立方是奇数 二、填空题5.命题“若a=-1,则a 2=-1”的逆否命题是______________________. 6.b=0是函数f(x)=ax 2+bx+c 为偶函数的______________________.7.全称命题“∀a ∈Z,a 有一个正因数”的否定是________________________. 8.特称命题“有些三角形的三条中线相等”的否定是______________________. 9.设p :|5x -1|>4;2210231x x x x ++³-+,则非p 是非q 的______ ___条件.三、解答题10.求证:a+2b=0是直线ax+2y+3=0和直线x+by+2=0互相垂直的充要条件.11.已知集合A={x|x 2-3x+2=0},B={x|x 2-mx+2=0},若A 是B 的必要不充分条件,求实数m 范围.12.给定两个命题,P :对任意实数x 都有012>++ax ax 恒成立;Q :关于x 的方程02=+-a x x 有实数根;如果P 与Q 中有且仅有一个为真命题,求实数a 的取值范围.常用逻辑用语答案1-4 CACC5.如果a 2≠1,那么a≠-1 6.充分必要条件 7.∃a 0∈Z,a 0没有正因数 8.每个三角形的三条中线不相等 9.即不充分也不必要10.充分性:当b=0时,则a=0,此时两直线分别垂直坐标轴,显然垂直;当b≠0时,两直线的斜率分别是k 1=-a 2,k 2=-1b ,由a+2b=0,k 1⋅k 2=(-a 2-1b)=-1,两直线互相垂直.必要性:如果两直线互相垂直且斜率存在,则k 1⋅k 2=(-a 2)(-1b)=-1,∴a+2b=0;如果两直线中有直线的斜率不存在,且互相垂直,则b=0,且a=0,∴a+2b=0. 11、A={1,2},A 是B 的必要不充分条件,即B ⊂≠A .所以B=Φ、B={1}或{2},当B=φ时,△=m 2-8<0,∴22m 22<<-. 当B={1}或{2}时,⎩⎨⎧=+-=+-=∆02m 2402m 10或,m 无解.综上所述22m 22<<-.12.解:P 真:对任意实数x 都有012>++ax ax 恒成立⇔a=0或⎩⎨⎧a>0∆<0⇔0≤a<4; q 真:关于x 的方程02=+-a x x 有实数根⇔1-4a≥0⇔a≤14;如果P 正确,且Q 不正确,有0≤a<4,且a>14,∴14<a<4;如果Q 正确,且P 不正确,有a<0或a≥4,且a≤14,∴a<0.所以a ∈(-∞,0)∪(14,4).常用逻辑用语答案1-4 CACC5.如果a 2≠1,那么a≠-1 6.充分必要条件 7.∃a 0∈Z,a 0没有正因数 8.每个三角形的三条中线不相等 9.即不充分也不必要10.充分性:当b=0时,则a=0,此时两直线分别垂直坐标轴,显然垂直;当b≠0时,两直线的斜率分别是k 1=-a 2,k 2=-1b ,由a+2b=0,k 1⋅k 2=(-a 2-1b)=-1,两直线互相垂直.必要性:如果两直线互相垂直且斜率存在,则k 1⋅k 2=(-a 2)(-1b)=-1,∴a+2b=0;如果两直线中有直线的斜率不存在,且互相垂直,则b=0,且a=0,∴a+2b=0. 11、A={1,2},A 是B 的必要不充分条件,即B ⊂≠A .所以B=Φ、B={1}或{2},当B=φ时,△=m 2-8<0,∴22m 22<<-. 当B={1}或{2}时,⎩⎨⎧=+-=+-=∆02m 2402m 10或,m 无解.综上所述22m 22<<-.12.解:P 真:对任意实数x 都有012>++ax ax 恒成立⇔a=0或⎩⎨⎧a>0∆<0⇔0≤a<4;q 真:关于x 的方程02=+-a x x 有实数根⇔1-4a≥0⇔a≤14;如果P 正确,且Q 不正确,有0≤a<4,且a>14,∴14<a<4;如果Q 正确,且P 不正确,有a<0或a≥4,且a≤14,∴a<0.所以a ∈(-∞,0)∪(14,4).圆锥曲线练习题一.选择题1.若椭圆经过原点,且焦点分别为12(1,0),(3,0)F F ,则其离心率为( ) A.34 B.23 C.12 D.142.过抛物线y 2=4x 的焦点作直线l ,交抛物线于A ,B 两点,若线段AB 中点的横坐标为3,则|AB|等于( )A.10B.8C.6D.43.若双曲线x 24+y2k1的离心率(1,2)e ∈,则k 的取值范围是( )A.(),0-∞B.()3,0-C.()12,0-D.()60,12-- 4.与y 轴相切且和半圆x 2+y 2=4(0≤x ≤2)内切的动圆圆心的轨迹方程是( ) A.()()24101y x x =--<≤ B.()()24101y x x =-<≤C.()()24101y x x =+<≤ D.()()22101yx x =--<≤5.过点M(-2,0)的直线L 与椭圆2222x y +=交于12,P P 两点,设线段12P P 的中点为P ,若直线l 的斜率为11(0)k k ≠,直线OP 的斜率为2k ,则12k k 等于( )A.2-B.2C.12D.-126.如果方程x 2-p +y2q =1表示双曲线,那么下列椭圆中,与这个双曲线共焦点的是( )A.2212xyq pq+=+ B.2212xyq pp+=-+ C.2212xyp qq+=+ D.2212xyp qp+=-+二.填空题7.椭圆x 212+y 23=1的焦点分别是12F ,F ,点P 在椭圆上,如果线段1P F 的中点在y 轴上,那么1PF 是2PF 的 倍.8.椭圆x 245+y 220=1的焦点分别是12F ,F ,过原点O 做直线与椭圆交于A ,B 两点,若∆ABF 2的面积是20,则直线AB 的方程是 .9.与双曲线2244x y -=有共同的渐近线,并且经过点(2的双曲线方程是10.已知直线y=kx+2与双曲线x 2-y 2=6的右支相交于不同的两点,则k 的取值范围是 .三.解答题11.抛物线y=-12x 2与过点M(0,-1)的直线L 相交于A ,B 两点,O 为原点,若OA 和OB 的斜率之和为1,求直线L 的方程.12.已知中心在原点,一焦点为F(0,50)的椭圆被直线:32l y x =-截得的弦的中点横坐标为12,求此椭圆的方程.13.21,F F 是椭圆x 29+y27=1的两个焦点,A 为椭圆上一点,且∠AF 1F 2=45︒,求∆12AF F 的面积.圆锥曲线练习题答案一.选择题:CBCADD 二.填空题:7. 7倍 8.y=±43x 9. y 24x 216=1 10.-153<k<-1三.解答题11. 解:斜率不存在不合题意,设直线1y kx =-代入抛物线得2220x kx +-=2480k =+> 有k ∈R 设点1122(,),(,)A x y B x y 则y 1x 1+y 2x 2=1,由根与系数关系,解得直线方程1y x =-.12. 解:设所求的椭圆为x 2a 2+y2b2=1,则222c a b =-=50椭圆与直线联立有()222222(9)1240a b x b x b a +-+-=,由已知x 1+x 22=12,根与系数关系带入得223a b =解得a 2=75,b 2=25.所以所求椭圆方程为y 225+x 275=1.13.解:1212216,6F F AF AF AF AF =+==-222022112112112cos 4548AF AF F F AF F F AF AF =+-⋅=-+2211117(6)48,,2A F A F A F A F -=-+=1772222S =⨯⨯=.圆锥曲线练习题答案一.选择题:CBCADD 二.填空题:7. 7倍 8.y=±43x 9. y 24x 216=1 10.-153<k<-1三.解答题13. 解:斜率不存在不合题意,设直线1y kx =-代入抛物线得2220x kx +-=2480k =+> 有k ∈R 设点1122(,),(,)A x y B x y 则y 1x 1+y 2x 2=1,由根与系数关系,解得直线方程1y x =-.14. 解:设所求的椭圆为x 2a 2+y 2b2=1,则222c a b =-=50椭圆与直线联立有()222222(9)1240a b x b x b a +-+-=,由已知x 1+x 22=12,根与系数关系带入得223a b =解得a 2=75,b 2=25.所以所求椭圆方程为y 225+x 275=1.13.解:1212216,6F F AF AF AF AF =+==-222022112112112cos 4548AF AF F F AF F F AF AF =+-⋅=-+2211117(6)48,,2A F A F A F A F -=-+=1772222S =⨯⨯=.空间向量练习题一.选择题1.直棱柱ABC -A 1B 1C 1中,若CA →=a →,CB →=b →,CC 1→=c →,则A 1B →=( )A .a →+b →-c →B .a →-b →+c →C .-a →+b →+c →D .-a →+b →-c →2.已知A ,B ,C 三点不共线,对平面ABC 外的任意一点O ,下列条件中能确定点M 与A ,B ,C 一定共面的是( )A .OM →=OA →+OB →+OC → C .OM →=2OA →-OB →-OC →C .OM →=OA →+12OB →+13→D .OM →=13OA →+13OB →+13OC →3.若向量m →同时垂直向量a →和b →,向量n →=λa →+μb →(λ,μ∈R, λ,μ≠0),则( )A .m →∥n →B .m →⊥n → C.m →与n →不平行也不垂直 D .以上均有可能 4.以下四个命题中,正确的是( )A .若OP →=12OA →+13OB →,则P ,A ,B 三点共线B .若{a →,b →,c →}为空间一个基底,则{a →+b →,b →+c →,c →+a →}构成空间的另一个基底 C .|(a →⋅b →)c →|=|a →|⋅|b →|⋅|c →|D .∆ABC 为直角三角形的充要条件是AB →⋅AC →=05.已知a →=(λ+1,0,2λ),b →=(6,2μ-1,2),a →∥b →,则λ和μ的值分别为( ) A .15,12B .5,2C .-15,-12D .-5,-2二.填空题6.若a →=(2,-3,1),b →=(2,0,3),c →=(0,2,2),则a →⋅(b →+c →)=________.7.已知G 是∆ABC 的重心,O 是空间任一点,若OA →+OB →+OC →=λOG →,则λ的值为_______. 8.已知|a →|=1,|b →|=2,<a →,b →>=60︒,则|a →-25(a →+2b →)|=________.三.解答题9.若向量(a →+3b →)⊥(7a →-5b →),(a →-4b →)⊥(7a →-2b →),求a →与b →的夹角.10.设123423223325=-+=+-=-+-=++,,,a i j k a i j k a i j k a i j k ,试求实数λμν,,,使4123a a a a λμν=++成立.11.正三棱柱111-ABC A B C 的底面边长为a ,求1AC 与侧面11ABB A 所成的角. 12.在长方体1111ABCD A B C D -中,11AD AA ==,2AB =,点E 在棱AB 上移动,问AE 等于何值时,二面角1D EC D --的大小为π4.空间向量练习题答案一.选择题 DDBBA二.填空题 6.3 7.3 8.65三.解答题9.由已知向量垂直列方程,解得a →2=b →2=2a →⋅b →,∴cos<a →,b →>=12,∴a →与b →夹角为60︒.10.由4123a a a a λμν=++成立,可建立方程组,解得213v λμ=-==-,,.11.以A 为原点,分别以CA →,AB →,AA 1→为x,y ,z 轴建立空间直角坐标系,则A(0,0,0),B(0,a,0),A 1(0,0,2a),C 1(-32a,12a,2a),由于n →=(-1,0,0)是面11ABB A 的法向量,计算得cos<AC 1→,n →>=12,∴<AC 1→,n →>=60︒.故1AC 与侧面11ABB A 所成的角为30︒.12.设A E x =,以D 为原点,分别以DA →,DC →,DD 1→为x y z ,,轴建立空间直角坐标系,可求得平面1D EC 的法向量为n →=(2-x ,1,2).依题意πcos 422=⇒=.2x =-∴2x =+.2AE =-∴空间向量练习题答案一.选择题 DDBBA二.填空题 6.3 7.3 8.65三.解答题9.由已知向量垂直列方程,解得a →2=b →2=2a →⋅b →,∴cos<a →,b →>=12,∴a →与b →夹角为60︒.10.由4123a a a a λμν=++成立,可建立方程组,解得213v λμ=-==-,,.11.以A 为原点,分别以CA →,AB →,AA 1→为x,y ,z 轴建立空间直角坐标系,则A(0,0,0),B(0,a,0),A 1(0,0,2a),C 1(-32a,12a,2a),由于n →=(-1,0,0)是面11ABB A 的法向量,计算得cos<AC 1→,n →>=12,∴<AC 1→,n →>=60︒.故1AC 与侧面11ABB A 所成的角为30︒.12.设A E x =,以D 为原点,分别以DA →,DC →,DD 1→为x y z ,,轴建立空间直角坐标系,可求得平面1D EC 的法向量为n →=(2-x,1,2).依题意πcos 422=⇒=2x =-∴2x =+.2AE =-∴。
选修2-1综合测试题一、选择题1、a 、b 为实数,那么b a 22>是22log log a b >的 ( )A.必要非充分条件B.充分非必要条件C.充要条件D.既不充分也不必要条件 2、给出命题:假设函数()y f x =是幂函数,那么函数()y f x =的图象不过第四象限.在它的逆命题、否命题、逆否命题三个命题中,真命题的个数是 ( ) A.0B.1C.2D.33、函数()sin 2()3f x x xf π'=+,那么()3f π'= ( )A.12-B. 0C.12- D.324、如果命题“p 且q 〞是假命题,“非p 〞 是真命题,那么 ( )A.命题p 一定是真命题B.命题q 一定是真命题C.命题q 可以是真命题也可以是假命题D.命题q 一定是假命题5、命题[]2:"1,2,0"p x x a ∀∈-≥,命题2:",220"q x R x ax a ∃∈++-=,假设命题“p q ∧〞 是真命题,那么实数a 的取值范围是 ( )A.(,2]{1}-∞-B.(,2][1,2]-∞-C.[1,)+∞D.[2,1]-6.如图ABCD -A 1B 1C 1D 1是正方体,B 1E 1=D 1F 1=A 1B 14,那么BE 1与DF 1所成角的余弦值是( )A .1517B .12C .817D .327.如下图,在四面体P -ABC 中,PC ⊥平面ABC ,AB =BC =CA =PC ,那么二面角B -AP -C 的余弦值为( )A .22B .33 C .77 D .578、我们把由半椭圆22221(0)x y x a b +=≥与半椭圆22221(0)y x x b c+=<合成的曲线称作“果圆〞(其中222,a b c =+0a b c >>>).如图,设点210,,F F F 是相应椭圆的焦点,A 1、A 2和B 1、B 2是“果圆〞与x,y 轴的交点,假设△F 0F 1F 2是边长为1的等边三角,那么a,b 的值分别为( )A.1,27B.1,3C.5,3D.5,4 9、设1F 和2F 为双曲线22221x y a b-=(0,0a b >>)的两个焦点, 假设12F F ,,(0,2)P b 是正三角形的三个顶点,那么双曲线的离心率为( ) A.32 B.2 C.52D.3 10、设斜率为2的直线l 过抛物线2(0)y ax a =≠的焦点F,且和y 轴交于点A,假设△OAF(O 为坐标原点)的面积为4,那么抛物线方程为( )A.24y x =±B.28y x =±C.24y x =D.28y x =11.长方体ABCD -A 1B 1C 1D 1中,AB =BC =1,AA 1=2,E 是侧棱BB 1的中点,那么直线AE 与平面A 1ED 1所成角的大小为( ) A .60°B .90°C .45°D .以上都不正确12、平面α的一个法向量n =(1,-1,0),那么y 轴与平面α所成的角的大小为( ) A .π6 B .π4 C .π3 D .3π4 二、填空题13. 空间三点A(-2,0,2),B(-1,1,2),C(-3,0,4),设a =,b =,假设向量ka +b 与ka -2b 互相垂直,那么k 的值为________.14. 向量a =(cos θ,sin θ,1),b =(3,-1,2),那么|2a -b|的最大值为________.15、椭圆22221(0)x y a b a b +=>>与双曲线22221x y m n-=(0,0)m n >>有相同的焦点(,0)c -和(,0)c ,假设c 是a 、m 的等比中项,2n 是22m 与2c 的等差中项,那么椭圆的离心率是 . 16、现有以下命题:①命题“2,10x x x ∃∈++=R 〞的否认是“2,10x x x ∃∈++≠R 〞; ②假设{}|0A x x =>,{}|1B x x =≤-,那么()R A B =A ; ③函数()sin()(0)f x x ωϕω=+>是偶函数的充要条件是()2k k ϕπ=π+∈Z ; ④假设非零向量,a b 满足a =λ,b b =λa (R λ∈),那么λ=1. 其中正确命题的序号有________.(把所有真命题的序号都填上)三、解答题(本大题共6小题,共74分,解容许写出必要的文字说明、证明过程及演算步骤.)·O 1O 2xyO F 1 ·· F 2M17、(12分)设命题p:不等式21x x a -<+的解集是1{3}3x x -<<;命题q:不等式2441x ax ≥+的解集是∅,假设“p 或q 〞为真命题,试求实数a 的值取值范围.18、(12分)向量b 与向量a=(2,-1,2)共线,且满足a ·b=18,(ka+b)⊥(ka-b),求向量b 及k 的值. 19、(12分)如下图,圆O 1与圆O 2外切,它们的半径分别为3、1,圆C 与圆O 1、圆O 2外切。
④“ x > 2 ”是“ 1 4.由直线 x = 12 D . 15B . 2 ln 2高中数学选修2-1、2-2 综合试题班级-------------姓名-----------得分-----------一、 选择题(本大题共 10 小题,每小题 5 分,共 50 分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将所选答案写在答题卡上)1.复数 z 的虚部记作 Im (z ),若 z= 5 1 + 2i,则 Im ( z )=( )A .2B . 2iC .-2D .-2i2.考察以下列命题:①命题“ lg x = 0, 则x=1 ”的否命题为“若 lg x ≠ 0, 则x ≠ 1 ”②若“ p ∧ q ”为假命题,则 p 、q 均为假命题③命题 p : ∃x ∈ R ,使得 s in x > 1 ;则 ⌝p : ∀x ∈ R ,均有 sin x ≤ 11< ”的充分不必要条件x 2则真命题的个数为( ) A .1 B .2C .3D .43.在平行六面体 ABCD - A B C D 中, M 为 A C 与 B D 的交点。
1 1 111 111若 AB = a , AD = b , AA = c 则与 BM 相等的向量是()11 1 1 1A . - a + b + cB . a + b + c2 2 2 2A1DD1 C1 MB1 C1 1 1 1C . - a - b + cD . a - b + c2 2 2 2A B1 , x = 2, 曲线 y = - 及轴所围图形的面积为 ( )2 xA .- 2ln 2 C . 1 ln 2 45.已知抛物线 y 2 = 2 px( p > 0) 上有一点 M (4,y ),它到焦点 F 的距离为 5,则 ∆OFM 的面积(O 为原点)为()A .1B .2C . 2D . 2 26.用火柴棒摆“金鱼”,如图所示:…①②③7.在正三棱柱ABC-A B C中,若AB=2B B,则AB与C B所成角的大小为()②实数a,b,有(a+b)2=a2+2ab+b2;类比向量a,b,有(a+b)2=a+2a⋅b+b按照上面的规律,第n个“金鱼”图需要火柴棒的根数为()A.6n+2B.6n-2C.8n+2D.8n-2111111A.60°B.75°C.105°D.90°8.给出下面四个类比结论()①实数a,b,若ab=0则a=0或b=0;类比向量a,b,若a⋅b=0,则a=0或b=022③向量a,有a2=a2;类比复数z,有z2=z2④实数a,b有a2+b2=0,则a=b=0;类比复数z,z有z2+z2=0,则212z=z=012其中类比结论正确的命题个数为()A.0B.1C.2D.39.已知抛物线=2px(p>1)的焦点F恰为双曲线(a>0,b>0)的右焦点,且两曲线的交点连线过点F,则双曲线的离心率为()A.2B.2C.2+1D.2+210.设球的半径为时间t的函数R(t).若球的体积以均匀速度c增长,则球的表面积的增长速度与球半径()A.成正比,比例系数为C B.成正比,比例系数为2CC.成反比,比例系数为C D.成反比,比例系数为2C二、填空题(每小题5分,共20分。
高中数学选修2-1试卷 班级________姓名:_________考试时间:120分钟 试卷总分值:150分一、选择题:本大题共12小题,每题5分,共60分.将答案写在后面的框内,否那么一律不给9分.1.“1x ≠〞是“2320x x -+≠〞的〔 〕A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件2.命题p q ,,假设命题“p ⌝〞与命题“p q ∨〞都是真命题,那么〔 〕A .p 为真命题,q 为假命题B .p 为假命题,q 为真命题C .p ,q 均为真命题D .p ,q 均为假命题3. 设M 是椭圆22194x y +=上的任意一点,假设12,F F 是椭圆的两个焦点,那么12||||MF MF + 等于〔 〕A . 2B . 3C . 4D . 64.(重庆高考)命题“对任意x ∈R ,都有x 2≥0〞的否认为( )A .存在x 0∈R ,使得x 20<0B .对任意x ∈R ,都有x 2<0C .存在x 0∈R ,使得x 20≥0D .不存在x ∈R ,使得x 2<05. 抛物线24y x =的焦点到其准线的距离是〔 〕A . 4B . 3C . 2D . 16. 两个焦点坐标分别是12(5,0)(5,0)F F -,,离心率为45的双曲线方程是〔 〕 A . 22143x y -= B . 22153x y -= C .221259x y -= D .221169x y -= 7. 以下各组向量平行的是( )A .(1,1,2),(3,3,6)=-=--a bB .(0,1,0),(1,0,1)==a bC .(0,1,1),(0,2,1)=-=-a bD .(1,0,0),(0,0,1)==a b8. 在空间四边形OABC 中,OA AB CB +-等于( )A .OAB .ABC .OCD .AC9. 向量(2,3,1)=a ,(1,2,0)=b ,那么-a b 等于 ( )A .1 BC .3D .910. 如图,在三棱锥A BCD -中,DA ,DB ,DC 两两垂直,且DB DC =,E 为BC 中点,那么AE BC ⋅ 等于( )A .3B .2C .1D .011. 抛物线28y x =上一点A 的横坐标为2,那么点A 到抛物线焦点的距离为〔 〕A .2B .4C .6D .812.正方体1111ABCD A B C D -中,M 为侧面11ABB A 所在平面上的一个动点,且M 到平面11ADD A 的距离是M 到直线BC 距离的2倍,那么动点M 的轨迹为( )二、填空题:本大题共4小题,每题5分,共20分.把答案填在题中横线上. 13.命题“假设0a >,那么1a >〞的否命题是_____________________.14.双曲线22194x y -=的渐近线方程是_____________________. 15.点(2,0),(3,0)A B -,动点(,)P x y 满足2AP BP x ⋅=,那么动点P 的轨迹方程是 .16. 椭圆12222=+by a x 的左、右焦点分别为21,F F ,点P 为椭圆上一点,且3021=∠F PF ,AEDCB6012=∠F PF ,那么椭圆的离心率e 等于 .三、解答题:本大题共6小题,共70分.解容许写出文字说明,证明过程或演算步骤. 17.求渐近线方程为x y 43±=,且过点)3,32(-A 的双曲线的标准方程及离心率。
高中数学选修2-1期末考试试题及答案.新世纪教育培训中心高二期末考试数学试题一.选择题(每小题5分,满分60分)1.设均为直线,其中在平面的?”?nm且?l”是“l?a内,则“l nm,n,,lm()A.充分不必要条件B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件2.对于两个命题:①,②,221x?cos x?,sin?x?R1sin x?R?x?,?1?)。
下列判断正确的是(都 C. ①②假①真②①A. 假②真 B.都真①②假 D.共焦点且过点的双曲线方程是3.与椭圆2x()222xxy D.21y??(2,1)Q4A.B.C.4.已知是椭圆2221??y??1y?x?122422yx1??33的两个焦点,过且与椭圆长轴垂直的F,FF121弦交椭圆与,两点,则是正三角形,则椭圆的离心ABF?BA2率是()w.w.w.k.s.5.u.c.o.m321 CB A3222新世纪教育培训中心1D 3与抛5.过抛物线的焦点作倾斜角为直线,直线20x8?y45ll物线相交与,两点,则弦)的长是(AB BA A 8 B 16 C 32w.w.w.k.s.5.u.c.o.m D 64的曲线方程6.在同一坐标系中,22222)b?0?ax?by0(a?bax?x?1与)大致是(. C..A B D.22在椭点7.已知椭圆的两个焦点(>0) F,F,yx ba?P1??2122ba最大值一定是(圆上,则的面积)FPF?21 A B C 222a baa?ab D 22b?ba的值则实数k互相垂直,已知向量8.ba?k0,2),且a?b与2?),,a?(11,0b?(1, )是(137...1 B. C D A 555所中,是棱.9在正方体的中点,则与EABD DCAABCD?B BA E11111111)成角的余弦值为(3新世纪教育培训中心105510... AC. BD510510过原点与A,B两点,交于10.若椭圆22x与直线y?1?n?1(m?0,?0)nymx?n2( ) ,则线段AB的值是中点的连线的斜率为m2223C.D2B..2A.292作直线交抛物线于F的焦点11.过抛物线2y?4x两点,若,则的值为()????6y?Px,y y,P?x,y PP2121122112A.5 B.6 C.8 D.10=1的焦点为顶点,12..以顶点为焦点的椭22yx圆方程为?124()222222yxyxxyD.B.A. C.1???1???141216161612二.填空题(每小题4分)1OCOB?OM?xOA?y面13.已知A、C三点不共线,对平B、3是实数,若外一点O,给出下列表达式:其中x,yABCx+y=___ 、B、C四点共面,则点M与A且与抛的焦点,y2=4x14.斜率为1的直线经过抛物线___ 两点,则A,B等于物线相交于AB,则实数“P:x>0,”是真命题15.若命题2?0x?2ax??2.a的取值范围是___,则直,为空间中一点,且.已知16C??90AOB???AOC??BOC?60所成角的正弦值为与平面.线___AOBOC4新世纪教育培训中心三.解答题(解答应写出必要的文字说明、证明过程和演算步骤。
高二期末考试数学试题一.选择题〔每题5分,总分值60分〕1.设n m l ,,均为直线,其中n m ,在平面”“”“,n l m l l a ⊥⊥⊥且是则内α的〔 〕A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件2.对于两个命题:①,1sin 1x R x ∀∈-≤≤, ②22,sin cos 1x R x x ∃∈+>,以下判断正确的选项是〔 〕。
A. ① 假 ② 真B. ① 真 ② 假C. ① ② 都假D. ① ② 都真3.与椭圆1422=+y x 共焦点且过点(2,1)Q 的双曲线方程是〔 〕 A. 1222=-y x B. 1422=-y x C. 1222=-y x D. 13322=-y x 4.12,F F 是椭圆的两个焦点,过1F 且与椭圆长轴垂直的弦交椭圆与A ,B 两点, 那么2ABF ∆是正三角形,那么椭圆的离心率是〔 〕A22 B 12 C 33 D 135.过抛物线28y x =的焦点作倾斜角为045直线l ,直线l 与抛物线相交与A ,B 两点,那么弦AB 的长是〔 〕A 8B 16C 32D 646.在同一坐标系中,方程)0(0122222>>=+=+b a by ax x b x a 与的曲线大致是〔 〕A .B .C .D .7.椭圆12222=+b y a x (b a >>0) 的两个焦点F 1,F 2,点P 在椭圆上,那么12PF F ∆的面积 最大值一定是〔 〕A 2a B ab C 22a a b - D 22b a b -8.向量b a b a k b a -+-==2),2,0,1(),0,1,1(与且互相垂直,那么实数k 的值是( )A .1B .51C . 53D .579.在正方体1111ABCD A B C D -中,E 是棱11A B 的中点,那么1A B与1D E所成角的余弦值为〔 〕A .510B .1010C .55D .10510.假设椭圆x y n m ny mx -=>>=+1)0,0(122与直线交于A ,B 两点,过原点与线段AB 中点的连线的斜率为22,那么m n的值是( )2.23.22.292. D C B A11.过抛物线y x 42=的焦点F 作直线交抛物线于()()222111,,,y x P y x P 两点,假设621=+y y ,那么21P P 的值为 〔 〕A .5B .6C .8D .1012.以12422y x -=1的焦点为顶点,顶点为焦点的椭圆方程为 〔 〕 A.1121622=+y x B. 1161222=+y x C. 141622=+y x D. 二.填空题〔每题4分〕13.A 、B 、C 三点不共线,对平面ABC 外一点O ,给出以下表达式:OCOB y OA x OM 31++=其中x ,y 是实数,假设点M 与A 、B 、C 四点共面,那么x+y=___14.斜率为1的直线经过抛物线y2=4x 的焦点,且与抛物线相交于A,B 两点,那么AB等于___15.假设命题P :“∀x >0,0222<--x ax 〞是真命题 ,那么实数a 的取值范围是___.16.90AOB ∠=︒,C 为空间中一点,且60AOC BOC ∠=∠=︒,那么直线OC 与平面AOB 所成角的正弦值为___.三.解答题〔解容许写出必要的文字说明、证明过程和演算步骤。
一.选择题(每小题5分,满分60分)1.设n m l ,,均为直线,其中n m ,在平面”“”“,n l m l l a ⊥⊥⊥且是则内α的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件2.对于两个命题:①,1sin 1x R x ∀∈-≤≤, ②22,sin cos 1x R x x ∃∈+>,下列判断正确的是( )。
A. ① 假 ② 真 B. ① 真 ② 假 C. ① ② 都假 D. ① ② 都真3.与椭圆1422=+y x 共焦点且过点(2,1)Q 的双曲线方程是( ) A. 1222=-y x B. 1422=-y x C. 1222=-y x D. 13322=-y x4.已知12,F F 是椭圆的两个焦点,过1F 且与椭圆长轴垂直的弦交椭圆与A ,B 两点,则2ABF ∆是正三角形,则椭圆的离心率是( ) A22 B 12C 33D 13 5.过抛物线28y x =的焦点作倾斜角为045直线l ,直线l 与抛物线相交与A ,B 两点,则弦AB 的长是( )A 8B 16C 32D 646.在同一坐标系中,方程)0(0122222>>=+=+b a by ax x b x a 与的曲线大致是( )A .B .C .D .7.已知椭圆12222=+b y a x (b a >>0) 的两个焦点F 1,F 2,点P 在椭圆上,则12PF F ∆的面积 最大值一定是( )A 2a B ab C 22a b - D 22b a b -8.已知向量b a b a k b a -+-==2),2,0,1(),0,1,1(与且互相垂直,则实数k 的值是( )A .1B .51C . 53D .579.在正方体1111ABCD A B C D -中,E 是棱11A B 的中点,则1A B与1D E所成角的余弦值为( )A .510B .1010C .55D .10510.若椭圆x y n m ny mx -=>>=+1)0,0(122与直线交于A ,B 两点,过原点与线段AB 中点的连线的斜率为22,则m n的值是( )2.23.22.292. D C B A11.过抛物线y x 42=的焦点F 作直线交抛物线于()()222111,,,y x P y x P 两点,若621=+y y ,则21P P 的值为 ( )A .5B .6C .8D .1012..以12422y x -=1的焦点为顶点,顶点为焦点的椭圆方程为 ( ) A.1121622=+y x B. 1161222=+y x C. 141622=+y x D. 二.填空题(每小题4分)13.已知A 、B 、C 三点不共线,对平面ABC 外一点O ,给出下列表达式:其中x ,y 是实数,若点M 与A 、B 、C 四点共面,则x+y=___14.斜率为1的直线经过抛物线y2=4x 的焦点,且与抛物线相交于A,B 两点,则AB等于___15.若命题P :“∀x >0,0222<--x ax ”是真命题 ,则实数a 的取值范围是___.16.已知90AOB ∠=︒,C 为空间中一点,且60AOC BOC ∠=∠=︒,则直线OC 与平面AOB 所成角的正弦值为___.三.解答题(解答应写出必要的文字说明、证明过程和演算步骤。
) 17.(本小题满分14)设命题P :2",2"x R x x a ∀∈->,命题Q :2",220"x R x ax a ∃∈++-=; 如果“P 或Q ”为真,“P 且Q ”为假,求a 的取值范围。
18.(15分)如图①在直角梯形ABCP 中,BC ∥AP ,AB ⊥BC ,CDOC OB y OA x OM 31++=⊥AP,AD=DC=PD=2,E,F,G分别是线段PC、PD,BC的中点,现将ΔPDC折起,使平面PDC⊥平面ABCD (如图②)(Ⅰ)求证AP∥平面EFG;(Ⅱ)求二面角G-EF-D的大小;(Ⅲ)在线段PB上确定一点Q,使PC⊥平面ADQ,试给出证明.19.(15分) 如图,金砂公园有一块边长为2的等边△ABC的边角地,现修成草坪,图中DE把草坪分成面积相等的两部分,D在AB上,E在AC上.(Ⅱ)如果DE是灌溉水管,我们希望它最短,则DE的位置应在哪里请予以证明.CB20.(15分)设21,F F 分别为椭圆)0(1:2222>>=+b a by a x C 的左、右两个焦点.(Ⅰ)若椭圆C 上的点21,)23,1(F F A 到两点的距离之和等于4,求椭圆C 的方程和焦点坐标; (Ⅱ)设点P 是(Ⅰ)中所得椭圆上的动点,的最大值求||),21,0(PQ Q 。
21.(15分)如图,设抛物线C :y x 42=的焦点为F ,),(00y x P 为抛物线上的任一点(其中0x ≠0), 过P 点的切线交y 轴于Q 点. (Ⅰ)证明:FQ FP =;(Ⅱ)Q 点关于原点O 的对称点为M ,过M 点作平行于PQ 的直线交抛物线C 于A 、B 两点,若)1(>=λλMB AM ,求λ的值.B AO FxyQPM高二(理科)期末考试数学试题参考答案及评分标准 一.选择题:ABCCB D CBDB DD二、填空题:13. 1 15.)4,(-∞ 16.详解:由对称性点C 在平面AOB 内的射影D 必在AOB ∠的平分线上作DE OA ⊥于E ,连结CE 则由三垂线定理CE OE ⊥,设1DE =1,2OE OD ⇒==,又60,2COE CE OE OE ∠=⊥⇒=,所以222CD OC OD =-=,因此直线OC 与平面AOB 所成角的正弦值2sin 2COD ∠=,本题亦可用向量法。
16.y ex =三.解答题:17解:命题P :2",2"x R x x a ∀∈->即222(1)1x x x a -=-->恒成立1a ⇔<- …………3分 命题Q :2",220"x R x ax a ∃∈++-= 即方程2220x ax a ++-=有实数根∴2(2)4(2)0a a ∆=--≥ 2a ⇔≤-或1a ≥ .…………6分 ∵“P 或Q ”为真,“P 且Q ”为假,∴P 与Q 一真一假 …………8分 当P 真Q 假时,21a -<<-;当P 假Q 真时,1a ≥ …………10 ∴a 的取值范围是(2,1)[1,)--+∞ ………1418(14分)解法一:(Ⅰ)在图②中 ∵平面PDC ⊥平面ABCD ,AP ⊥CD ∴ PD ⊥CD ,PD ⊥DA ∴PD ⊥平面ABCD如图. 以D 为坐标原点,直线DA 、DC 、DP 分别为y x 、与z 轴建立空间直角坐标系: …………………1分则()0,0,0D ()0,0,2A ()0,2,2B ()0,2,0C ()2,0,0P ()1,1,0E ()1,0,0F ()0,2,1G()2,0,2-=∴AP ()0,1,0-=EF ()1,2,1-=FG ………………3分设平面GEF 的法向量),,(z y x n =,由法向量的定义得: ⎩⎨⎧==⇒⎩⎨⎧=-+=⇒⎩⎨⎧=-•=-•⇒⎪⎩⎪⎨⎧=•=•z x y z y x y FG n EF n 00200)1,2,1()z y,x,(0)0,1,0()z y,x,(00不妨设 z=1, 则 ………………………………4分32)1,0,1(=n0210212=⨯+⨯+⨯-=⋅n AP ………………………………5分n AP ⊥∴,点P ∉ 平面EFG∴AP ∥平面EFG………………………………6分 (Ⅱ)由(Ⅰ)知平面GEF 的法向量,因平面EFD 与坐标平面PDC 重合 则它的一个法向量为i =(1,0,08分设二面角D EF G --为θ.则 …………9分由图形观察二面角D EF G --为锐角,故二面角G-EF-D 的大小为45°。
………10分 (Ⅲ)假设在线段PB 上存在一点Q ,使PC ⊥平面ADQ ,∵P 、Q 、D 三点共线,则设DB t DP t DQ +-=)1(,又()0,2,2=DB ,()2,0,0=DP ∴)22,2,2(t t t DQ -=,又()2,0,0=DA …………11分 若PC ⊥平面ADQ ,又)2,2,0(-=PC则210)22(2220)22,2,2()0,2,-2(0)0,0,2()0,2,-2(00=⇒=--⨯⇒⎩⎨⎧=-•=•⇒⎪⎩⎪⎨⎧=•=•t t t t t t DQ PC DA PC …………15分∴)DB DP DQ +=(21, ………………………………13分故在线段PB 上存在一点Q ,使PC ⊥平面ADQ ,且点Q 为线段PB 的中点。
……15分 解法二:(1)∵EF ∥CD ∥AB ,EG ∥PB ,根据面面平行的判定定理∴平面EFG ∥平面PAB ,又PA ⊂面PAB ,∴AP ∥平面EFG ……………………4分 (2)∵平面PDC ⊥平面ABCD ,AD ⊥DC∴AD ⊥平面PCD ,而BC ∥AD ,∴BC ⊥面EFD过C 作CR ⊥EF 交EF 延长线于R 点连GR ,根据三垂线定理知 ∠GRC 即为二面角的平面角,∵GC=CR ,∴∠GRC=45°,故二面角G-EF-D 的大小为45°。
…………………8分 (3)Q 点为PB 的中点,取PC 中点M ,则QM ∥BC ,∴QM ⊥PC在等腰Rt △PDC 中,DM ⊥PC ,∴PC ⊥面ADMQ ……………………15分 19(14分)解: (1)在△ADE 中,y 2=x 2+AE2-2x ·AE ·cos60°⇒y 2=x 2+AE2-x ·AE,① 又S △ADE = S △ABC = · 2= x ·AE ·sin60°⇒x ·AE =2.② ……4分②代入①得y 2=x 2+ -2(y >0), ∴y = ………6分121222(x )1,0,1(=n 2221cos =⋅=θ又x ≤2,若1x <, ,矛盾,所以x ≥1∴y =x ≤2). ………………………7分(2)如果DE 是水管y = ………………10分当且仅当x 2=24x ,即x =2时“=”成立, …………………………15分故DE ∥ BC ,且DE =2. ………………………………15分 20解:(Ⅰ)椭圆C 的焦点在x 轴上,由椭圆上的点A 到F 1、F 2两点的距离之和是4,得2a=4,即a=2. …….2分又点.1,31)23(21,)23,1(22222===+c b bA 于是得因此在椭圆上 …….4分所以椭圆C 的方程为).0,1(),0,1(,1342122F F y x -=+焦点 …….6分 (Ⅱ)设134),,(22=+y x y x P 则22344y x -=∴ …….8分 222222141117||()423434PQ x y y y y y y =+-=-+-+=--+ …….10分5)23(312++-=y …….12分又33≤≤-y 5||,23max =-=∴PQ y 时当 …….15分21解:(Ⅰ)证明:由抛物线定义知1||0+=y PF ,2|00x y k x x PQ ='==, 可得PQ 所在直线方程为000()2x y y x x -=-, ∵2004x y =∴得Q 点坐标为(0, 0y -)∴1||0+=y QF ∴ |PF |=|QF |(Ⅱ)设A (x 1, y 1),B (x 2, y 2),又M 点坐标为(0, y 0)∴AB 方程为002y x x y +=…….8分。