二次函数的图像和性质同步练习
- 格式:doc
- 大小:339.62 KB
- 文档页数:3
30.2 二次函数的图像和性质第1课时 二次函数y=ax 2的图像和性质1.填空: (1)y =x 2的图像是 ;开口向 ;对称轴是 ;顶点坐标是;(2)在抛物线y =x 2的对称轴左侧y 随x 的减小而 ;而在对称轴的右侧是y 随着x 的增大而;此时函数y =x 2当x = 时的值最是 .(3)y =-x 2的图像是;开口向;对称轴是;顶点坐标是;(4)在抛物线y =-x 2的对称轴左侧y 随x 的减小而 ;而在对称轴的右侧是y 随着x 的增大而;此时函数y =-x 2当x =时的值最是.2.假设点A 〔3,m 〕是抛物线y=-x 2上一点,那么m= .3.假设点A 〔-5,y 1〕、B 〔2,y 2〕都在y=2x 2上,那么1y ____2y 〔填“>〞或“<〞〕4.如图,⊙O 的半径为2.C 1是函数y=x 2的图像,C 2是函数y=﹣x 2的图像,那么阴影局部的面积是 _________ .5.函数2ax y =〔a ≠0〕的图像与a 的符号有关的是〔 〕A .对称轴B .顶点坐标C .开口方向D .开口大小 6.在同一坐标系中,抛物线y =4x 2,y =41x 2,y =-41 x 2的共同特点是( ) A.关于y 轴对称,抛物线开口向上;B.关于y 轴对称,y 随x 的增大而增大 B.关于y 轴对称,y 随x 的增大而减小;D.关于y 轴对称,抛物线顶点在原点. 7.原点是抛物线2)3(x m y +=的最高点,那么m 的范围是 ( )A . 1-<mB . 3-<mC . 2->mD . 3->m8.二次函数y=ax 2与一次函数y=ax +a 在同一坐标系中的图像大致为〔 〕9.二次函数2y ax 的图像经过点A(-1,1) ① 求这个二次函数的关系式; ② 求当x =2时的函数y 的值.10.直线y=-2x +3与抛物线y=ax 2相交于A 、B 两点,且A 点坐标为〔-3,m 〕. 〔1〕求a 、m 的值;〔2〕求抛物线的表达式及其对称轴和顶点坐标;〔3〕x 取何值时,二次函数y=ax 2中的y 随x 的增大而减小;〔4〕求A 、B 两点及二次函数y=ax 2的顶点构成的三角形的面积第3课时 二次函数y=ax 2+bx+c 的图像和性质1.已知二次函数y=ax 2﹣2x+2(a >0),那么它的图像一定不经过( ) A .第一象限B .第二象限C .第三象限D .第四象限2.二次函数y=ax 2+bx+c (a≠0)的大致图像如图,关于该二次函数,下列说法错误的是( )函数有最小值B.对称轴是直线x=A.C.当x<,y随x的增大而减小D.当﹣1<x<2时,y>03.如图,平面直角坐标系中,点M是直线y=2与x轴之间的一个动点,且点M 是抛物线y=x2+bx+c的顶点,则方程x2+bx+c=1的解的个数是()A.0或2 B.0或1 C.1或2 D.0,1或24.如果抛物线y=x2+(m﹣1)x﹣m+2的对称轴是y轴,那么m的值是_________.5.二次函数y=x2﹣4x﹣5的图像的对称轴是直线_________.6.若抛物线y=2x2﹣mx﹣m的对称轴是直线x=2,则m=_________.7.已知抛物线y=x2﹣x﹣1.(1)求抛物线y=x2﹣x﹣1的顶点坐标、对称轴;(2)抛物线y=x2﹣x﹣1与x轴的交点为(m,0),求代数式m2+的值.8.如图,已知抛物线y=x2﹣x﹣6,与x轴交于点A和B,点A在点B的左边,与y轴的交点为C.(1)用配方法求该抛物线的顶点坐标;(2)求sin∠OCB的值;(3)若点P(m,m)在该抛物线上,求m的值.9.若二次函数y=a1x2+b1x+c1的图像记为C1,其顶点为A,二次函数y=a2x2+b2x+c2的图像记为C2,其顶点为B,且满足点A在C2上,点B在C1上,则称这两个二次函数互为“伴侣二次函数”.(1)一个二次函数的“伴侣二次函数”有_________个;(2)①求二次函数y=x2+3x+2与x轴的交点;②求以上述交点为顶点的二次函数y=x2+3x+2的“伴侣二次函数”.(3)试探究a1与a2满足的数量关系.10.已知二次函数y=﹣x2+2x+3图像的对称轴为直线.(1)请求出该函数图像的对称轴;(2)在坐标系内作出该函数的图像;(3)有一条直线过点P(1,5),若该直线与二次函数y=﹣x2+2x+3只有一个交点,请求出所有满足条件的直线的关系式.。
二次函数的图象和性质单元同步测试题(01)一.选择题(共10小题)1.把抛物线y=5x2向左平移2个单位,再向上平移3个单位,得到的抛物线是()A.y=5(x﹣2)2+3B.y=5(x+2)2﹣3C.y=5(x+2)2+3D.y=5(x﹣2)2﹣32.对于抛物线y=﹣2(x﹣1)2+3,下列判断正确的是()A.抛物线的开口向上B.抛物线的顶点坐标是(﹣1,3)C.对称轴为直线x=1D.当x=3时,y>03.二次函数y=4ax2+4bx+1与一次函数y=2ax+b在同一平面直角坐标系中的图象可能是()A.B.C.D.4.如图是四个二次函数的图象,则a、b、c、d的大小关系为()A.d<c<a<b B.d<c<b<a C.c<d<a<b D.c<d<b<a5.抛物线y=x2﹣4与y轴的交点坐标是()A.(0,﹣4)B.(﹣4,0)C.(2,0)D.(0,2)6.函数y=ax2﹣a与y=ax﹣a(a≠0)在同一坐标系中的图象可能是()A.B.C.D.7.将抛物线y=3x2﹣2先向右平移3个单位长度,再向下平移2个单位长度得到的新抛物线解析式为()A.y=3(x+3)2﹣4B.y=3(x﹣3)2C.y=3(x﹣3)2﹣4D.y=3(x+3)28.已知y=(m+1)x m2+1+2x−3是二次函数,则m的值为()A.0B.1C.﹣1D.1或﹣19.已知二次函数y=x2﹣2x﹣3的自变量x1,x2,x3对应的函数值分别为y1,y2,y3.当﹣1<x1<0,1<x2<2,x3>3时,y1,y2,y3三者之间的大小关系是()A.y1<y2<y3B.y2<y1<y3C.y3<y1<y2D.y2<y3<y1 10.二次函数y=ax2+bx+c的图象如图所示,以下结论正确的个数为()①abc<0;②c+2a<0;③9a﹣3b+c=0;④am2﹣a+bm+b>0(m为任意实数)A.1个B.2个C.3个D.4个二.填空题(共2小题)11.将抛物线y=﹣2(x+2)2向右平移3个单位长度,再向下平移4个单位长度得到的抛物线的函数解析式为.12.点A(2,y1),B(a,y2)在二次函数y=x2﹣2x+3的图象上.若y1<y2,写出一个符合条件的a的值.三.解答题(共3小题)13.如图,已知二次函数y=ax2+bx+c(a≠0)的顶点是(1,4),且图象过点A(3,0),与y轴交于点B.(1)求二次函数y=ax2+bx+c的解析式;(2)求直线AB的解析式;(3)在直线AB上方的抛物线上是否存在一点C,使得S△ABC=3,如果存在,请求出C 点的坐标,如果不存在,请说明理由.14.已知一个抛物线经过点(3,0),(﹣1,0)和(2,﹣6).(1)求这个二次函数的解析式;(2)求这个二次函数图象的顶点坐标和对称轴.15.如图,已知抛物线y=ax2+bx+5与x轴交于A(﹣1,0),B(5,0)两点(点A在点B 的左侧),与y轴交于点C.(1)求抛物线的解析式;(2)点D是第一象限内抛物线上的一个动点(与点C,B不重合),过点D作DF⊥x轴于点F,交直线BC于点E,连接BD,直线BC能否把△BDF分成面积之比为2:3的两部分?若能,请求出点D的坐标;若不能,请说明理由.(3)若M为抛物线对称轴上一动点,使得△MBC为直角三角形,请直接写出点M的坐标.。
人教版数学九级上册《22.1.2二次函数的图y=ax2图像和性质》同步练习一.选择题(共12小题)1.在同一平面直角坐标系中,函数y=ax+b与y=bx2+ax的图象可能是()A.B.C.D.2.在下列二次函数中,其图象对称轴为x=﹣2的是()A.y=(x+2)2﹣3 B.y=2x2﹣2 C.y=﹣2x2﹣2 D.y=2(x﹣2)2 3.已知二次函数y=ax2+bx+c的图象如图所示,那么这个函数的顶点坐标是()A.(1,﹣)B.(1,)C.(1,﹣)D.(1,﹣)4.对于二次函数y=(x﹣2)2+3的图象,下列说法正确的是()A.开口向下B.对称轴是直线x=﹣2C.顶点坐标是(2,3)D.与x轴有两个交点5.抛物线y=x2﹣2x+m2+2(m是常数)的顶点在()A.第一象限B.第二象限C.x轴的正半轴上D.x轴的负半轴上6.从﹣4,﹣2,0,1,2,34这七个数中,随机抽取一个数记为a,若数a使关于x的分式方程+=﹣2有正整数解,又使函数y=x2﹣(2a﹣7)x+1的顶点在第三象限,那么这七个数中所有满足条件a的个数为()A.2 B.3 C.4 D.57.已知,平面直角坐标系中,直线y1=x+3与抛物线y2=﹣+2x的图象如图,点P是y2上的一个动点,则点P到直线y1的最短距离为()A.B.C.D.8.已知函数y=2mx2+(1﹣4m)x+2m﹣1,下列结论错误的是()A.当m=0时,y随x的增大而增大B.当m=时,函数图象的顶点坐标是(,﹣)C.当m=﹣1时,若x<,则y随x的增大而减小D.无论m取何值,函数图象都经过同一个点9.二次函数y=﹣x2+(12﹣m)x+12,时,当x>2时,y随x的增大而减小;当x<2时,y随x的增大而增大,则m的值为()A.6 B.8 C.10 D.1210.已知y=ax2+bx+c(其中a,b,c为常数,且a≠0),乐老师在用描点法画其的图象时,列出如下表格,根据该表格,下列判断中不正确的是()x …﹣1 0 1 2 …y …﹣2 2.5 4 2.5 …A.a<0B.一元二次方程ax2+bx+c﹣5=0没有实数根C.当x=3时y=﹣2D.一元二次方程ax2+bx+c=0有一根比3大11.已知函数y=mx2+nx﹣3,且2m﹣n=1,若不论m取何正数时,函数值y 都随自变量x的增大而减小,则满足条件的x的取值范围是()A.﹣4≤x≤﹣2 B.C.1<x≤3 D.3≤x≤512.定义运算“※”为:a※b=,如:1※(﹣2)=﹣1×(﹣2)2=﹣4.则函数y=2※x的图象大致是()A.B.C.D.二.填空题(共5小题)13.抛物线y=x2+4的对称轴是.14.若抛物线y=(a﹣2)x2的开口向上,则a的取值范围是.15.二次函数y=﹣x2﹣2x图象x轴上方的部分沿x轴翻折到x轴下方,图象的其余部分保持不变,翻折后的图象与原图象x轴下方的部分组成一个“M”形状的新图象,若直线y=x+b与该新图象有两个公共点,则b的取值范围为.16.如图,抛物线y=ax2+1与y轴交于点A,过点A与x轴平行的直线交抛物线y=4x2于点B、C,则线段BC的长为.三.解答题(共5小题)17.画函数y=的图象.18.已知二次函数y=ax2(a≠0)与一次函数y=kx﹣2的图象相交于A、B两点,如图所示,其中A(﹣1,﹣1),求△OAB的面积.19.如图,A点是抛物线y=ax2上第一象限内的点,A点坐标为(3,6),AB ⊥y轴与抛物线y=ax2的另一交点为B点.(1)求a的值和B点坐标;(2)在x轴上有一点C,C点坐标为(5,0),请求出△AOC的面积.20.如图,抛物线的顶点为A(2,1),且经过原点O,与x轴的另一个交点为B.(1)求抛物线的解析式;(2)求△AOB的面积;(3)若点P(m,﹣m)(m≠0)为抛物线上一点,求与P关于抛物线对称轴对称的点Q的坐标.(注:抛物线y=ax2+bx+c的对称轴是x=﹣)21.小东根据学习函数的经验,对函数y=图象与性质进行了探究,下面是小东的探究过程,请补充完整,并解决相关问题:(1)函数y=的自变量x的取值范围是;(2)如表是y与x的几组对应值.x …﹣2 ﹣1 ﹣0 1 2 3 4 …y … 2 4 2 m …表中m的值为;(3)如图,在平面直角坐标系中,描出了以上表中各对对应值为坐标的点,根据描出的点,画出函数y=的大致图象;(4)结合函数图象,请写出函数y=的一条性质:(5)解决问题:如果函数y=与直线y=a的交点有2个,那么a的取值范围是.参考答案一.选择题1.A.2.A.3.A.4.C.5.A.6.A.7.B.8.C.9.B.10.D.11.A.12.C.二.填空题13.y轴;14.a>215.0<b<1或b<﹣16.1.三.解答题17.解:列表:描点、连线:18.解:∵一次函数y=kx﹣2的图象相过点A(﹣1,﹣1),∴﹣1=﹣k﹣2,解得k=﹣1,∴一次函数表达式为y=﹣x﹣2,∴令x=0,得y=﹣2,∴G(0,﹣2),∵y=ax2过点A(﹣1,﹣1),∴﹣1=a×1,解得a=﹣1,∴二次函数表达式为y=﹣x2,由一次函数与二次函数联立可得,解得,,∴S△OAB=OG•|A的横坐标|+OG•点B的横坐标=×2×1+×2×2=1+2=3.19.解:(1)把A点(3,6)代入抛物线y=ax2,解得a=,则B点坐标为(﹣3,6);(2)S△AOC=OC•y A=×5×6=15.20.解:(1)设二次函数的解析式为y=a(x﹣2)2+1,将点O(0,0)的坐标代入得:4a+1=0,解得a=﹣.所以二次函数的解析式为y=﹣(x﹣2)2+1;(2)∵抛物线y=﹣(x﹣2)2+1的对称轴为直线x=2,且经过原点O(0,0),∴与x轴的另一个交点B的坐标为(4,0),∴△AOB的面积=×4×1=2;(3)∵点P(m,﹣m)(m≠0)为抛物线y=﹣(x﹣2)2+1上一点,∴﹣m=﹣(m﹣2)2+1,解得m1=0(舍去),m2=8,∴P点坐标为(8,﹣8),∵抛物线对称轴为直线x=2,∴P关于抛物线对称轴对称的点Q的坐标为(﹣4,﹣8).21.解:(1)函数y=的自变量x的取值范围是:全体实数,故答案为:全体实数;(2)把x=4代入y=得,y==,∴m=,故答案为:;(3)如图所示,(4)①图象位于一二象限,②当x=1时,函数由值最大4,③当x<1时,y随x的增大而增大,④当x>1时,y随x的增大而减小,⑤图象与x轴没有交点.故答案为:①图象位于一二象限,②当x=1时,函数由值最大4,③当x<1时,y随x的增大而增大,④当x>1时,y随x的增大而减小,⑤图象与x轴没有交点.(5)由图象,得0<a<4.故答案为:0<a<4.第11页共11页。
二次函数y=a (x-h)2+k(a ≠0)的图象与性质—巩固练习(基础)【巩固练习】一、选择题1.抛物线2(2)3y x =-+-的顶点坐标是( )A .(2,-3)B .(-2,3)C .(2,3)D .(-2,-3)2.函数y=21x 2+2x+1写成y=a(x -h)2+k 的形式是( ) A.y=21(x -1)2+2 B.y=21(x -1)2+21 C.y=21(x -1)2-3 D.y=21(x+2)2-13.抛物线y=21x 2向左平移3个单位,再向下平移2个单位后,所得的抛物线表达式是( )A.y=21(x+3)2-2B.y=21(x -3)2+2C.y=21(x -3)2-2D.y=21(x+3)2+24.把二次函数122--=x x y 配方成顶点式为( )A .2)1(-=x yB . 2)1(2--=x yC .1)1(2++=x y D .2)1(2-+=x y5.由二次函数22(3)1y x =-+,可知( )A .其图象的开口向下B .其图象的对称轴为直线3x =-C .其最小值为1D .当3x <时,y 随x 的增大而增大 6.(2020•泰安)在同一坐标系中,一次函数y=﹣mx+n 2与二次函数y=x 2+m 的图象可能是( ).A. B. C. D.二、填空题7. (2020•怀化)二次函数y=x 2+2x 的顶点坐标为,对称轴是直线.8.已知抛物线y=-2(x+1)2-3,如果y 随x 的增大而减小,那么x 的取值范围是______. 9.抛物线y=-3(2x 2-1)的开口方向是_____,对称轴是_____. 10.顶点为(-2,-5)且过点(1,-14)的抛物线的解析式为.11.将抛物线22y x x =-向上平移3个单位,再向右平移4个单位得到的抛物线是_______.12.抛物线22(2)6y x =--的顶点为C ,已知3y kx =-+的图象经过点C ,则这个一次函数的图象与两坐标轴所围成的三角形面积为________. 三、解答题13.已知抛物线的顶点(-1,-2),且图象经过(1,10),求抛物线的解析式. 14. 已知抛物线212y x =-向上平移2个单位长度,再向右平移1个单位长度得到 抛物线2()y a x h k =-+;(1)求出a ,h ,k 的值;(2)在同一直角坐标系中,画出2()y a x h k =-+与212y x =-的图象; (3)观察2()y a x h k =-+的图象,当x ________时,y 随x 的增大而增大;当x ________时,函数y 有最________值,最________值是y =________; (4)观察2()y a x h k =-+的图象,你能说出对于一切x 的值,函数y 的取值范围吗? 15.(2020•珠海)已知抛物线y=ax 2+bx+3的对称轴是直线x=1. (1)求证:2a+b=0;(2)若关于x 的方程ax 2+bx ﹣8=0的一个根为4,求方程的另一个根. 【答案与解析】 一、选择题 1.【答案】D ;【解析】由顶点式可求顶点,由20x +=得2x =-,此时,3y =-. 2.【答案】D ;【解析】通过配方即可得到结论. 3.【答案】A ; 【解析】抛物线y=21x 2向左平移3个单位得到y=21(x+3)2,再向下平移2个单位后, 所得的抛物线表达式是y=21(x+3)2-2.4.【答案】B ;【解析】通过配方即可得到结论. 5.【答案】C ;【解析】可画草图进行判断. 6.【答案】D ;【解析】解:A 、由直线与y 轴的交点在y 轴的负半轴上可知,n 2<0,错误;B 、由抛物线与y 轴的交点在y 轴的正半轴上可知,m >0,由直线可知,﹣m >0,错误;C 、由抛物线y 轴的交点在y 轴的负半轴上可知,m <0,由直线可知,﹣m <0,错误;D 、由抛物线y 轴的交点在y 轴的负半轴上可知,m <0,由直线可知,﹣m >0,正确, 故选D .二、填空题 7.【答案】(﹣1,﹣1); x=﹣1; 【解析】∵y=x 2+2x=(x+1)2﹣1,∴二次函数y=x 2+4x 的顶点坐标是:(﹣1,﹣1),对称轴是直线x=﹣1.8.【答案】x ≥-1;【解析】由解析式可得抛物线的开口向下,对称轴是x=-1,对称轴的右边是y 随x 的增大而减小,故x ≥-1.9.【答案】向下,y 轴; 10.【答案】249y x x =---;【解析】设2(2)5y a x =+-过点(1,-14)得1a =-,所以22(2)549y x x x =-+-=---.11.【答案】21027y x x =-+;【解析】先化一般式为顶点式,再根据平移规律求解. 12.【答案】 1; 【解析】C(2,-6),可求932y x =-+与x 轴交于2(,0)3,与y 轴交于(0,3),∴123123S =⨯⨯=. 三、解答题13.【答案与解析】∵ 抛物线的顶点为(-1,-2),∴ 设其解析式为2(1)2y a x =+-,又图象经过点(1,10),∴1042a =-,∴3a =, ∴ 解析式为23(1)2y x =+-. 14.【答案与解析】(1)由212y x =-向上平移2个单位,再向右平移1个单位所得到的抛物线是21(1)22y x =--+. ∴12a =-,1h =,2k =. (2)函数21(1)22y x =--+与212y x =-的图象如图所示.(3)观察2()y a x h k =-+的图象,当1x <时,y 随x 的增大而增大;当1x =时,函数y 有最大值,最大值是2y =. (4)由图象知,对于一切x 的值,总有函数值2y ≤. 15.【答案与解析】(1)证明:∵对称轴是直线x=1=﹣,∴2a+b=0;(2)解:∵ax 2+bx ﹣8=0的一个根为4,∴16a+4b ﹣8=0, ∵2a+b=0, ∴b=﹣2a ,∴16a ﹣8a ﹣8=0, 解得:a=1,则b=﹣2,∴ax 2+bx ﹣8=0为:x 2﹣2x ﹣8=0, 则(x ﹣4)(x+2)=0, 解得:x 1=4,x 2=﹣2,故方程的另一个根为:﹣2.《圆》全章复习与巩固—巩固练习(提高)【巩固练习】一、选择题1.如图所示,AB 、AC 为⊙O 的切线,B 和C 是切点,延长OB 到D ,使BD =OB ,连接AD .如果∠DAC =78°,那么∠ADO 等于( ).A .70°B .64°C .62°D .51°2.在半径为27m 的圆形广场中心点O 的上空安装了一个照明光源S ,S 射向地面的光束呈圆锥形,其轴截面SAB 的顶角为120°(如图所示),则光源离地面的垂直高度SO 为( ). A .54m B .63m C .93m D .183m第1题图 第2题图 第3题图 第4题图3.设计一个商标图案,如图所示,在矩形ABCD 中,AB=2BC ,且AB=8cm ,以A 为圆心、AD 的长为半径作半圆,则商标图案(阴影部分)的面积等于( ).A.(4π+8)cm 2B.(4π+16)cm 2C.(3π+8)cm 2D.(3π+16)cm 24.如图,的半径为5,弦的长为8,点在线段(包括端点)上移动,则的取值范围是( ). A. B. C. D. 5.“圆材埋壁”是我国古代著名的数学著作《九章算术》中的问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”用数学语言可表示为:如图所示,CD 为⊙O 的直径,弦AB ⊥CD 于E ,CE=1寸,AB=10寸,则直径CD 的长为( )A .12.5寸B .13寸C .25寸D .26寸 6.(2020•贵港)如图,已知P 是⊙O 外一点,Q 是⊙O 上的动点,线段PQ 的中点为M ,连接OP ,OM .若⊙O 的半径为2,OP=4,则线段OM 的最小值是( )A .0B .1C .2D .37.一条弦的两个端点把圆周分成4:5两部分,则该弦所对的圆周角为( ). A .80° B .100° C .80°或100° D .160°或200°8.如图所示,AB 、AC 与⊙O 分别相切于B 、C 两点,∠A =50°,点P 是圆上异于B 、C 的一动点,则∠BPC的度数是( ).A .65°B .115°C .65°或115°D .130°或50° 二、填空题 9.如下左图,是的内接三角形,,点P 在上移动(点P 不与点A 、C 重合),则的变化范围是__________.第9题图 第10题图10.如图所示,EB 、EC 是⊙O 是两条切线,B 、C 是切点,A 、D 是⊙O 上两点,如果∠E=46°,∠DCF=32°,那么∠A 的度数是________________. 11.已知⊙O 1与⊙O 2的半径1r 、2r 分别是方程2680x x -+= 的两实根,若⊙O 1与⊙O 2的圆心距d =5.则⊙O 1与⊙O 2的位置关系是____ .12.(2020•巴彦淖尔)如图,AB 为⊙O 的直径,AB=AC ,BC 交⊙O 于点D ,AC 交⊙O 于点E ,∠BAC=45°,给出以下五个结论:①∠EBC=22.5°;②BD=DC ;③AE=2EC ;④劣弧是劣弧的2倍;⑤AE=BC ,其中正确的序号是.13.两个圆内切,其中一个圆的半径为5,两圆的圆心距为2,则另一个圆的半径是_______________.14.已知正方形ABCD外接圆的直径为2a,截去四个角成一正八边形,则这个正八边形EFGHIJLK的边长为________,面积为________.15.如图(1)(2)…(m)是边长均大于2的三角形、四边形、……、凸n边形,分别以它们的各顶点为圆心,以l为半径画弧与两邻边相交,得到3条弧,4条弧,……(1)图(1)中3条弧的弧长的和为________,图(2)中4条弧的弧长的和为________;(2)求图(m)中n条弧的弧长的和为________(用n表示).16.如图所示,蒙古包可以近似地看做由圆锥和圆柱组成,如果想用毛毡搭建20个底面积为9πm2,高为3.5m,外围高4 m的蒙古包,至少要________m2的毛毡.三、解答题17.如图,⊙O是△ABC的外接圆,FH是⊙O的切线,切点为F,FH∥BC,连结AF交BC于E,∠ABC的平分线BD交AF于D,连结BF.(1)证明:AF平分∠BAC;(2)证明:BF=FD.18.(2020•南京)如图,四边形ABCD是⊙O的内接四边形,BC的延长线与AD的延长线交于点E,且DC=DE.(1)求证:∠A=∠AEB;(2)连接OE,交CD于点F,OE⊥CD,求证:△ABE是等边三角形.19.如图,相交两圆的公共弦长为120cm,它分别是一圆内接正六边形的边和另一圆内接正方形的边.求两圆相交弧间阴影部分的面积.20.问题背景:课外学习小组在一次学习研讨中,得到了如下两个命题:①如图(1),在正△ABC中,M、N分别是AC、AB上的点,BM与CN相交于点O,若∠BON=60°,则BM=CN;②如图(2),在正方形ABCD中,M、N分别是CD、AD上的点,BM与CN相交于点O,若∠BON=90°,则BM=CN.然后运用类似的思想提出了如下命题:③如图(3),在正五边形ABCDE中,M、N分别是CD、DE上的点,BM与CN相交于点O,若∠BON=108°,则BM=CN.任务要求:(1)请你从①②③三个命题中选择一个进行证明;(2)请你继续完成下面的探索;①在正n(n≥3)边形ABCDEF…中,M、N分别是CD、DE上的点,BM与CN相交于点O,试问当∠BON等于多少度时,结论BM=CN成立(不要求证明);②如图(4),在正五边形ABCDE中,M、N分别是DE、AE上的点,BM与CN相交于点O,∠BON=108°时,试问结论BM=CN是否成立.若成立,请给予证明;若不成立,请说明理由.【答案与解析】一、选择题1.【答案】B;【解析】由AB为⊙O的切线,则AB⊥OD.又BD=OB,则AB垂直平分OD,AO=AD,∠DAB=∠BAO.由AB、AC为⊙O的切线,则∠CAO=∠BAO=∠DAB.所以,∠DAB=∠DAC=26°.∠ADO=90°-26°=64°.本题涉及切线性质定理、切线长定理、垂直平分线的性质、等腰三角形的性质等.2.【答案】C;【解析】圆锥的高、底面半径与母线组成直角三角形.由题意,SO⊥AB于O,∴∠SOA=∠SOB=90°.又SA=SB,∠ASB=120°,∴∠SAB=∠SBA=180120302=°-?°,设SO=x m,则AS=2x m.∵ AO=27,由勾股定理,得(2x)2-x2=272,解得93x=(m).3.【答案】A.;【解析】对图中阴影部分进行分析,可看做扇形、矩形、三角形的面积和差关系.∵矩形ABCD中,AB=2BC,AB=8cm,∴ AD=BC=4cm,∠DAF=90°,,,又AF=AD=4cm,∴,∴.4.【答案】A;【解析】OM最长是半径5;最短是OM⊥AB时,此时OM=3,故选A.5.【答案】D;【解析】因为直径CD垂直于弦AB,所以可通过连接OA(或OB),求出半径即可.根据“垂直于弦的直径平分弦,并且平分弦所对的两条弧”,知(寸),在Rt△AOE中,,即,解得OA=13,进而求得CD=26(寸).故选D.6.【答案】B.【解析】设OP与⊙O交于点N,连结MN,OQ,如图,∵OP=4,ON=2,∴N是OP的中点,∵M为PQ的中点,∴MN为△POQ的中位线,∴MN=OQ=×2=1,∴点M在以N为圆心,1为半径的圆上,当点M在ON上时,OM最小,最小值为1,∴线段OM的最小值为1.故选B.7.【答案】C;【解析】圆周角的顶点在劣弧上时,圆周角为5136010092⨯⨯=°°;圆周角的顶点在优弧上时,圆周角为413608092⨯⨯=°°.注意分情况讨论.8.【答案】C;【解析】连接OC、OB,则∠BOC=360°-90°-90°-50°=130°.点P在优弧上时,∠BPC=12∠BOC=65°;点P在劣弧上时,∠BPC=180°-65°=115°.主要应用了切线的性质定理、圆周角定理和多边形内角和定理.二、填空题 9.【答案】; 10.【答案】99°;【解析】由EB=EC ,∠E=46°知,∠ECB= 67°,从而∠BCD=180°-67°-32°=81°, 在⊙O 中,∠BCD 与∠A 互补,所以∠A=180°-81°=99°. 11.【答案】相交;【解析】求出方程2680x x -+= 的两实根1r 、2r 分别是4、2,则1r -2r <d <1r +2r ,所以两圆相交.12.【答案】①②④;【解析】连接AD ,AB 是直径,则AD ⊥BC ,又∵△ABC 是等腰三角形,故点D 是BC 的中点,即BD=CD ,故②正确; ∵AD 是∠BAC 的平分线,由圆周角定理知,∠EBC=∠DAC=∠BAC=22.5°,故①正确;∵∠ABE=90°﹣∠EBC ﹣∠BAD=45°=2∠CAD ,故④正确; ∵∠EBC=22.5°,2EC ≠BE ,AE=BE ,∴AE ≠2CE ,③不正确; ∵AE=BE ,BE 是直角边,BC 是斜边,肯定不等,故⑤错误. 综上所述,正确的结论是:①②④.13.【答案】7或3;【解析】两圆有三种位置关系:相交、相切(外切、内切)和相离(外离、内含).两圆内切时,圆心距,题中一圆半径为5,而d=2,所以有,解得r=7或r=3,即另一圆半径为7或3.14.【答案】(21)a ; 2(222)a ;【解析】正方形ABCD 外接圆的直径就是它的对角线,由此求得正方形边长为a .如图所示,设正八边形的边长为x .在Rt △AEL 中,LE =x ,AE =AL =22x ,∴222x x a ⨯+=,21)x a =, 即正八边形的边长为(21)a .222224[(21)](222)AEL S S S a x a a a =-=-=-=△正方形正八边形.15.【答案】(1)π; 2π; (2)(n-2)π;【解析】∵ n 边形内角和为(n-2)180°,前n 条弧的弧长的和为(2)1801(2)3602n n -=-个以某定点为圆心,以1为半径的圆周长,∴ n 条弧的弧长的和为121(2)(2)2n n ππ⨯⨯-=-.本题还有其他解法,比如:设各个扇形的圆心角依次为1α,2α,…,n α, 则12(2)180n n ααα+++=-…°,∴ n 条弧长的和为1212111()180180180180n n απαπαππααα⨯+⨯++⨯=+++……(2)180(2)180n n ππ=-⨯=-.16.【答案】720π;【解析】∵ S =πr 2,∴ 9π=πr 2,∴ r =3.∴ h 1=4,∴2215l h r =+=,∴223523 3.5152136S S S rl rh πππππππ=+=+=⨯⨯+⨯⨯=+=锥柱,2036720S ππ=⨯=总.所求面积包括圆锥的侧面积和圆柱的侧面积,不包括底面积.三、解答题17.【答案与解析】(1)连结OF∵FH 是⊙O 的切线 ∴OF⊥FH ∵FH∥BC , ∴OF 垂直平分BC∴BF FC =∴AF 平分∠BAC .(2)由(1)及题设条件可知∠1=∠2,∠4=∠3,∠5=∠2 ∴∠1+∠4=∠2+∠3 ∴∠1+∠4=∠5+∠3 ∠FDB =∠FBD ∴BF =FD.18.【答案与解析】 证明:(1)∵四边形ABCD 是⊙O 的内接四边形, ∴∠A+∠BCD=180°, ∵∠DCE+∠BCD=180°, ∴∠A=∠DCE , ∵DC=DE ,∴∠DCE=∠AEB , ∴∠A=∠AEB ;(2)∵∠A=∠AEB , ∴△ABE 是等腰三角形, ∵EO ⊥CD , ∴CF=DF ,∴EO 是CD 的垂直平分线, ∴ED=EC , ∵DC=DE , ∴DC=DE=EC ,∴△DCE 是等边三角形, ∴∠AEB=60°,∴△ABE 是等边三角形. 19.【答案与解析】A BCDEO 12345A BCD EO 12解:∵公共弦AB=120.20. 【答案与解析】(1)如选命题①.证明:在图(1)中,∵∠BON=60°,∴∠1+∠2=60°.∵∠3+∠2=60°,∴∠1=∠3.又∵ BC=CA,∠BCM=∠CAN=60°,∴△BCM≌△CAN,∴ BM=CM.如选命题②.证明:在图(2)中,∵∠BON=90°,∴∠1+∠2=90°.∵∠3+∠2=90°,∴∠1=∠3.又∵ BC=CD,∠BCM=∠CDN=90°,∴△BCM≌△CDN,∴ BM=CN.如选命题③.证明:在图(3)中,∵∠BON=108°,∴∠1+∠2=108°.∵∠2+∠3=108°,∴∠1=∠3.又∵ BC=CD,∠BCM=∠CDN=108°,∴△BCM≌△CDN,∴ BM=CN.(2)①答:当∠BON=(2)180nn°时结论BM=CN成立.②答:当∠BON=108°时.BM=CN还成立.证明:如图(4),连接BD、CE在△BCD和△CDE中,∵ BC=CD,∠BCD=∠CDE=108°,CD=DE,∴△BCD≌△CDE.∴ BD=CE,∠BDC=∠CED,∠DBC=∠ECD.∵∠CDE=∠DEN=108°,∴∠BDM=∠CEM.∵∠OBC+∠OCB=108°,∠OCB+∠OCD=108°.∴∠MBC=∠NCD.又∵∠DBC=∠ECD=36°,∴∠DBM=∠ECM.∴△BDM≌△CEN,∴ BM=CN.。
22.2 二次函数y=ax2的图像及性质作图题:在同一直角坐标系下,做下列函数的图形(1)y=222(2)y=222一、选择题本大题共小题1.关于y =13x 2,y =x 2,y =3x 2,的图象,下列说法中不正确的是( )A.顶点相同B.对称轴相同C.图象形状相同D.最低点相同 2.抛物线y =ax 2过点(1,-1),则a 的值为( ) A.1 B.-1 C.12 D.-123.二次函数y =x 2的图象的开口方向是( )A.向上B.向下C.向左D.向右 4.抛物线y =-2x 2开口方向是( ) A.向上 B.向下 C.向左 D.向右5.下列函数中,当x >0时,y 的值随x 的值增大而增大的是( ) A.y =-x 2 B.y =x -1 C.y =-x +1 D.y =1x6.下列个函数图象中当x 时,y 随x 的增而减小的是( )A. B. C. D.7.已知抛物线y =ax 2(a >0)过A (-2,y 1)、B (1,y 2)两点,则下列关系式一定正确的是( ) A.y 1>0>y 2 B.y 2>0>y 1 C.y 1>y 2>0 D.y 2>y 1>0 8.如图,函数y =-2x 2 的图象是( )A.①B.②C.③D.④9.抛物线y =10x 2的顶点坐标是( )A.(1,10)B.(0,10)C.(0,0)D.(5,5)10.若二次函数y =ax 2的图象经过点P (-2,4),则该图象必经过点( ) A.(4,-2) B.(-4,2) C.(-2,-4) D.(2,4)11.在抛物线y =-x 2上,当y <0时,x 的取值范围应为( ) A.x >0 B.x <0 C.x ≠0 D.x ≥012.两条抛物线y =x 2与y =-x 2在同一坐标系内,下列说法中不正确的是( ) A.顶点相同 B.对称轴相同 C.开口方向相反 D.都有最小值二、填空题(本大题共8小题)13.抛物线y =-3x 2的对称轴是____________,当x ____________时,抛物线上的点都在x 轴的下方. 14.二次函数y =ax 2(a >0)的图象经过点(1,y 1)、(2,y 2),则y 1 ______ y 2(填“>”或“<”).x2的图象如图所示,点A0位于坐标原点,点A1,A2,A3,…,A2011在y 15.二次函数y=23x2位于第一象限的图象上,若△A0B1A1,△A1B2A2,轴的正半轴上,点B1,B2,B3,…,B2011在二次函数y=23△A2B3A3,…,△A2010B2011A2011都为等边三角形,则△A2010B2011A2011的边长=____________.16.函数y=ax2(a>0)中,当x<0时,y随x的增大而______ .17.二次函数y=3x2的图象开口______ ,对称轴是______ ,顶点坐标是______ ,图象有最______ 点,x ______ 时,y随x的增大而增大,x ______ 时,y随x的增大而减小.18.若二次函数y=m x m2−m的图象开口向下,则______ .19.若点A(x1,8),B(x2,8),(x1≠x2)均在抛物线y=ax2上,则当x=x1+x2时,y的值是______ .x2的顶点坐标是______ ,对称轴是______ .20.二次函数y=18三、解答题(本大题共1小题,共8.0分)21.已知二次函数y=ax2(a≠0)与一次函数y=kx-2的图象相交于A、B两点,如图所示,其中A(-1,-1),求△OAB的面积.【答案】1.C2.B3.A4.B5.B6.B7.C8.C9.C 10.D 11.C 12.D 13.x =0(或y 轴);≠0 14.< 15.2011 16.减小17.向上;y 轴;(0,0);低;>0;<0 18.m =-1 19.020.(0,0);y 轴21.解:∵一次函数y =kx -2的图象相过点A (-1,-1), ∴-1=-k -2,解得k =-1,∴一次函数表达式为y =-x -2, ∴令x =0,得y =-2, ∴G (0,-2),∵y =ax 2过点A (-1,-1), ∴-1=a ×1,解得a =-1,∴二次函数表达式为y =-x 2, 由一次函数与二次函数联立可得y =−x2y =−x −2解得 y1=−1x 1=−1, y 2=−4x 2=2 ∴S △OAB =12OG•|A 的横坐标|+12OG•点B 的横坐标=12×2×1+12×2×2=1+2=3.。
5.2《二次函数的图像和性质》同步练习卷一.选择题1.在同一坐标系中,一次函数y=ax+2与二次函数y=x2+a的图象可能是()A.B.C.D.2.当ab>0时,y=ax2与y=ax+b的图象大致是()A.B.C.D.3.在同一平面直角坐标系中,函数y=ax2+bx与y=bx+a的图象可能是()A.B.C.D.4.如果抛物线y=x2﹣6x+c﹣2的顶点到x轴的距离是3,那么c的值等于()A.8B.14C.8或14D.﹣8或﹣145.已知两点A(﹣5,y1),B(3,y2)均在抛物线y=ax2+bx+c(a≠0)上,点C(x0,y0)是该抛物线的顶点.若y1>y2≥y0,则x0的取值范围是()A.x0>﹣5B.x0>﹣1C.﹣5<x0<﹣1D.﹣2<x0<36.已知二次函数y=ax2+bx+c(a<0)的图象如图,当﹣5≤x≤0时,下列说法正确的是()A.有最小值﹣5、最大值0B.有最小值﹣3、最大值6C.有最小值0、最大值6D.有最小值2、最大值67.把抛物线y=﹣2x2向上平移1个单位,再向右平移1个单位,得到的抛物线是()A.y=﹣2(x+1)2+1B.y=﹣2(x﹣1)2+1C.y=﹣2(x﹣1)2﹣1D.y=﹣2(x+1)2﹣18.对于二次函数y=﹣(x﹣1)2+2的图象与性质,下列说法正确的是()A.对称轴是直线x=1,最小值是2B.对称轴是直线x=1,最大值是2C.对称轴是直线x=﹣1,最小值是2D.对称轴是直线x=﹣1,最大值是29.下列对二次函数y=x2﹣x的图象的描述,正确的是()A.开口向下B.对称轴是y轴C.经过原点D.在对称轴右侧部分是下降的10.已知二次函数y=x2﹣2mx(m为常数),当﹣1≤x≤2时,函数值y的最小值为﹣2,则m的值是()A.B.C.或D.或11.将二次函数y=x2﹣4x+a的图象向左平移1个单位,再向上平移1个单位.若得到的函数图象与直线y=2有两个交点,则a的取值范围是()A.a>3B.a<3C.a>5D.a<512.抛物线y=(x﹣1)2+2的顶点坐标是()A.(﹣1,2)B.(﹣1,﹣2)C.(1,﹣2)D.(1,2)13.如图,一次函数y1=x与二次函数y2=ax2+bx+c图象相交于P、Q两点,则函数y=ax2+(b﹣1)x+c的图象可能是()A.B.C.D.14.在同一平面直角坐标系中,若抛物线y=x2+(2m﹣1)x+2m﹣4与y=x2﹣(3m+n)x+n 关于y轴对称,则符合条件的m,n的值为()A.m=,n=﹣B.m=5,n=﹣6C.m=﹣1,n=6D.m=1,n=﹣215.若二次函数y=|a|x2+bx+c的图象经过A(m,n)、B(0,y1)、C(3﹣m,n)、D(,y2)、E(2,y3),则y1、y2、y3的大小关系是()A.y1<y2<y3B.y1<y3<y2C.y3<y2<y1D.y2<y3<y1 16.当a﹣1≤x≤a时,函数y=x2﹣2x+1的最小值为1,则a的值为()A.1B.2C.1或2D.0或317.如图,已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列5个结论:①abc >0;②b﹣a>c;③4a+2b+c>0;④3a>﹣c;⑤a+b>m(am+b)(m≠1的实数).其中正确结论的有()A.①②③B.②③⑤C.②③④D.③④⑤18.如图是抛物线y1=ax2+bx+c(a≠0)图象的一部分,抛物线的顶点坐标A(1,3),与x 轴的一个交点B(4,0),直线y2=mx+n(m≠0)与抛物线交于A,B两点,下列结论:①2a+b=0;②abc>0;③方程ax2+bx+c=3有两个相等的实数根;④抛物线与x轴的另一个交点是(﹣1,0);⑤当1<x<4时,有y2<y1,其中正确的是()A.①②③B.①③④C.①③⑤D.②④⑤二.填空题19.已知抛物线y=ax2+bx+c的部分图象如图所示,若y>0,则x的取值范围是.20.如图,抛物线y=﹣x2+2x+3与y轴交于点C,点D(0,1),点P是抛物线上的动点.若△PCD是以CD为底的等腰三角形,则点P的坐标为.21.已知点A(x1,y1)、B(x2,y2)在二次函数y=(x﹣1)2+1的图象上,若x1>x2>1,则y1y2(填“>”、“<”或“=”).22.如图,对称轴平行于y轴的抛物线与x轴交于(1,0),(3,0)两点,则它的对称轴为.23.二次函数y=﹣(x﹣6)2+8的最大值是.24.将抛物线y=2(x﹣1)2+2向左平移3个单位,再向下平移4个单位,那么得到的抛物线的表达式为.25.如图,已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A(﹣1,0),与y轴的交点B在(0,﹣2)和(0,﹣1)之间(不包括这两点),对称轴为直线x=1.下列结论:①abc>0;②4a+2b+c>0;③4ac﹣b2<﹣4a;④<a<;⑤b>c.其中正确结论有(填写所有正确结论的序号).三.解答题26.如图,已知二次函数y=x2+ax+3的图象经过点P(﹣2,3).(1)求a的值和图象的顶点坐标.(2)点Q(m,n)在该二次函数图象上.①当m=2时,求n的值;②若点Q到y轴的距离小于2,请根据图象直接写出n的取值范围.27.用描点法作出函数y=﹣x2+2x的图象.28.已知抛物线y=ax2+3经过点A(﹣2,﹣13).(1)求a的值.(2)若点P(m,﹣22)在此抛物线上,求点P的坐标.29.如图,二次函数y=(x﹣3)2+m的图象与y轴交于点C,点B是点C关于该二次函数图象的对称轴对称的点,已知一次函数y=kx+b的图象经过该二次函数图象上的点A(1,0)及点B.(1)求二次函数与一次函数的解析式;(2)抛物线上是否存在一点P,使S△ABP=S△ABC?若存在,请求出点P的坐标,若不存在,请说明理由.30.如图,平面直角坐标系中,抛物线y=﹣x2+4x+m﹣4(m为常数)与y轴的交点为C,M(3,0)与N(0,﹣2)分别是x轴、y轴上的点(1)当m=1时,求抛物线顶点坐标.(2)若3≤x≤3+m时,函数y=﹣x2+4x+m﹣4有最小值﹣7,求m的值.(3)若抛物线与线段MN有公共点,直接写出m的取值范围是.31.已知函数y=(m+2)x2+kx+n.(1)若此函数为一次函数;①m,k,n的取值范围;②当﹣2≤x≤1时,0≤y≤3,求此函数关系式;③当﹣2≤x≤3时,求此函数的最大值和最小值(用含k,n的代数式表示);(2)若m=﹣1,n=2,当﹣2≤x≤2时,此函数有最小值﹣4,求实数k的值.参考答案一.选择题1.解:当a<0时,二次函数顶点在y轴负半轴,一次函数经过一、二、四象限;当a>0时,二次函数顶点在y轴正半轴,一次函数经过一、二、三象限.故选:C.2.解:根据题意,ab>0,即a、b同号,当a>0时,b>0,y=ax2与开口向上,过原点,y=ax+b过一、二、三象限;此时,没有选项符合,当a<0时,b<0,y=ax2与开口向下,过原点,y=ax+b过二、三、四象限;此时,D选项符合,故选:D.3.解:A、对于直线y=bx+a来说,由图象可以判断,a>0,b>0;而对于抛物线y=ax2+bx 来说,对称轴x=﹣<0,应在y轴的左侧,故不合题意,图形错误.B、对于直线y=bx+a来说,由图象可以判断,a<0,b<0;而对于抛物线y=ax2+bx来说,图象应开口向下,故不合题意,图形错误.C、对于直线y=bx+a来说,由图象可以判断,a<0,b>0;而对于抛物线y=ax2+bx来说,图象开口向下,对称轴x=﹣位于y轴的右侧,故符合题意,D、对于直线y=bx+a来说,由图象可以判断,a>0,b>0;而对于抛物线y=ax2+bx来说,图象开口向下,a<0,故不合题意,图形错误.故选:C.4.解:根据题意=±3,解得c=8或14.故选:C.5.解:∵点C(x0,y0)是抛物线的顶点,y1>y2≥y0,∴抛物线有最小值,函数图象开口向上,∴a>0;∴25a﹣5b+c>9a+3b+c,∴<1,∴﹣>﹣1,∴x0>﹣1∴x0的取值范围是x0>﹣1.故选:B.6.解:由二次函数的图象可知,∵﹣5≤x≤0,∴当x=﹣2时函数有最大值,y最大=6;当x=﹣5时函数值最小,y最小=﹣3.故选:B.7.解:∵函数y=﹣2x2的顶点为(0,0),∴向上平移1个单位,再向右平移1个单位的顶点为(1,1),∴将函数y=﹣2x2的图象向上平移1个单位,再向右平移1个单位,得到抛物线的解析式为y=﹣2(x﹣1)2+1,故选:B.8.解:由抛物线的解析式:y=﹣(x﹣1)2+2,可知:对称轴x=1,开口方向向下,所以有最大值y=2,故选:B.9.解:A、∵a=1>0,∴抛物线开口向上,选项A不正确;B、∵﹣=,∴抛物线的对称轴为直线x=,选项B不正确;C、当x=0时,y=x2﹣x=0,∴抛物线经过原点,选项C正确;D、∵a>0,抛物线的对称轴为直线x=,∴当x>时,y随x值的增大而增大,选项D不正确.故选:C.10.解:y=x2﹣2mx=(x﹣m)2﹣m2,①若m<﹣1,当x=﹣1时,y=1+2m=﹣2,解得:m=﹣;②若m>2,当x=2时,y=4﹣4m=﹣2,解得:m=<2(舍);③若﹣1≤m≤2,当x=m时,y=﹣m2=﹣2,解得:m=或m=﹣<﹣1(舍),∴m的值为﹣或,故选:D.11.解:∵y=x2﹣4x+a=(x﹣2)2﹣4+a,∴将二次函数y=x2﹣4x+a的图象向左平移1个单位,再向上平移1个单位,得到的函数解析式为y=(x﹣2+1)2﹣4+a+1,即y=x2﹣2x+a﹣2,将y=2代入,得2=x2﹣2x+a﹣2,即x2﹣2x+a﹣4=0,由题意,得△=4﹣4(a﹣4)>0,解得a<5.故选:D.12.解:∵顶点式y=a(x﹣h)2+k,顶点坐标是(h,k),∴抛物线y=(x﹣1)2+2的顶点坐标是(1,2).故选:D.13.解:点P在抛物线上,设点P(x,ax2+bx+c),又因点P在直线y=x上,∴x=ax2+bx+c,∴ax2+(b﹣1)x+c=0;由图象可知一次函数y=x与二次函数y=ax2+bx+c交于第一象限的P、Q两点,∴方程ax2+(b﹣1)x+c=0有两个正实数根.∴函数y=ax2+(b﹣1)x+c与x轴有两个交点,又∵﹣>0,a>0∴﹣=﹣+>0∴函数y=ax2+(b﹣1)x+c的对称轴x=﹣>0,∴A符合条件,故选:A.14.解:∵抛物线y=x2+(2m﹣1)x+2m﹣4与y=x2﹣(3m+n)x+n关于y轴对称,∴,解之得,∴则符合条件的m,n的值为m=1,n=﹣2,故选:D.15.解:∵经过A(m,n)、C(3﹣m,n),∴二次函数的对称轴x=,∵B(0,y1)、D(,y2)、E(2,y3)与对称轴的距离B最远,D最近,∵|a|>0,∴y1>y3>y2;故选:D.16.解:当y=1时,有x2﹣2x+1=1,解得:x1=0,x2=2.∵当a﹣1≤x≤a时,函数有最小值1,∴a﹣1=2或a=0,∴a=3或a=0,故选:D.17.解:①∵对称轴在y轴的右侧,∴ab<0,由图象可知:c>0,∴abc<0,故①不正确;②当x=﹣1时,y=a﹣b+c<0,∴b﹣a>c,故②正确;③由对称知,当x=2时,函数值大于0,即y=4a+2b+c>0,故③正确;④∵x=﹣=1,∴b=﹣2a,∵a﹣b+c<0,∴a+2a+c<0,3a<﹣c,故④不正确;⑤当x=1时,y的值最大.此时,y=a+b+c,而当x=m时,y=am2+bm+c,所以a+b+c>am2+bm+c(m≠1),故a+b>am2+bm,即a+b>m(am+b),故⑤正确.故②③⑤正确.故选:B.18.解:∵抛物线的顶点坐标A(1,3),∴抛物线的对称轴为直线x=﹣=1,∴2a+b=0,所以①正确;∵抛物线开口向下,∴a<0,∴b=﹣2a>0,∵抛物线与y轴的交点在x轴上方,∴c>0,∴abc<0,所以②错误;∵抛物线的顶点坐标A(1,3),∴x=1时,二次函数有最大值,∴方程ax2+bx+c=3有两个相等的实数根,所以③正确;∵抛物线与x轴的一个交点为(4,0)而抛物线的对称轴为直线x=1,∴抛物线与x轴的另一个交点为(﹣2,0),所以④错误;∵抛物线y1=ax2+bx+c与直线y2=mx+n(m≠0)交于A(1,3),B点(4,0)∴当1<x<4时,y2<y1,所以⑤正确.故选:C.二.填空题19.解:已知抛物线与x轴的一个交点是(﹣1,0),对称轴为x=1,根据对称性,抛物线与x轴的另一交点为(3,0),观察图象,当y>0时,﹣1<x<3.20.解:∵△PCD是以CD为底的等腰三角形,∴点P在线段CD的垂直平分线上,如图,过P作PE⊥y轴于点E,则E为线段CD的中点,∵抛物线y=﹣x2+2x+3与y轴交于点C,∴C(0,3),且D(0,1),∴E点坐标为(0,2),∴P点纵坐标为2,在y=﹣x2+2x+3中,令y=2,可得﹣x2+2x+3=2,解得x=1±,∴P点坐标为(1+,2)或(1﹣,2),故答案为:(1+,2)或(1﹣,2).21.解:∵a=1>0,∴二次函数的图象开口向上,由二次函数y=(x﹣1)2+1可知,其对称轴为x=1,∵x1>x2>1,∴两点均在对称轴的右侧,∵此函数图象开口向上,∴在对称轴的右侧y随x的增大而增大,∵x1>x2>1,∴y1>y2.故答案为:>.22.解:∵点(1,0),(3,0)的纵坐标相同,∴这两点一定关于对称轴对称,∴对称轴是:x==2.故答案为:直线x=2.23.解:∵a=﹣1<0,∴y有最大值,当x=6时,y有最大值8.故答案为8.24.解:抛物线y=2(x﹣1)2+2向左平移3个单位,再向下平移4个单位得到y=2(x﹣1+3)2+2﹣4=2(x+2)2﹣2.故得到抛物线的解析式为y=2(x+2)2﹣2.故答案为:y=2(x+2)2﹣2.25.解:①∵函数开口方向向上,∴a>0;∵对称轴在y轴右侧∴ab异号,∵抛物线与y轴交点在y轴负半轴,∴c<0,∴abc>0,故①正确;②∵图象与x轴交于点A(﹣1,0),对称轴为直线x=1,∴图象与x轴的另一个交点为(3,0),∴当x=2时,y<0,∴4a+2b+c<0,故②错误;③∵二次函数y=ax2+bx+c的图象与y轴的交点在(0,﹣1)的下方,对称轴在y轴右侧,a>0,∴最小值:<﹣1,∵a>0,∴4ac﹣b2<﹣4a;∴③正确;④∵图象与y轴的交点B在(0,﹣2)和(0,﹣1)之间,∴﹣2<c<﹣1∴﹣2<﹣3a<﹣1,∴>a>;故④正确⑤∵a>0,∴b﹣c>0,即b>c;故⑤正确.综上所述,正确的有①③④⑤,故答案为:①③④⑤.三.解答题26.解:(1)把点P(﹣2,3)代入y=x2+ax+3中,∴a=2,∴y=x2+2x+3=(x+1)2+2,∴顶点坐标为(﹣1,2);(2)①当m=2时,n=11,②点Q到y轴的距离小于2,∴|m|<2,∴﹣2<m<2,∴2≤n<11;27.解:列表x…﹣10123…y…﹣3010﹣3…描点、连线画出函数图象如图:28.解:(1)将点A(﹣2,﹣13).代入y=ax2+3,得﹣13=4a+3,解得a=﹣4,∴抛物线的函数解析式为y=﹣4x2+3,(2)∵点P(m,﹣22)在此抛物线上,∴﹣22=﹣4m2+3,解得m=±,∴点P的坐标为(,﹣22)或(﹣,﹣22).29.解:(1)将点A(1,0)代入y=(x﹣3)2+m得(1﹣3)2+m=0,解得m=﹣4.所以二次函数解析式为y=(x﹣3)2﹣4,即y=x2﹣6x+5;当x=0时,y=9﹣4=5,所以C点坐标为(0,5),由于C和B关于对称轴对称,而抛物线的对称轴为直线x=3,所以B点坐标为(6,5),将A(1,0)、B(6,5)代入y=kx+b得,,解得:.所以一次函数解析式为y=x﹣1;(2)假设存在点P,设点P(a,a2﹣6a+5),∵S△ABP=S△ABC,∵,如图1,当点P在直线AB的下方时,过点P作PE∥y轴交直线AB于点E,∴=15,∴E(a,a﹣1)∴PE=﹣a2+7a﹣6,∴,∴a2﹣7a+12=0解得:a1=4,a2=3,∴P1(3,﹣4),P2(4,﹣3),如图2,当点P在直线AB的上方时,过点P作PF∥y轴交直线AB于F,同理可得S△P AB=S△PF A﹣S△PFB==15,∴,解得a=0(舍去),a=7,∴P3(7,12).综合以上可得P点坐标为(3,﹣4)或(4,﹣3)或(7,12).30.解:(1)当m=1时,y=﹣x2+4x﹣3=﹣(x﹣2)2+1,∴顶点坐标为(2,1);(2)由抛物线y=﹣x2+4x+m﹣4(m为常数)可知:开口向上,函数的对称轴为直线x =2,∴当3≤x≤3+m时,y随x的增大而减小,∴当x=m+3时,y有最小值﹣7,∴﹣(m+3)2+4(m+3)+m﹣4=﹣7,解得m1=2,m2=﹣3(舍去),∴m=2;(3)∵M(3,0),N(0,﹣2),∴直线MN的解析式为y=x﹣2,∵抛物线与线段MN有公共点,则方程﹣x2+4x+m﹣4=x﹣2,即x2﹣x﹣m+2=0中△≥0,且m﹣4≤﹣2,∴(﹣)2﹣4(﹣m+2)≥0,解得﹣≤m≤2,故答案为﹣≤m≤2.31.解:(1)①m=﹣2,k≠0,n为任意实数;②当k>0时,y随x的增大而增大,直线经过(﹣2,0)(1,3),函数关系式为:y=x+2当k<0时,y随x的增大而减小,直线经过(﹣2,3)(1,0),函数关系式为:y=﹣x+1③当k>0时,x=﹣2,y有最小值为﹣2k+nx=3时,y有最大值为3k+n当k<0时,x=﹣2,y有最大值为﹣2k+nx=3时,y有最小值为3k+n(2)若m=﹣1,n=2时,二次函数为y=x2+kx+2对称轴为x=﹣,当﹣≤﹣2,即k≥4时,把x=﹣2,y=﹣4代入关系式得:k=5当﹣2<﹣<2,即﹣4<k<4时,把x=﹣,y=﹣4代入关系式得:k=±2(不合题意)当﹣≥2,即k≤﹣4时,把x=2,y=﹣4代入关系式得:k=﹣5.所以实数k的值为±5.。
初中数学华东师范大学九年级下册第二十六章26.2.1. 二次函数y=ax2的图象与性质随堂练习一、单选题1.给出下列四个函数:①y=﹣x;②y=x;③y=x2,x<0时,y随x的增大而减小的函数有( )A.1个B.2个C.3个D.4个2.下列关于抛物线y=(x+2)2+6的说法,正确的是( )A.抛物线开口向下B.抛物线的顶点坐标为(2,6)C.抛物线的对称轴是直线x=6D.抛物线经过点(0,10)3.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,那么下列判断正确的是( )A.b>0,c>0B.b>0,c<0C.b<0,c>0D.b<0,c<0.4.已知抛物线C的解析式为y=ax2+bx+c,则下列说法中错误的是( )A.a确定抛物线的形状与开口方向B.若将抛物线C沿y轴平移,则a,b的值不变C.若将抛物线C沿x轴平移,则a的值不变D.若将抛物线C沿直线l:y=x+2平移,则a、b、c的值全变5.下列各点中,在二次函数y=-x2的图象上的是( )A.B.C.D.6.与抛物线y=―12x2+3x―5的形状大小开口方向相同,只有位置不同的抛物线是( )A.y=―14x 2+32x―52B.y=―12x2―7x+8C.y=12x2+6x+10D.y=―x2+3x―57.如图,二次函数y=a x2+bx的图象经过点A,B,C,则判断正确是( )A.a>0,b>0B.a<0,b<0C.a>0, b<0D.a<0, b>08.已知物体下落高度h关于下落时间t的函数关系式h=1gt2,则此函数的图象为( )2A.B.C.D.二、填空题9.若抛物线y=a x2+bx+c(a≠0)的示意图如图所示,则a 0,ba 0,ca 0(填“ >”,“=”或“ <”).10.若点A(1,n)在二次函数的图象上,则点A关于抛物线对称轴的对称点的坐标是 ,这两点间的线段被对称轴 .11.二次函数y=x2的图象开口方向是 (填“向上”或“向下”).12.写出一个开口向上,顶点是坐标原点的二次函数的解析式: .13.当a>0时,二次函数y=a x2―2x―1的图象开口向 14.如果抛物线y=(m﹣1)x2的开口向上,那么m的取值范围是 .三、解答题15.已知抛物线y=ax2+bx+c的大致图象如图所示,试确定a,b,c,b2-4ac及a+b+c 的符号.16.由于x2≥0,所以x2有最小值0,从而x2+1有最小值1.据此请求出(1)x2﹣2的最小值;(2)x2﹣4x+1的最小值;(3)﹣x2+3x+2有最大值还是最小值呢?请你求出这个最大或最小值来.17.在平面直角坐标系中,反比例函数与二次函数y=k(x2+x-1)的图象交于点A(1,k)和点B(-1,-k).(1)当k=-2时,求反比例函数的解析式;(2)要使反比例函数与二次函数都是y随着x的增大而增大,求k应满足的条件以及x的取值范围.(3)设二次函数的图象的顶点为Q,当△ABQ是以AB为斜边的直角三角形时,求k的值.参考答案与试题解析1.B2.D3.D4.D5.A6.B7.A8.A9.>;<;<10.;垂直平分11.向上12.y=2x213.上14.m>115.解:∵抛物线开口向上,∴a>0.∵抛物线与y轴的交点在y轴的负半轴上,∴C<0.又∵对称轴在y轴左侧,∴ab>0.∵a>0,∴b>0.∵抛物线与x轴有两个交点,∴△=b2-4ac>0.∵当x=1时,y>0,∴a+b+c>0.16.解:(1)x2﹣2的最小值为﹣2;(2)x2﹣4x+1=(x﹣2)2﹣3,所以x2﹣4x+1的最小值为﹣3;(3)﹣x2+3x+2=﹣(x﹣32)2+174,所以﹣x2+3x+2有最大值,最大值为174.17.解:(1)因为k=-2,所以A(1,-2),设反比例函数为y=k1x ,因为点A在函数的图象上,所以-2=k11,解得k1=-2,反比例函数解析式为y=-2x.(2)由y =k(x 2+x -1)=k x +-54k ,得抛物线对称轴为直线x =-12,当k>0时,反比例函数不存在y 随着x 的增大而增大的取值范围,所以k<0,此时,当x<0或x>0时,反比例函数值y 随着x 的增大而增大;当x≤-12时,二次函数值y 随着x 的增大而增大,所以自变量x 的取值范围是x≤-12.(3)由题(2)得点Q 的坐标为(-12,-54k ),因为AQ ⊥BQ ,点O 是AB 的中点,所以OQ =12AB =OA ,得14+2516k 2=12+k 2,解得k =±233.。
2.3二次函数y=ax2的图象和性质同步练习 1.在同一直角坐标系中作出函数y=x2,y=2x2和y=3x2的图象,然后根据图象填空:
抛物线y=x2的顶点坐标是( ),对称轴是________,开口向________; 抛物线y=2x2的顶点坐标是( ),对称轴是________,开口向________; 抛物线y=3x2的顶点坐标是( ),对称轴是________,开口向________. 可以发现,抛物线y=x2,y=2x2,y=3x2的开口大小由二次项系数决定,二次项系数的绝对值越大,抛物线的开口越________. 2.在同一直角坐标系中作出函数y=-x2,y=-2x2和y=-3x2的图象,然后根据图象填空: 抛物线y=-x2的顶点坐标是( ),对称轴是________,开口向________; 抛物线y=-2x2的顶点坐标是( ),对称轴是________,开口向________; 抛物线y=-3x2的顶点坐标是( ),对称轴是________,开口向________. 可以发现,抛物线y=-x2,y=-2x2,y=-3x2的开口大小由二次项系数决定,二次项系数的绝对值越大,抛物线的开口越________.
3.(1)抛物线 y=ax2的开口方向和开口大小由________决定,当a________0时,抛物线的开口向上;当a________0时,抛物线的开口向下; (2)抛物线y=ax2的顶点坐标是( ),当a________0时,它是抛物线的最低点,即当x=________时,函数取得最小值为________;当a________0时,它是抛物线的最高点,即当x=________时,函数取得最大值为________;
(3)抛物线y=ax2的对称轴是________. 4.在同一直角坐标系中作出函数y=-x2,y=-x2+2,y=-x2-3的图象,然后根据图象填空: 抛物线y=-x2的顶点坐标是( ),对称轴是________,开口向________; 抛物线y=-x2+2的顶点坐标是( ),对称轴是________,开口向________; 抛物线y=-x2-3的顶点坐标是( ),对称轴是________,开口向________. 可以发现,抛物线 y=-x2+2,y=-x2-3与抛物线 y=-x2的形状、开口大小相同,只是抛物线的顶点位置发生了变化.把抛物线y=-x2沿y轴向________平移________个单位即可得到抛物线 y=-x2+2;把抛物线y=-x2沿y轴向________平移________个单位即可得到抛物线y=-x2-3.
课题 26.1 二次函数(2)练习九年级 备课人:洪双桥 审核: 审批: 班级:____________ 姓名:____________ 使用时间:2012年12月10日 目标知识点:会用描点法画出二次函数2ax y =的图象,概括出图象的特点 及函数的性质⒈抛物线y=ax 2与y=2x 2形状相同,则a= 。
⒉已知函数y=ax 2当x=1时y=3,则a= , 对称轴是 ,顶点是 , 抛物线的开口 ,在对称轴的左侧,y 随x 增大而 ,当x= 时,函数y 有最 值,是 .⒊已知二次函数y=-x 2 ①; 235y x =②; y=15x 2③; y=-4x 2④; 2910y x =-⑤; y=4x 2⑥ ;(1)其中开口向上的有 (填题号);(2)其中开口向下且开口最大的是________(填题号); (3)当自变量由小到大变化时,函数值先逐渐变大,然后渐变小的有______(填题号).⒋已知函数y=ax 2的图象过点1(,2)2,则此图象上纵坐标为12时的点的坐标为 .⒌若抛物线y=ax 2经过点P ( l ,-2 ),则它也经过 ( )A. P 1(-1,-2 )B. P 2(-l, 2 )C.P 3( l, 2)D.P 4(2, 1)⒍已知a≠0,b<0,一次函数是y=ax+b ,二次函数是y=ax 2,则下面图中,可以成立的是( )⒎已知42)2(-++=k k x k y 是二次函数,且当0x <时,y随x 的增大而增大.(1)求k 的值;(2)求顶点坐标和对称轴.8.底面是边长为x 的正方形,高为0.5cm 的长方体的体积为ycm 3.(1)求y 与x 之间的函数关系式;(2)画出函数的图象;(3)根据图象,求出y=8 cm3时底面边长x的值;(4)根据图象,求出x取何值时,y≥4.5 cm3.9.二次函数2axy=与直线3y交于点P(1,b).=x2-(1)求a、b的值;(2)写出二次函数的关系式,并指出x取何值时,该函数的y随x的增大而减小.10.一个函数的图象是以原点为顶点,y轴为对称轴的抛物线,且过M(-2,2).(1)求出这个函数的关系式并画出函数图象;(2)写出抛物线上与点M关于y轴对称的点N的坐标,并求出⊿MON的面积.。
3eud教育网 http://www.3edu.net 百万教学资源,完全免费,无须注册,天天更新!
3eud教育网 http://www.3edu.net 教学资源集散地。可能是最大的免费教育资源网!
二次函数的图像和性质
习题精选
1.二次函数2yax的图像开口向____,对称轴是____,顶点坐标是____,图像有最___
点,x___时,y随x的增大而增大,x___时,y随x的增大而减小。
2.关于213yx,2yx,23yx的图像,下列说法中不正确的是( )
A.顶点相同 B.对称轴相同 C.图像形状相同 D.最低点相同
3.两条抛物线2yx与2yx在同一坐标系内,下列说法中不正确的是( )
A.顶点相同 B.对称轴相同 C.开口方向相反 D.都有最小值
4.在抛物线2yx上,当y<0时,x的取值范围应为( )
A.x>0 B.x<0 C.x≠0 D.x≥0
5.对于抛物线2yx与2yx下列命题中错误的是( )
A.两条抛物线关于x轴对称 B.两条抛物线关于原点对称
C.两条抛物线各自关于y轴对称 D.两条抛物线没有公共点
6.抛物线y=-b2x+3的对称轴是___,顶点是___。
7.抛物线y=-21(2)2x-4的开口向___,顶点坐标___,对称轴___,x___时,y随x的增
大而增大,x___时,y随x的增大而减小。
8.抛物线22(1)3yx的顶点坐标是( )
A.(1,3) B.(1,3) C.(1,3) D.(1,3)
9.已知抛物线的顶点为(1,2),且通过(1,10),则这条抛物线的表达式为( )
A.y=32(1)x-2 B.y=32(1)x+2 C.y=32(1)x-2 D.y=-32(1)x-2
10.二次函数2yax的图像向左平移2个单位,向下平移3个单位,所得新函数表达式为( )
A.y=a2(2)x+3 B.y=a2(2)x-3 C.y=a2(2)x+3 D.y=a2(2)x-3
3eud教育网 http://www.3edu.net 百万教学资源,完全免费,无须注册,天天更新!
3eud教育网 http://www.3edu.net 教学资源集散地。可能是最大的免费教育资源网!
11.抛物线244yxx的顶点坐标是( )
A.(2,0) B.(2,-2) C.(2,-8) D.(-2,-8)
12.对抛物线y=22(2)x-3与y=-22(2)x+4的说法不正确的是( )
A.抛物线的形状相同 B.抛物线的顶点相同
C.抛物线对称轴相同 D.抛物线的开口方向相反
13.函数y=a2x+c与y=ax+c(a≠0)在同一坐标系内的图像是图中的( )
14.化243yxx为y=243xx为ya2()xhk的形式是____,图像的开口向____,
顶点是____,对称轴是____。
15.抛物线y=24xx-1的顶点是____,对称轴是____。
16.函数y=122x+2x-5的图像的对称轴是( )
A.直线x=2 B.直线a=-2 C.直线y=2 D.直线x=4
17.二次函数y=221xx图像的顶点在( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
18.如果抛物线y=26xxc的顶点在x轴上,那么c的值为( )
A.0 B.6 C.3 D.9
19.抛物线y=222xmxm的顶点在第三象限,试确定m的取值范围是( )
3eud教育网 http://www.3edu.net 百万教学资源,完全免费,无须注册,天天更新!
3eud教育网 http://www.3edu.net 教学资源集散地。可能是最大的免费教育资源网!
A.m<-1或m>2 B.m<0或m>-1 C.-1<m<0 D.m<-1
20.已知二次函数2yaxbxc,如果a>0,b<0,c<0,那么这个函数图像的顶点必在( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
21.如图所示,满足a>0,b<0的函数y=2axbx的图像是( )
22.画出214102yxx的图像,由图像你能发现这个函数具有什么性质?
23.通过配方变形,说出函数2288yxx的图像的开口方向,对称轴,顶点坐标,这个函数有最大值还
是最小值?这个值是多少?
24.根据下列条件,分别求出对应的二次函数关系式。已知抛物线的顶点是(―1,―2),且过点(1,10)。
25.已知一个二次函数的图像过点(0,1),它的顶点坐标是(8,9),求这个二次函数的关系式。