七年级(下)数学培优3
- 格式:doc
- 大小:367.50 KB
- 文档页数:4
1第12讲 与相交有关概念及平行线的判定考点·方法·破译1.了解在平面内,两条直线的两种位置关系:相交与平行.2.掌握对顶角、邻补角、垂直、平行、内错角、中旁内角的定义,并能用图形或几何符号表示它们.3.掌握直线平行的条件,并能根据直线平行的条件说明两条直线的位置关系.经典·考题·赏析【例1】如图,三条直线AB 、CD 、EF 相交于点O ,一共构成哪几对对顶角?一共构成哪几对邻补角? 【解法指导】⑴对顶角和邻补角是两条直线所形成的图角.⑵对顶角:有一个公共顶点,并且一个角的两边是另一个角的两边的反向延长线.⑶邻补角:两个角有一条公共边,另一边互为反向延长线. 有6对对顶角. 12对邻补角.【变式题组】01.如右图所示,直线AB 、CD 、EF 相交于P 、Q 、R ,则:⑴∠ARC 的对顶角是 . 邻补角是 .⑵中有几对对顶角,几对邻补角? 02.当两条直线相交于一点时,共有2对对顶角; 当三条直线相交于一点时,共有6对对顶角; 当四条直线相交于一点时,共有12对对顶角. 问:当有100条直线相交于一点时共有 对顶角.【例2】如图所示,点O 是直线AB 上一点,OE 、OF 分别平分∠BOC 、 ∠AOC .⑴求∠EOF 的度数;⑵写出∠BOE 的余角及补角.【解法指导】解这类求角大小的问题,要根据所涉及的角的定义,以及各角的数量关系,把它们转化为代数式从而求解;【解】⑴∵OE 、OF 平分∠BOC 、∠AOC ∴∠EOC =21∠BOC ,∠FOC =21∠AOC ∴∠EOF =∠EOC +∠FOC =21∠BOC +21∠AOC =()AOC BOC ∠+∠21又∵∠BOC +∠AOC =180° ∴∠EOF =21×180°=90° ⑵∠BOE 的余角是:∠COF 、∠AOF ;∠BOE 的补角是:∠AOE .【变式题组】01.如图,已知直线AB 、CD 相交于点O ,OA 平分∠EOC ,且∠EOC =100°,则∠BOD 的度数是( )A .20°B . 40°C .50°D .80°02.(杭州)已知∠1=∠2=∠3=62°,则∠4= .【例3】如图,直线l 1、l 2相交于点O ,A 、B 分别是l 1、l 2上的点,试用三角尺完成下列作图: ⑴经过点A 画直线l 2的垂线. ⑵画出表示点B 到直线l 1的垂线段.【解法指导】垂线是一条直线,垂线段是一条线段.【变式题组】 01.P 为直线l 外一点,A 、B 、C 是直线l 上三点,且PA =4cm ,PB =5cm ,PC =6cm ,则点P 到直线l 的距离为( ) A .4cm B . 5cm C .不大于4cm D .不小于6cmABC D EF AB C DEF PQ RABCEF E A ACD O (第1题图)1 4 32 (第2题图)l 2202 如图,一辆汽车在直线形的公路AB 上由A 向B 行驶,M 、N 为位于公路两侧的村庄; ⑴设汽车行驶到路AB 上点P 的位置时距离村庄M 最近.行驶到AB 上点Q 的位置时,距离村庄N 最近,请在图中的公路上分别画出点P 、Q 的位置. ⑵当汽车从A 出发向B 行驶的过程中,在 的路上距离M 村越来越近..在 的路上距离村庄N 越来越近,而距离村庄M越来越远. 【例4】如图,直线AB 、CD 相交于点O ,OE ⊥CD ,OF ⊥AB ,∠DOF =65°,求∠BOE 和∠AOC 的度数. 【解法指导】图形的定义现可以作为判定图形的依据,也可以作为该图形具备的性质,由图可得:∠AOF =90°,OF ⊥AB .【变式题组】 01.如图,若EO ⊥AB 于O ,直线CD 过点O ,∠EOD ︰∠EOB =1︰3,求∠AOC 、∠AOE 的度数. 02.如图,O 为直线AB 上一点,∠BOC =3∠AOC ,OC 平分∠AOD . ⑴求∠AOC 的度数; ⑵试说明OD 与AB 的位置关系.03.如图,已知AB ⊥BC 于B ,DB ⊥EB 于B ,并且∠CBE ︰∠ABD =1︰2,请作出∠CBE 的对顶角,并求其度数.【例5】如图,指出下列各组角是哪两条直线被哪一条直线所截而得到的,并说出它们的名称: ∠1和∠2:∠1和∠3:∠1和∠6:∠2和∠6: ∠2和∠4: ∠3和∠5:∠3和∠4:【解法指导】正确辩认同位角、内错角、同旁内角的思路是:首先弄清所判断的是哪两个角,其次是找到这两个角公共边所在的直线即截线,其余两条边所在的直线就是被截的两条直线,最后确定它们的名称.F B A O CD E C D B A EO B ACDO A BA E DC F E BAD 1 4 2 3 6 53【变式题组】01.如图,平行直线AB 、CD 与相交直线EF ,GH 相交,图中的同旁内角共有( )A .4对B . 8对C .12对D .16对02.如图,找出图中标出的各角的同位角、内错角和同旁内角.03.如图,按各组角的位置判断错误的是( )A .∠1和∠2是同旁内角B .∠3和∠4是内错角C .∠5和∠6是同旁内角D .∠5和∠7是同旁内角【例6】如图,根据下列条件,可推得哪两条直线平行?并说明理由•⑴∠CBD =∠ADB ; ⑵∠BCD +∠ADC =180°⑶∠ACD =∠BAC【解法指导】图中有即即有同旁内角,有“ ”即有内错角.【解法指导】⑴由∠CBD =∠ADB ,可推得AD ∥BC ;根据内错角相等,两直线平行. ⑵由∠BCD +∠ADC =180°,可推得AD ∥BC ;根据同旁内角互补,两直线平行.⑶由∠ACD =∠BAC 可推得AB ∥DC ;根据内错角相等,两直线平行.【变式题组】01.如图,推理填空.⑴∵∠A =∠ (已知) ∴AC ∥ED ( ) ⑵∵∠C =∠ (已知)∴AC ∥ED ( )⑶∵∠A =∠ (已知) ∴AB ∥DF ( ) 02.如图,AD 平分∠BAC ,EF 平分∠DEC ,且∠1=∠2,试说明DE 与AB 的位置关系. 解:∵AD 是∠BAC 的平分线(已知) ∴∠BAC =2∠1(角平分线定义) 又∵EF 平分∠DEC (已知) ∴ ( ) 又∵∠1=∠2(已知) ∴ ( ) ∴AB ∥DE ( ) 03.如图,已知AE 平分∠CAB ,CE 平分∠ACD .∠CAE +∠ACE =90°,求证:AB ∥CD . ABDCHG EF7 1 5 6 8 4 1 2 乙丙 3 2 3 4 56 1 2 3 4甲 1 A B C 2 3 4 56 7 A B C DOA B D E FCABCDE A B CD EF 1 204.如图,已知∠ABC=∠ACB,BE平分∠ABC,CD平分∠ACB,∠EBF=∠EFB,求证:CD∥EF.【例7】如图⑴,平面内有六条两两不平行的直线,试证:在所有的交角中,至少有一个角小于31°.【解法指导】如图⑵,我们可以将所有的直线移动后,使它们相交于同一点,此时的图形为图⑵.证明:假设图⑵中的12个角中的每一个角都不小于31°则12×31°=372°>360°这与一周角等于360°矛盾所以这12个角中至少有一个角小于31°【变式题组】01.平面内有18条两两不平行的直线,试证:在所有的交角中至少有一个角小于11°.02.在同一平面内有2010条直线a1,a2,…,a2010,如果a1⊥a2,a2∥a3,a3⊥a4,a4∥a5……那么a1与a2010的位置关系是 .03.已知n(n>2)个点P1,P2,P3…Pn.在同一平面内没有任何三点在同一直线上,设S n表示过这几个点中的任意两个点所作的所有直线的条数,显然:S2=1,S3=3,S4=6,∴S5=10…则Sn= .演练巩固·反馈提高01.如图,∠EAC=∠ADB=90°.下列说法正确的是()A.α的余角只有∠B B.α的邻补角是∠DACC.∠ACF是α的余角D.α与∠ACF互补02.如图,已知直线AB、CD被直线EF所截,则∠EMB的同位角为()A.∠AMF B.∠BMF C.∠ENC D.∠END03.下列语句中正确的是()A.在同一平面内,一条直线只有一条垂线B.过直线上一点的直线只有一条C.过直线上一点且垂直于这条直线的直线有且只有一条D.垂线段就是点到直线的距离04.如图,∠BAC=90°,AD⊥BC于D,则下列结论中,正确的个数有()①AB⊥AC②AD与AC互相垂直③点C到AB的垂线段是线段AB④线段AB的长度是点B到AC的距离⑤垂线段BA是点B到AC的距离⑥AD >BDA.0 B. 2 C.4 D.6ABCD El1l2l3l4l5l6图⑴l1l2l3l4l5l6图⑵AEB C FDABC DFEMNα第1题图第2题图AB D C第4题图4505.点A 、B 、C 是直线l 上的三点,点P 是直线l 外一点,且PA =4cm ,PB =5cm ,PC =6cm ,则点P 到直线l 的距离是( ) A .4cm B .5cm C .小于4cm D .不大于4cm 06.将一副直角三角板按图所示的方法旋转(直角顶点重合),则∠AOB +∠DOC= .07.如图,矩形ABCD 沿EF 对折,且∠DEF =72°,则∠AEG = . 08.在同一平面内,若直线a 1∥a 2,a 2⊥a 3,a 3∥a4,…则a 1 a 10.(a 1与a 10不重合)09.如图所示,直线a 、b 被直线c 所截,现给出下列四个条件:①∠1=∠5,②∠1=∠7,③∠2+∠3=180°,④∠4=∠7,其中能判断a ∥b 的条件的序号是 .10.在同一平面内两条直线的位置关系有 .11.如图,已知BE 平分∠ABD ,DE 平分∠CDB ,且∠E =∠ABE +∠EDC .试说明AB ∥CD ?12.如图,已知BE 平分∠ABC ,CF 平分∠BCD ,∠1=∠2,那么直线AB 与CD 的位置关系如何?13.如图,推理填空:⑴∵∠A = (已知) ∴AC ∥ED ( ) ⑵∵∠2= (已知) ∴AC ∥ED ( )⑶∵∠A + =180°(已知) ∴AB ∥FD .14.如图,请你填上一个适当的条件 使AD ∥BC .ABCDOABCDEFG H abc第6题图第7题图第9题图1 2 3 4 5 6 7 81A CDEB AB C DEF12AB CD EF第14题图6培优升级·奥赛检测 01.平面图上互不重合的三条直线的交点的个数是( ) A .1,3 B .0,1,3 C .0,2,3 D .0,1,2,3 02.平面上有10条直线,其中4条是互相平行的,那么这10条直线最多能把平面分成( )部分. A .60 B . 55 C .50 D .45 03.平面上有六个点,每两点都连成一条直线,问除了原来的6个点之外,这些直线最多还有( )个交点. A .35 B . 40 C .45 D .55 04.如图,图上有6个点,作两两连线时,圆内最多有__________________交点. 05.如图是某施工队一张破损的图纸,已知a 、b 是一个角的两边,现在要在图纸上画一条与这个角的平分线平行的直线,请你帮助这个施工队画出这条平行线,并证明你的正确性. 06.平面上三条直线相互间的交点的个数是( ) A .3 B .1或3 C .1或2或3 D .不一定是1,2,3 07.请你在平面上画出6条直线(没有三条共点)使得它们中的每条直线都恰好与另三条直线相交,并简单说明画法? 08.平面上有10条直线,无任何三条交于一点,要使它们出现31个交点,怎么安排才能办到?09.如图,在一个正方体的2个面上画了两条对角线AB 、AC ,那么两条对角线的夹角等于( ) A .60° B . 75° C .90°D .135° 10.在同一平面内有9条直线如何安排才能满足下面的两个条件? ⑴任意两条直线都有交点;⑵总共有29个交点.第13讲 平行线的性质及其应用 考点·方法·破译1.掌握平行线的性质,正确理解平行线的判定与性质定理之间的区别和联系; 2.初步了解命题,命题的构成,真假命题、定理; 3.灵活运用平行线的判定和性质解决角的计算与证明,确定两直线的位置关系,感受转化思想在解决数学问题中的灵活应用.经典·考题·赏析 【例1】如图,四边形ABCD 中,AB ∥CD , BC ∥AD 求∠C 的度数. 【解法指导】两条直线平行,同位角相等; 两条直线平行,内错角相等;两条直线平行,同旁内角互补. 平行线的性质是推导角关系的重要依据之一,必须正确识别图形的特征,看清截线,识别角的关系式关键.【解】:∵AB ∥CD BC ∥AD ∴∠A +∠B =180° ∠B +∠C =180°(两条直线平行,同旁内角互补) ∴∠A =∠C ∵∠A =38° ∴∠C =38°a b AB C7【变式题组】01.如图,已知AD ∥BC ,点E 在BD 的延长线上,若∠ADE =155°,则∠DBC的度数为( ) A .155° B .50° C .45° D .25°02.(安徽)如图,直线l 1 ∥ l 2,∠1=55°,∠2=65°,则∠3为( )A . 50°B . 55°C . 60° D .65°03.如图,已知FC ∥AB ∥DE ,∠α:∠D :∠B =2: 3: 4, 试求∠α、∠D 、∠B的度数.【例2】如图,已知AB ∥CD ∥EF ,GC ⊥CF ,∠B =60°,∠EFC =45°,求∠BCG 的度数.【解法指导】平行线的性质与对顶角、邻补角、垂直和角平分线相结合,可求各种位置的角的度数,但注意看清角的位置.【解】∵AB ∥CD ∥EF ∴∠B =∠BCD ∠F =∠FCD (两条直线平行,内错角相等)又∵∠B =60° ∠EFC =45° ∴∠BCD =60° ∠FCD =45° 又∵GC ⊥CF ∴∠GCF =90°(垂直定理) ∴∠GCD =90°-45°=45° ∴∠BCG =60°-45°=15°【变式题组】01.如图,已知AF ∥BC , 且AF 平分∠EAB ,∠B =48°,则∠C 的的度数=_______________02.如图,已知∠ABC +∠ACB =120°,BO 、CO 分别∠ABC 、∠ACB ,DE 过点O 与BC 平行,则∠BOC =___________03.如图,已知AB ∥ MP ∥CD , MN 平分∠AMD ,∠A =40°,∠D =50°,求∠NMP 的度数.【例3】如图,已知∠1=∠2,∠C =∠D . 求证:∠A =∠F . 【解法指导】因果转化,综合运用.逆向思维:要证明∠A =∠F ,即要证明DF ∥AC . 要证明DF ∥AC , 即要证明∠D +∠DBC =180°, 即:∠C +∠DBC =180°;要证明∠C +∠DBC=180°即要证明DB ∥EC . 要证明DB ∥EC 即要证明∠1=∠3.证明:∵∠1=∠2,∠2=∠3(对顶角相等)所以∠1=∠3 ∴DB ∥EC (同位角相等•两直线平行)∴∠DBC +∠C =180°(两直线平行,同旁内角互补)∵∠C =∠D ∴∠DBC +∠D =180° ∴DF ∥AC (同旁内角,互补两直线平行)∴∠A =∠F (两直线平行,内错角相等) AB CDOE FAEBC (第1题图) (第2题图) E A F GDC B BA MCD N P (第3题图)CDABE F 1 328DA2 E1 B C B F E AC D 【变式题组】01.如图,已知AC ∥FG ,∠1=∠2,求证:DE ∥FG02.如图,已知∠1+∠2=180°,∠3=∠B . 求证:∠AED =∠ACB03.如图,两平面镜α、β的夹角θ,入射光线AO 平行 于β入射到α上,经两次反射后的出射光线O′B 平行 于α,则角θ等于_________. 【例4】如图,已知EG ⊥BC ,AD ⊥BC ,∠1=∠3. 求证:AD 平分∠BAC . 【解法指导】抓住题中给出的条件的目的,仔细分析 条件给我们带来的结论,对于不能直接直接得出结论 的条件,要准确把握住这些条件的意图.(题目中的: ∠1=∠3) 证明:∵EG ⊥BC ,AD ⊥BC ∴∠EGC =∠ADC =90° (垂直定义)∴EG ∥AD (同位角相等,两条直线平行) ∵∠1=∠3 ∴∠3=∠BAD (两条直线平行,内错角相等) ∴AD 平分∠BAC (角平分线定义) 【变式题组】 01.如图,若AE ⊥BC 于E ,∠1=∠2,求证:DC ⊥BC .02.如图,在△ABC 中,CE ⊥AB 于E ,DF ⊥AB 于F , AC ∥ED ,CE 平分∠ACB . 求证:∠EDF =∠BDF .AB ∥CD ,∠B =40°,CN 是∠BCE 的平分线. CM ⊥CN ,求:的度数.A D M C N EB GB 3C A 1D 2E F (第1题图) A2 C F3 E D1B(第2题图)3 1 AB G DC E9 α βP B C D A ∠P =α+β3 2 1 γ 4ψDα β E B CAFH F γ Dα β E B C AF D EBC A B C AA ′ lB ′C ′【例5】已知,如图,AB ∥EF ,求证:∠ABC +∠BCF +∠CFE =360° 【解法指导】从考虑360°这个特殊角入手展开联想,分析类比, 联想周角.构造两个“平角”或构造两组“互补”的角. 过点C 作CD ∥AB 即把已知条件AB ∥EF 联系起来,这是关键. 【证明】:过点C 作CD ∥AB ∵CD ∥AB ∴∠1+∠ABC =180° (两直线平行,同旁内角互补) 又∵AB ∥EF ,∴CD ∥EF (平行 于同一条直线的两直线平行) ∴∠2+∠CFE =180°(两直线平行, 同旁内角互补) ∴∠ABC +∠1+∠2+∠CFE =180°+180°=360° 即∠ABC +∠BCF +∠CFE =360° 【变式题组】 01.如图,已知,AB ∥CD ,分别探究下面四个图形中∠APC 和∠PAB 、∠PCD 的关系,请你从所得四个关系中选出任意一个,说明你探究的结论的正确性. 结论:⑴____________________________ ⑵____________________________ ⑶____________________________ ⑷____________________________ 【例6】如图,已知,AB ∥CD ,则∠α、∠β、∠γ、∠ψ之间的关系是 ∠α+∠γ+∠ψ-∠β=180° 【解法指导】基本图形 善于从复杂的图形中找到基本图形,运用基本图形的规律打开思路. 【解】过点E 作EH ∥AB . 过点F 作FG ∥AB . ∵AB ∥EH ∴∠α=∠1(两直线平行,内错角相等)又∵FG ∥AB ∴EH ∥FG (平行于同一条直线的两直线平行)∴∠2=∠3 又∵AB ∥CD ∴FG ∥CD (平行于同一条直线的两直线平行)∴∠ψ+∠4=180°(两直线平行,同旁内角互补)∴∠α+∠γ+∠ψ-∠β=∠1+∠3+∠4-ψ-∠1-∠2=∠4+ψ=180°【变式题组】 01.如图, AB ∥EF ,∠C =90°,则∠α、∠β、∠γ的关系是( )A . ∠β=∠α+∠γB .∠β+∠α+∠γ=180°C . ∠α+∠β-∠γ=90°D .∠β+∠γ-∠α=90° 02.如图,已知,AB ∥CD ,∠ABE 和∠CDE 的平分线相交于点F ,∠E =140°,求∠BFD 的度数.【例7】如图,平移三角形ABC ,设点A 移动到点A /,画出平移后的三角形A /B /C /.【解法指导】抓住平移作图的“四部曲”——定,找,移,连. ⑴定:确定平移的方向和距离. ⑵找:找出图形的关键点. ⑶移:过关键点作平行且相等的线段,得到关键点的对应点. ⑷连: 按原图形顺次连接对应点. 【解】①连接AA / ②过点B 作AA /的平行线l ③在l 截取BB /=AA /,则点B /就是的B 对应点,用同样的方法作出点C 的对应点C /.连接A /B /,B /C /,C /A /就得到平移后的三角形A /B /C /.B AP C A C C D A A P C B D PBPD B D ⑴ ⑵ ⑶ ⑷ FE D 2 1 AB C10西B 30° A北东 南【变式题组】01.如图,把四边形ABCD 按箭头所指的方向平移21cm ,作出平移后的图形.02.如图,三角形ABC 中,∠C =90°, BC =4,AC =4,现将△ABC 沿CB 方向平移到△A /B /C /的位置,若平移距离为3, 求△ABC与△A /B /C /的重叠部分的面积.03.原来是重叠的两个直角三角形,将其中一个三角形沿着BC 方向平移BE 的距离,就得到此图形,求阴影部分的面积.(单位:厘米)演练巩固 反馈提高01.如图,由A 测B 得方向是( )A .南偏东30°B .南偏东60°C .北偏西30°D .北偏西60°02.命题:①对顶角相等;②相等的角是对顶角;③垂直于同一条直线的两直线平行;④平行于同一条直线的两直线垂直.其中的真命题的有( ) A .1个 B .2个 C .3个 D .4个03.一个学员在广场上练习驾驶汽车,两次拐弯后,行驶的方向与原来的方向相同,两次拐弯的角度可能是( ) A .第一次向左拐30°,第二次向右拐30° B .第一次向右拐50°,第二次向左拐130°C .第一次向左拐50°,第二次向右拐130°D .第一次向左拐60°,第二次向左拐120°04.下列命题中,正确的是( )A .对顶角相等B . 同位角相等C .内错角相等D .同旁内角互补05.学习了平行线后,小敏想出过直线外一点画这条直线的平行线的新方法,是通过折一张半透明的纸得到的[如图⑴—⑷]从图中可知,小敏画平行线的依据有( )①两直线平行,同位角相等;②两直线平行,内错角相等;③同位角相等,两直线平行;④内错角相等,两直线平行. A .①② B .②③ C .③④ D .①④06.在A 、B 两座工厂之间要修建一条笔直的公路,从A 地测得B 地的走向是南偏东52°.现A 、B 两地要同时开工,若干天后,公路准确对接,则B 地所修公路的走向应该是( )A .北偏东52°B .南偏东52°C .西偏北52°D .北偏西38°B B /AA /C C /150°120°DBCE 湖07.下列几种运动中属于平移的有()①水平运输带上的砖的运动;②笔直的高诉公路上行驶的汽车的运动(忽略车轮的转动);③升降机上下做机械运动;④足球场上足球的运动.A.1种B.2种C.3种D.4种08.如图,网格中的房子图案正好处于网格右下角的位置.平移这个图案,使它正好位于左上角的位置(不能出格)09.观察图,哪个图是由图⑴平移而得到的()10.如图,AD∥BC,AB∥CD,AE⊥BC,现将△ABE进行平移. 平移方向为射线AD的方向. 平移距离为线段BC的长,则平移得到的三角形是图中()图的阴影部分.11.判断下列命题是真命题还是假命题,如果是假命题,举出一个反例.⑴对顶角是相等的角;⑵相等的角是对顶角;⑶两个锐角的和是钝角;⑷同旁内角互补,两直线平行.12.把下列命题改写成“如果……那么……”的形式,并指出命题的真假.⑴互补的角是邻补角;⑵两个锐角的和是锐角;⑶直角都相等.13.如图,在湖边修一条公路.如果第一个拐弯处∠A=120°,第二个拐弯处∠B =150°,第三个拐弯处∠C,这时道路CE恰好和道路AD平行,问∠C是多少度?并说明理由.DEAB CE DB CE D AB CED AB CEDA B C43 2 1ABE F CD 4 P 23 1A BEFC D 14.如图,一条河流两岸是平行的,当小船行驶到河中E 点时,与两岸码头B 、D 成64°角. 当小船行驶到河中F 点时,看B 点和D 点的视线FB 、FD 恰好有∠1=∠2,∠3=∠4的关系. 你能说出此时点F 与码头B 、D 所形成的角∠BFD 的度数吗?15.如图,AB ∥CD ,∠1=∠2,试说明∠E 和∠F 的关系.培优升级·奥赛检测01.如图,等边△ABC 各边都被分成五等分,这样在△ABC 内能与△DEF 完成重合的小三角形共有25个,那么在△ABC 内由△DEF 平移得到的三角形共有( )个02.如图,一足球运动员在球场上点A 处看到足球从B 点沿着BO 方向匀速滚来,运动员立即从A 处以匀速直线奔跑前去拦截足球.若足球滚动的速度与该运动员奔跑的速度相同,请标出运动员的平移方向及最快能截住足球的位置.(运动员奔跑于足球滚动视为点的平移) 03.如图,长方体的长AB =4cm ,宽BC =3cm ,高AA 1=2cm . 将AC 平移到A 1C 1的位置上时,平移的距离是___________,平移的方向是___________. 04.如图是图形的操作过程(五个矩形水平方向的边长均为a ,竖直方向的边长为b );将线段A 1A 2向右平移1个单位得到B 1B 2,得到封闭图形A 1A2B 2B 1 [即阴影部分如图⑴];将折现A 1A 2 A 3向右平移1个单位得到B 1B 2B 3,得到封闭图形A 1A 2 A 3B 3B 2B 1[即阴影部分如图⑵];⑴在图⑶中,请你类似地画出一条有两个折点的直线,同样的向右平移1个单位,从而得到1个封闭图形,并画出阴影.⑵请你分别写出上述三个阴影部分的面积S 1=________, S 2=________, S 3=________. ⑶联想与探究:如图⑷,在一矩形草地上,有一条弯曲的柏油小路(小路在任何地方的水平宽度都是1个单位),请你猜想空白部分草地面积是多少?⑶⑷CB 1AA 1C 1D 1BD. AF E B A CG D05.一位模型赛车手遥控一辆赛车,先前进一半,然后原地逆时针旋转α°(0°<α°<180°),被称为一次操作,若5次后发现赛车回到出发点,则α°角为( ) A .720° B .108°或144° C .144° D .720°或144°06.两条直线a 、b 互相平行,直线a 上顺次有10个点A 1、A 2、…、A 10,直线b上顺次有10个点B 1、B 2、…、B 9,将a 上每一点与b 上每一点相连可得线段.若没有三条线段相交于同一点,则这些选段的交点个数是( ) A .90 B .1620 C .6480 D .200607.如图,已知AB ∥CD ,∠B =100°,EF 平分∠BEC ,EG ⊥EF . 求∠BEG 和∠DEG .08.如图,AB ∥CD ,∠BAE =30°,∠DCE =60°,EF 、EG 三等分∠AEC . 问:EF 与EG 中有没有与AB 平行的直线?为什么? 09.如图,已知直线CB ∥OA ,∠C =∠OAB =100°,E 、F 在CB 上,且满足∠FOB =∠AOB ,OE 平分∠COF . ⑴求∠EOB 的度数;⑵若平行移动AB ,那么∠OBC :∠OFC 的值是否随之发生变化?若变化,找出变化规律;若不变,求出这个比值.⑶在平行移动AB 的过程中,是否存在某种情况,使∠OEC =∠OBA ?若存在,求出其度数;若不存在,说明理由.10.平面上有5条直线,其中任意两条都不平行,那么在这5条直线两两相交所成的角中,至少有一个角不超过36°,请说明理由.11.如图,正方形ABCD 的边长为5,把它的对角线AC 分成n 段,以每一小段为对角线作小正方形,这n 个小正方形的周长之和为多少?12.如图将面积为a 2的小正方形和面积为b 2的大正方形放在一起,用添补法如何求出阴影部分面积?FEB AC GD 100° FE BAC O A BCD第06讲 实 数考点·方法·破译 1.平方根与立方根:若2x =a (a ≥0)则x 叫做a 的平方根,记为:a 的平方根为x =a 的平方根为xa 的算术平方根.若x 3=a ,则x 叫做a 的立方根.记为:a 的立方根为x.2.无限不循环小数叫做无理数,有理数和无理数统称实数.实数与数轴上的点一一对应.任何有理数都可以表示为分数pq(p 、q 是两个互质的整数,且q≠0)的形式. 3非负数:实数的绝对值,实数的偶次幂,非负数的算术平方根(或偶次方根)都是非负数.即a >0,2na ≥0(n 为正整数)0(a ≥0) .经典·考题·赏析【例1】若2m -4与3m -1是同一个数的平方根,求m 的值. 【解法指导】一个正数的平方根有两个,并且这两个数互为相反数.∵2m −4与3m −l 是同一个数的平方根,∴2m −4 +3m −l =0,5m =5,m =l .【变式题组】01.一个数的立方根与它的算术平方根相等,则这个数是____. 02.已知m的最大整数,则m 的平方根是____. 03____.04.如图,有一个数值转化器,当输入的x 为64时,输出的y 是____.【例2】(全国竞赛)已知非零实数a 、b 满足24242a b a -+++=,则a +b 等于( ) A .-1 B . 0 C .1 D .2有意义,∵a 、b 为非零实数,∴b 2>0∴a -3≥0a ≥3∵24242a b a -+++=∴24242a b a -+++=,∴20b +=.∴()22030b a b +=⎧⎪⎨-=⎪⎩,∴32a b =⎧⎨=-⎩,故选C .【变式题组】0l3b +=0成立,则a b =____. 02()230b -=,则ab的平方根是____. 03.(天津)若x 、y 为实数,且20x +=,则2009x y ⎛⎫⎪⎝⎭的值为( )A .1B .-1C .2D .-204.已知x1x π-的值是( )A .11π-B .11π+C .11π- D .无法确定【例3】若a 、b都为有理效,且满足1a b -=+a +b 的平方根.【解法指导】任何两个有理数的和、差、积、商(除数不为0)还是有理数,但两个无理数的和、差、积、商(除数不为0)不一定是无理数.∵1a b -+=+∴1a b -=⎧⎪=1a b -=⎧⎪=,∴1312a b =⎧⎨=⎩,a +b =12 +13=25.∴a +b的平方根为:5==±. 【变式题组】01.(西安市竞赛题)已知m 、n2)m +(3-n +7=0求m 、n .02.(希望杯试题)设x 、y 都是有理数,且满足方程(123π+)x +(132π+)y −4−π=0,则x −y =____.【例4】若a−2的整数部分,b −1是9的平方根,且a b b a -=-,求a +b 的值.【解法指导】−2=整数部分+小数部分.整数部分估算可得2,则小数部分−2 −2−4.∵a =2,b −1=±3 ,∴b =-2或4∵a b b a -=-.∴a <b ,∴a =2, b =4,即a +b =6. 【变式题组】01.若3a ,b ,则a +b 的值为____. 02a ,小数部分为ba )·b =____. 演练巩固 反馈提高 0l .下列说法正确的是( )A .-2是(-2)2的算术平方根B .3是-9的算术平方根C . 16的平方根是±4D .27的立方根是±3 02.设a =b = -2,2c =-,则a 、b 、c 的大小关系是( ) A .a <b <c B .a <c <b C . b <a <c D .c <a <b 03.下列各组数中,互为相反数的是( )A .-9与81的平方根B .4与C .4D .304.在实数1.414,,0.1•5•,π,3.1•4•( ) A .2个 B .3个 C .4个 D . 5个05.实数a 、b 在数轴上表示的位置如图所示,则( )A .b >aB .a b >C . -a <bD .-b > a06.现有四个无理数5,6,7,8,其中在2+1与3+1之间的有( )A . 1个B .2个C . 3个D .4个 07.设m 是9的平方根,n =()23.则m ,n 的关系是( )A . m =±nB .m =nC .m =-nD .m n ≠08.(烟台)如图,数轴上 A 、B 两点表示的数分别为-1和3,点B 关于点A的对称点C ,则点C 所表示的数为( )A .-23-B .-13-C .-2 +3D .l +309.点A 在数轴上和原点相距5个单位,点B 在数轴上和原点相距3个单位,且点B 在点A 左边,则A 、B 之间的距离为____. 10.用计算器探索:已知按一定规律排列的一组数:1,12,13…,119,120.如果从中选出若干个数,使它的和大于3,那么至少要选____个数. 11.对于任意不相等的两个数a 、b ,定义一种运算※如下:a ※b =a ba b+-,如3※2=3232+-=5.那么12.※4=____. 12.(长沙中考题)已知a 、b 为两个连续整数,且a <7 <b ,则a +b =____.13.对实数a 、b ,定义运算“*”,如下a *b =()()22a ba b aba b ⎧⎪⎨⎪⎩≥<,已知3*m =36,则实数m =____.14.设a 是大于1的实数.若a ,23a +,213a +在数轴上对应的点分别是A 、B 、C ,则三点在数轴上从左自右的顺序是____.15.如图,直径为1的圆与数轴有唯一的公共点P .点P 表示的实数为-1.如果该圆沿数轴正方向滚动一周后与数轴的公共点为P ′,那么点P ′所表示的数是____.16.已知整数x 、y 满足x +2y =50,求x 、y .17.已知2a −1的平方根是±3,3a +b −1的算术平方根是4,求a +b +1的立方根.18.小颖同学在电脑上做扇形滚动的游戏,如图有一圆心角为60°,半径为1个单位长的扇形放置在数轴上,当扇形在数轴上做无滑动的滚动时,当B 点恰好落在数轴上时,(1)求此时B 点所对的数;(2)求圆心O 移动的路程.19.若b 315a - 153a - +3l ,且a +11的算术平方根为m ,4b +1的立方根为n ,求(mn −2)(3mn +4)的平方根与立方根.20.若x 、y 为实数,且(x −y +1)2533x y --22x y +值.培优升级 奥赛检测 01.(荆州市八年级数学联赛试题)一个正数x 的两个平方根分别是a +1与a −3,则a 值为( )A . 2B .-1C . 1D . 0 02.x 1x -2x -( )A .0B . 12C .1D . 2 0353x +−2的最小值为____.04.设a 、b 为有理数,且a 、b 满足等式a 2+3b +33,则a +b =____. 05.若a b -=1,且3a =4b ,则在数轴上表示a 、b 两数对应点的距离为____. 06.已知实数a 满足20092010a a a --=,则a − 20092=_______.m 满足关系式3523199199x y m x y m x y x y +--+-=-+--,试确定m 的值.08.(全国联赛)若a 、b满足5b =7,S=3b ,求S 的取值范围.09.(北京市初二年级竞赛试题)已知0<a <1,并且123303030a a a ⎡⎤⎡⎤⎡⎤+++++⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦2830a ⎡⎤+++⎢⎥⎣⎦2930a ⎡⎤++⎢⎥⎣⎦18=,求[10a ]的值[其中[x ]表示不超过x 的最大整数] .10.(北京竞赛试题)已知实数a 、b 、x 、y 满足y+21a =-,231x y b -=--,求22x y a b +++的值.第14讲平面直角坐标系(一)考点.方法.破译1.认识有序数对,认识平面直角坐标系.2.了解点与坐标的对应关系.3.会根据点的坐标特点,求图形的面积.经典.考题.赏析【例1】在坐标平面内描出下列各点的位置.A(2,1),B(1,2),C(-1,2),D(-2,-1),E(0,3),F(-3,0)【解法指导】从点的坐标的意义去思考,在描点时要注意点的坐标的有序性.【变式题组】01.第三象限的点P(x,y),满足|x|=5,2x+|y|=1,则点P得坐标是_____________.02.在平面直角坐标系中,如果m.n>0,那么(m, |n|)一定在____________象限.03.指出下列各点所在的象限或坐标轴.A(-3,0),B(-2,-13),C(2,12),D(0,3),E(π-3.14,3.14-π)【例2】若点P(a,b)在第四象限,则点Q(―a,b―1)在()A.第一象限B.第二象限C.第三象限D.第四象限【解法指导】∵P(a,b)在第四象限,∴a>0,b<0,∴-a<0,b-1<0,故选C.【变式题组】01.若点G(a,2-a)是第二象限的点,则a的取值范围是()A.a<0 B.a<2 C.0<a<2 B.a<0或a >202.如果点P(3x-2,2-x)在第四象限,则x的取值范围是____________.03.若点P(x,y)满足xy>0,则点P在第______________象限.04.已知点P(2a-8,2-a)是第三象限的整点,则该点的坐标为___________.【例3】已知A点与点B(-3,4)关于x轴对称,求点A关于y轴对称的点的坐标.【解法指导】关于x轴对称的点的坐标的特点:横坐标(x)相等,纵坐标(y)互为相反数,关于y轴对称的点的坐标特点:横坐标互为相反数,纵坐标(y)相等.【变式题组】01.P(-1,3)关于x轴对称的点的坐标为____________.02.P(3,-2)关于y轴对称的点的坐标为____________.03.P(a,b)关于原点对称的点的坐标为____________.04.点A(-3,2m-1) 关于原点对称的点在第四象限,则m的取值范围是____________.05.如果点M(a+b,ab)在第二象限内,那么点N(a,b) 关于y轴对称的点在第______象限.【例4】P(3,-4),则点P到x轴的距离是____________.【解法指导】P(x,y)到x轴的距离是| y|,到y轴的距离是|x|.则P到轴的距离是|-4|=4【变式题组】01.已知点P(3,5),Q(6,-5),则点P、Q到x轴的距离分别是_________,__________.P到y轴的距离是点Q到y轴的距离的________倍.02.若x轴上的点P到y轴的距离是3,则P点的坐标是__________.03.如果点B(m+1,3m-5) 到x轴的距离与它到y轴的距离相等,求m的值.04.若点(5-a,a-3)在一、三象限的角平分线上,求a的值.05.已知两点A(-3,m),B(n,4),AB∥x轴,求m的值,并确定n的取值范围.。
一、选择题1.下列调查中,最适合采用全面调查(普查)方式的是()A.对重庆市初中学生每天阅读时间的调查B.对端午节期间市场上粽子质量情况的调查C.对某批次手机的防水功能的调查D.对某校九年级3班学生肺活量情况的调查2.骆驼耐饥耐渴、不畏风沙,被誉为“沙漠之舟”,如图是它一天中体温随时间变化而变化的图象,据图分析,下列说法错误的是()A.一天中骆驼的最高体温可达40C︒B.从4时到16时,骆驼的体温一直处于上升状态C.从12时到24时,骆驼的体温一直处于下降状态D.A点表示中午12时,骆驼的体︒温为39C3.为了解中学300名男生的身高情况,随机抽取若干名男生进行身高测量,将所得数据整理后,画出频数分布直方图(如图).估计该校男生的身高在169.5cm~174.5cm之间的人数有()A.12 B.48 C.72 D.964.为调查某大型企业员工对企业的满意程度,以下样本最具代表性的是()A.企业男员工B.企业年满50岁及以上的员工C.用企业人员名册,随机抽取三分之一的员工D.企业新进员工5.北京市体育中考现场共有三个项目,分为耐力、素质和球类,其中耐力为男子1000米跑,女子800米跑.所有同学都要参加,此外,参加考试的同学需在素质和球类项目中分别选择一项参加考试,选项规则如表1所示:表1:北京市体育中考现场考试选项规则项目耐力(必选)素质(任选一项)球类(任选一项)男生1000米跑引体向上、实心球篮球绕杆、排球垫球、足球绕杆女生800米跑仰卧起坐、实心球篮球绕杆、排球垫球、足球绕杆小宇对初三A班40名同学的体育选项情况进行了统计,并根据其中部分信息绘制了表2表2:初三4班体育中考选项情况统计表素质球类项目仰卧起坐引体向上实心球篮球绕杆排球垫球足球绕杆男生202女生16总计1715162以下有四个推断①一定有女生选择了实心球②一定有男生同时选择了引体向上和足球绕杆③至少有一名女生同时选择仰卧起坐和足球绕杆④男生中同时选择实心球和篮球绕杆的至多5人所有合理推断的序号是()A.①②B.①③C.②④D.③④6.某校学生会对学生上网的情况作了调查,随机抽取了若干名学生,按“天天上网、只在周末上网、偶尔上网、从不上网”四项标准统计,绘制了如下两幅统计图,根据图中所给信息,有下列判断:①本次调查一共抽取了200名学生;②在被抽查的学生中,“从不上网”的学生有10人;③在本次调查中“天天上网”的扇形的圆心角为30°.其中正确的判断有()A.0个B.1个C.2个D.3个7.一组数据的最小值为6,最大值为29,若取组距为5,则分成的组数应为()A.4B.5C.6D.78.以下调查中,适合用抽样调查的是()A.了解我校初一(1)班学生的视力情况B.企业招聘,对应聘人员进行面试C.检测武汉市的空气质量D.了解北斗导航卫星的设备零件的质量情况9.下列调查中,适宜采用全面调查方式的是()A.调查某中学七年级三班学生视力情况B.调查我市居民对“垃圾分类”有关内容的了解程度C.调查某批次汽车的抗撞击能力D.了解一批手机电池的使用寿命10.泰州市今年共有 3 万名考生参加中考,为了了解这 3 万名考生的数学成绩,从中抽取了 1000名考生的数学成绩进行统计分析.以下说法正确的有( )个①这种调查采用了抽样调查的方式;②3 万名考生是总体;③1000 名考生是总体的一个样本;④每名考生的数学成绩是个体.A.2 B.3 C.4 D.011.下列调查中,最适合采用抽样调查的是()A.了解全班同学每周体育锻炼的时间B.对市场上某一品牌电脑使用寿命的调查C.对旅客上飞机前的安检D.对“神州十一号”运载火箭发射前的零部件质量状况的调查12.下列调查中,最适合采用全面调查的是( )A.端午节期间市场上粽子质量B.某校九年级三班学生的视力C.央视春节联欢晚会的收视率D.某品牌手机的防水性能13.下列调查方式中最适合的是()A.要了解一批节能灯的使用寿命,采用普查的方式B.为保证“神舟9号”的成功发射,对其零部件进行检查采用抽样调查方式C.对乘坐某班次客车的乘客进行安检,采用抽查的方式D.调查本班同学的视力,采用普查的方式14.要了解某种产品的质量,从中抽取出300个产品进行检验,在这个问题中,300是()A.总体B.个体C.样本D.样本容量15.为加强锻炼增强体魄,我校初三(1)班同学组建了足球、篮球、乒乓球、跳绳四个体育活动小组.经调查,全班同学全员参与各活动小组人数分布情况的扇形图和条形图如图所示:①该班有50名学生②篮球有16人③跳绳人数所占扇形圆心角为57.6°④足球人数所占扇形圆心角为120°这四种说法中正确的有()A.2个B.0个C.1个D.3个二、填空题16.生物工作者为了估计一片山林中雀鸟的数量,设计了如下方案:先捕捉50只雀鸟,给它们做上标记后放回山林;一段时间后,再从中随机捕捉200只,其中有标记的雀鸟有2只.请你帮助工作人员估计这片山林中雀鸟的数量约为_______只.17.某商场2019年1~4月份的投资总额一共是2005万元,商场2019年第一季度每月利润统计图和2019年1~4月份利润率统计图如下(利润率=利润÷投资金额).则商场2019年4月份利润是______万元.18.为了解七年级学生对年级设置的4门校本课程的选修情况,年级长对本年级所有七年级学生的课程选修数据进行收集,并绘制成如图的扇形统计图,若参加“七彩数学”的人数为120人,则参加“STEAM课程”的人数是__________.19.为了了解某中学八年级男生的身体发育情况,从该中学八年级男生中随机抽取40名男生的身高进行了测量,已知身高(单位:cm)在1.60~1.65这一小组的频数为6,则身高在1.60~1.65这一小组的频率是____.20.某公司有员工800人举行元旦庆祝活动,A、B、C分别表示参加各种活动的人数的百分比(如图),规定每人都要参加且只能参加其中一项活动,则下围棋的员工共有______人.21.自2020年1月1日延庆区开展创城以来,积极推广垃圾分类,在垃圾分类指导员的帮助下,居民的投放正确率不断提升,分类习惯正在养成.尤其是在5月1日新版《北京市生活垃圾管理条例》实施以来,延庆区城管委为全区从源头上规范垃圾投放,18个街乡镇新配备户用分类垃圾桶20万个,助力推进垃圾分类.下面两张图表是某小区每个月的厨余垃圾量和其他垃圾量.(1)3月份厨余垃圾量比其他垃圾量多_____吨;(2)_____月份两类垃圾量(单位:吨)的差距最大.22.为了保障人民群众的身体健康,在预防新型冠状病毒期间,有关部门加强了对市场的监管力度.在对某商店检查中,抽检了5包口罩(每包10只),5包口罩中合格的口罩的只数分别是:9,10,9,10,10,则估计该商店出售的这批口罩的合格率约为_________.23.为了了解我市2019年13752名考生的数学中考成绩,从中抽取了200名考生的成绩进行统计,在此次调查中,下列说法:①我市2019年13752名考生的数学中考成绩的全体是总体;②每个考生是个体;③从中抽取的200名考生的数学中考成绩是样本;④样本容量是200名.其中说法正确的有__________.(填序号)24.为了解某九年级全体男生1000米跑步的成绩,随机抽取了部分男生进行测试,并将测、、、四个等级,绘制成如下不完整的统计图表,根据图表信息,那试成绩分为A B C D么扇形图中表示C的圆心角的度数为____度.25.某校计划在“阳光体育”活动课程中开设乒乓球、羽毛球、篮球、足球四个体育活动项目.为了了解全校学生对这四个活动项目的选择情况,体育老师从全体学生中随机抽取了部分学生进行调查(规定每人必须并且只能选择其中一个项目),并把调查结果绘制成如图所示的统计图,根据这个统计图可以估计该学校1500名学生中选择篮球项目的学生约为______名.26.某地质量监管部门对辖区内的甲、乙两家企业生产的某同类产品进行检查,分别随机抽取了50件产品并对某一项关键质量指标做检测,获得了它们的质量指标值s,并对样本数据(质量指标值s)进行了整理、描述和分析.下面给出了部分信息.a.该质量指标值对应的产品等级如下:说明:等级是一等品,二等品为质量合格(其中等级是一等品为质量优秀);等级是次品为质量不合格.b.甲企业样本数据的频数分布统计表如下(不完整):c.乙企业样本数据的频数分布直方图如下:d.两企业样本数据的平均数、中位数、众数、极差、方差如下:根据以上信息,回答下列问题:(1)m的值为__________,n的值为______________;(2)若从甲企业生产的产品中任取一件,估计该产品质量合格的概率为_____________;若乙企业生产的某批产品共5万件,估计质量优秀的有_____________万件;(3)根据图表数据,你认为___________企业生产的产品质量较好,理由为:__________________.(至少从两个角度说明推断的合理性)三、解答题27.某运动品牌店对第一季度A、B两款运动服的销售情况进行统计,两款运动服的销售量及总销售额如图所示:(1)一月份A款运动服的销售量是B款的65,则一月份B款运动服销售了多少件?(2)根据图中信息,求出这两款运动服的单价.28.农历五月初五是我国传统佳节“端午节”民间历来有吃“粽子”的习俗,某市食品厂为了解市民对去年销售量较好的栗子粽、豆沙粽、红枣粽、蛋黄棕、大肉粽(下分别用A,B,C,D,E表示)这五种不同口味粽子的喜爱情况,在节前对某居民区市民进行了调查,并将调查结果绘制成如下两幅不完整统计图.根据以上统计图解答问题:(1)在本次调查中,适宜________.(填普查或者抽样调查)(2)本次被调查的市民有________人;并补全条形统计图;(3)扇形统计图中蛋黄棕对应的圆心角是________度;(4)若该市有居民约50万人,估计其中喜爱大肉粽的有多少人?29.某区为响应市政府号召,在所有中学开展“创文创卫”活动.在活动中设置了“A.文明礼仪;B.环境保护;C.卫生保洁;D.垃圾分类”四个主题,每个学生选一个主题参与.为了解活动开展的情况,在全区随机抽取部分中学生进行调查,并根据调查结果绘制成了如下条形统计图和扇形统计图:(1)此次调查的学生人数是______人,条形统计图中m=______,n=______;(2)请根据以上信息直接在答题卡中补全条形统计图;(3)扇形统计图中“选项D.垃圾分类”对应扇形的圆心角的大小为______度;(4)依据本次调查的结果,估计全区12000名中学生选“A.文明礼仪”约有多少人?30.某校九(1)班同学在街头随机调查了一些骑共享单车出行的市民,并将他们对各种品牌单车的选择情况绘制成如下两个不完整的统计图(A:摩拜单车;B:ofo单车;C:HelloBike).请根据图中提供的信息,解答下列问题:(1)求出本次参与调查的市民人数;(2)将上面的条形图补充完整;(3)若某区有10000名市民骑共享单车出行,根据调查数据估计该区有多少名市民选择骑摩拜单车出行?。
2021年度北师大版七年级数学下册《第3章变量之间的关系》经典好题培优训练(附答案)1.某同学从家骑自行车上学,先上坡到达A地后再下坡到达学校,所用的时间与行驶的路程如图所示,如果返程上、下坡速度保持不变,那么他从学校回到家需要的时间是()A.14分钟B.12分钟C.9分钟D.7分钟2.变量x,y的一些对应值如表:x…﹣2﹣10123…y…9210﹣7﹣26…根据表格中的数据规律,当x=﹣5时,y的值是()A.76B.﹣74C.126D.﹣1243.小华和小明是同班同学,也是邻居,某日早晨,小明7:40先出发去学校,走了一段后,在途中停下吃了早餐,后来发现上学时间快到了,就跑步到学校;小华离家后直接乘公共汽车到了学校,如图是他们从家到学校已走的路程S(米)和所用时间t(分钟)的关系图,则下列说法中错误的是()A.小明家和学校距离1200米B.小华乘公共汽车的速度是240米/分C.小华乘坐公共汽车后7:50与小明相遇D.小明从家到学校的平均速度为80米/分4.为增强居民节水意识,我市自来水公司采用以户为单位分段计费办法收费,即每月用水不超过10吨,每吨收费a元;若超过10吨,则10吨水按每吨a元收费,超过10吨的部分按每吨b元收费,公司为居民绘制的水费y(元)与当月用水量x(吨)之间的函数图象如下,则下列结论错误的是()A.a=1.5B.b=2C.若小明家3月份用水14吨,则应缴水费23元D.若小明家7月份缴水费30元,则该用户当月用水18.5吨5.一辆客车从酒泉出发开往兰州,设客车出发t小时后与兰州的距离为s千米,下列图象能大致反映s与t之间的函数关系的是()A.B.C.D.6.某通讯公司推出三种上网月收费方式.这三种收费方式每月所收的费用y(元)与上网时间x(小时)的函数关系如图所示,则下列判断错误的是()A.每月上网不足25小时,选择A方式最省钱B.每月上网时间为30小时,选择B方式最省钱C.每月上网费用为60元,选择B方式比A方式时间长D.每月上网时间超过70小时,选择C方式最省钱7.弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂的物体的质量x(kg)间有下面的关系(弹簧的弹性范围x≤10kg):x0246810y1010.51111.51212.5下列说法不正确的是()A.x与y都是变量,且x是自变量,y是因变量B.弹簧不挂重物时的长度为10cmC.所挂物体质量为5kg时,弹簧长度增加了1.25cmD.所挂物体质量为9kg时,弹簧长度增加到11.25cm8.小华同学喜欢锻炼,周六他先从家跑步到新华公园,在那里与同学打一会儿羽毛球后又步行回家,下面能反映小华离家距离y与所用时间x之间关系的图象是()A.B.C.D.9.已知小明从A地到B地,速度为4千米/小时,A、B两地相距3千米,若用x(小时)表示行走的时间,y(千米)表示余下的路程,则y与x之间的函数表达式是()A.y=4x B.y=4x﹣3C.y=﹣4x D.y=﹣4x+310.一天李师傅骑车上班途中因车发生故障,修车耽误了一段时间后继续骑行,按时赶到了单位,下图描述了他上班途中的情景,下列四种说法:①李师傅上班处距他家2000米;②李师傅路上耗时20分钟;③修车后李师傅骑车的速度是修车前的4倍;④李师傅修车用了5分钟,其中错误的是()A.0个B.1个C.2个D.3个11.小张骑车从图书馆回家,中途在文具店买笔耽误了1分钟,然后继续骑车回家.若小张骑车的速度始终不变,从出发开始计时,小张离家的距离s(单位:米)与时间t(单位:分钟)的对应关系如图所示,则文具店与小张家的距离为.12.如果乘坐出租车所付款金额y(元)与乘坐距离x(千米)之间的函数图象由线段AB、线段BC和射线CD组成(如图所示),那么乘坐该出租车8(千米)需要支付的金额为元.13.为减少代沟,增强父子感情,父子二人决定在100米跑道上,以“相向而跑”的形式来进行交流.儿子从100米跑道的A端出发,父亲从另一端B出发,两人同时起跑,结果儿子赢得比赛.设父子间的距离S(米)与父亲奔跑的时间(秒)之间的函数关系如图所示,则儿子奔跑的速度是米/秒.14.如图,某学校组织团员举行防溺水宣传活动,从学校骑车出发,先上坡到达A地后,宣传8min;然后下坡到B地宣传8min返回,行程情况如图.若返回时,上、下坡的速度仍保持不变,那么他们直接从B地返回学校用的时间是min.15.小文、小亮从学校出发到青少年宫参加书法比赛,小文步行一段时间后,小亮骑自行车沿相同路线行进,两人均匀速前行.他们的路程差s(米)与小文出发时间t(分)之间的函数关系如图所示.下列说法:①小亮先到达青少年宫;②小亮的速度是小文速度的2.5倍;③a=24;④b=480.其中正确的是(填序号).16.某市出租车白天的收费起步价为7元,即路程不超过3千米时收费7元,超过部分每千米收费1.2元,如果乘客白天乘坐出租车的路程为x(x>3)千米,乘车费为y元,那么y 与x之间的关系为.17.甲骑自行车、乙骑摩托车沿相同路线匀速由A地到B地,行驶过程中路程与时间的函数关系如图所示.根据图象信息可知,乙在甲骑行分钟时追上甲.18.已知动点P以每秒2cm的速度沿图甲的边框按从B→C→D→E→F→A的路径移动,相应的△ABP的面积S(cm2)与时间t(秒)之间的关系如图乙中的图象所示.其中AB=6cm.当t=时,△ABP的面积是15cm2.19.如图是购买水果所付金额y(元)与购买量x(千克)之间的函数图象,则一次购买5千克这种水果比分五次每次购买1千克这种水果可节省.20.甲,乙两人在一次赛跑中,路程S与时间t的关系如图所示,那么可以知道:(1)这是一次米赛跑;(2)乙在这次赛跑中的速度为米/秒.21.某种车的油箱加满油后,油箱中的剩余油量y(升)与车行驶路程x(千米)之间的关系,如图所示,根据图象回答下列问题:(1)这种车的油箱最多能装升油.(2)加满油后可供该车行驶千米.(3)该车每行驶200千米消耗汽油升.(4)油箱中的剩余油量小于10升时,车辆将自动报警,行驶千米后,车辆将自动报警?22.由于持续高温和连日无雨,某水库的蓄水量随着时间的增加而减少.蓄水量y(万立方米)与干旱时间t(天)之间的关系如图所示,回答下列问题:(1)干旱持续到第10天,水库的蓄水量为万立方米.(2)若水库的蓄水量小于360万立方米时,将发生严重干旱警报,那么多少天后将发生严重干旱警报?(3)在(2)的条件下,照这样干旱下去,预计再持续多少天时,水库将干涸.23.琳琳通过新闻了解到,近来意大利“新冠肺炎”疫情愈发严重,决定给意大利的网友Carlo邮寄一批防疫用品.已知琳琳家、药店、邮局在同一直线上,琳琳从家出发,跑步去药店买了酒精和口罩,又步行到邮局把物品寄出,然后再走回家.琳琳离家的距离y 与时间x之间的关系如图所示,请根据图象解决下列问题:(1)琳琳家离药店的距离为km.(2)琳琳邮寄物品用了min.(3)琳琳两段步行的速度分别是多少?(4)图中点P的意义是.24.一个周末上午8:00,小张自驾小汽车从家出发,带全家人去一个4A级景区游玩,小张驾驶的小汽车离家的距离y(千米)与时间t(时)之间的关系如图所示,请结合图象解决下列问题:(1)小张家距离景区千米,全家人在景区游玩了小时;(2)在去景区的路上,汽车进行了一次加油,之后平均速度比原来增加了20千米/时,试求他加油共用了多少小时?(3)如果汽车油箱中原来有油25升,平均每小时耗油10升,问小张在加油站至少加多少油才能开回家?25.小明家距离学校8千米,今天早晨,小明骑车上学图中,自行车出现故障,恰好路边有便民服务点,几分钟后车修好了,他以更快的速度匀速骑车到校.我们根据小明的这段经历画了一幅图象(如图),该图描绘了小明行驶的路程(千米)与他所用的时间(分钟)之间的关系.请根据图象,解答下列问题:(1)小明行了多少千米时,自行车出现故障?修车用了几分钟?(2)小明从早晨出发直到到达学校共用了多少分钟?(3)小明修车前、后的行驶速度分别是多少?(4)如果自行车未出现故障,小明一直用修车前的速度行驶,那么他比实际情况早到或晚到多少分钟?26.小凡与小光从学校出发到距学校5千米的图书馆看书,途中小凡从路边超市买了一些学习用品,如图反应了他们俩人离开学校的路程s(千米)与时间t(分钟)的关系,请根据图象提供的信息回答问题:(1)先出发,先出发了分钟;(2)当t=分钟时,小凡与小光在去图书馆的路上相遇;(3)小凡与小光从学校到图书馆的平均速度各是多少千米/小时?(不包括停留的时间)27.在弹性限度内,某弹簧挂上物体后弹簧的长度与所挂物体的质量之间的关系如表:所挂物体的质量/千克012345678弹簧的长度/cm1212.51313.51414.51515.516(1)在这个变化过程中,自变量和因变量各是什么?(2)如果用x表示弹性限度内物体的质量,用y表示弹簧的长度,写出y与x的关系式.(3)如果该弹簧最大挂重量为25千克,当挂重为14千克时,该弹簧的长度是多少?参考答案1.解:由图象可知,该同学上坡的速度为:(千米/分钟),下坡的速度为:(千米/分钟),则他从学校回到家需要的时间是:(分钟).故选:C.2.解:根据表格数据可知,函数的解析式为y=﹣x3+1,当x=﹣5时,y=﹣53+1=﹣124.故选:D.3.解:由图象可知,小华和小明的家离学校1200米,故A正确;根据图象,小华乘公共汽车,从出发到到达学校共用了13﹣8=5(分钟),所以公共汽车的速度为1200÷5=240(米/分),故B正确;小明先出发8分钟然后停下来吃早餐,由图象可知在小明吃早餐的过程中,小华出发并与小明相遇然后超过小明,所以二人相遇所用的时间是8+480÷240=10(分钟),即7:50相遇,故C正确;小明从家到学校的时间为20分钟,所以小明的平均速度为1200÷20=60(米/分),故D 错误.故选:D.4.解:由图象可知,a=15÷10=1.5;b==2;用水14吨,则应缴水费:1.5×10+2×(14﹣10)=15+8=23(元);缴水费30元,则该用户当月用水为:10+(30﹣15)÷2=17.5(吨).故结论错误的是选项D.故选:D.5.解:根据出发时与终点这两个特殊点的意义,图象能大致反映s与t之间的函数关系的是应选A.故选:A.6.解:由题意可知:A、每月上网不足25小时,选择A方式最省钱,故本选项不合题意;B、每月上网时间为30小时,选择A方式的费用为:30+5×[(120﹣30)÷(50﹣25)]=48(元),B方式为50元,C方式为120元,所以选择A方式最省钱,故本选项符合题意;C、每月上网费用为60元,选择B方式比A方式时间长,故本选项不合题意;D、每月上网时间超过70小时,选择C方式最省钱,故本选项不合题意;故选:B.7.解:A.x与y都是变量,且x是自变量,y是因变量,故A不符合题意;B.弹簧不挂重物时的长度为10cm,故B不符合题意;C.所挂物体质量为5kg时,弹簧长度增加了1.25cm,故C不符合题意;D.所挂物体质量为9kg时,弹簧长度增加到12.25cm,故D符合题意.故选:D.8.解:∵小华从家跑步到离家较远的新华公园,∴随着时间的增加离家的距离越来越远,∵他在那里与同学打一段时间的羽毛球,∴他离家的距离不变,又∵再步行回家,∴他离家越来越近,∴小华同学离家的距离y与所用时间x之间函数图象的大致图象是B.故选:B.9.解:用x(小时)表示行走的时间,y(千米)表示余下的路程,则y与x之间的函数表达式是:y=3﹣4x=﹣4x+3.故选:D.10.解:由图可得,李师傅上班处距他家2000米,故①说法正确,李师傅路上耗时20分钟,故②说法正确,修车后李师傅骑车速度是=200(米/分钟),修车前速度为(米/分钟),所以修车后李师傅骑车的速度是修车前的2倍,故③说法错误;李师傅修车用了:15﹣10=5(分钟),故④说法正确.所以其中错误的是1个.故选:B.11.解:小张骑车的速度=1500÷(6﹣1)=300米/分钟.文具店与小张家的距离=1500﹣300×2=900米.故答案为:900米.12.解:乘坐该出租车8(千米)需要支付的金额为:14+(30.8﹣14)÷(10﹣3)×(8﹣3)=26(元).故答案为:26.13.解:根据图象可知,爸爸跑完全程用时20秒,爸爸的速度为:100÷20=5米/秒,s=80时,儿子已经到终点,此时爸爸的路程为80米,时间为:80÷5=16秒,儿子的速度为:100÷16=米/秒,故答案为:儿子奔跑的速度为米/秒.14.解:如图,由题意可得,OA段为上坡,上坡的速度为:,CB段为下坡,下坡的速度为:,返回时,先上坡,再下坡;上坡时间:,上坡时间:min,返回时所用时间为:30+7.2=37.2min.故答案为:37.2.15.解:结合题意,可得x轴表示的是小文出发的时间t,y轴表示的是小文和小亮的路程差s.O(0,0):小文还未出发;A(9,720):小文步行9分后,小亮出发;∴小文的速度为:80m/min;B(15,0):小文出发15分后,小亮追上小文;∴小文和小亮的速度差为120m/min,则小亮的速度为200m/min;∴200÷80=2.5;C(19,b):小文出发19分后,小亮先到达青少年宫;b=(19﹣9)×200﹣19×80=480;D(a,0):小文出发a发后,到达青少年宫;a=2.5×(19﹣9)=25.由以上分析可得,正确的是:①②④.故答案为:①②④.16.解:依据题意得:y=7+1.2(x﹣3)=1.2x+3.4,故答案为:y=1.2x+3.4,17.解:由题意得:甲的速度为:(km/min),乙的速度为:(km/min),设乙在甲骑行x分钟时追上甲,根据题意得:0.2x=0.4(x﹣10),解得x=20.所以乙在甲骑行20分钟时追上甲.故答案为:20.18.解:动点P在BC上运动时,对应的时间为0到4秒,易得:BC=2cm/秒×4秒=8(cm);动点P在CD上运动时,对应的时间为4到6秒,易得:CD=2cm/秒×(6﹣4)秒=4(cm);动点P在DF上运动时,对应的时间为6到9秒,易得:DE=2cm/秒×(9﹣6)秒=6(cm),故图甲中的BC长是8cm,DE=6cm,EF=6﹣4=2(cm)∴AF=BC+DE=8+6=14(cm),∴b=9+(EF+AF)÷2=17,∴或,解得t=2.5或14.5.故答案为:2.5或14.5.19.解:由图象可得,当0<x≤2时,每千克苹果的单价是20÷2=10(元),当x>2时,每千克苹果的单价是(36﹣20)÷(4﹣2)=8(元),故一次购买5千克这种苹果需要花费:10×2+8×(5﹣2)=44(元),分五次每次购买1千克这种苹果需要花费:10×5=50(元),50﹣44=6(元),即一次购买5千克这种苹果比分五次每次购买1千克这种苹果可节省6元,故答案为:6元.20.解:(1)这是一次100米赛跑;(2)乙在这次赛跑中的速度为:100÷12.5=8(米/秒).故答案为:(1)100;(2)8.21.解:(1)这种车的油箱最多能装50升油.(2)加满油后可供该车行驶1000千米.(3)该车每行驶200千米消耗汽油10升.(4)油箱中的剩余油量小于10升时,车辆将自动报警,行驶800千米后,车辆将自动报警.故答案为:(1)50;(2)1000;(3)10;(4)800.22.解:(1)由图象可知,干旱持续到第10天,水库的蓄水量为1200万立方米.故答案为:1200;(2)(1500﹣1200)÷10=30(万立方米),(1500﹣360)÷30=38(天),答:38天后将发生严重干旱警报;(3)1500÷30﹣38=12(天),答:照这样干旱下去,预计再持续12天时,水库将干涸.23.解:(1)由图象可知,琳琳家离药店的距离为2.5km.故答案为:2.5;(2)由图象可知,琳琳邮寄物品用了:65﹣45=20(分钟),故答案为:20;(3)从药店步行到邮局的路程为1km,时间为15min,所以速度为km/min;从邮局步行回家的路程为1.5km,时间为25min,所以速度为:(km/min);(4)图中点P的意义是:离家45min时,琳琳到达邮局,此时她离家的距离为1.5km.故答案为:离家45min时,琳琳到达邮局,此时她离家的距离为1.5km.24.解:(1)由图示信息可知,小张家距离景区200千米,在景区停留了15﹣10.5=4.5(小时),所以游玩了4.5小时.故答案为:200;4.5;(2)120÷(9.5﹣8)=80(千米/时)=0.8(小时),10.5﹣9.5﹣0.8=0.2(小时).故他加油共用了0.2小时;(3)200÷=2.5(小时),9.5﹣8+0.8+2.5=4.8(小时),10×4.8﹣25=23(升).故小张在加油站至少加23升油才能开回家.25.解:(1)由图可知,小明行了3千米时,自行车出现故障,修车用了15﹣10=5(分钟);(2)小明共用了30分钟到学校;(3)修车前速度:3÷10=0.3千米/分,修车后速度:5÷15=千米/分;(4)8÷(分种),30﹣(分钟),故他比实际情况早到分钟.26.解:(1)观察两函数图象,发现:小凡先出发,比小光先出发了10分钟.故答案为:小凡;10;(2)小光的速度为:5÷(50﹣10)=(千米/分钟),小光所走的路程为3千米时,用的时间为:3÷=24(分钟),∴当t=10+24=34(分钟)时,小凡与小光在去图书馆的路上相遇,故答案为:34;(3)小凡的平均速度为:=10(千米/小时),小光的平均速度为:5÷=7.5(千米/小时).27.解:(1)上表反映了:弹簧的长度(cm)与所挂物体的质量(kg)之间的关系,物体的质量是自变量,弹簧的长度是因变量;(2)如果用x表示弹性限度内物体的质量,用y表示弹簧的长度,那么y与x的关系式为:y=0.5x+12;(3)当x=14时,y=0.5×14+12=19.答:当挂重为14千克时,弹簧的长度19cm。
2023年人教版中学七7年级下册数学期末解答题培优及答案一、解答题1.教材中的探究:如图,把两个边长为1的小正方形沿对角线剪开,用所得到的4个直角三角形拼成一个面积为2的大正方形.由此,得到了一种能在数轴上画出无理数对应点的方法(数轴的单位长度为1).(1)阅读理解:图1中大正方形的边长为________,图2中点A表示的数为________;(2)迁移应用:请你参照上面的方法,把5个小正方形按图3位置摆放,并将其进行裁剪,拼成一个大正方形.①请在图3中画出裁剪线,并在图3中画出所拼得的大正方形的示意图.②利用①中的成果,在图4的数轴上分别标出表示数-0.5以及35-+的点,并比较它们的大小.2.工人师傅准备从一块面积为36平方分米的正方形工料上裁剪出一块面积为24平方分米的长方形的工件.(1)求正方形工料的边长;(2)若要求裁下的长方形的长宽的比为4:3,问这块正方形工料是否满足需要?(参考数据:2 1.414≈)≈,3 1.7323.小丽想用一块面积为400cm2的正方形纸片,沿着边的方向裁处一块面积为300cm2的长方形纸片.(1)请帮小丽设计一种可行的裁剪方案;(2)若使长方形的长宽之比为3:2,小丽能用这块纸片裁处符合要求的纸片吗?若能,请帮小丽设计一种裁剪方案,若不能,请简要说明理由.4.如图用两个边长为18cm的小正方形纸片拼成一个大的正方形纸片,沿着大正方形纸片的边的方向截出一个长方形纸片,能否使截得的长方形纸片长宽之比为3:2,且面积为30cm2请说明理由.5.如图,在3×3的方格中,有一阴影正方形,设每一个小方格的边长为1个单位.请解决下面的问题.(1)阴影正方形的面积是________?(可利用割补法求面积) (2)阴影正方形的边长是________?(3)阴影正方形的边长介于哪两个整数之间?请说明理由.二、解答题6.已知直线AB //CD ,点P 、Q 分别在AB 、CD 上,如图所示,射线PB 按逆时针方向以每秒12°的速度旋转至PA 便立即回转,并不断往返旋转;射线QC 按逆时针方向每秒3°旋转至QD 停止,此时射线PB 也停止旋转.(1)若射线PB 、QC 同时开始旋转,当旋转时间10秒时,PB '与QC '的位置关系为 ; (2)若射线QC 先转15秒,射线PB 才开始转动,当射线PB 旋转的时间为多少秒时,PB ′//QC ′.7.如图,//MN GH ,点A 、B 分别在直线MN 、GH 上,点O 在直线MN 、GH 之间,若116NAO ∠=︒,144OBH ∠=︒.(1)AOB ∠= ︒;(2)如图2,点C 、D 是NAO ∠、GBO ∠角平分线上的两点,且35CDB ∠=︒,求ACD ∠ 的度数;(3)如图3,点F 是平面上的一点,连结FA 、FB ,E 是射线FA 上的一点,若MAE ∠=n OAE ∠,HBF n OBF ∠=∠,且60AFB ∠=︒,求n 的值.8.(1)(问题)如图1,若//AB CD ,40AEP ∠=︒,130PFD ∠=︒.求EPF ∠的度数; (2)(问题迁移)如图2,//AB CD ,点P 在AB 的上方,问PEA ∠,PFC ∠,EPF ∠之间有何数量关系?请说明理由;(3)(联想拓展)如图3所示,在(2)的条件下,已知EPF α∠=,PEA ∠的平分线和PFC ∠的平分线交于点G ,用含有α的式子表示G ∠的度数.9.汛期即将来临,防汛指挥部在某水域一危险地带两岸各安置了一探照灯,便于夜间查看河水及两岸河堤的情况.如图1,灯A 射出的光束自AM 顺时针旋转至AN 便立即回转,灯B 射出的光束自BP 顺时针旋转至BQ 便立即回转,两灯不停交叉照射巡视.若灯A 射出的光束转动的速度是a ︒/秒,灯B 射出的光束转动的速度是b ︒/秒,且a 、b 满足20)34(a b a b -++-=.假定这一带水域两岸河堤是平行的,即//PQ MN ,且45BAN ∠=︒.(1)求a 、b 的值;(2)如图2,两灯同时转动,在灯A 射出的光束到达AN 之前,若两灯射出的光束交于点C ,过C 作CD AC ⊥交PQ 于点D ,若20BCD ∠=︒,求BAC ∠的度数;(3)若灯B 射线先转动30秒,灯A 射出的光束才开始转动,在灯B 射出的光束到达BQ 之前,A 灯转动几秒,两灯的光束互相平行? 10.如图,已知//AB CD ,CN 是BCE ∠的平分线. (1)若CM 平分BCD ∠,求MCN ∠的度数;(2)若CM 在BCD ∠的内部,且CM CN ⊥于C ,求证:CM 平分BCD ∠;(3)在(2)的条件下,过点B 作BP BQ ⊥,分别交CM 、CN 于点P 、Q ,PBQ ∠绕着B 点旋转,但与CM 、CN 始终有交点,问:BPC BQC ∠+∠的值是否发生变化?若不变,求其值;若变化,求其变化范围.三、解答题11.如图,以直角三角形AOC 的直角顶点О为原点,以OC 、OA 所在直线为x 轴和y 轴建立平面直角坐标系,点()0,A a ,(),0C b 满足220a b b -+-=.(1)C 点的坐标为______;A 点的坐标为______.(2)如图1,已知坐标轴上有两动点P 、Q 同时出发,P 点从C 点出发沿x 轴负方向以1个单位长度每秒的速度匀速移动,Q 点从O 点出发以2个单位长度每秒的速度沿y 轴正方向移动,点Q 到达A 点整个运动随之结束.AC 的中点D 的坐标是()1,2,设运动时间为()0t t >.问:是否存在这样的t ,使ODPODQSS=?若存在,请求出t 的值:若不存在,请说明理由.(3)如图2,过O 作//OG AC ,作AOF AOG ∠=∠交AC 于点F ,点E 是线段OA 上一动点,连CE 交OF 于点H ,当点E 在线段OA 上运动的过程中,OHC ACEOEC∠+∠∠的值是否会发生变化?若不变,请求出它的值:若变化,请说明理由. 12.如图1,E 点在BC 上,∠A =∠D ,AB ∥CD . (1)直接写出∠ACB 和∠BED 的数量关系 ;(2)如图2,BG 平分∠ABE ,与∠CDE 的邻补角∠EDF 的平分线交于H 点.若∠E 比∠H 大60°,求∠E ;(3)保持(2)中所求的∠E 不变,如图3,BM 平分∠ABE 的邻补角∠EBK ,DN 平分∠CDE ,作BP ∥DN ,则∠PBM 的度数是否改变?若不变,请求值;若改变,请说理由.13.如图1,O 为直线AB 上一点,过点O 作射线,30OC AOC ︒∠=,将一直角三角板(30M ︒∠=)的直角顶点放在点O 处,一边ON 在射线OA 上,另一边OM 与OC 都在直线AB 的上方,将图1中的三角板绕点O 以每秒3°的速度沿顺时针方向旋转一周.(1)几秒后ON 与OC 重合?(2)如图2,经过t 秒后,//MN AB ,求此时t 的值.(3)若三角板在转动的同时,射线OC 也绕O 点以每秒6°的速度沿顺时针方向旋转一周,那么经过多长时间OC 与OM 重合?请画图并说明理由.(4)在(3)的条件下,求经过多长时间OC 平分MOB ∠?请画图并说明理由.14.如图,//AC BD ,BC 平分ABD ∠,设ACB ∠为α,点E 是射线BC 上的一个动点.(1)若30α=︒时,且BAE CAE ∠=∠,求CAE ∠的度数;(2)若点E 运动到1l 上方,且满足100BAE ∠=︒,:5:1BAE CAE ∠∠=,求α的值; (3)若:()1BAE CAE n n ∠∠=>,求CAE ∠的度数(用含n 和α的代数式表示).15.如图1,在平面直角坐标系中,()()02A a C b ,,,,且满足()240a b a b ++-+=,过C 作CB x ⊥轴于B(1)求三角形ABC 的面积.(2)发过B 作//BD AC 交y 轴于D ,且,AE DE 分别平分,CAB ODB ∠∠,如图2,若,90()CAB ACB a αββ∠=∠=+=︒,求AED ∠的度数.(3)在y 轴上是否存在点P ,使得三角形ABC 和三角形ACP 的面积相等?若存在,求出P 点坐标;若不存在;请说明理由.四、解答题16.在△ABC 中,射线AG 平分∠BAC 交BC 于点G ,点D 在BC 边上运动(不与点G 重合),过点D 作DE ∥AC 交AB 于点E .(1)如图1,点D 在线段CG 上运动时,DF 平分∠EDB①若∠BAC =100°,∠C =30°,则∠AFD = ;若∠B =40°,则∠AFD = ; ②试探究∠AFD 与∠B 之间的数量关系?请说明理由;(2)点D 在线段BG 上运动时,∠BDE 的角平分线所在直线与射线AG 交于点F 试探究∠AFD 与∠B 之间的数量关系,并说明理由17.如图,直线m 与直线n 互相垂直,垂足为O 、A 、B 两点同时从点O 出发,点A 沿直线m 向左运动,点B 沿直线n 向上运动.(1)若∠BAO 和∠ABO 的平分线相交于点Q ,在点A ,B 的运动过程中,∠AQB 的大小是否会发生变化?若不发生变化,请求出其值,若发生变化,请说明理由.(2)若AP 是∠BAO 的邻补角的平分线,BP 是∠ABO 的邻补角的平分线,AP 、BP 相交于点P ,AQ 的延长线交PB 的延长线于点C ,在点A ,B 的运动过程中,∠P 和∠C 的大小是否会发生变化?若不发生变化,请求出∠P 和∠C 的度数;若发生变化,请说明理由.18.(生活常识)射到平面镜上的光线(入射光线)和变向后的光线(反射光线)与平面镜所夹的角相等.如图 1,MN 是平面镜,若入射光线 AO 与水平镜面夹角为∠1,反射光线 OB 与水平镜面夹角为∠2,则∠1=∠2 .(现象解释)如图 2,有两块平面镜 OM ,ON ,且 OM ⊥ON ,入射光线 AB 经过两次反射,得到反射光线 CD .求证 AB ∥CD . (尝试探究)如图 3,有两块平面镜 OM ,ON ,且∠MON =55︒ ,入射光线 AB 经过两次反射,得到反射光线 CD ,光线 AB 与 CD 相交于点 E ,求∠BEC 的大小.(深入思考)如图 4,有两块平面镜 OM ,ON ,且∠MON = α ,入射光线 AB 经过两次反射,得到反射光线 CD ,光线 AB 与 CD 所在的直线相交于点 E ,∠BED =β , α 与 β 之间满足的等量关系是 .(直接写出结果)19.如图①,AD 平分BAC ∠,AE ⊥BC ,∠B=450,∠C=730. (1) 求DAE ∠的度数;(2) 如图②,若把“AE ⊥BC ”变成“点F 在DA 的延长线上,FE BC ⊥”,其它条件不变,求DFE ∠ 的度数;(3) 如图③,若把“AE ⊥BC ”变成“AE 平分BEC ∠”,其它条件不变,DAE ∠的大小是否变化,并请说明理由.20.如图1,已知AB∥CD,BE平分∠ABD,DE平分∠BDC.(1)求证:∠BED=90°;(2)如图2,延长BE交CD于点H,点F为线段EH上一动点,∠EDF=α,∠ABF的角平分线与∠CDF的角平分线DG交于点G,试用含α的式子表示∠BGD的大小;(3)如图3,延长BE交CD于点H,点F为线段EH上一动点,∠EBM的角平分线与∠FDN的角平分线交于点G,探究∠BGD与∠BFD之间的数量关系,请直接写出结论:.【参考答案】一、解答题1.(1);(2)①见解析;②见解析,【分析】(1)设正方形边长为a,根据正方形面积公式,结合平方根的运算求出a值,则知结果;(2)① 根据面积相等,利用割补法裁剪后拼得如图所示的正方形;②解析:(12,22)①见解析;②见解析,350.5-+<-【分析】(1)设正方形边长为a,根据正方形面积公式,结合平方根的运算求出a值,则知结果;(2)① 根据面积相等,利用割补法裁剪后拼得如图所示的正方形;②由题(15-3为圆心,以大正方形的边长为半径画弧交数轴的右方与一点M,再把N点表示出来,即可比较它们的大小.【详解】解:设正方形边长为a,∵a2=2,∴a=222(2)解:①裁剪后拼得的大正方形如图所示:②设拼成的大正方形的边长为b , ∴b 2=5, ∴b=±5,在数轴上以-3为圆心,以大正方形的边长为半径画弧交数轴的右方与一点M ,则M 表示的数为-3+5,看图可知,表示-0.5的N 点在M 点的右方,∴比较大小:350.5-+<-. 【点睛】本题主要考查平方根与算术平方根的应用及实数的大小比较,熟练掌握平方根与算术平方根的意义及实数的大小比较是解题的关键.2.(1)6分米;(2)满足. 【分析】(1)由正方形面积可知,求出的值即可;(2)设长方形的长宽分别为4a 分米、3a 分米,根据面积得出方程,求出,求出长方形的长和宽和6比较即可. 【详解】 解:(解析:(1)6分米;(2)满足. 【分析】(136(2)设长方形的长宽分别为4a 分米、3a 分米,根据面积得出方程,求出a ,求出长方形的长和宽和6比较即可. 【详解】解:(1366分米; (2)设长方形的长为4a 分米,则宽为3a 分米. 则4324a a ⋅=, 解得:2a =∴长为4 5.6566a≈<a≈<,宽为3 4.242 6.∴满足要求.【点睛】本题主要考查了算术平方根及实数大小比较,用了转化思想,即把实际问题转化成数学问题.3.(1)可以以正方形一边为长方形的长,在其邻边上截取长为15cm的线段作为宽即可裁出符合要求的长方形;(2)不能,理由见解析.【解析】(1)解:设面积为400cm2的正方形纸片的边长为a cm∴解析:(1)可以以正方形一边为长方形的长,在其邻边上截取长为15cm的线段作为宽即可裁出符合要求的长方形;(2)不能,理由见解析.【解析】(1)解:设面积为400cm2的正方形纸片的边长为a cm∴a2=400又∵a>0∴a=20又∵要裁出的长方形面积为300cm2∴若以原正方形纸片的边长为长方形的长,则长方形的宽为:300÷20=15(cm)∴可以以正方形一边为长方形的长,在其邻边上截取长为15cm的线段作为宽即可裁出符合要求的长方形(2)∵长方形纸片的长宽之比为3:2∴设长方形纸片的长为3x cm,则宽为2x cm∴6x 2=300∴x 2=50又∵x>0∴x=∴长方形纸片的长为又∵(2=450>202即:>20∴小丽不能用这块纸片裁出符合要求的纸片4.不能截得长宽之比为,且面积为cm2的长方形纸片,见解析【分析】根据拼图求出大正方形的边长,再根据长方形的长、宽之比为3:2,计算长方形的长与宽进行验证即可.【详解】解:不能,因为大正方形纸解析:不能截得长宽之比为3:2,且面积为30cm2的长方形纸片,见解析【分析】根据拼图求出大正方形的边长,再根据长方形的长、宽之比为3:2,计算长方形的长与宽进行验证即可.【详解】解:不能,2+2=36(cm2),所以大正方形的边长为6cm,设截出的长方形的长为3b cm,宽为2b cm,则6b2=30,所以b所以3b所以不能截得长宽之比为3:2,且面积为30cm2的长方形纸片.【点睛】本题考查了算术平方根,理解算术平方根的意义是正确解答的关键.5.(1)5;(2);(3)2与3两个整数之间,见解析【分析】(1)通过割补法即可求出阴影正方形的面积;(2)根据实数的性质即可求解;(3)根据实数的估算即可求解.【详解】(1)阴影正方形的解析:(1)5;(23)2与3两个整数之间,见解析【分析】(1)通过割补法即可求出阴影正方形的面积;(2)根据实数的性质即可求解;(3)根据实数的估算即可求解.【详解】(1)阴影正方形的面积是3×3-4×121 2⨯⨯=5故答案为:5;(2)设阴影正方形的边长为x,则x2=5∴x(3)∵∴253<<∴阴影正方形的边长介于2与3两个整数之间.【点睛】本题考查了无理数的估算能力和不规则图形的面积的求解方法:割补法.通过观察可知阴影部分的面积是5个小正方形的面积和.会利用估算的方法比较无理数的大小.二、解答题6.(1)PB′⊥QC′;(2)当射线PB旋转的时间为5秒或25秒或45秒时,PB′∥QC′【分析】(1)求出旋转10秒时,∠BPB′和∠CQC′的度数,设PB′与QC′交于O,过O作OE∥AB,根解析:(1)PB′⊥QC′;(2)当射线PB旋转的时间为5秒或25秒或45秒时,PB′∥QC′【分析】(1)求出旋转10秒时,∠BPB′和∠CQC′的度数,设PB′与QC′交于O,过O作OE∥AB,根据平行线的性质求得∠POE和∠QOE的度数,进而得结论;(2)分三种情况:①当0<t≤15时,②当15<t≤30时,③当30<t<45时,根据平行线的性质,得出角的关系,列出t的方程便可求得旋转时间.【详解】解:(1)如图1,当旋转时间30秒时,由已知得∠BPB′=10°×12=120°,∠CQC′=3°×10=30°,过O作OE∥AB,∵AB∥CD,∴AB∥OE∥CD,∴∠POE=180°﹣∠BPB′=60°,∠QOE=∠CQC′=30°,∴∠POQ=90°,∴PB′⊥QC′,故答案为:PB′⊥QC′;(2)①当0<t≤15时,如图,则∠BPB′=12t°,∠CQC′=45°+3t°,∵AB∥CD,PB′∥QC′,∴∠BPB′=∠PEC=∠CQC′,即12t=45+3t,解得,t=5;②当15<t≤30时,如图,则∠APB′=12t﹣180°,∠CQC'=3t+45°,∵AB∥CD,PB′∥QC′,∴∠BPB′=∠BEQ=∠CQC′,即12t﹣180=45+3t,解得,t=25;③当30<t≤45时,如图,则∠BPB′=12t﹣360°,∠CQC′=3t+45°,∵AB∥CD,PB′∥QC′,∴∠BPB′=∠BEQ=∠CQC′,即12t﹣360=45+3t,解得,t=45;综上,当射线PB旋转的时间为5秒或25秒或45秒时,PB′∥QC′.【点睛】本题主要考查了平行线的性质,第(1)题关键是作平行线,第(2)题关键是分情况讨论,运用方程思想解决几何问题.7.(1)100;(2)75°;(3)n=3.【分析】(1)如图:过O 作OP//MN ,由MN//OP//GH 得∠NAO+∠POA=180°,∠POB+∠OBH=180°,即∠NAO+∠AOB+∠OB解析:(1)100;(2)75°;(3)n =3.【分析】(1)如图:过O 作OP //MN ,由MN //OP //GH 得∠NAO +∠POA =180°,∠POB +∠OBH =180°,即∠NAO +∠AOB +∠OBH =360°,即可求出∠AOB ;(2)如图:分别延长AC 、CD 交GH 于点E 、F ,先根据角平分线求得58NAC ∠=︒,再根据平行线的性质得到58CEF ∠=︒;进一步求得18DBF ∠=︒,17DFB ∠=︒,然后根据三角形外角的性质解答即可;(3)设BF 交MN 于K ,由∠NAO =116°,得∠MAO =64°,故∠MAE =641n n ︒⨯+,同理∠OBH =144°,∠HBF =n ∠OBF ,得∠FBH =1441n n ︒⨯+,从而=n BKA FBH n ∠∠=⨯︒+1441,又∠FKN =∠F +∠FAK ,得144606411n n n n ︒︒︒⨯=+⨯++,即可求n . 【详解】解:(1)如图:过O 作OP //MN ,∵MN //GHl∴MN //OP //GH∴∠NAO +∠POA =180°,∠POB +∠OBH =180°∴∠NAO +∠AOB +∠OBH =360°∵∠NAO =116°,∠OBH =144°∴∠AOB =360°-116°-144°=100°;(2)分别延长AC 、CD 交GH 于点E 、F ,∵AC 平分NAO ∠且116NAO ∠=︒,∴58NAC ∠=︒,又∵MN //GH ,∴58CEF ∠=︒;∵144OBH ∠=︒,36OBG ∠=︒∵BD 平分OBG ∠,∴18DBF ∠=︒,又∵,CDB ∠=︒35∴351817DFB CDB DBF ∠=∠-∠=-=︒;∴175875ACD DFB AEF ∠=∠+∠=︒+︒=︒;(3)设FB 交MN 于K ,∵116NAO ∠=︒,则MAO ∠=︒64; ∴641n MAE n ∠=⨯︒+ ∵144OBH ∠=︒, ∴+1n FBH n ∠=⨯︒144,=n BKA FBH n ∠∠=⨯︒+1441, 在△FAK 中,64601n BKA FKA F n ∠=∠+∠=⨯︒+︒+, ∴144646011n n n n ⨯︒=⨯︒+︒++, ∴3n =.经检验:3n =是原方程的根,且符合题意.【点睛】本题主要考查平行线的性质及应用,正确作出辅助线、构造平行线、再利用平行线性质进行求解是解答本题的关键.8.(1)90°;(2)∠PFC=∠PEA+∠P ;(3)∠G=α【分析】(1)根据平行线的性质与判定可求解;(2)过P 点作PN ∥AB ,则PN ∥CD ,可得∠FPN=∠PEA+∠FPE ,进而可得∠PF 解析:(1)90°;(2)∠PFC =∠PEA +∠P ;(3)∠G =12α【分析】(1)根据平行线的性质与判定可求解;(2)过P 点作PN ∥AB ,则PN ∥CD ,可得∠FPN =∠PEA +∠FPE ,进而可得∠PFC =∠PEA +∠FPE ,即可求解;(3)令AB 与PF 交点为O ,连接EF ,根据三角形的内角和定理可得∠GEF +∠GFE =12∠PEA +12∠PFC +∠OEF +∠OFE ,由(2)得∠PEA =∠PFC -α,由∠OFE +∠OEF =180°-∠FOE=180°-∠PFC可求解.【详解】解:(1)如图1,过点P作PM∥AB,∴∠1=∠AEP.又∠AEP=40°,∴∠1=40°.∵AB∥CD,∴PM∥CD,∴∠2+∠PFD=180°.∵∠PFD=130°,∴∠2=180°-130°=50°.∴∠1+∠2=40°+50°=90°.即∠EPF=90°.(2)∠PFC=∠PEA+∠P.理由:过P点作PN∥AB,则PN∥CD,∴∠PEA=∠NPE,∵∠FPN=∠NPE+∠FPE,∴∠FPN=∠PEA+∠FPE,∵PN∥CD,∴∠FPN=∠PFC,∴∠PFC=∠PEA+∠FPE,即∠PFC=∠PEA+∠P;(3)令AB与PF交点为O,连接EF,如图3.在△GFE中,∠G=180°-(∠GFE+∠GEF),∵∠GEF=12∠PEA+∠OEF,∠GFE=12∠PFC+∠OFE,∴∠GEF+∠GFE=12∠PEA+12∠PFC+∠OEF+∠OFE,∵由(2)知∠PFC=∠PEA+∠P,∴∠PEA=∠PFC-α,∵∠OFE +∠OEF =180°-∠FOE =180°-∠PFC ,∴∠GEF +∠GFE =12(∠PFC −α)+12∠PFC +180°−∠PFC =180°−12α,∴∠G =180°−(∠GEF +∠GFE )=180°−180°+12α=12α.【点睛】本题主要考查平行线的性质与判定,灵活运用平行线的性质与判定是解题的关键. 9.(1),;(2)30°;(3)15秒或82.5秒【分析】(1)解出式子即可;(2)根据,用含t 的式子表示出,根据(2)中给出的条件得出方程式 ,求出 t 的值,进而求出的度数;(3)根据灯B 的解析:(1)3a =,1b =;(2)30°;(3)15秒或82.5秒【分析】(1)解出式子()2340a b a b -++-=即可;(2)根据//PQ MN ,用含t 的式子表示出BCA ∠,根据(2)中给出的条件得出方程式 ()()9090180229020⎡⎤∠=︒-∠=︒-︒-︒=︒-︒=︒⎣⎦BCD BCA t t ,求出 t 的值,进而求出BAC ∠的度数;(3)根据灯B 的要求,t <150,在这个时间段内A 可以转3次,分情况讨论.【详解】解:(1)2|3|(4)0a b a b -++-=.又|3|0a b -≥,2(4)0a b +-≥.3a ∴=,1b =;(2)设A 灯转动时间为t 秒,如图,作//CE PQ ,而//,PQ MN////,PQ CE MN ∴1803ACE CAN t ∴∠=∠=︒-︒,BCE CBD t ∠=∠=︒,()()18031802∴∠=∠+∠=︒+︒-︒=︒-︒BCA CBD CAN t t t ,90ACD ∠=︒,[]9090180(2)(2)9020∴∠=︒-∠=︒-︒-︒=︒-︒=︒BCD BCA t t ,55∴=t()1803∠=︒-︒CAN t ,()()451803313516513530∴∠=︒-︒-︒=︒-︒=︒-︒=︒⎡⎤⎣⎦BAC t t(3)设A 灯转动t 秒,两灯的光束互相平行.依题意得0150t <<①当060t <<时,两河岸平行,所以()233t ∠=∠=︒ 两光线平行,所以2130t ∠=∠=+︒所以,13∠=∠即:330=+t t ,解得15t =;②当60120t <<时,两光束平行,所以()2330t ∠=∠=+︒两河岸平行,所以12180∠+∠=︒13180t ∠=-︒所以,318030180-++=t t ,解得82.5t =;③当120150t <<时,图大概如①所示336030t t -=+,解得195150t =>(不合题意)综上所述,当15t =秒或82.5秒时,两灯的光束互相平行.【点睛】这道题考察的是平行线的性质和一元一次方程的应用.根据平行线的性质找到对应角列出方程是解题的关键.10.(1)90°;(2)见解析;(3)不变,180°【分析】(1)根据邻补角的定义及角平分线的定义即可得解;(2)根据垂直的定义及邻补角的定义、角平分线的定义即可得解;(3),过,分别作,,根据解析:(1)90°;(2)见解析;(3)不变,180°【分析】(1)根据邻补角的定义及角平分线的定义即可得解;(2)根据垂直的定义及邻补角的定义、角平分线的定义即可得解;(3)180BPC BQC ∠+∠=︒,过Q ,P 分别作//QG AB ,//PH AB ,根据平行线的性质及平角的定义即可得解.【详解】解(1)CN ,CM 分别平分BCE ∠和BCD ∠, 12BCN BCE ∴=∠,12BCM BCD ∠=∠, 180BCE BCD ∠+∠=︒,111()90222MCN BCN BCM BCE BCD BCE BCD ∴∠=∠+∠=∠+∠=∠+∠=︒; (2)CM CN ⊥,90MCN ∴∠=︒,即90BCN BCM ∠+∠=︒,22180BCN BCM ∴∠+∠=︒,CN 是BCE ∠的平分线,2BCE BCN ∴∠=∠,2180BCE BCM ∴∠+∠=︒,又180BCE BCD ∠+∠=︒,2BCD BCM ∴∠=∠,又CM 在BCD ∠的内部,CM ∴平分BCD ∠;(3)如图,不发生变化,180BPC BQC ∠+∠=︒,过Q ,P 分别作//QG AB ,//PH AB ,则有//////QG AB PH CD ,BQG ABQ ∴∠=∠,CQG ECQ ∠=∠,BPH FBP ∠=∠,CPH DCP ∠=∠,⊥BP BQ ,CP CQ ⊥,90PBQ PCQ ∴∠=∠=︒,180ABQ PBQ FBP ∠+∠+=︒,180ECQ PCQ DCP ∠+∠+∠=︒,180ABQ FBP ECQ DCP ∴∠+∠+∠+∠=︒,BPC BQC BPH CPH BQG CQG ∴∠+∠=∠+∠+∠+∠180ABQ FBP ECQ DCP =∠+∠+∠+∠=︒,180BPC BQC ∴∠+∠=︒不变.【点睛】此题考查了平行线的性质,熟记平行线的性质及作出合理的辅助线是解题的关键.三、解答题11.(1),;(2)1;(3)不变,值为2【分析】(1)根据绝对值和算术平方根的非负性,求得a ,b 的值,再利用中点坐标公式即可得出答案;(2)先得出CP=t ,OP=2-t ,OQ=2t ,AQ=4-解析:(1)()2,0C ,()0,4A ;(2)1;(3)不变,值为2【分析】(1)根据绝对值和算术平方根的非负性,求得a ,b 的值,再利用中点坐标公式即可得出答案;(2)先得出CP =t ,OP =2-t ,OQ =2t ,AQ =4-2t ,再根据S △ODP =S △ODQ ,列出关于t 的方程,求得t 的值即可;(3)过H 点作AC 的平行线,交x 轴于P ,先判定OG ∥AC ,再根据角的和差关系以及平行线的性质,得出∠PHO =∠GOF =∠1+∠2,∠OHC =∠OHP +∠PHC =∠GOF +∠4=∠1+∠2+∠4,最后代入OHC ACE OEC∠+∠∠进行计算即可. 【详解】解:(1)∵2a b -+|b -2|=0, ∴a -2b =0,b -2=0, 解得a =4,b =2,∴A (0,4),C (2,0).(2)存在, 理由:如图1中,D (1,2),由条件可知:P 点从C 点运动到O 点时间为2秒,Q 点从O 点运动到A 点时间为2秒, ∴0<t ≤2时,点Q 在线段AO 上, 即 CP =t ,OP =2-t ,OQ =2t ,AQ =4-2t ,∴S △DOP =12•OP •y D =12(2-t )×2=2-t ,S △DOQ =12•OQ •x D =12×2t ×1=t ,∵S △ODP =S △ODQ ,∴2-t =t ,∴t =1.(3)结论:OHC ACE OEC∠+∠∠的值不变,其值为2.理由如下:如图2中,∵∠2+∠3=90°, 又∵∠1=∠2,∠3=∠FCO ,∴∠GOC +∠ACO =180°,∴OG ∥AC ,∴∠1=∠CAO ,∴∠OEC =∠CAO +∠4=∠1+∠4,如图,过H 点作AC 的平行线,交x 轴于P ,则∠4=∠PHC ,PH ∥OG ,∴∠PHO =∠GOF =∠1+∠2,∴∠OHC =∠OHP +∠PHC =∠GOF +∠4=∠1+∠2+∠4,∴124414OHC ACE OEC ∠+∠∠+∠+∠+∠=∠∠+∠=2. 【点睛】本题主要考查三角形综合题、非负数的性质、三角形的面积、平行线的性质等知识,解题的关键是学会添加常用辅助线,学会用转化的思想思考问题.12.(1)∠ACB+∠BED=180°;(2)100°;(3)40°【分析】(1)如图1,延长DE 交AB 于点F ,根据ABCD 可得∠DFB=∠D ,则∠DFB=∠A ,可得ACDF ,根据平行线的性质得∠A解析:(1)∠ACB +∠BED =180°;(2)100°;(3)40°【分析】(1)如图1,延长DE 交AB 于点F ,根据AB //CD 可得∠DFB =∠D ,则∠DFB =∠A ,可得AC //DF ,根据平行线的性质得∠ACB +∠CEF =180°,由对顶角相等可得结论;(2)如图2,作EM //CD ,HN //CD ,根据AB //CD ,可得AB //EM //HN //CD ,根据平行线的性质得角之间的关系,再根据∠DEB 比∠DHB 大60°,列出等式即可求∠DEB 的度数; (3)如图3,过点E 作ES //CD ,设直线DF 和直线BP 相交于点G ,根据平行线的性质和角平分线定义可求∠PBM 的度数.【详解】解:(1)如图1,延长DE 交AB 于点F ,//AB CD ,DFB D ∴∠=∠,A D ∠=∠,A DFB ∴∠=∠,//AC DF ∴,180ACB CEF ∴∠+∠=︒,180ACB BED ∴∠+∠=︒,故答案为:180ACB BED ∠+∠=︒;(2)如图2,作//EM CD ,//HN CD ,//AB CD ,//////AB EM HN CD ∴,1180EDF ∴∠+∠=︒,MEB ABE ∠=∠, BG 平分ABE ∠,12ABG ABE ∴∠=∠, //AB HN ,2ABG ∴∠=∠,//CF HN ,23β∴∠+∠=∠, ∴132ABE β∠+∠=∠, DH 平分EDF ∠,132EDF ∴∠=∠, ∴1122ABE EDF β∠+∠=∠,1()2EDF ABE β∴∠=∠-∠, 2EDF ABE β∴∠-∠=∠,设DEB α∠=∠,1180180()1802MEB EDF ABE EDF ABE αβ∠=∠+∠=︒-∠+∠=︒-∠-∠=︒-∠,DEB ∠比DHB ∠大60︒,60αβ∴∠-︒=∠,1802(60)αα∴∠=︒-∠-︒,解得100α∠=︒.DEB ∴∠的度数为100︒;(3)PBM ∠的度数不变,理由如下:如图3,过点E 作//ES CD ,设直线DF 和直线BP 相交于点G ,BM 平分EBK ∠,DN 平分CDE ∠,12EBM MBK EBK ∴∠=∠=∠,12CDN EDN CDE ∠=∠=∠,//ES CD ,//AB CD ,////ES AB CD ∴,DES CDE ∴∠=∠,180BES ABE EBK ∠=∠=︒-∠,G PBK ∠=∠,由(2)可知:100DEB ∠=︒,180100CDE EBK ∴∠+︒-∠=︒,80EBK CDE ∴∠-∠=︒,//BP DN ,CDN G ∴∠=∠,12PBK G CDN CDE ∴∠=∠=∠=∠,PBM MBK PBK ∴∠=∠-∠1122EBK CDE =∠-∠1()2EBK CDE =∠-∠1802=⨯︒40=︒.【点睛】本题考查了平行线的性质,解决本题的关键是掌握平行线的性质.13.(1)10秒;(2)20秒;(3)20秒,画图见解析;(4)秒,画图见解析【分析】(1)用角的度数除以转动速度即可得;(2)求出∠AON=60°,结合旋转速度可得时间t;(3)设∠AON=3解析:(1)10秒;(2)20秒;(3)20秒,画图见解析;(4)703秒,画图见解析【分析】(1)用角的度数除以转动速度即可得;(2)求出∠AON=60°,结合旋转速度可得时间t;(3)设∠AON=3t,则∠AOC=30°+6t,由题意列出方程,解方程即可;(4)根据转动速度关系和OC平分∠MOB,由题意列出方程,解方程即可.【详解】解:(1)∵30÷3=10,∴10秒后ON与OC重合;(2)∵MN∥AB∴∠BOM=∠M=30°,∵∠AON+∠BOM=90°,∴∠AON=60°,∴t=60÷3=20∴经过t秒后,MN∥AB,t=20秒.(3)如图3所示:∵∠AON+∠BOM=90°,∠BOC=∠BOM,∵三角板绕点O以每秒3°的速度,射线OC也绕O点以每秒6°的速度旋转,设∠AON=3t,则∠AOC=30°+6t,∵OC与OM重合,∵∠AOC+∠BOC=180°,可得:(30°+6t)+(90°-3t)=180°,解得:t=20秒;即经过20秒时间OC与OM重合;(4)如图4所示:∵∠AON+∠BOM=90°,∠BOC=∠COM ,∵三角板绕点O 以每秒3°的速度,射线OC 也绕O 点以每秒6°的速度旋转,设∠AON=3t ,∠AOC=30°+6t ,∵∠BOM+∠AON=90°,∴∠BOC=∠COM=12∠BOM=12(90°-3t ),由题意得:180°-(30°+6t )=12( 90°-3t ), 解得:t=703秒, 即经过703秒OC 平分∠MOB . 【点睛】 此题考查了平行线的判定与性质,角的计算以及方程的应用,关键是应该认真审题并仔细观察图形,找到各个量之间的关系求出角的度数是解题的关键.14.(1)60°;(2)50°;(3)或【分析】(1)根据平行线的性质可得的度数,再根据角平分线的性质可得的度数,应用三角形内角和计算的度数,由已知条件,可计算出的度数;(2)根据题意画出图形,先解析:(1)60°;(2)50°;(3)18021n α︒--或18021n α︒-+ 【分析】(1)根据平行线的性质可得CBD ∠的度数,再根据角平分线的性质可得ABE 的度数,应用三角形内角和计算BAC ∠的度数,由已知条件BAE CAE ∠=∠,可计算出CAE ∠的度数; (2)根据题意画出图形,先根据:5:1BAE CAE ∠∠=可计算出CAE ∠的度数,由100BAE ∠=︒可计算出BAC ∠的度数,再根据平行线的性质和角平分线的性质,计算出CBD ∠的度数,即可得出结论;(3)根据题意可分两种情况,①若点E 运动到1l 上方,根据平行线的性质由α可计算出CBD ∠的度数,再根据角平分线的性质和平行线的性质,计算出BAC ∠的度数,再:BAE CAE n ∠∠=,BAE BAC CAE ∠=∠+∠,列出等量关系求解即可等处结论;②若点E 运动到1l 下方,根据平行线的性质由α可计算出CBD ∠的度数,再根据角平分线的性质和平行线的性质,计算出BAC ∠的度数,再:BAE CAE n ∠∠=,BAE BAC CAE ∠=∠-∠列出等量关系求解即可等处结论.【详解】解:(1)30α=︒,//AC BD ,30CBD ∴∠=︒, BC 平分ABD ∠,30ABE CBD ∴∠=∠=︒,1801803030120BAC ABE α∴∠=︒-∠-=︒-︒-︒=︒,又BAE CAE ∠=∠, 111206022CAE BAC ∴∠=∠=⨯︒=︒; (2)根据题意画图,如图1所示,100BAE ∠=︒,:5:1BAE CAE ∠∠=,20CAE ∴∠=︒,1002080BAC BAE CAE ∴∠=∠-∠=︒-︒=︒,//AC BD ,180100ABD BAC ∴∠=︒-∠=︒,又BC 平分ABD ∠,111005022CBD ABD ∴∠=∠=⨯︒=︒, 50CBD α∴=∠=︒;(3)①如图2所示,//AC BD ,CBD ACB α∴∠=∠=,BC 平分ABD ∠,22ABD CBD α∴∠=∠=,1801802BAC ABD α∴∠=︒-∠=︒-,又:BAE CAE n ∠∠=,():BAC CAE CAE n ∴∠+∠∠=,(1802):CAE CAE n α︒-+∠∠=,解得18021CAE n α︒-∠=-;②如图3所示,//AC BD ,CBD ACB α∴∠=∠=, BC 平分ABD ∠,22ABD CBD α∴∠=∠=,1801802BAC ABD α∴∠=︒-∠=︒-,又:BAE CAE n ∠∠=,():BAC CAE CAE n ∴∠-∠∠=,(1802):CAE CAE n α︒--∠∠=, 解得18021CAE n α︒-∠=+.综上CAE ∠的度数为18021n α︒--或18021n α︒-+. 【点睛】 本题主要考查平行线的性质和角平分线的性质,两直线平行,同位角相等.两直线平行,同旁内角互补. 两直线平行,内错角相等.合理应用平行线的性质是解决本题的关键. 15.(1)4;(2)45°;(3)P (0,-1)或(0,3)【分析】(1)根据非负数的性质得到a =−b ,a−b +4=0,解得a =−2,b =2,则A (−2,0),B (2,0),C (2,2),即可计算出解析:(1)4;(2)45°;(3)P (0,-1)或(0,3)【分析】(1)根据非负数的性质得到a =−b ,a−b +4=0,解得a =−2,b =2,则A (−2,0),B (2,0),C (2,2),即可计算出三角形ABC 的面积=4;(2)由于CB ∥y 轴,BD ∥AC ,则∠CAB =∠ABD ,即∠3+∠4+∠5+∠6=90°,过E 作EF ∥AC ,则BD ∥AC ∥EF ,然后利用角平分线的定义可得到∠3=∠4=∠1,∠5=∠6=∠2,所以∠AED =∠1+∠2=12×90°=45°;(3)先根据待定系数法确定直线AC 的解析式为y =12x +1,则G 点坐标为(0,1),然后利用S △PAC =S △APG +S △CPG 进行计算.【详解】解:(1)由题意知:a =−b ,a−b +4=0,解得:a =−2,b =2,∴ A (−2,0),B (2,0),C (2,2),∴S △ABC =1AB BC=42⋅; (2)∵CB ∥y 轴,BD ∥AC ,∴∠CAB =∠ABD ,∴∠3+∠4+∠5+∠6=90°,过E 作EF ∥AC ,∵BD ∥AC ,∴BD ∥AC ∥EF ,∵AE ,DE 分别平分∠CAB ,∠ODB ,∴∠3=∠4=∠1,∠5=∠6=∠2,∴∠AED =∠1+∠2=12×90°=45°;(3)存在.理由如下:设P 点坐标为(0,t ),直线AC 的解析式为y =kx +b ,把A (−2,0)、C (2,2)代入得: -2k+b=02k+b=2⎧⎨⎩,解得1k=2b=1⎧⎪⎨⎪⎩, ∴直线AC 的解析式为y =12x +1,∴G 点坐标为(0,1),∴S △PAC =S △APG +S △CPG =12|t−1|•2+12|t−1|•2=4,解得t =3或−1,∴P 点坐标为(0,3)或(0,−1).【点睛】本题考查了绝对值、平方的非负性,平行线的判定与性质:内错角相等,两直线平行;同旁内角互补,两直线平行;两直线平行,内错角相等.四、解答题16.(1)①115°;110°;②;理由见解析;(2);理由见解析【分析】(1)①若∠BAC=100°,∠C=30°,由三角形内角和定理求出∠B=50°,由平行线的性质得出∠EDB=∠C=30°,由解析:(1)①115°;110°;②1902AFD B ∠=︒+∠;理由见解析;(2)1902AFD B ∠=︒-∠;理由见解析 【分析】(1)①若∠BAC=100°,∠C=30°,由三角形内角和定理求出∠B=50°,由平行线的性质得出∠EDB=∠C=30°,由角平分线定义得出1502BAG BAC ∠=∠=︒,1152FDG EDB ∠=∠=︒,由三角形的外角性质得出∠DGF=100°,再由三角形的外角性质即可得出结果;若∠B=40°,则∠BAC+∠C=180°-40°=140°,由角平分线定义得出12BAG BAC ∠=∠,12FDG EDB ∠=∠,由三角形的外角性质即可得出结果;②由①得:∠EDB=∠C ,1502BAG BAC ∠=∠=︒,1152FDG EDB ∠=∠=︒,由三角形的外角性质得出∠DGF=∠B+∠BAG ,再由三角形的外角性质即可得出结论; (2)由(1)得:∠EDB=∠C ,12BAG BAC ∠=∠,1122BDH EDB C ∠=∠=∠,由三角形的外角性质和三角形内角和定理即可得出结论.【详解】(1)①若∠BAC=100°,∠C=30°,则∠B=180°-100°-30°=50°,∵DE ∥AC ,∴∠EDB=∠C=30°,∵AG 平分∠BAC ,DF 平分∠EDB , ∴1502BAG BAC ∠=∠=︒,1152FDG EDB ∠=∠=︒,∴∠DGF=∠B+∠BAG=50°+50°=100°,∴∠AFD=∠DGF+∠FDG=100°+15°=115°;若∠B=40°,则∠BAC+∠C=180°-40°=140°,∵AG 平分∠BAC ,DF 平分∠EDB , ∴12BAG BAC ∠=∠,12FDG EDB ∠=∠, ∵∠DGF=∠B+∠BAG ,∴∠AFD=∠DGF+∠FDG=∠B+∠BAG+∠FDG =()12B BAC C ∠+∠+∠ 1401402=︒+⨯︒ 4070110=︒+︒=︒。
浙教版七年级数学下册试题第3章《整式的乘除》单元培优测试题.docx浙教版七下数学第3章《整式的乘除》单元培优测试题班级_________ 姓名_____________ 得分_____________注意事项:本卷共有三⼤题23⼩题,满分120分,考试时间120分钟.⼀、选择题(本题有10⼩题,每⼩题3分,共30分)下⾯每⼩题给出的四个选项中,只有⼀个是正确的.1﹒已知x a=2,x b=3,则x3a+2b等于()A﹒17 B﹒72 C﹒24 D﹒362﹒下列计算正确的是()A﹒(a2)3=a5B﹒(-2a)2=-4a2C﹒m3·m2=m6D﹒a6÷a2=a43﹒科学家在实验中测出某微⽣物约为0.0000035⽶,将0.0000035⽤科学记数法表⽰为()A﹒3.5×10-6B﹒3.5×106C﹒3.5×10-5D﹒35×10-54﹒下列计算不正确的是()A﹒(-2)3÷(-25)=14B﹒(-2×102)(-8×10-3)=1.6C﹒23×(12)-3=1D﹒(5)2×(-5)-2=15﹒下列计算正确的是()A﹒5x6·(-x3)2=-5x12B﹒(x2+3y)(3y-x2)=9y2-x4C﹒8x5÷2x5=4x5D﹒(x-2y)2=x2-4y26﹒已知M=20162,N=2015×2017,则M与N的⼤⼩是()A﹒M>N B﹒M<N C﹒M=N D﹒不能确定7﹒当x取任意实数时,等式(x+2)(x-1)=x2+mx+n恒成⽴,则m+n的值为()A﹒1 B﹒2 C﹒-1 D﹒-28﹒已知x2-4x-1=0,则代数式2x(x-3)-(x-1)2+3的值为()A﹒3 B﹒2 C﹒1D﹒-19﹒若x a÷y a=a2,()x yb=b3,则(x+y)2的平⽅根是()A﹒4B﹒±4C﹒±6D﹒1610.若代数式[2x3(2x+1)-x2]÷2x2与x(1-2x)的值互为相反数,则x的值是()A﹒0B﹒12C﹒4D﹒14⼆、填空题(本题有6⼩题,每⼩题4分,共24分)要注意认真看清题⽬的条件和要填写的内容,尽量完整地填写答案.11.计算:(-2ab2)3=_________.12.若ax3m y12÷3x3y2n=4x6y8,则(2m+n-a)n=____________﹒13.若(2x +3y )(mx -ny )=4x 2-9y 2,则mn =___________. 14.如图,在长为2a +3,宽为a +1的长⽅形铁⽚上剪去两个边长均为a -1(a >1)的正⽅形,则剩余部分的⾯积是______________ (⽤含a 的代数式表⽰). 15. 已知a +b =8,a 2b 2=4,则12(a 2+b 2)-ab =____________. 16.若2x 3-ax 2-5x +5=(2x 2+ax -1)(x -b )+3,其中a ,b 为整数,则1()ab -=_________. 三、解答题(本题有7⼩题,共66分)解答应写出⽂字说明,证明过程或推演步骤. 17.(8分)计算:(1)2-+11()3--×(3-2)0-9+2017(1)-﹒(2)(4ab 3+8a 2b 2)÷4ab + (a -b )(3a +b )﹒18.(10分)先化简,再求值:(1)[2x (x 2y -xy 2)+xy (xy -x 2)]÷x 2y ,其中x =2017,y =2016﹒(2)(2m -12n )2+(2m -12n )(-2m -12n ),其中m ,n 满⾜⽅程组213211m n m n +=??-=?﹒19.(8分)⼩明与⼩亮在做游戏,两⼈各报⼀个整式,⼩明报的整式作被除式,⼩亮报的整式作除式,要求商式必须为2xy﹒若⼩明报的是x3y-2xy2,⼩亮应报什么整式?若⼩亮也报x3y-2xy2,那么⼩明能报⼀个整式吗?说说你的理由﹒20.(8分)观察下列关于⾃然数的等式:22﹣9×12=-5 ①52﹣9×22=-11 ②82﹣9×32=-17 ③…根据上述规律,解决下列问题:(1)完成第四个等式:112﹣9×_______=___________.(2)根据上⾯的规律,写出你猜想的第n个等式(等含n的等式表⽰),并验证其正确性.21.(10分)阅读下列材料,解答问题:在(x2+ax+b)(2x2-3x-1)的积中,x3项的系数为-5,x2的系数为-6,求a,b的值.解:(x2+ax+b)(2x2-3x-1)=2x4-3x3+2ax3-3ax2+2bx2-3bx6……①=2x4-(3-2a)x3-(3a-2b)x2-3bx……②根据对应项系数相等有325326aa b-=--=-,解得49ab==,……③(1)上述解答过程是否正确?(2)若不正确,从第⼏步开始出现错误?其它步骤是否还有错误?(3)请你写出正确的解答过程.22.(10分)⼀张如图1的长⽅形铁⽪,四个⾓都剪去边长为30cm 的正⽅形,再将四周折起,做成⼀个有底⽆盖的铁盒如图2,铁盒底⾯长⽅形的长为4a (cm ),宽为3a (cm ),这个⽆盖铁盒的各个⾯的⾯积之和称为铁盒的全⾯积. (1)请⽤含a 的代数式表⽰图1中原长⽅形铁⽪的⾯积. (2)若要在铁盒的各个⾯漆上某种油漆,每元钱可漆的⾯积为50a(cm 2),则油漆这个铁盒需要多少钱(⽤含a 的代数式表⽰)?(3)是否存在⼀个正整数a ,使得铁盒的全⾯积是底⾯积的正整数倍?若存在,请求出这个a 的值;若不存在,请说明理由.23.(12分)如果⼀个正整数能表⽰为两个连续偶数的平⽅差,那么称这个正整数为“神秘数”﹒如:4=22-02;12=42-22;20=62-42,因此4,12,20这三个数都是神秘数. (1)28和2016这两个数是神秘数吗?为什么?(2)设两个连续偶数为2k +2和2k (其中k 取⾮负整数),由这两个连续偶数构造的神秘数是4的倍数吗?为什么?(3)两个连续奇数的平⽅差(k 取正数)是神秘数吗?为什么?浙教版七下数学第3章《整式的乘除》单元培优测试题参考答案Ⅰ﹒答案部分:⼀、选择题题号 1 2 3 4 5 6 7 8 9 10 答案BDACBACABD⼆、填空题11﹒-8a 3b 6﹒ 12﹒ 16﹒ 13﹒ 6﹒ 14﹒9a +1﹒ 15﹒ 0或8﹒ 16﹒14﹒三、解答题17.解答:(1)2-+11()3--×(3-2)0-9+2017(1)- =2+(-3)×1-3+(-1)=2-3-3-1 =-5﹒(2)(4ab 3+8a 2b 2)÷4ab + (a -b )(3a +b ) =b 2+2ab +3a 2+ab -3ab -b 2=3a 2﹒ 18.解答:(1)[2x (x 2y -xy 2)+xy (xy -x 2)]÷x 2y =[2x 3y -2x 2y 2+x 2y 2-x 3y ] ÷x 2y =[x 3y -x 2y 2] ÷x 2y =x -y 当x =2017,y =2016时,原式=2017-2016=1﹒(2)解⽅程组213211m n m n +=??-=?,得31m n =??=-?,(2m -12n )2+(2m -12n )(-2m -12n ) =4m 2-2mn +14n 2-(2m -12n )(2m +12n )=4m 2-2mn +14n 2-4m 2+14n 2=-2mn +12n 2当m =3,n =-1时,原式=-2×3×(-1)+12×(-1)2=-512﹒ 19.解答:当⼩明报x 3y -2xy 2时,(x 3y -2xy 2)÷2xy =x 3y ÷2xy -2xy 2÷2xy =12x 2-y ,所以⼩亮报的整式是12x 2-y ;⼩明也能报⼀个整式,理由如下:∵(x 3y -2xy 2)·2xy =x 3y ·2xy -2xy 2·2xy =2x 4y 2-4x 2y 3,∴⼩明报的整式是2x 4y 2-4x 2y 3. 20.解答:(1)由①②③三个等式的规律,可得出第四个等式:112﹣9×42=-23,故答案为:42,-23.(2)猜想:第n 个等式为(3n -1)2-9n 2=-6n +1;验证:∵左边=(3n -1)2-9n 2=9n 2-6n +1-9n 2=-6n +1,右边=-6n +1,∴左边=右边,即(3n -1)2-9n 2=-6n +1﹒ 21.解答:(1)不正确,(2)从第①步开始出现错误,还有第③步也出现错误,(3)正确的解答过程如下:∵(x 2+ax +b )(2x 2-3x -1)=2x 4-3x 3-x 2+2ax 3-3ax 2-ax +2bx 2-3bx -b=2x 4+(2a -3)x 3+(-3a +2b -1)x 2+(-a -3b )x -b ,∴展开式中含x 3的项为(2a -3)x 3,含x 2的项为(-3a +2b -1)x 2,由题意,得2353216a a b -=-??-+-=-?,解得14a b =-??=-?﹒22.解答:(1)原长⽅形铁⽪的⾯积为(4a +60)(3a +60)=12a 2+420a +3600(cm 2);(2)油漆这个铁盒的全⾯积是:12a 2+2×30×4a +2×30×3a =12a 2+420a (cm 2),则油漆这个铁盒需要的钱数是:(12a 2+420a )÷50a =(12a 2+420a )×50a=600a +21000(元);(3)铁盒的全⾯积是:4a ×3a +4a ×30×2+3a ×30×2=12a 2+420a (cm 2),底⾯积是:4a ×3a =12a (cm 2),假设存在正整数n ,使12a 2+420a =n (12a 2),∵a 是正整数,∴(n -1)a =35,则a =35,n =2或a =7,n =6或a =1,n =36,所以存在铁盒的全⾯积是底⾯积的正整数倍,这时a =35或7或1. 23. 解答:(1)∵28=4×7=82-62,2016=4×504=5052-5032,∴28和2016这两个数是神秘数;(2)是4的倍数,理由如下:∵(2k +2)2-(2k )2=4k 2+8k +4-4k 2=8k +4=4(2k +1),⼜k 是⾮负整数,∴由这两个连续偶数2k +2和2k 构造的神秘数是4的倍数;(3)两个连续奇数的平⽅差不是神秘数,理由如下:设这两个连续奇数为2k +1,2k -1,则(2k +1)2-(2k -1)2=4k 2+4k +1-(4k 2-4k +1)=4k 2+4k +1-4k 2+4k -1=8k =4×2k ,由(2)知神秘数应为4的奇数倍,故两个连续奇数的平⽅差不是神秘数﹒Ⅱ﹒解答部分:⼀、选择题1﹒已知x a=2,x b=3,则x3a+2b等于()A﹒17 B﹒72 C﹒24 D﹒36解答:∵x a=2,x b=3,∴x3a+2b=(x a)3·(x b)2=8×9=72.故选:B.2﹒下列计算正确的是()A﹒(a2)3=a5B﹒(-2a)2=-4a2C﹒m3·m2=m6D﹒a6÷a2=a4解答:A﹒(a2)3=a6,故此项错误;B﹒(-2a)2=4a2,故此项错误;C﹒m3·m2=m5,故此项错误;D﹒a6÷a2=a4,故此项正确.故选:D.3﹒科学家在实验中测出某微⽣物约为0.0000035⽶,将0.0000035⽤科学记数法表⽰为()A﹒3.5×10-6B﹒3.5×106C﹒3.5×10-5D﹒35×10-5解答:0.0000035=3.5×10-6.故选:A.4﹒下列计算不正确的是()A﹒(-2)3÷(-25)=14B﹒(-2×102)(-8×10-3)=1.6C﹒23×(12)-3=1D﹒(5)2×(-5)-2=1解答:A﹒(-2)3÷(-25)=(-2)3÷(-2)5=(-2)-2=14,故此项正确;B﹒(-2×102)(-8×10-3)=[(-2)×(-8)]×(102×10-3)=16×110=1.6,故此项正确;C﹒23×(12)-3=23×23=8×8=64,故此项错误;D﹒(5)2×(-5)-2=(5)2×(5)-2=(5)0=1,故此项正确.故选:C.5﹒下列计算正确的是()A﹒5x6·(-x3)2=-5x12B﹒(x2+3y)(3y-x2)=9y2-x4C﹒8x5÷2x5=4x5D﹒(x-2y)2=x2-4y2解答:A﹒5x6·(-x3)2=5x6·x6=5x12,故此项错误;B﹒(x2+3y)(3y-x2)=9y2-x4,故此项正确;C﹒8x5÷2x5=4,故此项错误;D﹒(x-2y)2=x2-4xy+4y2,故此项错误.故选:B.6﹒已知M=20162,N=2015×2017,则M与N的⼤⼩是()A﹒M>N B﹒M<N C﹒M=N D﹒不能确定解答:∵N=2015×2017=(2016-1)(2016+1)=20162-1,M=20162,∴M>N﹒故选:A.7﹒当x取任意实数时,等式(x+2)(x-1)=x2+mx+n恒成⽴,则m+n的值为()A﹒1 B﹒2 C﹒-1 D﹒-2解答:∵(x+2)(x-1)=x2+x-2,⼜等式(x+2)(x-1)=x2+mx+n恒成⽴,∴m=1,n=-2,∴m+n=-1.故选:C.8﹒已知x2-4x-1=0,则代数式2x(x-3)-(x-1)2+3的值为()A﹒3 B﹒2 C﹒1D﹒-1解答:∵x2-4x-1=0,∴x2-4x=1,∴2x(x-3)-(x-1)2+3=2x2-6x-(x2-2x+1)+3=2x2-6x-x2+2x-1+3=x2-4x+2=3﹒故选:A﹒9﹒若x a÷y a=a2,()x yb=b3,则(x+y)2的平⽅根是()A﹒4B﹒±4C﹒±6D﹒16解答:由x a÷y a=a2,得x-y=2,由()x yb=b3,得xy=3,把x-y=2两边平⽅,得x2-2xy+y2=4,则x2+y2=4+2xy=10,∴(x+y)2=x2+y2+2xy=10+6=16﹒∴(x+y)2的平⽅根是±4﹒故选:B.10.若代数式[2x3(2x+1)-x2]÷2x2与x(1-2x)的值互为相反数,则x的值是()A﹒0B﹒12C﹒4D﹒14解答:∵代数式[2x3(2x+1)-x2]÷2x2与x(1-2x)的值互为相反数,∴[2x3(2x+1)-x2]÷2x2+x(1-2x)=0,(4x4+2x3-x2)÷2x2+x-2x2=02x2+x-12+x-2x2=02x-12=0,x=14,故选:D.⼆、填空题11.计算:(-2ab2)3=_________.解答:原式=-8a3b6·故答案为:-8a3b6﹒12.若ax3m y12÷3x3y2n=4x6y8,则(2m+n-a)n=____________﹒解答:∵ax3m y12÷3x3y2n=(a÷3)x3m-3y12-2n=4x6y8,∴a÷3=4,3m-3=6,12-2n=8,∴a=12,m=3,n=2,∴(2m+n-a)n=(6+2-12)2=16﹒故答案为:16﹒13.若(2x +3y )(mx -ny )=4x 2-9y 2,则mn =___________. 解答:∵(2x +3y )(2x -3y )=4x 2-9y 2,∴m =2,n =3,∴mn =6﹒故答案为:6﹒14.如图,在长为2a +3,宽为a +1的长⽅形铁⽚上剪去两个边长均为a -1(a >1)的正⽅形,则剩余部分的⾯积是______________(⽤含a 的代数式表⽰).解答:由题意,知:剩余部分的⾯积是(2a +3)(a +1)-2(a -1)2=2a 2+2a +3a +3-2(a 2-2a +1)=2a 2+5a +3-2a 2+4a -2=9a +1﹒故答案为:9a +1﹒15. 已知a +b =8,a 2b 2=4,则12(a 2+b 2)-ab =____________. 解答:∵a 2b 2=4,∴ab =±2,当ab =2时,a 2+b 2=(a +b )2-2ab =8-4=4,则12(a 2+b 2)-ab =12×4-2=0,当ab =-2时,a 2+b 2=(a +b )2-2ab =8+4=12,则12(a 2+b 2)-ab =1×12+2=8﹒故答案为:0或8﹒16.若2x 3-ax 2-5x +5=(2x 2+ax -1)(x -b )+3,其中a ,b 为整数,则1()ab -=_________. 解答:∵(2x 2+ax -1)(x -b )+3=2x 3+ax 2-x -2bx 2-abx +b +3 =2x 3-(2b -a )x 2-(ab +1)x +b +3,∴235b a a b -=??+=?,解得22a b =??=?,∴1()ab -=14-=14,故答案为:14﹒三、解答题17.(8分)计算:(1)2-+11()3--×(3-2)0-9+2017(1)-﹒解答:2-+11()3--×(3-2)0-9+2017(1)-=2+(-3)×1-3+(-1) =2-3-3-1=-5﹒(2)(4ab3+8a2b2)÷4ab+(a-b)(3a+b)解答:(4ab3+8a2b2)÷4ab+(a-b)(3a+b)=b2+2ab+3a2+ab-3ab-b2=3a2﹒18.(10分)先化简,再求值:(1)[2x(x2y-xy2)+xy(xy-x2)]÷x2y,其中x=2017,y=2016. 解答:[2x(x2y-xy2)+xy(xy-x2)]÷x2y=[2x3y-2x2y2+x2y2-x3y]÷x2y=[x3y-x2y2]÷x2y=x-y当x=2017,y=2016时,原式=2017-2016=1﹒(2)(2m-12n)2+(2m-12n)(-2m-1n),其中m,n满⾜⽅程组213211m nm n+=-=﹒解答:解⽅程组213211m nm n+=-=,得31mn==-,(2m-12n)2+(2m-12n)(-2m-12n)=4m2-2mn+14n2-(2m-12n)(2m+12n)=4m2-2mn+14n2-4m2+14n2=-2mn+1 2 n2当m=3,n=-1时,原式=-2×3×(-1)+ 12×(-1)2=-512﹒19.(8分)⼩明与⼩亮在做游戏,两⼈各报⼀个整式,⼩明报的整式作被除式,⼩亮报的整式作除式,要求商式必须为2xy﹒若⼩明报的是x3y-2xy2,⼩亮应报什么整式?若⼩亮也报x3y-2xy2,那么⼩明能报⼀个整式吗?说说你的理由﹒解答:当⼩明报x3y-2xy2时,(x3y-2xy2)÷2xy=x3y÷2xy-2xy2÷2xy=12x2-y,所以⼩亮报的整式是12x2-y;⼩明也能报⼀个整式,理由如下:∵(x3y-2xy2)·2xy=x3y·2xy-2xy2·2xy=2x4y2-4x2y3,∴⼩明报的整式是2x4y2-4x2y3.20.(8分)观察下列关于⾃然数的等式:22﹣9×12=-5 ①52﹣9×22=-11 ②82﹣9×32=-17 ③…根据上述规律,解决下列问题:(1)完成第四个等式:112﹣9×_______=___________. (2)根据上⾯的规律,写出你猜想的第n 个等式(等含n 的等式表⽰),并验证其正确性.解答:(1)由①②③三个等式的规律,可得出第四个等式:112﹣9×42=-23,故答案为:42,-23.(2)猜想:第n 个等式为(3n -1)2-9n 2=-6n +1;验证:∵左边=(3n -1)2-9n 2=9n 2-6n +1-9n 2=-6n +1,右边=-6n +1,∴左边=右边,即(3n -1)2-9n 2=-6n +1﹒21.(10分)阅读下列材料,解答问题:在(x 2+ax +b )(2x 2-3x -1)的积中,x 3项的系数为-5,x 2的系数为-6,求a ,b 的值. 解:(x 2+ax +b )(2x 2-3x -1)=2x 4-3x 3+2ax 3-3ax 2+2bx 2-3bx 6……①=2x 4-(3-2a )x 3-(3a -2b )x 2-3bx ……②根据对应项系数相等有325326a a b -=-??-=-?,解得49a b =??=?,……③(1)上述解答过程是否正确?(2)若不正确,从第⼏步开始出现错误?其它步骤是否还有错误?(3)请你写出正确的解答过程. 解答:(1)不正确,(2)从第①步开始出现错误,还有第③步也出现错误,(3)正确的解答过程如下:∵(x 2+ax +b )(2x 2-3x -1)=2x 4-3x 3-x 2+2ax 3-3ax 2-ax +2bx 2-3bx -b=2x 4+(2a -3)x 3+(-3a +2b -1)x 2+(-a -3b )x -b ,∴展开式中含x 3的项为(2a -3)x 3,含x 2的项为(-3a +2b -1)x 2,由题意,得2353216a a b -=-??-+-=-?,解得14a b =-??=-?﹒22.(10分)⼀张如图1的长⽅形铁⽪,四个⾓都剪去边长为30cm 的正⽅形,再将四周折起,做成⼀个有底⽆盖的铁盒如图2,铁盒底⾯长⽅形的长为4a (cm ),宽为3a (cm ),这个⽆盖铁盒的各个⾯的⾯积之和称为铁盒的全⾯积. (1)请⽤含a 的代数式表⽰图1中原长⽅形铁⽪的⾯积. (2)若要在铁盒的各个⾯漆上某种油漆,每元钱可漆的⾯积为50a(cm 2),则油漆这个铁盒需要多少钱(⽤含a 的代数式表⽰)?(3)是否存在⼀个正整数a ,使得铁盒的全⾯积是底⾯积的正整数倍?若存在,请求出这个a 的值;若不存在,请说明理由.解答:(1)原长⽅形铁⽪的⾯积为(4a +60)(3a +60)=12a 2+420a +3600(cm 2);(2)油漆这个铁盒的全⾯积是:12a2+2×30×4a +2×30×3a =12a 2+420a (cm 2),则油漆这个铁盒需要的钱数是:(12a 2+420a )÷50a =(12a 2+420a )×50a=600a +21000(元);(3)铁盒的全⾯积是:4a ×3a +4a ×30×2+3a ×30×2=12a 2+420a (cm 2),底⾯积是:4a ×3a =12a (cm 2),假设存在正整数n ,使12a 2+420a =n (12a 2),∵a 是正整数,∴(n -1)a =35,则a =35,n =2或a =7,n =6或a =1,n =36,所以存在铁盒的全⾯积是底⾯积的正整数倍,这时a =35或7或1.23.(12分)如果⼀个正整数能表⽰为两个连续偶数的平⽅差,那么称这个正整数为“神秘数”.如:4=22-02;12=42-22;20=62-42,因此4,12,20这三个数都是神秘数. (1)28和2016这两个数是神秘数吗?为什么?(2)设两个连续偶数为2k +2和2k (其中k 取⾮负整数),由这两个连续偶数构造的神秘数是4的倍数吗?为什么?(3)两个连续奇数的平⽅差(k 取正数)是神秘数吗?为什么?解答:(1)∵28=4×7=82-62,2016=4×504=5052-5032,∴28和2016这两个数是神秘数;(2)是4的倍数,理由如下:∵(2k +2)2-(2k )2=4k 2+8k +4-4k 2=8k +4=4(2k +1),⼜k 是⾮负整数,∴由这两个连续偶数2k +2和2k 构造的神秘数是4的倍数;(3)两个连续奇数的平⽅差不是神秘数,理由如下:设这两个连续奇数为2k +1,2k -1,则(2k +1)2-(2k -1)2=4k 2+4k +1-(4k 2-4k +1)=4k 2+4k +1-4k 2+4k -1=8k =4×2k ,由(2)知神秘数应为4的奇数倍,故两个连续奇数的平⽅差不是神秘数.初中数学试卷⿍尚图⽂**整理制作。
七下数学大培优参考答案七下数学大培优参考答案数学作为一门学科,对于学生来说是一个既令人头疼又充满挑战的科目。
而七年级下册的数学课本更是如此,其中的一些题目难度较大,需要学生进行深入思考和分析。
为了帮助学生更好地理解和掌握课本知识,以下是一些七下数学大培优题的参考答案。
一、有理数的运算1. 计算下列各式的值:a) $(-3)^2 + (-5) \times (-2)$答案:$(-3)^2 + (-5) \times (-2) = 9 + 10 = 19$b) $(-4) \times (-3) + 6 \times (-2)$答案:$(-4) \times (-3) + 6 \times (-2) = 12 + (-12) = 0$c) $(-7) \times \left(\frac{1}{2}\right) - \left(-\frac{3}{4}\right)$答案:$(-7) \times \left(\frac{1}{2}\right) - \left(-\frac{3}{4}\right) = -\frac{7}{2} + \frac{3}{4} = -\frac{11}{4}$二、代数式与方程1. 化简下列各式:a) $3x + 2x - 5x + 4x$答案:$3x + 2x - 5x + 4x = 4x$b) $2a - 3b + 4a + b - 5a + 2b$答案:$2a - 3b + 4a + b - 5a + 2b = a$2. 解方程:a) $2x - 3 = 7$答案:$2x - 3 = 7 \Rightarrow 2x = 10 \Rightarrow x = 5$ b) $3y + 5 = 2y - 1$答案:$3y + 5 = 2y - 1 \Rightarrow y = -6$三、图形的认识1. 计算下列各图形的面积:a) 长方形,长为5cm,宽为3cm答案:面积 = 长× 宽= 5cm × 3cm = 15cm²b) 正方形,边长为8cm答案:面积 = 边长× 边长= 8cm × 8cm = 64cm²c) 圆形,半径为6cm答案:面积= π × 半径² = 3.14 × 6cm × 6cm ≈ 113.04cm²四、概率与统计1. 求下列各组数的平均数:a) 75, 80, 85, 90, 95答案:平均数= (75 + 80 + 85 + 90 + 95) ÷ 5 = 85b) 2, 4, 6, 8, 10答案:平均数= (2 + 4 + 6 + 8 + 10) ÷ 5 = 62. 求下列各组数的众数:a) 3, 5, 2, 5, 7, 5答案:众数 = 5b) 9, 8, 7, 6, 5, 4, 3, 2, 1答案:众数 = 没有众数以上是一些七下数学大培优题的参考答案。
北师版七年级数学下册3.1 用表格表示的变量间关系培优训练一、选择题(共10小题,3*10=30)1.骆驼被称为“沙漠之舟”,它的体温是随时间的变化而变化的,在这一问题中,因变量是( ) A.沙漠B.体温C.时间D.骆驼2.李师傅到单位附近的加油站加油,如图是所用的加油机上的数据显示牌,则其中的常量是( ) A.金额B.数量C.单价D.金额和数量3.某学习小组做了一个实验:从一幢100 m高的楼顶随手放下一只苹果,测得有关数据如下:则下列说法错误的是()A.苹果每秒下落的路程越来越长B.苹果每秒下落的路程不变C.苹果下落的速度越来越快D.可以推测,苹果落到地面的时间不超过5秒4.在利用太阳能热水器加热的过程中,热水器里的水温随所晒时间的长短而变化,这个问题中因变量是( )A.太阳光强弱B.水的温度C.所晒时间D.热水器5. 弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂的物体的质量x(kg)之间有下面的关系,下列说法不正确的是()A.弹簧不挂重物时的长度为0 cmB.x与y都是变量,且x是自变量,y是因变量C.物体质量每增加1 kg,弹簧长度y增加0.5 cmD.所挂物体质量为7 kg时,弹簧长度为23.5 cm6.人的身高h随时间t的变化而变化,那么下列说法正确的是( )A.h,t都是不变量B.t是自变量,h是因变量C.h,t都是自变量D.h是自变量,t是因变量7.下表是某报纸公布的世界人口数情况:上表中的变量是()A.仅有一个,是年份B.仅有一个,是人口数C.有两个变量,一个是人口数,另一个是年份D.一个变量也没有8.某烤鸭店在确定烤鸭的烤制时间时,主要依据的是下表的数据:设烤鸭的质量为x kg,烤制时间为t min,估计当x=3.2时,t的值为()A.140B.138C.148D.1609.根据科学研究表明,在弹簧的承受范围内,弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂的物体的重量x(kg)之间的关系如下表所示:下列说法不正确的是( )A. x与y都是变量,且x是自变量,y是因变量B.弹簧不挂重物时的长度为0 cmC.随着所挂物体的重量增加,弹簧长度逐渐变长D.所挂物体的重量每增加1 kg,弹簧长度增加0.5 cm10.某科研小组在网上获取了声音在空气中传播的速度与空气温度关系的一些数据(如下表):下列说法错误的是( )A.在这个变化中,自变量是温度,因变量是声速B .温度越高,声速越快C .当空气温度为20 ℃时,声音5 s 可以传播1740 mD .当温度每升高10 ℃,声速增加6 m/s 二.填空题(共8小题,3*8=24)11.用总长为60 m 的篱笆围成长方形场地,宽随长的增大而_______.12.饮食店里快餐每盒5元,买n 盒需付S 元,则其中常量是_____,变量是_____.13.三角形ABC 中,设BC =a ,BC 边上的高为h ,三角形ABC 的面积为S ,则S =12ah ,当点A 的位置发生变化,B ,C 的位置不变时,则变量是_____________.14.购买单价为每支1.2元的铅笔,总金额y(元)与铅笔数n(支)的关系式可表示为y=_____,其中,_____是常量,_____是变量15.小丽烧一壶水,发现在一定时间内温度随时间的变化而变化,即随时间的增加,温度逐渐增高,如果用t 表示时间,T 表示温度,则_____是自变量,_____是因变量.16.圆柱的高是6cm ,当圆柱的底面半径r 由小到大变化时,圆柱的体积V 也随之发生变化.在这个变化过程中,自变量是_____,因变量是_____.17.随着我国人口增长速度的减慢,小学入学儿童数量有所减少,表中的数据近似地呈现了某地区入学儿童的变化趋势.(1)上表中________是自变量,________________是因变量; (2)你预计该地区从______年起入学儿童的人数在1600人左右. 18.某河流受暴雨袭击,某天的河水水位记录如下表:上表反映的是_______与________两个变量之间的关系,在_____时至_____时内,水位上升最慢. 三.解答题(共7小题, 46分)19.(6分) 有一边长为xcm 的正方形,若边长变化,则其面积也随之变化. (1)在这个变化过程中,自变量和因变量各是什么?(2)写出正方形的面积y(cm 2)关于正方形的边长x(cm)的关系式.20.(6分)三口之家,冬天饮用桶装矿泉水的情况如下表:(1)根据表中的数据,说一说哪些量是在发生变化?自变量和因变量各是什么?(2)能说出下周一桶中还有多少水吗?(3)根据表格中的数据,说一说星期一到星期日,桶中的水是如何变化的.21.(6分) 如表是某报纸公布的世界人口数据情况:(1)表中有几个变量?(2)如果要用x表示年份,用y表示世界人口总数,那么随着x的变化,y的变化趋势是怎样的?22.(6分) 研究发现,地表以下岩层的温度与它所处的深度有表中的关系:根据以上信息,回答下列问题:(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)岩层的深度h每增加1 km,温度t是怎样变化的?(3)估计岩层10 km深处的温度是多少?23.(6分) 某公交车每月的支出费用为4 000元,每月的乘车人数x(人)与每月利润(利润=收入费用-支出费用)y(元)的变化关系如下表所示(每位乘客的公交票价是固定不变的):(1)在这个变化过程中,是自变量,______________是因变量;(2)观察表中数据可知,每月乘客量达到________人以上时,该公交车才不会亏损;(3)请你估计当每月乘车人数为3 500人时,每月利润为多少元?24.(8分)在一次实验中,小明把一根弹簧的上端固定,在其下端悬挂物体,下表是测得的弹簧的长度y与所挂物体的质量x的几组对应值.(1)上述反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)当所挂重物为3 kg时,弹簧有多长?不挂重物呢?(3)若所挂重物为6 kg时(在弹簧的允许范围内),你能说出此时弹簧的长度吗?25.(8分) 已知某易拉罐厂设计一种易拉罐,在设计过程中发现符合要求的易拉罐的底面半径与铝用量有如下关系:(1)上表反映了易拉罐底面半径和用铝量两个变量之间的关系,哪个是自变量?哪个是因变量?(2)当易拉罐底面半径为2.4 cm时,易拉罐需要的用铝量是多少?(3)根据表格中的数据,你认为易拉罐的底面半径为多少时比较适宜?说说你的理由;(4)粗略说一说易拉罐底面半径对所需铝质量的影响.参考答案1-5BCBBA 6-10BCCBC11. 减小12. 5,n、S13.S,h14. y=1.2n(n为自然数),1.2,n、y15. t,T16. r,V17. (1)年份,入学儿童人数(2)202118. 水位,时间,4,819. 解:(1)自变量是边长,正方形的面积是因变量;(2)y=x2.20. 解:(1)日期数、桶中剩水量是变量,日期数是自变量,桶中剩水量是因变量(2)能有水(提示:最多一天减少0.6加仑)(3)水一天比一天少,大约每天减少0.5加仑.21. 解:(1)表中有两个变量,分别是年份和人口数(2)用x表示年份,用y表示世界人口总数,那么随着x的变化,y的变化趋势是增大22. 解:(1)上表反映了岩层的深度h(km)与岩层的温度t(℃)之间的关系;其中岩层深度h(km)是自变量,岩层的温度t(℃)是因变量(2)岩层的深度h每增加1 km,温度t上升35 ℃,关系式:t=55+35(h-1)=35h+20(3)当h=10 km时,t=35×10+20=370(℃)23. 解:(1)每月的乘车人数x,每月的利润y(2)2000(3)由表中数据可知,每月的乘车人数每增加500人,每月的利润可增加1 000元,当每月的乘车人数为2 000人时,每月利润为0元,则当每月乘车人数为3 500人时,每月利润为3 000元.24. 解:(1)上表反映了弹簧长度与所挂物体质量之间的关系,其中所挂物体质量是自变量,弹簧长度是因变量.(2)当所挂物体重量为3千克时,弹簧长24厘米;当不挂重物时,弹簧长18厘米.(3)根据上表可知所挂重物为6千克时(在允许范围内)时的弹簧长度=18+2×6=30(厘米).25. 解:(1)易拉罐底面半径为自变量,用铝量为因变量(2)当底面半径为2.4 cm时,易拉罐的用铝量为5.6 cm3(3)易拉罐底面半径为2.8 cm时比较合适,因为此时用铝较少,成本低(4)当易拉罐底面半径在1.6 cm~2.8 cm变化时,用铝量随半径的增大而减小,当易拉罐底面半径在2.8 cm~4.0 cm间变化时,用铝量随半径的增大而增大。
浙教版七年级数学下册第三单元《整式的乘除》培优题一.选择题(共7小题)1.=()A.1 B.C.2D.2.已知x m=a,x n=b(x≠0),则x3m﹣2n的值等于()A.3a﹣2b B.a3﹣b2C.a3b2 D.3.根据图中数据,计算大长方形的面积,通过不同的计算方法,你发现的结论是()A.(a+b)(a+2b)=a2+3ab+2b2B.(3a+b)(a+b)=3a2+4ab+b2C.(2a+b)(a+b)=2a2+3ab+b2D.(3a+2b)(a+b)=3a2+5ab+2b24.使(x2+px+8)(x2﹣3x+q)的乘积不含x3和x2,则p、q的值为()A.p=0,q=0 B.p=﹣3,q=﹣1 C.p=3,q=1 D.p=﹣3,q=15.已知2a﹣b=2,那么代数式4a2﹣b2﹣4b的值是()A.6 B.4 C.2 D.06.设0<n<m,m2+n2=4mn,则的值等于()A.3 B.C.D.27.为了求1+2+22+23+…+22011+22012的值,可令S=1+2+22+23+…+22011+22012,则2S=2+22+23+24+…+22012+22013,因此2S﹣S=22013﹣1,所以1+22+23+…+22012=22013﹣1.仿照以上方法计算1+5+52+53+…+52012的值是()A.52013﹣1 B.52013+1 C.D.8.若代数式x2+3x+2可以表示为(x﹣1)2+a(x﹣1)+b的形式,则a+b的值是.9.有足够多的长方形和正方形的卡片,如图.如果选取1号、2号、3号卡片分别为1张、2张、3张,可拼成一个长方形(不重叠无缝隙).(1)请画出如图这个长方形的草图,并运用拼图前后面积之间的关系说明这个长方形的代数意义.这个长方形的代数意义是.(2)小明想用类似的方法拼成了一个边长为a+3b和2a+b的矩形框来解释某一个乘法公式,那么小明需用2号卡片张,3号卡片张.10.4个数a,b,c,d排列成,我们称之为二阶行列式.规定它的运算法则为:=ad﹣bc.若=12,则x=.11.若x=2m﹣1,y=1+4m+1,用含x的代数式表示y为.12.若m1,m2,…m2015是从0,1,2这三个数中取值的一列数,若m1+m2+…+m2015=1525,(m1﹣1)2+(m2﹣1)2+…+(m2015﹣1)2=1510,则在m1,m2,…m2015中,取值为2的个数为.13.已知a是大于1的实数,且有a3+a﹣3=p,a3﹣a﹣3=q成立.(1)若p+q=4,求p﹣q的值;(2)当q2=22n+﹣2(n≥1,且n是整数)时,比较p与(a3+)的大小,并说明理由.14.归纳与猜想:(1)计算:①(x﹣1)(x+1)=;②(x﹣1)(x2+x+1)=;③(x﹣1)(x3+x2+x+1)=;(2)根据以上结果,写出下列各式的结果.①(x﹣1)(x6+x5+x4+x3+x2+x+1)=;②(x﹣1)(x9+x8+x7+x6+x5+x4+x3+x2+x+1)=;(3)(x﹣1)(x n﹣1+x n﹣2+x n﹣3+…+x2+x+1)=(n为整数);(4)若(x﹣1)•m=x15﹣1,则m=;(5)根据猜想的规律,计算:226+225+…+2+1.15.杨辉三角形是一个由数字排列成的三角形数表,一般形式如图所示,其中每一横行都表示(a+b)n(此处n=0,1,2,3,4,5…)的计算结果中的各项系数.杨辉三角最本质的特征是,它的两条斜边都是数字1组成,而其余的数则是等于它“肩”上的两个数之和.(a+b)0=1(a+b)1=a+b(a+b)2=a2+2ab+b2(a+b)3=a3+3a2b+3ab2+b3(a+b)4=a4+4a3b+6a2b2+4ab3+b4(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5…上面的构成规律聪明的你一定看懂了!(1)请直接写出(a+b)6的计算结果中a2b4项的系数是;(2)利用上述规律直接写出27=;杨辉三角还有另一个特征:(3)从第二行到第五行,每一行数字组成的数(如第三行为121)都是上一行的数与的积.(4)由此你可以写出115=.(5)由第行可写出118=.浙教版七年级数学下册第三单元《整式乘除》参考答案与试题解析一.选择题(共7小题)1.(2012秋•南陵县期末)=()A.1 B.C.2D.【分析】根据x a•y a=(xy)a,进行运算即可.【解答】解:原式=(×)2004×=.故选B.【点评】此题考查了同底数幂的乘法运算,属于基础题,注意式子:x a•y a=(xy)a的运用.2.(2001•乌鲁木齐)已知x m=a,x n=b(x≠0),则x3m﹣2n的值等于()A.3a﹣2b B.a3﹣b2C.a3b2 D.【分析】利用同底数幂的除法和幂的乘方的性质的逆运算计算即可.【解答】解:∵x m=a,x n=b(x≠0),∴x3m﹣2n=x3m÷x2n=.故选D.【点评】本题考查了同底数幂的除法,幂的乘方的性质,逆用性质是解题的关键.3.(2016春•苏州期中)根据图中数据,计算大长方形的面积,通过不同的计算方法,你发现的结论是()A.(a+b)(a+2b)=a2+3ab+2b2B.(3a+b)(a+b)=3a2+4ab+b2C.(2a+b)(a+b)=2a2+3ab+b2D.(3a+2b)(a+b)=3a2+5ab+2b2【分析】大长方形的长为3a+2b,宽为a+b,表示出面积;也可以由三个边长为a的正方形,2个边长为b的正方形,以及5个长为b,宽为a的长方形面积之和表示,即可得到正确的选项.【解答】解:根据图形得:(3a+2b)(a+b)=3a2+5ab+2b2.故选:D.【点评】此题考查了多项式乘多项式,弄清题意是解本题的关键.4.(2016秋•简阳市期中)使(x2+px+8)(x2﹣3x+q)的乘积不含x3和x2,则p、q的值为()A.p=0,q=0 B.p=﹣3,q=﹣1 C.p=3,q=1 D.p=﹣3,q=1【分析】根据多项式乘多项式的法则计算,然后根据不含x2项和x3项就是这两项的系数等于0列式,求出p和q的值,从而得出.【解答】解:(x2+px+8)(x2﹣3x+q),=x4+(p﹣3)x3+(8﹣3p+q)x2+(pq﹣24)x+8q,∵(x2+px+8)(x2﹣3x+q)的展开式中不含x2项和x3项,∴解得:.故选:C.【点评】本题考查了多项式乘多项式的运算法则,根据不含哪一项就是让这一项的系数等于0列式是解题的关键.5.(2015春•房山区期末)已知2a﹣b=2,那么代数式4a2﹣b2﹣4b的值是()A.6 B.4 C.2 D.0【分析】根据完全平方公式,可得平方差公式,根据平方差公式,可得答案.【解答】解:4a2﹣b2﹣4b=4a2﹣(b2+4b+4)+4=(2a)2﹣(b+2)2+4=[2a+(b+2)][2a﹣(b+2)]+4=(2a+b+2)(2a﹣b﹣2)+4当2a﹣b=2时,原式=0+4=4,故选:B.【点评】本题考查了完全平方公式,利用完全平方公式得出平方差公式是解题关键.6.(2012•宁波模拟)设0<n<m,m2+n2=4mn,则的值等于()A.3 B.C.D.2【分析】已知等式变形后利用完全平方公式化简得到关系式,代入所求式子计算即可得到结果.【解答】解:m2+n2=4mn变形得:(m﹣n)2=2mn,(m+n)2=6mn,∵0<n<m,∴m﹣n>0,m+n>0,∴m﹣n=,m+n=,∴原式===2.故选D.【点评】此题考查了完全平方公式,以及平方差公式,熟练掌握公式是解本题的关键.7.(2014•金水区校级模拟)为了求1+2+22+23+…+22011+22012的值,可令S=1+2+22+23+…+22011+22012,则2S=2+22+23+24+…+22012+22013,因此2S﹣S=22013﹣1,所以1+22+23+…+22012=22013﹣1.仿照以上方法计算1+5+52+53+…+52012的值是()A.52013﹣1 B.52013+1 C.D.【分析】根据题目所给计算方法,令S=1+5+52+53+…+52012,再两边同时乘以5,求出5S,用5S﹣S,求出4S的值,进而求出S的值.【解答】解:令S=1+5+52+53+ (52012)则5S=5+52+53+…+52012+52013,5S﹣S=﹣1+52013,4S=52013﹣1,则S=.故选D.【点评】本题考查了同底数幂的乘法,利用错位相减法,消掉相关值,是解题的关键.二.填空题(共5小题)8.(2012•泰州)若代数式x2+3x+2可以表示为(x﹣1)2+a(x﹣1)+b的形式,则a+b的值是11.【分析】利用x2+3x+2=(x﹣1)2+a(x﹣1)+b,将原式进行化简,得出a,b的值,进而得出答案.【解答】解:∵x2+3x+2=(x﹣1)2+a(x﹣1)+b=x2+(a﹣2)x+(b﹣a+1),∴a﹣2=3,∴a=5,∵b﹣a+1=2,∴b﹣5+1=2,∴b=6,∴a+b=5+6=11,故答案为:11.【点评】此题主要考查了整式的混合运算与化简,根据已知得出x2+3x+2=x2+(a ﹣2)x+(b﹣a+1)是解题关键.9.(2012•杭州模拟)有足够多的长方形和正方形的卡片,如图.如果选取1号、2号、3号卡片分别为1张、2张、3张,可拼成一个长方形(不重叠无缝隙).(1)请画出如图这个长方形的草图,并运用拼图前后面积之间的关系说明这个长方形的代数意义.这个长方形的代数意义是a2+3ab+2b2=(a+b)(a+2b).(2)小明想用类似的方法拼成了一个边长为a+3b和2a+b的矩形框来解释某一个乘法公式,那么小明需用2号卡片3张,3号卡片7张.【分析】(1)画出相关草图,表示出拼合前后的面积即可;(2)得到所给矩形的面积,看有几个b2,几个ab即可.【解答】解:(1)如图所示:故答案为:a2+3ab+2b2=(a+b)(a+2b);(2)(a+3b)(2a+b)=2a2+ab+6ab+3b2=2a2+7ab+3b2,需用2号卡片3张,3号卡片7张.故答案为:a2+3ab+2b2=(a+b)(a+2b);3;7.【点评】考查多项式与多项式相乘问题;根据面积的不同表示方法得到相应的等式是解决本题的关键.10.(2015•崇左)4个数a,b,c,d排列成,我们称之为二阶行列式.规定它的运算法则为:=ad﹣bc.若=12,则x=1.【分析】利用题中的新定义化简已知等式,求出解即可得到x的值.【解答】解:利用题中新定义得:(x+3)2﹣(x﹣3)2=12,整理得:12x=12,解得:x=1.故答案为:1.【点评】此题考查了整式的混合运算,弄清题中的新定义是解本题的关键.11.(2014春•苏州期末)若x=2m﹣1,y=1+4m+1,用含x的代数式表示y为y=4(x+1)2+1.【分析】将4m变形,转化为关于2m的形式,然后再代入整理即可【解答】解:∵4m+1=22m×4=(2m)2×4,x=2m﹣1,∴2m=x+1,∵y=1+4m+1,∴y=4(x+1)2+1,故答案为:y=4(x+1)2+1.【点评】本题考查幂的乘方的性质,解决本题的关键是利用幂的乘方的逆运算,把含m的项代换掉.12.(2015•雅安)若m1,m2,…m2015是从0,1,2这三个数中取值的一列数,若m1+m2+…+m2015=1525,(m1﹣1)2+(m2﹣1)2+…+(m2015﹣1)2=1510,则在m1,m2,…m2015中,取值为2的个数为510.【分析】通过m1,m2,…m2015是从0,1,2这三个数中取值的一列数,(m1﹣1)2+(m2﹣1)2+…+(m2015﹣1)2=1510从而得到1的个数,由m1+m2+…+m2015=1525得到2的个数.【解答】解:∵(m1﹣1)2+(m2﹣1)2+…+(m2015﹣1)2=1510,∵m1,m2,…,m2015是从0,1,2这三个数中取值的一列数,∴m1,m2,…,m2015中为1的个数是2015﹣1510=505,∵m1+m2+…+m2015=1525,∴2的个数为(1525﹣505)÷2=510个.故答案为:510.【点评】此题考查完全平方的性质,找出运算的规律.利用规律解决问题.三.解答题(共3小题)13.(2015秋•厦门期末)已知a是大于1的实数,且有a3+a﹣3=p,a3﹣a﹣3=q成立.(1)若p+q=4,求p﹣q的值;(2)当q2=22n+﹣2(n≥1,且n是整数)时,比较p与(a3+)的大小,并说明理由.【分析】(1)根据已知条件可得a3=2,代入可求p﹣q的值;(2)根据作差法得到p﹣(a3+)=2﹣n﹣,分三种情况:当n=1时;当n=2时;当n≥3时进行讨论即可求解.【解答】解:(1)∵a3+a﹣3=p①,a3﹣a﹣3=q②,∴①+②得,2a3=p+q=4,∴a3=2;①﹣②得,p﹣q=2a﹣3==1.(2)∵q2=22n+﹣2(n≥1,且n是整数),∴q2=(2n﹣2﹣n)2,∴q2=22n+2﹣2n,又由(1)中①+②得2a3=p+q,a3=(p+q),①﹣②得2a﹣3=p﹣q,a﹣3=(p﹣q),∴p2﹣q2=4,p2=q2+4=(2n+2﹣n)2,∴p=2n+2﹣n,∴a3+a﹣3=2n+2﹣n③,a3﹣a﹣3=2n﹣2﹣n④,∴③+④得2a3=2×2n,∴a3=2n,∴p﹣(a3+)=2n+2﹣n﹣2n﹣=2﹣n﹣,当n=1时,p>a3+;当n=2时,p=a3+;当n≥3时,p<a3+.【点评】考查了负整数指数幂:a﹣p=(a≠0,p为正整数),关键是加减消元法和作差法的熟练掌握.14.归纳与猜想:(1)计算:①(x﹣1)(x+1)=x2﹣1;②(x﹣1)(x2+x+1)=x3﹣1;③(x﹣1)(x3+x2+x+1)=x4﹣1;(2)根据以上结果,写出下列各式的结果.①(x﹣1)(x6+x5+x4+x3+x2+x+1)=x7﹣1;②(x﹣1)(x9+x8+x7+x6+x5+x4+x3+x2+x+1)=x10﹣1;(3)(x﹣1)(x n﹣1+x n﹣2+x n﹣3+…+x2+x+1)=x n﹣1(n为整数);(4)若(x﹣1)•m=x15﹣1,则m=x14+x13+x12+…+x2+x+1;(5)根据猜想的规律,计算:226+225+…+2+1.【分析】(1)运用乘法公式以及多项式乘多项式的法进行计算即可;(2)根据(1)中的计算结果的变换规律进行判断即可;(3)根据(1)(2)中的计算结果总结变换规律即可;(4)根据(3)中的规律,直接求得m的表达式即可;(5)根据(3)中的规律列出等式进行变形,求得226+225+…+2+1的值.【解答】解:(1)①(x﹣1)(x+1)=x2﹣1;②(x﹣1)(x2+x+1)=x3﹣1;③(x﹣1)(x3+x2+x+1)=x4+x3+x2+x﹣x3﹣x2﹣1=x4﹣1;(2)①(x﹣1)(x6+x5+x4+x3+x2+x+1)=x7﹣1;②(x﹣1)(x9+x8+x7+x6+x5+x4+x3+x2+x+1)=x10﹣1;(3)(x﹣1)(x n﹣1+x n﹣2+x n﹣3+…+x2+x+1)=x n﹣1(n为整数);(4)∵(x﹣1)•m=x15﹣1,∴m=x14+x13+x12+…+x2+x+1;(5)∵(2﹣1)(226+225+224+…+22+2+1)=227﹣1,∴226+225+…+2+1=227﹣1.【点评】本题主要考查了多项式与多项式相乘的法则:多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加.计算时按一定的顺序进行,必须做到不重不漏.15.(2014春•泰兴市校级期末)杨辉三角形是一个由数字排列成的三角形数表,一般形式如图所示,其中每一横行都表示(a+b)n(此处n=0,1,2,3,4,5…)的计算结果中的各项系数.杨辉三角最本质的特征是,它的两条斜边都是数字1组成,而其余的数则是等于它“肩”上的两个数之和.(a+b)0=1(a+b)1=a+b(a+b)2=a2+2ab+b2(a+b)3=a3+3a2b+3ab2+b3(a+b)4=a4+4a3b+6a2b2+4ab3+b4(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5…上面的构成规律聪明的你一定看懂了!(1)请直接写出(a+b)6的计算结果中a2b4项的系数是15;(2)利用上述规律直接写出27=128;杨辉三角还有另一个特征:(3)从第二行到第五行,每一行数字组成的数(如第三行为121)都是上一行的数与11的积.(4)由此你可以写出115=161051.(5)由第9行可写出118=214358881.【分析】观察图表寻找规律:三角形是一个由数字排列成的三角形数表,它的两条斜边都是数字1组成,而其余的数则是等于它“肩”上的两个数之和.【解答】解:(1)请直接写出(a+b)6的计算结果中a2b4项的系数是15;(2)利用上述规律直接写出27=128;杨辉三角还有另一个特征:(3)从第二行到第五行,每一行数字组成的数(如第三行为121)都是上一行的数与11的积.(4)由此你可以写出115=161051.(5)由第9行可写出118=214358881.故答案为:15,128,11,161051,9,214358881.【点评】考查了学生解决实际问题的能力和阅读理解能力,找出本题的数字规律是正确解题的关键.。
七年级数学下册第七章《平面图形的认识(二)》压轴培优(三)1.如图1,AB∥CD,直线MN分别交AB、CD于点E、F,∠BEF与∠EFD的角平分线交于点P,EP与CD交于点G,GH⊥EG交MN于H.(1)求证:PF∥GH.(2)如图2,连接PH,K为GH上一动点,∠PHK=∠HPK,PQ平分∠EPK交MN于Q,则∠HPQ的大小是否发生变化?若不变,求出其值;若改变,请说明理由.2.如图1,E点在BC上,∠A=∠D,∠ACB+∠BED=180°.(1)求证:AB∥CD;(2)如图2,AB∥CD,BG平分∠ABE,与∠EDF的平分线交于H点,若∠DEB比∠DHB大60°,求∠DEB的度数.(3)保特(2)中所求的∠DEB的度数不变,如图3,BM平分∠EBK,DN平分∠CDE,作BP∥DN,则∠PBM的度数是否改变?若不变,请求值;若改变,请说明理由.3.如图,CD⊥AB于D,FE⊥AB于E,∠ACD+∠F=180°.(1)求证:AC∥FG;(2)若∠A=45°,∠BCD:∠ACD=2:3,求∠BCD的度数.4.已知:如图,线段AC和BD相交于点G,连接AB,CD,E是CD上一点,F是DG上一点FE∥CG,且∠1=∠A.(1)求证:AB∥DC;(2)若∠B=30°,∠1=63°,求∠EFG的度数.5.已知:点A在射线CE上,∠C=∠D.(1)如图1,若AC∥BD,求证:AD∥BC;(2)如图2,若∠BAC=∠BAD,BD⊥BC,请探究∠DAE与∠C的数量关系,写出你的探究结论,并加以证明;(3)如图3,在(2)的条件下,过点D作DF∥BC交射线于点F,当∠DFE=8∠DAE 时,求∠BAD的度数.6.如图,已知点E,F在直线AB上,点G在线段CD上,ED与FG交于点H,∠C=∠EFG,∠CED=∠GHD.(1)求证:AB∥CD;(2)若∠EHF=70°,∠D=30°,求∠AEM的度数.7.如图,AB∥CD,GM、HN分别为∠BGE和∠DHG的角平分线(1)试判断GM和HN的位置关系;(2)如果GM是∠AGH的角平分线,(1)中的结论还成立吗?(3)如果GM是∠BGH的角平分线,(1)中的结论还成立吗?如果不成立,请你猜想GM和HN的位置关系,不必说明理由.8.如图,已知AE平分∠BAC交BC于点E,AF平分∠CAD交BC的延长线于点F,∠B=64°,∠EAF=58°.(1)试判断AD与BC是否平行(请在下面的解答中,填上适当的理由或数学式);解:∵AE平分∠BAC,AF平分∠CAD(已知),∴∠BAC=2∠1,∠CAD=(角平分线定义).又∵∠EAF=∠1+∠2=58°,∴∠BAD=∠BAC+∠CAD=2(∠1+∠2)=°(等式的性质).又∵∠B=64°(已知),∴∠BAD+∠B=°.∴AD∥BC().(2)若AE⊥BC,求∠ACB的度数.9.如图,以n边形的n个顶点和它内部m个点作为顶点,把原n边形分割成若干个互不重叠的小三角形.观察图形,解答问题:(1)填表:m个数n1 2 3 …3 3 5 7 …4 4 …(2)填空,三角形内部有m个点,则原三角形被分割成个不重叠的小三角形;四边形内部有m个点,则原四边形被分割成个不重叠的小三角形;n边形内部有m个点,则原n边形被分割成个不重叠的小三角形;(3)若多边形内部的点的个数为多边形顶点数的五分之一,分割成互不重叠的小三角形共有2021个,求这个多边形的边数.10.阅读下面内容,并解答问题在学习了平行线的性质后,老师请同学们证明命题:两条平行线被第三条直线所截,一组同旁内角的平分线互相垂直.小颖根据命题画出图形并写出如下的已知条件.已知:如图1,AB∥CD,直线EF分别交AB,C于点E,F.∠BEF的平分线与∠DFE的平分线交于点G.(1)直线EG,FG有何关系?请补充结论:求证:“”,并写出证明过程;(2)请从下列A、B两题中任选一题作答,我选择题,并写出解答过程.A.在图1的基础上,分别作∠BEG的平分线与∠DFG的平分线交于点M,得到图2,求∠EMF的度数.B.如图3,AB∥CD,直线EF分别交AB,CD于点E,F.点O在直线AB,CD之间,且在直线EF右侧,∠BEO的平分线与∠DFO的平分线交于点P,请猜想∠EOF与∠EPF 满足的数量关系,并证明它.11.将一副三角板中的两块直角三角尺的直角顶点C按如图方式叠放在一起(其中,∠A=60°,∠D=30°;∠E=∠B=45°).(1)如图1,①若∠DCE=40°,求∠ACB的度数;②若∠ACB=150°,直接写出∠DCE的度数是度.(2)由(1)猜想∠ACB与∠DCE满足的数量关系是.(3)若固定△ACD,将△BCE绕点C旋转,①当旋转至BE∥AC(如图2)时,直接写出∠ACE的度数是度.②继续旋转至BC∥DA(如图3)时,求∠ACE的度数.12.如图,EF∥AD,∠1=∠2,∠BAC=82°,请将求∠AGD的过程填写完整.解:因为EF∥AD所以∠2=∠()又因为∠1=∠2所以∠1=∠3()所以AB∥()所以∠BAC+∠=180°()因为∠BAC=82°所以∠AGD=°13.在一个三角形中,如果一个内角是另一个内角的3倍,这样的三角形我们称之为“三倍角三角形”.例如,三个内角分别为120°,40°,20°的三角形是“三倍角三角形”.(1)△ABC中,∠A=35°,∠B=40°,△ABC是“三倍角三角形”吗?为什么?(2)若△ABC是“三倍角三角形”,且∠B=60°,求△ABC中最小内角的度数.14.已知,如图1,射线PE分别与直线AB、CD相交于E、F两点,∠PFD的平分线与直线AB相交于点M,射线PM交CD于点N,设∠PFM=α,∠EMF=β,且+|β﹣30|=0.(1)α=°,β=°;直线AB与CD的位置关系是;(2)如图2,若点G是射线MA上任意一点,且∠MGH=∠PNF,试找出∠FMN与∠GHF之间存在的数量关系,并证明你的结论;(3)若将图中的射线PM绕着端点P逆时针方向旋转(如图3),分别与AB、CD相交于点M1和点N1时,作∠PM1B的角平分线M1Q与射线FM相交于点Q,问在旋转的过程中的值变不变?若不变,请求出其值;若变化,请说明理由.15.阅读下面材料:小亮同学遇到这样一个问题:已知:如图甲,AB∥CD,E为AB,CD之间一点,连接BE,DE,得到∠BED.求证:∠BED=∠B+∠D.(1)小亮写出了该问题的证明,请你帮他把证明过程补充完整.证明:过点E作EF∥AB,则有∠BEF=.∵AB∥CD,∴∥,∴∠FED=.∴∠BED=∠BEF+∠FED=∠B+∠D.(2)请你参考小亮思考问题的方法,解决问题:如图乙,已知:直线a∥b,点A,B在直线a上,点C,D在直线b上,连接AD,BC,BE平分∠ABC,DE平分∠ADC,且BE,DE所在的直线交于点E.①如图1,当点B在点A的左侧时,若∠ABC=60°,∠ADC=70°,求∠BED的度数;②如图2,当点B在点A的右侧时,设∠ABC=α,∠ADC=β,请你求出∠BED的度数(用含有α,β的式子表示).参考答案1.解:(1)证明:∵AB∥CD,∴∠BEF+∠DFE=180°,∵∠BEF与∠EFD的角平分线交于点P,∴∠PEF=BEF,∠PFE=DFE,∴∠PEF+∠PFE=(∠BEF+∠DFE)=180°=90°,∴∠EPF=90°,∵GH⊥EG,∴∠EGH=90°,∴∠EPF=∠EGH,∴PF∥GH;(2)∠HPQ的大小不发生变化,理由如下:∵PF∥GH,∴∠FPH=∠PHK,∵∠PHK=∠HPK,∴∠FPH=∠HPK,∵PQ平分∠EPK,∴∠EPQ=∠QPK,设∠FPH=∠HPK=α,∠FPQ=β,∴∠EPQ=∠FPH+∠HPK+∠FPQ=2α+β,∴∠EPF=∠EPF+∠QPF=2α+β+β=2(α+β)=90°,∴α+β=45°,∴∠HPQ=∠HPF+∠FPQ=α+β=45°.所以∠HPQ的大小不发生变化.2.(1)证明:如图1,延长DE交AB于点F,∵∠ACB+∠BED=180°,∠CED+∠BED=180°,∴∠ACB=∠CED,∴AC∥DF,∴∠A=∠DFB,∵∠A=∠D,∴∠DFB=∠D,∴AB∥CD;(2)如图2,作EM∥CD,HN∥CD,∵AB∥CD,∴AB∥EM∥HN∥CD,∴∠1+∠EDF=180°,∠MEB=∠ABE,∵BG平分∠ABE,∴∠ABG=ABE,∵AB∥HN,∴∠2=∠ABG,∵CF∥HN,∴∠2+∠β=∠3,∴ABE+∠β=∠3,∵DH平分∠EDF,∴∠3=EDF,∴ABE+∠β=EDF,∴∠β=(∠EDF﹣∠ABE),∴∠EDF﹣∠ABE=2∠β,设∠DEB=∠α,∵∠α=∠1+∠MEB=180°﹣∠EDF+∠ABE=180°﹣(∠EDF﹣∠ABE)=180°﹣2∠β,∵∠DEB比∠DHB大60°,∴∠α﹣60°=∠β,∴∠α=180°﹣2(∠α﹣60°)解得∠α=100°∴∠DEB的度数为100°;(3)∠PBM的度数不变,理由如下:如图3,过点E作ES∥CD,设直线DF和直线BP相交于点G,∵BM平分∠EBK,DN平分∠CDE,∴∠EBM=∠MBK=EBK,∠CDN=∠EDN=CDE,∵ES∥CD,AB∥CD,∴ES∥AB∥CD,∴∠DES=∠CDE,∠BES=∠ABE=180°﹣∠EBK,∠G=∠PBK,由(2)可知:∠DEB=100°,∴∠CDE+180°﹣∠EBK=100°,∴∠EBK﹣∠CDE=80°,∵BP∥DN,∴∠CDN=∠G,∴∠PBK=∠G=∠CDN=CDE,∴∠PBM=∠MBK﹣∠PBK=∠EBK﹣CDE=(∠EBK﹣∠CDE)=80°=40°.3.(1)证明:∵CD⊥AB,FE⊥AB,∴∠AFH=∠ADC=90°,∴EF∥DC,∴∠AHE=∠ACD,∵∠ACD+∠F=180°.∴∠AHE+∠F=180°,∵∠AHE+∠EHC=180°,∴∠EHC=∠F,∴AC∥FG;(2)解:∵∠BCD:∠ACD=2:3,∴设∠BCD=2x,∠ACD=3x,∵CD⊥AB,∴∠ADC=90°,∴∠A+∠ACD=90°,∴解得x=15°,∴∠BCD=2x=30°.答:∠BCD的度数为30°.4.解:(1)∵FE∥CG,∴∠1=∠C.又∵∠1=∠A,∴∠C=∠A,∴AB∥DC;(2)∵AB∥DC,∴∠D=∠B=30°.∵∠1=63°,∴∠EFG=∠D+∠1=30°+63°=93°.5.解:(1)如图1,∵AD∥BC,∴∠DAE=∠C,又∵∠C=∠D,∴∠DAE=∠D,∴AD∥BC;(2)∠EAD+2∠C=90°.证明:如图2,设CE与BD交点为G,∵∠CGB是△ADG是外角,∴∠CGB=∠D+∠DAE,∵BD⊥BC,∴∠CBD=90°,∴△BCG中,∠CGB+∠C=90°,∴∠D+∠DAE+∠C=90°,又∵∠D=∠C,∴2∠C+∠DAE=90°;(3)如图3,设∠DAE=α,则∠DFE=8α,∵∠DFE+∠AFD=180°,∴∠AFD=180°﹣8α,∵DF∥BC,∴∠C=∠AFD=180°﹣8α,又∵2∠C+∠DAE=90°,∴2(180°﹣8α)+α=90°,∴α=18°,∴∠C=180°﹣8α=36°=∠ADB,又∵∠C=∠BDA,∠BAC=∠BAD,∴∠ABC=∠ABD=∠CBD=45°,∴△ABD中,∠BAD=180°﹣45°﹣36°=99°.6.解:(1)证明:∵∠CED=∠GHD,∴CE∥GF,∴∠C=∠DGF,又∵∠C=∠EFG,∴∠DGF=∠EFG,∴AB∥CD;(2)∵∠CED=∠GHD,∠GHD=∠EHF=70°,∴∠CED=70°,在△CDE中,∠CED=70°,∠D=30°,∴∠C=180°﹣70°﹣30°=80°,∵AB∥CD,∴∠AEC=∠C=80°,∴∠AEM=180°﹣∠AEC=180°﹣80°=100°.答:∠AEM的度数为100°.7.解:(1)GM∥HN;理由如下:∵AB∥CD,且GM、HN分别为∠BGE和∠DHG的角平分线,∴∠EGB=∠GHD,∠EGD=2∠EGB,∠GHD=2∠GHN,∴∠EGM=∠GHN,∴GM∥HN.(2)(1)中的结论还成立;理由如下:如图,当GM′平分∠AGH时,∠AGH=2∠M′GH;∵AB∥CD,∴∠AGH=∠GHD;而∠GHD=2∠GHN,∴∠M′GH=∠GHN,∴GM′∥HN.(3)(1)中的结论不成立;此时,GM⊥HN.8.解:(1)∵AE平分∠BAC,AF平分∠CAD(已知),∴∠BAC=2∠1,∠CAD=2∠2(角平分线定义).又∵∠EAF=∠1+∠2=58°,∴∠BAD=∠BAC+∠CAD=2(∠1+∠2)=116°(等式的性质).又∵∠B=64°(已知),∴∠BAD+∠B=180°.∴AD∥BC(同旁内角互补,两直线平行).故答案为:2∠2,116,180,同旁内角互补,两直线平行;(2)∵AE⊥BC,∠B=64°,∴∠AEB=90°,∴∠BAE=180°﹣∠AEB﹣∠B=180°﹣90°﹣64°=26°,∵∠BAC=2∠BAE=52°,∴∠ACB=180°﹣∠B﹣∠BAC=180°﹣64°﹣52°=64°.9.解:(1)观察图形,完成下表,m1 2 3 …个数n3 3 5 7 …4 4 6 8 …故答案为:6,8;(2)三角形内部1个点时,共分割成3部分,3=3+2(1﹣1),三角形内部2个点时,共分割成5部分,5=3+2(2﹣1),三角形内部3个点时,共分割成7部分,7=3+2(3﹣1),…,所以,三角形内部有m个点时,3+2(m﹣1)=2m+1,四边形的4个顶点和它内部的m个点,则分割成的不重叠的三角形的个数为:4+2(m﹣1)=2m+2,n边形内部有m个点,则原n边形被分割成n+2(m﹣1)=2m+n﹣2个不重叠的小三角形;故答案为:(2m+1),(2m+2),(2m+n﹣2);(3)设这个多边形的边数为n,则内部的点的个数为n,根据题意得,2×n+n﹣2=2021,解得:n=1445,答:这个多边形的边数为1445.10.解:(1)结论:EG⊥FG;理由:如图1中,∵AB∥CD,∴∠BEF+∠DFE=180°,∵EG平分∠BEF,FG平分∠DFE,∴∠GEF=,,∴∠GEF+∠GFE====90°,在△EFG中,∠GEF+∠GFE+∠G=180°,∴∠G=180°﹣(∠GEF+∠GFE)=180°﹣90°=90°,∴EG⊥FG.故答案为:EG⊥GF;(2)A.如图2中,由题意,∠BEG+∠DFG=90°,∵EM平分∠BEG,MF平分∠DFG,∴∠BEM+∠MFD=(∠BEG+∠DFG)=45°,∴∠EMF=∠BEM+∠MFD=45°,B.结论:∠EOF=2∠EPF.理由:如图3中,由题意,∠EOF=∠BEO+∠DFO,∠EPF=∠BEP+∠DFP,∵PE平分∠BEO,PF平分∠DFO,∴∠BEO=2∠BEP,∠DFO=2∠DFP,∴∠EOF=2∠EPF,故答案为:A或B.11.解:(1)①∵∠DCE=40°,∴∠ACE=∠ACD﹣∠DCE=50°,∴∠ACB=∠ACE+∠ECB=50°+90°=140°;②∵∠ACB=150°,∠ACD=90°,∴∠ACE=150°﹣90°=60°,∴∠DCE=∠ACD﹣∠ACE=90°﹣60°=30°,故答案为:30;(2)∵∠ACB=∠ACD+∠BCE﹣∠DCE=90°+90°﹣∠DCE,∴∠ACB+∠DCE=180°,故答案为:∠ACB+∠DCE=180°;(3)①∵BE∥AC,∴∠ACE=∠E=45°,故答案为:45°;②∵BC∥DA,∴∠A+∠ACB=180°,又∵∠A=60°,∴∠ACB=180°﹣60°=120°,∵∠BCE=90°,∴∠BCD=∠ACB﹣∠ECB=120°﹣90°=30°.12.解:∵EF∥AD,∴∠2=∠3(两直线平行,同位角相等),∵∠1=∠2,∴∠1=∠3(等量代换),∴AB∥DG(内错角相等,两直线平行),∴∠BAC+∠DGA=180°(两直线平行,同旁内角互补),∵∠BAC=82°,∴∠AGD=98°,故答案为:3;两直线平行,同位角相等;等量代换;DG;内错角相等,两直线平行;AGD;两直线平行,同旁内角互补;98.13.解:(1)△ABC是“三倍角三角形”,理由如下:∵∠A=35°,∠B=40°,∴∠C=180°﹣35°﹣40°=105°=35°×3,∴△ABC是“三倍角三角形”;(2)∵∠B=60°,∴∠A+∠C=120°,设最小的角为x,①当60°=3x时,x=20°,②当x+3x=120°时,x=30°,答:△ABC中最小内角为20°或30°.14.(1)证明:∵+|β﹣30|=0,∴α=β=30,∴∠PFM=∠MFN=30°,∠EMF=30°,∴∠EMF=∠MFN,∴AB∥CD;故答案为:30;30;AB∥CD;(2)解:∠FMN+∠GHF=180°.理由:∵AB∥CD,∴∠MNF=∠PME,∵∠MGH=∠MNF,∴∠PME=∠MGH,∴GH∥PN,∴∠GHM=∠FMN,∵∠GHF+∠GHM=180°,∴∠FMN+∠GHF=180°.(3)解:的值不变,=2.理由:如图3中,作∠PEM1的平分线交M1Q的延长线于R.∵AB∥CD,∴∠PEM1=∠PFN,∵∠PER=∠PEM1,∠PFQ=∠PFN,∴∠PER=∠PFQ,∴ER∥FQ,∴∠FQM1=∠R,设∠PER=∠REB=x,∠PM1R=∠RM1B=y,则有:,可得∠EPM1=2∠R,∴∠EPM1=2∠FQM1∴=2.15.解:(1)过点E作EF∥AB,则有∠BEF=∠B,∵AB∥CD,∴EF∥CD,∴∠FED=∠D,∴∠BED=∠BEF+∠FED=∠B+∠D;故答案为:∠B;EF;CD;∠D;(2)①如图1,过点E作EF∥AB,有∠BEF=∠EBA.∵AB∥CD,∴EF∥CD.∴∠FED=∠EDC.∴∠BEF+∠FED=∠EBA+∠EDC.即∠BED=∠EBA+∠EDC,∵BE平分∠ABC,DE平分∠ADC,∴∠EBA=∠ABC=30°,∠EDC=∠ADC=35°,∴∠BED=∠EBA+∠EDC=65°.答:∠BED的度数为65°;②如图2,过点E作EF∥AB,有∠BEF+∠EBA=180°.∴∠BEF=180°﹣∠EBA,∵AB∥CD,∴EF∥CD.∴∠FED=∠EDC.∴∠BEF+∠FED=180°﹣∠EBA+∠EDC.即∠BED=180°﹣∠EBA+∠EDC,∵BE平分∠ABC,DE平分∠ADC,∴∠EBA=∠ABC=,∠EDC=∠ADC=,∴∠BED=180°﹣∠EBA+∠EDC=180°﹣+.答:∠BED的度数为180°﹣.。
七年级(下)数学培优3
1.如图1,把一个长方形纸片沿EF 折叠后,点D ,C 分别落在D ′,C ′的位置.若∠EFB =65°,则∠AED′的度数为 .
2.如图2,直线AB CD 、相交于点E ,DF AB ∥.若100AEC ∠=°,则D ∠等于 .
3.如图3,将三角尺的直角顶点放在直尺的一边上,130250∠=∠=°
,°,则3∠的度数等于 .
4.如图4,已知AB ∥CD,若∠A=20°,∠E=35°,则∠C 等于 .
5.如图5,12//l l ,∠1=120°,∠2=100°,则∠3= .
6.如图6,已知AC ∥ED ,∠C=26°,∠CBE=37°,则∠BED 的度数是 .
图4 图5 图6
7.如图7,AB ∥CD ,∠ABE =66°,∠D =54°,则∠E 的度数为_______________.
8.如图8,AB//CD,直线EF 与AB.CD 分别相交于E.F 两点,EP 平分∠AEF,过点F 作FP ⊥EP,垂足为P ,若∠PEF=300
,则∠PFC=__________.
9.如图9,1502110AB CD ∠=∠=∥,°,°,则3∠= .
10.如图10,已知//AE BD ,∠1=130o
,∠2=30o
,则∠C= .
图7 图8 图9 图10 11. 体育课上,老师测量跳远成绩的依据是( )
A.平行线间的距离相等
B.两点之间,线段最短
C.垂线段最短
D.两点确定一条直线 12. 如图,给出了过直线外一点作已知直线的平行线的方法,其依据是( ) A.同位角相等,两直线平行 B.内错角相等,两直线平行
C
A
E B
F D
图2
E
D
B
C′
F
C
D ′ A
图1
1 2
3
图
3
l 1 l 2
1
2 3
300 P
F
E
B
A C
D
A
B D
C
1 2
3 第12题
A
D
O
B
C
第15题
C.同旁内角互补,两直线平行
D.两直线平行,同位角相等
13.一副三角扳按如图方式摆放,且∠1的度数比∠2的度数大54°,则∠1=()
A. 18°
B.54°
C.72°
D.70°
14. 下列命题:
①两条直线相交,一角的两邻补角相等,则这两条直线垂直;
②两条直线相交,一角与其邻补角相等,则这两条直线垂直;
③内错角相等,则它们的角平分线互相垂直;
④同旁内角互补,则它们的角平分线互相垂直.其中正确的个数为().
A.4
B.3
C.2
D.1
15.如图,探照灯.锅形天线.汽车灯以及其它很多灯具都与抛物线形状有关,如图所示是一探照灯灯碗的纵剖面,从位于O点的灯泡发出的两束光线OB.OC经灯碗反射以后平行射出.如果图
中
ABO DCO
αβ
∠=∠=
,,则BOC
∠的度数为()
A.β
α-
-
180 B.β
α+ C.)
(
2
1
β
α+ D.)
(
900α
β-
+
17.如图是我们生活中经常接触的小刀,刀柄外形是一个直角梯形(下底挖去一小半圆),
刀片上.下是平行的,转动刀片时会形成∠1,∠2,求∠1+∠2的度数.
18.图11,BE∥AO,∠1=∠2,OE⊥OA于点O,EH⊥CO于点H,那么∠5=∠6,为什么?
19.如图1,AB∥CD,EOF是直线AB.CD间的一条折线. (1)说明:
∠O=∠BEO+∠DFO.
(2)如果将折一次改为折二次,如图-2,则∠BEO,∠O,∠P,∠PFC会满足怎样的关系,试说明你的结论.
图(11)
H
O
C
E
B
A
6
5
4
3
2
1
A B
C F D
E
O
A B
C F D
E
O
P
第13
20.如图所示,已知AB∥DE,∠ABC=60°,∠CDE=140°,求∠BCD的度数
21.如图3个图中,均有AB∥CD,
(1)如图1,点P为AB,CD间的一个折点,则∠1,∠2,∠3的关系是___________;
(2)如图2,在(1)的基础上增加一个折点,则∠1,∠2,∠3,∠4的关系是___________;
(3)如图3,当AB,CD间有三个折点时,则∠1,∠2,∠3,∠4,∠5的关系是___________;
(4)通过以上4题的探究,从中寻找规律,并解答,当AB,CD间有n个折点时,则∠1,∠2,……
∠n+2之间的关系是____________________________________.(n为正整数)
22.如图,DE∥CB,试证明∠AED=∠A+∠B.
25.如图,在ΔABC中,CE⊥AB于E,DF⊥AB于F,AC∥ED,CE是∠ACB的平分线.求证:∠EDF
=∠BDF.
26.(2018春•相城区期末)如图,直线CB∥OA,∠C=∠A=112°,E,F在CB上,且满足∠FOB=∠
AOB,OE平分∠COF.
(1)求∠EOB的度数;
(2)若平行移动AB,那么∠OBC:∠OFC的值是否随之发生变化?若变化,找出变化规律或求出变化范围;若不变,求出这个比值;
(3)在平行移动AB的过程中,是否存在某种情况使∠OEC=∠OBA?若存在,求出其度数;若不存在,说明理由.
27.(2018春•房山区期末)如图,已知直线l1∥l2,点A、B在直线l1上,点C、D在直线l2上,点C在
点D的右侧,∠ADC=80°,∠ABC=n°,BE平分∠ABC,DE平分∠ADC,直线BE、DE交于点E.(1)写出∠EDC的度数40°;
(2)试求∠BED的度数(用含n的代数式表示);
(3)将线段BC向右平行移动,其他条件不变,请直接写出∠BED的度数(用含n的代数式表示)。