整式的加减导学案
- 格式:doc
- 大小:45.00 KB
- 文档页数:2
2024-2025学年七年级上册学案单元四科目数学年级七年级时间教学内容第4章整式的加减单元复习教学目标1.复习掌握单项式的系数和次数,多项式的项和次数,整式的分类等概念。
2. 会熟练地进行整式的加减运算。
教学重点理解单项式、多项式、整式等概念,学懂它们之间的区别和联系。
教学实施过程一.本章知识框图二.知识点梳理知识点1:单项式(1)表示数或字母的____的代数式叫做单项式.(2)单独的一个数或字母也是_______.(3)单项式中的________叫做这个单项式的系数.(4)一个单项式中,所有字母的_________叫做这个单项式的次数.注意:对于一个非零的数,规定它的系数等于它本身,次数等于0. 例如:单项式6的系数为6,次数为0.教学实施过程知识点2:多项式和整式(1)几个单项式的_____叫做多项式.(2)在多项式中,每个______叫做多项式的项,不含字母的项叫做______.(3)多项式里,__________的次数,叫做这个多项式的次数.(4)______与______统称整式.知识点3:合并同类项(1)所含_____相同,并且相同字母的____也相同的项叫做同类项.(2)把多项式中的_______合并成一项,叫做合并同类项.(3)合并同类项后,所得项的系数是合并前各同类项的系数的_____,字母连同它的指数______.知识点4:去括号(1)一个数与一个多项式相乘,需要去括号,去括号就是用括号外的数乘括号内的_________,再把所得的积______.(2)去括号时,当括号外面是正号,____________;当括号外面时负号_____________.整式加减的运算法则:几个整式相加减,如果有括号就先去括号,然后再合并同类项.三.课堂练习1.单项式cba2352π-的系数是,次数是。
2.在下列代数式:ab21,2ba+,12++bab,yx23+,323-+xx,0,π2xy-中,多项式有个,整式有个。
《整式的加减(1)》导学案 班级: 姓名:
课题 2.2整式的加减(1)
课型 新授课 主备 审核
数学组
学习目标 1.理解同类项概念,掌握合并同类项法则;
2. 能利用合并同类项化简多项式.
导学过程
一、复习导入
运用运算律计算: 622482⨯+⨯= ;
62(2)48(2)⨯-+⨯-= .
二、新知导学
1.类比上题中的方法完成下面多项式的化简,并说明其中的道理.
6248a a +=
=
2.类比1题的方法,化简下列式子:
(1)6248a a - 22(2)32x x + 22(3)34ab ab -
= = =
= = =
归纳:(1)同类项:所含 相同,并且 也相同的项叫做同类项. 几个 也是同类项. “两相同,两无关”
(2)合并同类项:把多项式中的 合并成一项,叫做合并同类项.
(3)法则:合并同类项时,把同类项的 相加,且字母连同它的指数 。
三、新知应用
挑战一:(小试牛刀,你能行!)
例:找出多项式 中的同类项,并进行合并.
283724x _
22x x x -+++
(2)求多项式 22113333a abc c a c +--+的值,其中 1,2,36
a b c =-==-.
挑战四:(联系实际,我来解决!)
某商店原有5袋大米,每袋大米为x 千克.上午卖出3袋,下午又购进同样包装的大米4袋.进货后这个商店有大米多少千克?
四、我思我进步!。
第二章整式的加减
【知识脉络】
【学习目标】
1. 理解并掌握单项式、多项式、整式等概念,弄清它们之间的区别与联系。
2. 理解同类项概念,掌握合并同类项的方法,掌握去括号时符号的变化规律,能正确地进行同类项的合并和去括号。
在准确判断、正确合并同类项的基础上,进行整式的加减运算。
3. 理解整式中的字母表示数,整式的加减运算建立在数的运算基础上;理解合并同类项、去括号的依据是分配律;理解数的运算律和运算性质在整式的加减运算中仍然成立。
4.能够分析实际问题中的数量关系,并用还有字母的式子表示出来。
【要点检索】
理解同类项概念,掌握合并同类项的方法,掌握去括号时符号的变化规律,能正确地进行去括号与同类项的合并。
在准确判断、正确合并同类项的基础上,进行整式的加减运算。
【中考翘望】
整式的概念和简单的运算,是中考必考内容,要求学生能用代数式表示简单的数量关系,能解释一些简单的代数式的实际背景或几何意义,能根据题意求代数式的值。
这部分的题目多以选择题、填空题为主,主要考察同类项、整式的运算、找规律列代数式等,也有可能渗透到综合题中。
整式的加减教案【精选7篇】《整式的加减》教学设计篇一一、情境诱导前面我们已经学习了整式,现在我们来看本章引言中的这个实际问题怎么解决:在西宁到拉萨路段,列车在冻土地段的行驶速度是100km/h,在非冻土地段的行驶速度是120km/h,列车通过非冻土地段所需时间是通过冻土地段所需时间的2.1倍,如果通过冻土地段需要th,你能用含t的式子表示这段铁路的全长吗?(请列出算式)得到:100t+120×2.1t即:100t+252t对于100t+252t怎么计算呢?这就是今天要学习的内容(板书课题),为了解决这问题,请同学们先来按照探究提纲开始探究(要求:不会的同学可以请教,也可以看书)二、探究指导(学生按提纲探究,老师先做必要的板书准备,再到学生中进行巡视指导,掌握学生情况,为展示归纳做准备。
)探究提纲:1、填空:(1)2t+52t=()t(2)3x2+2x2=()x2(3)3ab2-5ab2=()ab2(4)4xy+6xy=2、如果把上面每个算式左边的两个项叫同类项,你能总结出他的特征吗?你能说说出什么是同类项吗?3、仔细观察上面三个算式的从左到右的运算,你发现了什么规律,请用语言叙述你的规律。
三、展示归纳1、抽有问题的学生逐题汇报,学生说教师板书。
2、发动学生进行评价、补充、完善,学生说老师改写,3、教师最后揭示性质,并画龙点睛的强调。
四、变式练习(第1、2、3、4小题学生口答结果,并说出为什么;其它题先让学生独立完成,教师巡回指导,了解情况,可抽取有问题学生,汇报结果,老师板书,并请学生评价、完善,然后老师根据需要进行重点强调。
)1、说出两组同类项2、下列各组是同类项的是A2x3与3x2B12ax与8bxCx4与a4Dπ与-33、下列各题计算的结果对不对?如果不对,指出错在哪里?(1)3a+2b=5ab(2)5y2-2y2=3(3)2ab-2ba=0(4)3x2y-5xy2=-2x2y4、–xmy与45x3yn是同类项,则m=,n=。
2.2 整式的加减第3课时整式的加减一、新课导入1.课题导入:前面我们学习了合并同类项,去括号等知识,它们是进行整式加减运算的基础,这节课我们来学习整式的加减运算.(板书课题).2.三维目标:(1)知识与技能让学生从实际背景中去体会进行整式的加减的必要性,并能灵活运用整式的加减的步骤进行运算.(2)过程与方法培养学生的观察、分析、归纳、总结以及概括能力.(3)情感态度认识到数学是解决实际问题和进行交流的重要工具.3.学习重难点:重点:熟练进行整式加减运算.难点:能运用整式加减运算解决简单的实际问题.二、分层学习1.自学指导:(1)自学内容:教材第67页例6的内容.(2)自学时间:6分钟.(3)自学要求:认真阅读课文,理解例6中两个算式的意义,尝试归纳出整式加减运算的解题步骤.(4)自学参考提纲:①第(1)题是计算多项式2x-3y和5x+4y的和;第(2)题是计算多项式8a-7b和4a-5b的差.这说明求几个多项式的和或差的运算时,每个多项式都要用括号括起来.②由例题可归纳出整式加减运算的一般步骤是怎样的?小组同学相互交流一下自己的见解.先去括号,再移项,合并同类项.③尝试解答下列问题,并相互展示自己的计算过程和结果.a.计算:5(3a2b-ab2)-3(ab2+2a2b)原式=15a2b-5ab2-3ab2-6a2b=9a2b-8ab2.b.求12x-2(x-13y2)+(- 32x+13y2)的值,其中x=-2,y=23.原式化简为y2-3x.当x=-2,y=23,原式=(23)2-3×(-2)=589.2.自学:同学们可结合自学指导进行自学.3.助学:(1)师助生:①明了学情:教师巡视课堂,了解学生是否掌握了去括号法则及自学参考提纲完成情况.②差异指导: 对个别学生在法则认知上存在的问题或提出的疑点进行点拨和引导.(2)生助生:学生相互交流探讨来解决自学中的疑难问题.4.强化:(1)整式加减的一般步骤:先去括号,再合并同类项.(2)应注意的问题:①去括号时,不能漏乘括号前的系数,并注意符号的变化.②求值时,要先化简,并注意求值的书写格式.(3)练习:教材第69页“练习”的第1、2、3题.1.自学指导:(1)自学内容:教材第68页例7和例8.(2)自学时间:8分钟.(3)自学要求:认清例题中反映的条件,思考问题中要利用的数量关系,正确列出相关的代数式.(4)自学参考提纲:①例7有两种考虑问题的角度.第一种先求出小红和小明买这两种物品分别花费多少钱,再得出花费多少钱,这样可列出式子:(3x+2y)+(4x+3y).第二种先求出买笔记本和买圆珠笔分别花费多少钱,再得共花费多少钱,于是可列出式子:(3x+4x)+(2y+3y).②长方体共有几个面?都是什么形式?相对的两个面大小有什么关系?因此,在例8中,a.小纸盒的表面积是(2ab+2bc+2ca)cm2,大纸盒的表面积是(6ab+8bc+6ca)cm2.b.做两个纸盒共用料多少平方厘米?可列出式子:(2ab+2bc+2ca)+(6ab+8bc+6ca).计算得8ab+10bc+8ca.c.做大纸盒比做小纸盒多用料多少平方厘米,可列出式子(6ab+8bc+6ca)-(2ab+2bc+2ca).计算得4ab+6bc+4ca.2.自学:同学们可结合自学参考提纲进行自学.3.助学:(1)师助生:①明了学情:教师巡视课堂了解学生的自学情况以及存在的问题.注意在求多项式的和或差时,相应的多项式是不是没加括号.②差异指导: 对个别学生在法则认知上存在的问题或提出的疑点进行点拨和引导.(2)生助生:学生相互交流探讨来解决自学中的疑难问题.4.强化:(1)集中讲解学生自学过程中存在的共性问题.(2)练习:甲村种植小麦a亩,种植水稻面积是小麦面积的2倍,乙村种植小麦b亩,种植水稻的面积比小麦面积的3倍少200亩,求甲、乙两村两种作物的总面积是多少亩?解:甲村种植作物总面积为(a+2a)亩,乙村种植总面积为(b+2b-200)亩.所以甲、乙两村两种作物的总面积为(a+2a)+(b+3b-200)=(3a+4b-200)亩.三、评价1.学生的自我评价(围绕学习目标):自我评价在本节课学习的收获和不足.2.教师对学生的评价:(1)表现性评价:对学生在本节课学习中相关方面情况进行点评.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):本课时是在学生掌握了合并同类项、去括号法则的基础上学习的,主要任务是通过探索性练习,引导学生总结归纳出整式加减的一般步骤,并应用其进行整式加减的准确运算,所以可采用以旧带新的方式,让学生在练习中熟悉法则,纠正错误,弥补不足.鼓励学生间互相交流,互相改正问题,充分体现学生自行解决问题的主体作用.一、基础巩固(第1、2、3题每题10分,第4题20分,共50分)1.(40分)计算:(1)(5a+4c+7b )+(5c-3b-6a)解:原式=5a+4c+7b+5c-3b-6a=-a+4b+9c(2)(8xy-x 2+y 2)-(x 2-y 2+8xy)解:原式=8xy-x 2+y 2-x 2+y 2-8xy=-2x 2+2y 2(3)(2x 2-12+3x)-4(x-x 2+12)解:原式=2x 2-12+3x-4x+4x 2-2=6x 2-x-52(4)3x 2-[7x-(4x-3)-2x 2]解:原式=3x 2-(7x-4x+3-2x 2)=3x 2-7x+4x-3+2x 2=5x 2-3x-32.(10分)求(-x 2+5+4x )+(5x-4+2x 2)的值,其中x=-2.解:(-x 2+5+4x)+(5x-4+2x 2)=-x 2+5+4x+5x-4+2x 2=x 2+9x+1当x=-2时,原式=(-2)2+9×(-2)+1=4-18+1=-13.3.(10分)已知一个多项式与3x 2+9x 的和等于3x 2+4x-1,求这个多项式.解:这个多项式为(3x 2+4x-1)-(3x 2+9x)=3x 2+4x-1-3x 2-9x=-5x-1.二、综合应用(每题15分,共30分)4.(10分)窗户的形状如图所示(图中长度单位:cm),其上部是半圆形,下部是边长相同的四个小正方形.已知下部小正方形的边长是a cm ,计算:(1)窗户的面积;(2)窗户外框的总长.解:(1)窗户的面积为:22a π+4a 2=π+282a π+ (cm 2) (2)窗户的外框总长是:πa+2a ×3=πa+6a=(π+6)a(cm)5.(10分)观察下列图形并填表(单位:cm).三、拓展延伸(20分)6.(20分)(1)一个两位数的个位上的数是a,十位上的数是b,列式表示这个两位数.(2)列式表示上面的两位数与10的乘积.(3)列式表示(1)中的两位数与它的10倍的和,这个和是11的倍数吗?为什么?解:(1)10b+a;(2)10(10b+a);(3)10b+a+10(10b+a)=11(10b+a),这个和是11的倍数,因为它含有11这个因数.作者留言:非常感谢!您浏览到此文档。
2.2 整式的加减(第3课时)整式的加减导学案1. 熟练进行整式的加减运算.2. 能根据题意列出式子,表示问题中的数量关系.3. 会求代数式的值.★知识点:整式的加减整式的加减法运算的实质是“合并同类项”,需要应用到去括号、加法和乘法的运算律等. 合并同类项是整式加减运算的基础,也是以后学习解方程、解不等式的基础.合并同类项的根据是加法的交换律、结合律及乘法的分配律.相关知识.去括号是数式运算重要的基础知识和基本方法,在今后代数式运算、分解因式、解方程(组)与不等式(组)等问题中经常用到.1. 在解决实际问题的过程中,常常需要将若干个整式相加减,而整式的加减可以归纳为和.2. 一般地,几个整式相加减,如果有括号就先,然后再.问题:如果用a,b分别表示一个两位数的十位数字和个位数字,那么这个两位数可以表示为:.交换这个两位数的十位数字和个位数字,得到的数是:.将这两个数相加:.追问1:在上面的两个问题中,分别涉及了整式的什么运算?说说你是如何运算的?例1:计算:(1)(2x-3y)+(5x+4y);(2)(8a-7b)-(4a-5b).针对训练:求多项式4-5x2+3x与-2x+7x2-3的和.变式训练:求上述两多项式的差.例2:一种笔记本的单价是x元,圆珠笔的单价是y元. 小红买这种笔记本3本,买圆珠笔2支;小明买这种笔记本4本,买圆珠笔3支.买这些笔记本和圆珠笔,小红和小明一共花费多少钱?例3:做大小两个长方体纸盒,尺寸如下(单位:cm):(1)做这两个纸盒共用料多少平方厘米?(2)做大纸盒比小纸盒多用料多少平方厘米?例4:求22113122323x x y x y ⎛⎫⎛⎫--+-+ ⎪ ⎪⎝⎭⎝⎭的值,其中x =-2,23y =.1. 已知一个多项式与3x 2+9x 的和等于3x 2+4x -1,则这个多项式是( )A. -5x -1B. 5x +1C. -13x -1D. 13x +12. 长方形的一边长等于3a +2b ,另一边比它大a -b ,那么这个长方形的周长是() A. 14a +6b B. 7a +3b C. 10a +10b D. 12a +8b3. 若A 是一个二次二项式,B 是一个五次五项式,则B -A 一定是( )A. 二次多项式B. 三次多项式C. 五次三项式D. 五次多项式4. 多项式2x3-8x2+x-1与多项式3x3+2mx2-5x+3的和不含二次项,则m为()A. 2B. -2C. 4D. -45. 已知A=3a2-2a+1,B=5a2-3a+2,则2A-3B= .6. 若mn=m+3,则2mn+3m-5mn+10= .7. 计算:(1)-53ab3+2a3b-92a2b-ab3-12a2b-a3b;(2)(7m2-4mn-n2)-(2m2-mn+2n2);(3)-3(3x+2y)-0.3(6y-5x);(4)(13a3-2a-6)-12(12a3-4a-7).有这样一道题“当a=2,b=-2时,求多项式3a3b3-12a2b+b-(4a3b3-14a2b-b2)+(a3b3+14a2b)-2b2+3的值”,小明做题时把a=2错抄成a=-2,小红没抄错题,但他们做出的结果却都一样,你知道这是怎么回事吗?说明理由.1.(2022•包头)若一个多项式加上3xy+2y2-8,结果得2xy+3y2-5,则这个多项式为.2.(2022•吉林)下面是一道例题及其解答过程的一部分,其中A是关于m的多项式.请写出多项式A,并将该例题的解答过程补充完整.3.(2022•湖北)先化简,再求值:4xy-2xy-(-3xy),其中x=2,y=-1.如何进行整式的加减,你能谈谈学完本节课的收获吗?【参考答案】1. 去括号;合并同类项;2. 去括号;合并同类项.例1:解:(1)(2x-3y)+(5x+4y)=2x -3y +5x +4y=7x +y .(2)(8a -7b )-(4a -5b )=8a -7b -4a +5b=4a -2b .针对训练:解:(4-5x 2+3x )+(-2x +7x 2-3)=4-5x 2+3x -2x +7x 2-3=(-5x 2+7x 2)+(3x -2x )+(4-3)=2x 2+x +1.变式训练:-12x 2+5x +7.例2:解:小红买笔记本和圆珠笔共花费(3x +2y )元,小明买笔记本和圆珠笔共花费(4x +3y )元. 小红和小明一共花费(单位:元)(3x +2y )+(4x +3y )=3x +2y +4x +3y=7x +5y .例3:解:(1)小纸盒的表面积是(2ab +2bc +2ca )cm 2大纸盒的表面积是(6ab +8bc +6ca )cm 2做这两个纸盒共用料(2ab +2bc +2ca )+(6ab +8bc +6ca )=2ab +2bc +2ca +6ab +8bc +6ca=8ab +10bc +8ca (cm 2)(2)做大纸盒比做小纸盒多用料(6ab +8bc +6ca )-(2ab +2bc +2ca )=6ab +8bc +6ca -2ab -2bc -2ca=4ab +6bc +4ca (cm 2)例4:解:22113122323x x y x y ⎛⎫⎛⎫--+-+ ⎪ ⎪⎝⎭⎝⎭=22123122323x x y x y -+-+ =-3x +y 2.当x =-2,23y =时, 原式=2244(3)(2)66399⎛⎫-⨯-+=+= ⎪⎝⎭.1. A ;2. A ;3. D ;4. C ;5. -9a 2+5a -4;6. 1;7.(1)-83ab 3+a 3b -5a 2b ;(2)5m 2-3mn -3n 2; (3)-7.5x -7.8y ;(4)315122a -.解:将原多项式化简后,得-b 2+b +3.因为这个式子的值与a 的取值无关,所以即使把a 抄错,最后的结果都会一样.1.【解答】解:由题意得,这个多项式为:(2xy +3y 2-5)-(3xy +2y 2-8)=2xy +3y 2-5-3xy -2y 2+8=y 2-xy +3.故答案为:y 2-xy +3.2.【解答】解:由题知,m(A)-6(m+1)= m2+6m-6m-6= m2-6,因为m2+6m= m (m+6),所以A为:m+6,故答案为:m2-6.3.【解答】解:4xy-2xy-(-3xy)=4xy-2xy+3xy=5xy,当x=2,y=-1时,原式=5×2×(-1)=-10.。
4.4整式的加减【学习目标】1.知道整式加减的意义;2.会用去括号、合并同类项进行整式加减运算;3.能用整式加减解决一些简单的实际问题.【重点】整式加减的运算步骤.【难点】应用整式加减解决实际问题.【自学指导】一、知识链接1.化简:5ab-3(3ba-3b)+ab-8b=__________2.一个长方形的宽为a,长比宽的2倍少1,⑴写出这个长方形的周长;⑵当a=2时,这个长方形的周长是多少?⑶当a为何值时,这个长方形的周长是16?二、自主学习阅读课本P148-149 完成下列问题:1.当x=-4时,多项式-x2-4x-2与x3+5x2+3x-4的和的值应为()A.-10B.2C.-2D.102.若A和B都是五次多项式,则A+B一定为()A.十次多项式B.五次多项式C.次数不低于五次的多项式D.次数不高于五次的整式3.减去-3x得x2-3x+6的式子为()A.x2+6B.x2+3x+6C.x2-6xD.x2-6x+6【课堂练习】1. -3a +3b =-3( ), 2a -2b =2( ), -5a -5b =-5( ), 4a +4b = 4 ( )2.(1)已知x -y =5,xy =3,则3xy -7x +7y =(2)已知A =3x +1,B =6x -3,则3A -B =3.计算:(1)(2x -3y )+(5x +4y ) (2)(8a -7b ) - (4a -5b )(3)a - (2a +b )+2(a -2b ) (4)3(5x +4) - (3x -5);(5)2a -3b +[4a - (3a -b )] (6)x -2(1-2x +x 2)+3(-2+3x -x 2)(7)(8x -3y ) - (4x +3y -z )+2z (8)3b -2c -[-4a +(c +3b )]+c(9) 2- (1+x )+(1+x +x 2-x 2) (10) 3a 2+a 2- (2a 2-2a )+(3a -a 2)(11)(a 3-2a 2+1)-2(3a 2-2a +21) (12) -5x 2+(5x -8x 2)- (-12x 2+4x )+51(13) 4a -{2c -[5a (c -b )+c +(2a +5b )]}(14)(3xn +1+10xn -7x )+(x -9xn +1-10xn )4.已知ab=3,a+b=4,求3ab- [2a - (2ab-2b)+3]的值.5.求5ab-2[3ab-(4ab2+0.5ab)] -5ab2的值,其中a=0.5,b=-0.6.【拓展延伸】6.若(x2+mx-2y+7)―(nx2―2x+9y-1)的值与字母x的取值无关,求m、n的值.7.当|x+5|+(y-2)2=0时,求代数式(4x-2y2)-[5x-(x-y2)]-x的值.8.在x,2x,3x,4x,…,2013x各数前面任意添加“+”或“-”号,然后求和,可以得到最小的非负值是多少(其中x=1).9.已知x=1时代数式2x2+5x+M的值是10,求x=-2时代数式M的值.10.小马虎做一道数学题时,误将求A+B看成了求A-B,结果求出的答案是-2xy+yz+8xz,已知B=-xy+2yz-3xz,请你帮小马虎写出正确结果.【总结反思】1.本节课我学会了:还有些疑惑:2.做错的题目有:原因:。
整式的加减数学教案优秀5篇《整式的加减》教学设计篇一教学目标:1.理解单项式及单项式系数、次数的概念。
2.会准确迅速地确定一个单项式的系数和次数。
3.初步培养学生观察、分析、抽象、概括等思维能力和应用意识。
过程与方法:通过小组讨论、合作学习等方式,经历概念的形成过程,培养学生自主探索知识和合作交流能力。
分层次教学,讲授、练习相结合。
情感、态度、价值观:培养学生观察、归纳、概括及运算能力教学重点:掌握单项式及单项式的系数、次数的概念,并会准确迅速地确定一个单项式的系数和次数。
教学难点:单项式概念的建立。
教学过程:一、复习引入:1、列代数式(1)若正方形的边长为a,则正方形的面积是;(2)若三角形一边长为a,并且这边上的高为h,则这个三角形的面积为;(3)若x表示正方形棱长,则正方形的体积是(4)若m表示一个有理数,则它的相反数是;(5)小明从每月的零花钱中贮存x元钱捐给希望工程,一年下来小明捐款元。
(让学生列代数式不仅复习前面的知识,更是为下面给出单项式埋下伏笔,同时使学生受到较好的思想品德教育。
)2、请学生说出所列代数式的意义。
3、请学生观察所列代数式包含哪些运算,有何共同运算特征。
由小组讨论后,经小组推荐人员回答,教师适当点拨。
(充分让学生自己观察、自己发现、自己描述,进行自主学习和合作交流,可极大的激发学生学习的积极性和主动性,满足学生的表现欲和探究欲,使学生学得轻松愉快,充分体现课堂教学的开放性。
)二、讲授新课:1.单项式:通过特征的描述,引导学生概括单项式的概念,从而引入课题:单项式,并板书归纳得出的单项式的概念,即由数与字母的乘积组成的代数式称为单项式。
然后教师补充,单独一个数或一个字母也是单项式,如a,5。
2.练习:判断下列各代数式哪些是单项式?(1)x?12;(2)abc;(3)b2;(4)-5ab2;(5)y;(6)-xy2;(7)-5。
(加强学生对不同形式的单项式的直观认识,同时利用练习中的单项式转入单项式的系数和次数的教学)3.单项式系数和次数:直接引导学生进一步观察单项式结构,总结出单项式是由数字因数和字母因数两部分组成的。
XX 镇初级中学校导学案 年 级 七年级 科
目 数学 执笔教师 审核 授课班级
授课教师 学生姓名 课题: 3、4、4整式的加减
一、 教学目标: 1.让学生从实际背景中去体会进行整式的加减的必要性,并能灵活运用整式的加减的步骤进行运算。
2.认识到数学是解决实际问题和进行交流的重要工具。
二、自主学习:
1、多项式中具有什么特点的项可以合并,怎样合并?
2、如何去括号,它的依据是什么? 思考:(1)求多项式2x-3y 与5x+4y 的和.(2)求多项式8a-7b 与4a-5b 的差.
分析:求(1)的和就是化简(2x-3y)+(5x+4y);
求(2)的差就是计算(8a-7b)-(4a-5b);
三、合作探究:
1、课本p69例7:一种笔记本的单价是x 元,圆珠笔的单价是y 元,小红买这种笔记本3本,买圆珠笔2支;小明买这种笔记本4个,买圆珠笔3支,买这些笔记本和圆珠笔,小红和小明共花费多少钱?
解法一:小红买笔记本和圆珠笔共花费 元,小明买笔记本和圆珠笔共花费 元.
小红和小明一共花费:
=
=
解法二:小红和小明买笔记本共花费 元,买圆珠笔共花费 元. 小红和小明一共花费:
=
2、请问:整式加减的运算法则如何? .
3、计算:(1)3xy-4xy-(-2xy) (2)-31ab-41a 2+a 2-(-32ab)
4、
21
x -2(x -31y 2)+(-23x+31y 2)的值,其中x=-2,y=3
2
三、当堂检测:
1、做大小两个长方形纸盒,尺寸如下(单位:cm):
长宽高小纸盒 a b c
大纸盒 1.5a 2b 2c
(1)做这两个纸盒共用料多少平方厘米?(2)做大纸盒比做小纸盒多用料多少平
方厘米?
2、(1)已知多项式A=4a2+5b,B=-3a2-2b,计算2A-B的结果.
(2)如果多项式8x2-3x+5与多项式3x2+4mx2-5x+3相加后不含x2项,求m的值.
四、课后小结。