随机变量和期望
- 格式:docx
- 大小:56.34 KB
- 文档页数:7
随机变量是概率论中非常重要的概念,它描述了一次随机试验中可能出现的各种结果及其对应的概率。
而随机变量的期望和方差是对这些结果的统计性质的度量。
首先,我们来看看随机变量的期望。
期望是对随机变量的平均值的度量,它表示了在多次随机试验中,随机变量的结果的平均表现。
对于离散型随机变量,期望可以用如下公式来计算:E(X) = Σ(x_i * p_i)其中,E(X)表示随机变量X的期望,x_i表示随机变量X可能的取值,p_i表示该取值出现的概率。
对于连续型随机变量,期望的计算方式稍有不同。
在这种情况下,期望可以用如下公式来计算:E(X) = ∫(x * f(x))dx其中,E(X)表示随机变量X的期望,x表示随机变量X的取值,f(x)表示X的概率密度函数。
期望可以理解为随机变量的平均表现,它具有很多应用。
例如,在赌博中,我们可以用期望来判断一个赌局是否合理。
如果某个赌局的期望为负,意味着赌徒平均而言会亏损,此时赌徒应该避免参与这个赌局。
接下来,我们来看看随机变量的方差。
方差是对随机变量结果的离散程度的度量,它表示了多次随机试验中,随机变量结果与其期望之间的差异程度。
方差越大,表示结果的离散程度越大,反之亦然。
对于离散型随机变量,方差可以用如下公式来计算:Var(X) = Σ((x_i - E(X))^2 * p_i)其中,Var(X)表示随机变量X的方差,x_i表示随机变量X可能的取值,p_i表示该取值出现的概率。
对于连续型随机变量,方差的计算方式稍有不同。
在这种情况下,方差可以用如下公式来计算:Var(X) = ∫((x - E(X))^2 * f(x))dx其中,Var(X)表示随机变量X的方差,x表示随机变量X的取值,f(x)表示X的概率密度函数。
方差可以理解为随机变量结果的离散程度。
它具有很多应用。
例如,在金融领域,方差被广泛用于度量投资组合的风险。
一个投资组合的方差越大,意味着其回报的波动性越大,风险越高。
随机变量的定义、分布和期望值及其应用随机变量是概率论中非常重要的概念,它指的是随机试验的结果,是一个数值型的随机变量。
在统计学和概率论中,随机变量是研究的核心对象之一。
本文将详细讲解随机变量的定义、分布和期望值及其应用。
一、随机变量的定义在概率论中,随机变量是一个数学函数,它将样本空间中的每个样本赋值为一个实数。
随机变量有两种类型:离散型和连续型。
离散型随机变量的取值为有限个或可数个,如掷骰子点数;连续型随机变量的取值为一个区间,如人的身高、体重等。
二、随机变量的分布随机变量的分布是指随机变量在每个可能取值上的概率分布。
主要包括离散型随机变量的概率分布函数和连续型随机变量的概率密度函数。
对于离散型随机变量,可以用概率质量函数(PMF)来描述其概率分布,对于连续型随机变量,则可使用概率密度函数(PDF)来描述。
常见的离散型随机变量有伯努利分布、二项分布、泊松分布等;常见的连续型随机变量有均匀分布、正态分布、指数分布等。
随机变量的分布是根据随机变量的特点和概率分布函数的性质来确定的。
三、随机变量的期望值随机变量的期望值是指其所有取值的平均数,也叫做数学期望,常用符号是EX。
对于离散型随机变量,期望值可以用下面这个公式来计算:E(X)=∑xP(X=x)对于连续性随机变量,则需要使用积分来表示期望值:E(X)=∫xp(x)dx其中,p(x)是概率密度函数。
在实际应用中,期望值经常被用来评估随机变量的平均水平,它对随机变量的整体特征有着非常关键的作用。
四、随机变量的应用随机变量理论是物理学、化学、工程学以及其他科学领域的基础,并且在现代数据分析和机器学习等领域也有着广泛的应用。
例如,期望值可以用来计算股票收益的均值,或是计算电信公司某天内接收到的电话呼叫的平均数量。
概率分布的特性可以用来描述随机变量的性质,比如统计值、方差或者协方差等。
此外,使用随机变量可以通过概率分布来检验假设以及预测未来的趋势。
总之,随机变量的定义、分布和期望值是概率论和统计学的核心知识点之一,非常重要。
随机变量的期望与方差计算随机变量是概率论中的重要概念,它描述了一个随机事件的结果。
在实际问题中,我们经常需要计算随机变量的期望和方差,以了解随机变量的平均值和离散程度。
本文将介绍如何计算随机变量的期望和方差,并通过实例进行说明。
一、随机变量的期望随机变量的期望是对随机变量取值的加权平均值,反映了随机变量的平均水平。
对于离散型随机变量,期望的计算公式为:E(X) = Σ(x * P(X=x))其中,x为随机变量的取值,P(X=x)为随机变量取值为x的概率。
例如,假设有一个骰子,投掷结果为1、2、3、4、5、6的概率均等。
我们可以计算骰子的期望:E(X) = (1 * 1/6) + (2 * 1/6) + (3 * 1/6) + (4 * 1/6) + (5 * 1/6) + (6 * 1/6) = 3.5这表示骰子的平均值为3.5。
对于连续型随机变量,期望的计算公式为:E(X) = ∫(x * f(x))dx其中,f(x)为随机变量的概率密度函数。
例如,假设有一个服从正态分布的随机变量X,其概率密度函数为:f(x) = (1/√(2πσ^2)) * exp(-((x-μ)^2) / (2σ^2))其中,μ为均值,σ为标准差。
我们可以计算X的期望:E(X) = ∫(x * (1/√(2πσ^2)) * exp(-((x-μ)^2) / (2σ^2)))dx这个积分可以通过数值计算方法或数学软件进行求解。
二、随机变量的方差随机变量的方差是衡量随机变量取值离散程度的指标,它描述了随机变量取值与期望之间的差异。
方差的计算公式为:Var(X) = E((X - E(X))^2)其中,E(X)为随机变量的期望。
方差的计算可以通过以下公式简化:Var(X) = E(X^2) - (E(X))^2对于离散型随机变量,方差的计算公式为:Var(X) = Σ((x - E(X))^2 * P(X=x))例如,假设有一个骰子,我们已经计算出其期望为3.5。
随机变量的概率分布和期望随机变量是统计学和概率论中最基本的概念之一。
它是一种可以从某些特定分布中随机取值的变量,具有一定的概率分布和期望值。
在实际问题中,我们经常需要用到这些概念来描述随机事件的发生情况,并做出相应的推理和判断。
概率分布是随机变量的最基本性质之一。
它描述了随机变量取各个值的可能性大小,可以用分布函数或概率密度函数来表达。
对于离散型随机变量,其概率分布可以用概率质量函数来描述。
概率质量函数是一个离散的函数,它表示各个取值对应的概率。
概率质量函数的性质是非负的,且各个取值的概率之和为1。
假设有一个离散型随机变量X,它的取值范围为{x1, x2, …, xn},概率分别为{p1, p2, …, pn}。
那么它的概率质量函数可以表示为:P(X=xi)=pi, i=1,2,…,n例如,抛硬币的随机变量可以用{正面,反面}来表示,概率分别为{0.5,0.5}。
这个随机变量的概率质量函数就是:P(X=正面)=0.5P(X=反面)=0.5对于连续型随机变量,我们需要用概率密度函数来描述概率分布。
概率密度函数是一个连续的函数,描述了随机变量在某个区间的取值可能性大小。
它的性质是非负的,整个取值域上的积分等于1。
用概率密度函数来计算某个随机变量取值在一个区间内的概率时,需要对概率密度函数在这个区间内的积分进行求解。
例如,正态分布是一种常见的连续型概率分布。
它的概率密度函数是一个钟形曲线,具有一个均值和一个标准差。
正态分布的概率密度函数可以表示为:f(x) = (1/σ√(2π)) * e^(−(x−μ)2 / (2σ2))其中,μ是均值,σ是标准差。
这个函数表示了随机变量在不同取值点的可能性大小。
期望是另一个重要的随机变量概念。
它表示随机变量的平均取值情况。
期望的定义可以用离散型随机变量和连续型随机变量分别表示。
对于离散型随机变量,期望可以表示为:E(X) = ∑i xi * P(X=xi)它表示了各个取值点的贡献乘以其对应的概率之和。
随机变量的数学期望和方差随机变量是概率论中的重要概念,用来描述一个随机事件可能取到的不同值及其对应的概率。
对于一个随机变量而言,数学期望和方差是常用的统计量,用于描述随机变量的平均水平和离散程度。
一、数学期望数学期望是随机变量的平均值,表示了随机变量在大量重复实验中的长期平均表现。
通常用E(X)或μ来表示,其中X为随机变量。
对于离散型随机变量,数学期望的计算公式为:E(X) = ΣxP(X=x)其中,x为随机变量X可能取到的值,P(X=x)为其对应的概率。
以掷骰子为例,假设随机变量X表示掷骰子的点数,点数可能取到1、2、3、4、5、6,每个点数的概率相等。
则计算掷骰子的数学期望为:E(X) = 1/6 × 1 + 1/6 × 2 + 1/6 × 3 + 1/6 × 4 + 1/6 × 5 + 1/6 × 6 = 3.5对于连续型随机变量,数学期望的计算公式为:E(X) = ∫xf(x)dx其中,f(x)为随机变量X的概率密度函数。
二、方差方差是随机变量取值与其数学期望的偏差的平方的平均值,用于衡量随机变量的离散程度。
通常用Var(X)或σ^2来表示,其中X为随机变量。
对于离散型随机变量,方差的计算公式为:Var(X) = Σ(x-E(X))^2P(X=x)以掷骰子为例,假设随机变量X表示掷骰子的点数,其数学期望为3.5。
则计算掷骰子的方差为:Var(X) = (1-3.5)^2 ×1/6 + (2-3.5)^2 ×1/6 + (3-3.5)^2 ×1/6 + (4-3.5)^2 ×1/6 + (5-3.5)^2 ×1/6 + (6-3.5)^2 ×1/6 = 2.9167对于连续型随机变量,方差的计算公式为:Var(X) = ∫(x-E(X))^2f(x)dx方差的平方根被称为标准差,用于度量随机变量的离散程度。
随机变量的期望与方差知识点在概率论与数理统计中,随机变量的期望和方差是两个非常重要的概念。
它们帮助我们理解随机现象的平均水平和波动程度,在许多领域都有着广泛的应用,比如统计学、经济学、物理学、工程学等等。
接下来,咱们就来详细聊聊这两个重要的知识点。
首先,咱们来谈谈什么是随机变量。
简单说,随机变量就是对随机试验结果的数值描述。
比如说抛硬币,正面记为 1,反面记为 0,那这个结果就是一个随机变量。
那期望是什么呢?期望可以理解为随机变量的平均取值。
想象一下,你多次进行同一个随机试验,然后把每次的结果都加起来再除以试验的次数,当试验次数趋近于无穷大时,得到的这个平均值就是期望。
举个例子,假如一个离散型随机变量 X 取值为 x1, x2, x3,, xn,对应的概率分别为 p1, p2, p3,, pn,那么它的期望 E(X) 就等于 x1 p1 +x2 p2 + x3 p3 ++ xn pn 。
比如说,掷一个骰子,出现 1 点的概率是 1/6,出现 2 点的概率也是 1/6,以此类推。
那么这个骰子掷出的点数的期望就是 1×(1/6) +2×(1/6) + 3×(1/6) + 4×(1/6) + 5×(1/6) + 6×(1/6) = 35 。
期望有很多重要的性质。
比如,对于任意常数 c ,E(c) = c ;对于两个随机变量 X 和 Y ,E(X + Y) = E(X) + E(Y) 。
再来说说方差。
方差反映的是随机变量取值相对于期望的分散程度,也就是波动的大小。
如果方差小,说明随机变量的取值比较集中在期望附近;如果方差大,说明取值比较分散。
对于离散型随机变量 X ,它的方差 Var(X) = E(X E(X))²。
这看起来有点复杂,其实就是先算出每个取值与期望的差的平方,再乘以对应的概率,最后加起来。
还是拿掷骰子的例子来说,骰子点数的期望是 35 。
13个期望计算公式期望是概率论中的一个重要概念,它描述了一个随机变量的平均值。
在现实生活中,我们经常需要计算某种随机变量的期望,以便更好地理解和预测各种现象。
本文将介绍13个常见的期望计算公式,帮助读者更好地理解和运用期望的概念。
1. 离散型随机变量的期望计算公式。
对于离散型随机变量X,其期望可以通过以下公式计算:E(X) = Σx P(X=x)。
其中,x表示随机变量X可能取的值,P(X=x)表示X取值为x的概率。
2. 连续型随机变量的期望计算公式。
对于连续型随机变量X,其期望可以通过以下公式计算:E(X) = ∫x f(x) dx。
其中,f(x)表示X的概率密度函数。
3. 二项分布的期望计算公式。
对于二项分布B(n,p),其期望可以通过以下公式计算:E(X) = n p。
其中,n表示试验的次数,p表示每次试验成功的概率。
4. 泊松分布的期望计算公式。
对于泊松分布P(λ),其期望可以通过以下公式计算:E(X) = λ。
其中,λ表示单位时间(或单位面积)内事件发生的平均次数。
5. 几何分布的期望计算公式。
对于几何分布G(p),其期望可以通过以下公式计算:E(X) = 1/p。
其中,p表示每次试验成功的概率。
6. 均匀分布的期望计算公式。
对于均匀分布U(a,b),其期望可以通过以下公式计算:E(X) = (a+b)/2。
其中,a和b分别表示随机变量X的取值范围的下限和上限。
7. 指数分布的期望计算公式。
对于指数分布Exp(λ),其期望可以通过以下公式计算:E(X) = 1/λ。
其中,λ表示事件发生的速率。
8. 正态分布的期望计算公式。
对于正态分布N(μ,σ²),其期望可以通过以下公式计算:E(X) = μ。
其中,μ表示分布的均值。
9. 超几何分布的期望计算公式。
对于超几何分布H(N,M,n),其期望可以通过以下公式计算:E(X) = n (M/N)。
其中,N表示总体容量,M表示总体中具有成功属性的个体数量,n表示抽取的样本容量。
概率论中的随机变量和期望随机变量和期望是概率论中的两个重要概念。
随机变量是一个数值型函数,它为每个可能的结果分配了一个值。
例如,当抛掷一枚硬币时,正反面可能是结果之一。
可以定义一个随机变量X,它的取值为0或1,0表示结果为反面,1表示结果为正面。
期望是随机变量的平均值,它反映了随机变量的中心位置。
随机变量的不同类型随机变量可以是离散的或连续的。
离散随机变量取有限或可数个离散值。
例如,掷骰子是一个离散随机变量,因为可能的结果是1、2、3、4、5或6。
连续随机变量可以取无数个可能的数值。
例如,人的身高是一个连续随机变量,因为可能的数值可以在任何两个整数之间取值。
离散随机变量的期望离散随机变量的期望可以通过对随机变量的每种可能结果乘以其概率,并将每个乘积相加而得到。
例如,如果一个掷骰子,可以定义一个随机变量X来表示投掷的结果。
每个结果出现的概率是1/6,因此X的期望等于:E(X) = (1/6) × 1 + (1/6) × 2 + (1/6) × 3 + (1/6) × 4 + (1/6) × 5 + (1/6) × 6E(X) = 3.5这意味着,在长时间内多次投掷骰子的情况下,结果的平均值将接近3.5。
连续随机变量的期望对于连续随机变量,可以使用积分来计算期望。
假设一个连续的随机变量X,其概率密度函数为f(x)。
它的期望计算公式如下:E(X) = ∫xf(x)dx例如,人的身高可以视为一个连续随机变量。
如果其概率密度函数是f(x) = 0.4e^(-0.4x),其中x是身高(单位为米),可以计算其期望为:E(X) = ∫x(0.4e^(-0.4x))dx (从0到无穷大)E(X) = 2.5这意味着,在一群人中,平均身高为2.5米(这显然是不现实的,这只是一个计算例子)。
期望的性质期望具有以下性质:1. 常数的期望等于该常数本身,即E(c) = c。
随机变量及期望随机变量是概率论中的基本概念之一,它描述了随机现象的数学特征。
在概率论和统计学中,我们经常需要研究和分析随机变量的性质,而期望是随机变量的重要统计特征之一。
一、随机变量的定义和分类随机变量是一个定义在样本空间上的实值函数,它的取值不确定,依赖于随机试验的结果。
根据随机变量的取值类型,可以将随机变量分为离散型随机变量和连续型随机变量。
1. 离散型随机变量离散型随机变量的取值是一些离散的数值,通常是整数或有限个实数。
例如,掷一枚骰子的点数就是一个离散型随机变量,它的取值范围是1到6。
2. 连续型随机变量连续型随机变量的取值是一个区间上的任意实数,取值可能是无限个。
例如,一个人的体重就是一个连续型随机变量。
二、随机变量的分布函数和密度函数随机变量的分布函数是指随机变量的取值在不同区间的概率。
对于离散型随机变量,可以通过概率质量函数来描述其分布函数;对于连续型随机变量,可以通过概率密度函数来描述其分布函数。
1. 离散型随机变量的分布函数对于一个离散型随机变量,其分布函数是一个非递减的右连续函数,定义为F(x) = P(X ≤ x),其中X表示随机变量,x表示实数。
2. 连续型随机变量的分布函数对于一个连续型随机变量,其分布函数F(x)是一个非递减的连续函数,定义为F(x) = P(X ≤ x),其中X表示随机变量,x表示实数。
三、随机变量的期望期望是随机变量的重要特征之一,它刻画了随机变量的平均取值。
对于离散型随机变量和连续型随机变量,期望的计算方法有所不同。
1. 离散型随机变量的期望对于一个离散型随机变量X,其期望E(X)的计算公式为E(X) =Σx·P(X=x),其中x表示离散随机变量X的每个取值,P(X=x)表示随机变量X取值为x的概率。
2. 连续型随机变量的期望对于一个连续型随机变量X,其期望E(X)的计算公式为E(X) =∫xf(x)dx,其中f(x)表示连续随机变量X的概率密度函数。
1.解(1)记“第一次检测出的是次品且第二次检测出的是正品”为事件A.P(A)=A12A13A25=310.(2)X的可能取值为200,300,400.P(X=200)=A22A25=110,P(X=300)=A33+C12C13A22A35=310,P(X=400)=1-P(X=200)-P(X=300)=1-110-310=610.故X的分布列为E(X)=200×110+300×310+400×610=350.2.解(1)设“当天小王的该银行卡被锁定”的事件为A,则P(A)=56×45×34=12.(2)依题意得,X所有可能的取值是1,2,3.又P(X=1)=16,P(X=2)=56×15=16,P(X=3)=56×45×1=23.所以X的分布列为所以E(X)=1×16+2×16+3×23=52.3.解(1)令A表示事件“三种粽子各取到1个”,则由古典概型的概率计算公式有P(A)=C12C13C15C310=14.(2)X的所有可能值为0,1,2,且P(X=0)=C38C310=715,P(X=1)=C12C28C310=715,P(X=2)=C22C18C310=115.综上知,X的分布列为故E (X )=0×715+1×715+2×115=35(个).4.解 (1)设“选出的3名同学是来自互不相同的学院”为事件A ,则P (A )=C 13·C 27+C 03·C 37C 310=4960.所以,选出的3名同学是来自互不相同学院的概率为4960. (2)随机变量X 的所有可能值为0,1,2,3.P (X =k )=C k 4·C 3-k6C 310(k =0,1,2,3).所以,随机变量X 的分布列是随机变量X 的数学期望E (X )=0×16+1×12+2×310+3×130=65.6.解 (1)记A i 为事件“小明对落点在A 上的来球回球的得分为i 分”(i =0,1,3),则P (A 3)=12,P (A 1)=13,P (A 0)=1-12-13=16;记B i 为事件“小明对落点在B 上的来球回球的得分为i 分”(i =0,1,3), 则P (B 3)=15,P (B 1)=35,P (B 0)=1-15-35=15.记D 为事件“小明两次回球的落点中恰有一次的落点在乙上”. 由题意,D =A 3B 0+A 1B 0+A 0B 1+A 0B 3, 由事件的独立性和互斥性, P (D )=P (A 3B 0+A 1B 0+A 0B 1+A 0B 3) =P (A 3B 0)+P (A 1B 0)+P (A 0B 1)+P (A 0B 3)=P (A 3)P (B 0)+P (A 1)P (B 0)+P (A 0)P (B 1)+P (A 0)P (B 3) =12×15+13×15+16×35+16×15=310,所以小明两次回球的落点中恰有一次的落点在乙上的概率为310. (2)由题意,随机变量ξ可能的取值为0,1,2,3,4,6, 由事件的独立性和互斥性,得P (ξ=0)=P (A 0B 0)=16×15=130,P (ξ=1)=P (A 1B 0+A 0B 1)=P (A 1B 0)+P (A 0B 1)=13×15+16×35=16, P (ξ=2)=P (A 1B 1)=13×35=15,P (ξ=3)=P (A 3B 0+A 0B 3)=P (A 3B 0)+P (A 0B 3)=12×15+16×15=215, P (ξ=4)=P (A 3B 1+A 1B 3)=P (A 3B 1)+P (A 1B 3)=12×35+13×15=1130, P (ξ=6)=P (A 3B 3)=12×15=110. 可得随机变量ξ的分布列为:所以数学期望E (ξ)=0×130+1×16+2×15+3×215+4×1130+6×110=9130. 8.解 (1)设“取出的4张卡片中,含有编号为3的卡片”为事件A ,则P (A )=C 12C 35+C 22C 25C 47=67.所以取出的4张卡片中,含有编号为3的卡片的概率为67.(2)随机变量X 的所有可能取值为1,2,3,4.P (X =1)=C 33C 47=135,P (X =2)=C 34C 47=435,P (X =3)=C 35C 47=27,P (X =4)=C 36C 47=47.所以随机变量X 的分布列是随机变量X 的数学期望E (X )=1×135+2×435+3×27+4×47=175. 9.解 设A i 表示事件“此人于3月i 日到达该市”(i =1,2,…,13). 根据题意,P (A i )=113,且A i ∩A j =∅(i ≠j ).(1)设B 为事件“此人到达当日空气质量重度污染”,则B =A 5∪A 8. 所以P (B )=P (A 5∪A 8)=P (A 5)+P (A 8)=213.(2)由题意可知,X 的所有可能取值为0,1,2,且P (X =1)=P (A 3∪A 6∪A 7∪A 11)=P (A 3)+P (A 6)+P (A 7)+P (A 11)=413, P (X =2)=P (A 1∪A 2∪A 12∪A 13)=P (A 1)+P (A 2)+P (A 12)+P (A 13)=413, P (X =0)=1-P (X =1)-P (X =2)=513. 所以X 的分布列为故X 的期望E (X )=0×513+1×413+2×413=1213.(3)从3月5日开始连续三天的空气质量指数方差最大.11.解 (1)当X ∈[100,130)时,T =500X -300(130-X )=800X -39 000, 当X ∈[130,150]时,T =500×130=65 000. 所以T =⎩⎨⎧800X -39 000,100≤X <130,65 000,130≤X ≤150.(2)由(1)知利润T 不少于57 000元当且仅当120≤X ≤150.由直方图知需求量X ∈[120,150]的频率为0.7,所以下一个销售季度内的利润T 不少于57 000元的概率的估计值为0.7. (3)依题意可得T 的分布列为所以E (T )=45 000×0.1+53 000×0.2+61 000×0.3+65 000×0.4=59 400. 12.解 (1)设事件A =“张同学所取的3道题至少有1道乙类题”, 则有A =“张同学所取的3道题都是甲类题”. 因为P (A )=C 36C 310=16,所以P (A )=1-P (A )=56.(2)X 所有的可能取值为0,1,2,3.P (X =0)=C 02·⎝ ⎛⎭⎪⎫350·⎝ ⎛⎭⎪⎫252·15=4125;P (X =1)=C 12·⎝ ⎛⎭⎪⎫351·⎝ ⎛⎭⎪⎫251·15+C 02·⎝ ⎛⎭⎪⎫350·⎝ ⎛⎭⎪⎫252·45=28125; P (X =2)=C 22·⎝ ⎛⎭⎪⎫352·⎝ ⎛⎭⎪⎫250·15+C 12·⎝ ⎛⎭⎪⎫351·⎝ ⎛⎭⎪⎫251·45=57125; P (X =3)=C 22·⎝ ⎛⎭⎪⎫352·⎝ ⎛⎭⎪⎫250·45=36125. 所以X 的分布列为所以E (X )=0×4125+1×28125+2×57125+3×36125=2.13.解析 ∵P (X =0)=13×(1-p )2=112,∴p =12.则P (X =1)=23×12×12+13×12×12×2=13,P (X =2)=23×12×12×2+13×12×12=512,P (X =3)=23×12×12=16.则E (X )=0×112+1×13+2×512+3×16=53.答案 5314.解 (1)由已知,有P (A )=C 22C 23+C 23C 23C 48=635. 所以,事件A 发生的概率为635.(2) 随机变量X 的所有可能取值为1,2,3,4.P (X =k )=C k 5C 4-k 3C 48(k =1,2,3,4).所以随机变量X 的分布列为随机变量X 的数学期望E (X )=1×114+2×37+3×37+4×114=52. 15.解 (1)记事件A 1={从甲箱中摸出的1个球是红球}, A 2={从乙箱中摸出的1个球是红球},B 1={顾客抽奖1次获一等奖},B 2={顾客抽奖1次获二等奖},C ={顾客抽奖1次能获奖}.由题意,A 1与A 2相互独立,A 1A 2与A 1A 2互斥,B 1与B 2互斥,且B 1=A 1A 2,B 2=A 1A 2+A 1A 2,C =B 1+B 2.因为P (A 1)=410=25,P (A 2)=510=12,所以P (B 1)=P (A 1A 2)=P (A 1)P (A 2)=25×12=15, P (B 2)=P (A 1A 2+A 1A 2)=P (A 1A 2)+P (A 1A 2) =P (A 1)P (A 2)+P (A 1)P (A 2) =P (A 1)(1-P (A 2))+(1-P (A 1))P (A 2) =25×⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫1-25×12=12.故所求概率为P (C )=P (B 1+B 2)=P (B 1)+P (B 2)=15+12=710.(2)顾客抽奖3次可视为3次独立重复试验,由(1)知,顾客抽奖1次获一等奖的概率为15,所以X ~B ⎝ ⎛⎭⎪⎫3,15.于是P (X =0)=C 03⎝ ⎛⎭⎪⎫150⎝ ⎛⎭⎪⎫453=64125,P (X =1)=C 13⎝ ⎛⎭⎪⎫151⎝ ⎛⎭⎪⎫452=48125, P (X =2)=C 23⎝ ⎛⎭⎪⎫152⎝ ⎛⎭⎪⎫451=12125,P (X =3)=C 33⎝ ⎛⎭⎪⎫153⎝ ⎛⎭⎪⎫450=1125. 故X 的分布列为X 的数学期望为E (X )=3×15=35.16.解 用A 表示“甲在4局以内(含4局)赢得比赛”,A k 表示“第k 局甲获胜”,B k 表示“第k 局乙获胜”,则P (A k )=23,P (B k )=13,k =1,2,3,4,5. (1)P (A )=P (A 1A 2)+P (B 1A 2A 3)+P (A 1B 2A 3A 4)=P (A 1)P (A 2)+P (B 1)P (A 2)P (A 3)+P (A 1)P (B 2)·P (A 3)P (A 4)=⎝ ⎛⎭⎪⎫232+13×⎝ ⎛⎭⎪⎫232+23×13×⎝ ⎛⎭⎪⎫232=5681. (2)X 的可能取值为2,3,4,5. P (X =2)=P (A 1A 2)+P (B 1B 2) =P (A 1)P (A 2)+P (B 1)P (B 2)=59, P (X =3)=P (B 1A 2A 3)+P (A 1B 2B 3)=P (B 1)P (A 2)P (A 3)+P (A 1)P (B 2)·P (B 3)=29, P (X =4)=P (A 1B 2A 3A 4)+P (B 1A 2B 3B 4) =P (A 1)P (B 2)P (A 3)P (A 4)+P (B 1)· P (A 2)P (B 3)P (B 4)=1081,P (X =5)=1-P (X =2)-P (X =3)-P (X =4)=881. 故X 的分布列为E (X )=2×59+3×29+4×1081+5×881=22481.。