催化剂表征与测试
- 格式:doc
- 大小:52.50 KB
- 文档页数:4
某种催化剂的表征与活性评估催化剂是用于促进或加速化学反应速率的物质。
催化剂的表征和活性评估对于研究和优化催化剂的性能具有重要意义。
本文将介绍某种催化剂的表征方法和常用的活性评估技术。
1. 表征方法催化剂表征是对催化剂进行结构和性质分析的过程,可采用多种分析技术,包括物理和化学方法。
1.1 表面形貌观察表面形貌观察是评估催化剂的形态和微观结构的重要手段。
常用的技术包括扫描电子显微镜(SEM)和透射电子显微镜(TEM)。
SEM可以提供催化剂的表面形貌信息,例如颗粒的大小和形状。
TEM可以提供更高分辨率的图像,揭示催化剂的微观结构,如晶体形态、晶体缺陷等。
1.2 化学成分分析化学成分分析是评估催化剂组成的关键手段。
常用的技术包括X射线衍射(XRD)、傅里叶变换红外光谱(FTIR)、拉曼光谱和X射线光电子能谱(XPS)。
XRD可以确定催化剂的晶体结构和晶体相,FTIR和拉曼光谱可以提供有关催化剂的化学键和官能团的信息,XPS可以确定催化剂表面元素的化学状态。
1.3 孔结构表征孔结构表征是评估催化剂孔隙性质的关键手段。
常用的技术包括比表面积分析(BET)、孔径分布分析和氮气吸附-脱附实验。
BET可以测量催化剂的比表面积,孔径分布分析可以确定孔径大小和分布情况,氮气吸附-脱附实验可以获得催化剂的孔体积和孔径大小。
2. 活性评估技术活性评估是评估催化剂催化性能和活性的关键步骤。
以下将介绍几种常用的活性评估技术。
2.1 反应动力学研究反应动力学研究是评估催化剂催化活性的重要手段。
通过测量反应物浓度随时间的变化,可以确定反应速率常数和反应级数等动力学参数。
常用的技术包括气相色谱-质谱联用(GC-MS)、高效液相色谱(HPLC)、原子吸收光谱等。
2.2 微观动力学研究微观动力学研究可以提供有关催化剂上反应过程的微观机理和反应中间体的信息。
常用技术包括瞬态吸附技术,如傅里叶变换红外(FTIR)瞬态吸附和傅里叶变换红外-可见光谱(FTIR-UV-Vis)瞬态吸附等。
催化剂的表征催化剂是一种能够加速化学反应速率的物质,常用于工业生产和实验室研究中。
催化剂的表征是为了了解其物理和化学性质,从而更好地理解其催化性能和反应机理。
催化剂的表征可以通过多种技术手段进行,下面将介绍几种常见的催化剂表征方法。
一、催化剂的物理性质表征催化剂的物理性质表征主要包括表面积、孔结构和晶体结构等方面。
表面积是指催化剂单位质量或体积的活性表面积,可通过比表面积测定仪等设备进行测量。
孔结构是指催化剂内部的孔隙结构,包括孔径、孔体积和孔壁厚度等参数。
常用的孔结构表征方法有氮气吸附-脱附法和压汞法。
晶体结构是指催化剂中晶体的排列方式和晶格参数,可以通过X射线衍射和透射电子显微镜等技术进行表征。
二、催化剂的化学性质表征催化剂的化学性质表征主要包括化学成分、表面酸碱性质和表面活性位点等方面。
化学成分是指催化剂中元素和化合物的组成,可以通过X射线能谱分析、傅里叶变换红外光谱和X射线光电子能谱等技术进行分析。
表面酸碱性质是指催化剂表面的酸碱性质及其强度,可以通过酸碱滴定法、NH3和CO2吸附等方法进行表征。
表面活性位点是指催化剂表面上对反应物吸附和反应发生的活性位点,可以通过吸附取代法、化学计量法和原位傅里叶变换红外光谱等技术进行研究。
三、催化剂的微观结构表征催化剂的微观结构表征主要包括催化剂颗粒形貌、催化剂与反应物的相互作用和催化剂的还原性等方面。
催化剂颗粒形貌可以通过扫描电子显微镜和透射电子显微镜等技术进行观察和分析。
催化剂与反应物的相互作用可以通过吸附实验、漫反射红外光谱和核磁共振等技术进行研究。
催化剂的还原性是指催化剂在还原条件下的还原反应性能,可以通过程序升温还原和原位X射线吸收精细结构等技术进行表征。
四、催化剂的性能评价催化剂的性能评价是指对催化剂进行活性、选择性和稳定性等方面的评价。
活性是指催化剂对反应物转化的能力,可以通过活性测试和动力学模型进行评价。
选择性是指催化剂在多个可能反应路径中选择某一种反应路径的能力,可以通过选择性测试和反应机理研究进行评价。
A 、体相组成与结构体相组成:XRF 、AAS物相分析:XRD :晶体结构DTA :记录样品与参比物温差随温度变 化曲线,吸热为负峰,放热为正峰TG:样品质量随温度变化曲线B 、比表面与孔结构BET (压汞法)C 、活性表面、分散度(XRD 、Chemisorption 、TEM)D 、表面组成与表面结构H2-O2滴定:H2吸附饱和后用O2滴定或O2吸附饱和后用H2滴定XPS :表面组成LEED :表面结构排列E 、酸碱性TPD ;IRF 、氧化还原性TPRTPOTPSR:表面吸附物种与载气中反应物发生反应并脱附比表面积转化率比活性=3、X-射线衍射(XRD )作用a 、物相的鉴定、物相分析及晶胞参数的确定b 、确定晶粒大小,研究分散度c 、研究处理条件对催化剂微观结构的影响原理:2dsin θ = n λ例:XRD 物相分析每种晶体都有它自己的晶面间距d ,而且其中原子按照一定的方式排布着。
这反映在衍射图上各种晶体的谱线有它自己特定的位置、数目和强度I.因此,只须将未知样品衍射图中各谱线测定的角度θ及强度I 去和已知样品所得的谱线进行比较就可以达到物相分析的目的。
XRD 测定平均晶粒度的测定hklhkl k D θβλcos =4、透射电镜(TEM)作用• 1、催化剂物性的检测• a 、物相鉴别• b 、粒子(或晶粒)大小及其分布的测定• c 、孔结构的观察• 2、研究负载型催化剂-—金属分散度• 3、催化剂制备过程研究• 4、催化剂失活、再生研究基本原理• 以波长极短的电子束代替可见光,照射厚度在50nm 的超薄切片上,透过样品的电子束通过多级电磁透镜聚集,放大成TEM 图像使用电镜的电子衍射功能可以判断样品的结晶状态5、扫描电镜(SEM )特点:1、能够以较高的分辨率和很大的景深清晰地显示粗糙样品的表面形貌,是进行试样表面形貌分析的有效工具;2、与能谱(EDS ,WDS )组合,又可以以多种方式给出试样表面微区成份等信息。
催化剂的性质表征方法与结果解读策略催化剂是一种广泛应用于化学反应中的物质,通过提供表面活性位点来加速反应速率。
了解催化剂的性质对于优化催化反应过程至关重要。
而催化剂的性质表征方法与结果解读策略则是研究催化剂性能的重要手段。
本文将对其中一些常用的性质表征方法以及结果解读策略进行介绍。
首先,物理性质的表征是催化剂研究的基础。
例如,催化剂的形貌、比表面积以及孔结构等是关键的物理性质。
常用的方法包括扫描电子显微镜(SEM)、透射电子显微镜(TEM)和比表面积分析仪等。
这些表征方法可以提供有关催化剂形貌、粒径分布、颗粒间的接触情况以及孔道尺寸等信息。
基于这些信息,可以了解催化剂颗粒的尺寸、形状和分布,从而为后续的性质解读提供基础。
其次,化学性质的表征是研究催化剂的关键。
催化剂的化学性质直接影响其催化活性和选择性。
例如,金属催化剂的氧化态、酸碱性质以及表面活性位点等都是重要的性质。
常用的方法包括X射线光电子能谱(XPS)、傅里叶变换红外光谱(FTIR)和探针分子反应等。
这些表征方法可以提供催化剂中金属的价态信息、表面吸附物种的类型以及吸附反应的活性位点等信息。
基于这些信息,可以深入理解催化剂的化学性质及其对反应的影响。
第三,动力学性质的表征是研究催化剂活性中的关键。
催化剂的活性是其作为催化剂的关键指标。
了解活性的变化规律有助于优化反应条件和设计更高效的催化剂。
常用的方法包括催化剂的稳态活性测试和反应动力学研究。
稳态活性测试可以测定催化剂在特定反应条件下的活性,而反应动力学研究可以确定催化剂反应速率方程、活化能以及表面反应步骤等。
通过这些方法,可以得出催化剂活性与反应温度、压力、反应物浓度等因素的关系,从而定量描述催化剂的活性特性。
在进行催化剂性质表征的过程中,结果解读策略起着重要的作用。
首先,多种表征方法的综合分析是必要的。
由于催化剂的性质是多方面的、复杂的,单一的表征方法难以全面揭示催化剂性质。
因此,结合多种表征方法的结果,可以更全面地了解催化剂的性质。
催化剂的表征与性能评价催化剂的表征和性能评价是研究催化剂特性和性能的重要组成部分。
通过对催化剂进行表征和评价,我们能够了解其物理和化学性质,进而优化催化剂的合成和设计过程,提高其催化性能。
本文将介绍几种常见的催化剂表征方法和性能评价指标。
一、表征方法1. X射线衍射(XRD)XRD是一种常用的催化剂表征方法,通过射线与晶体相互作用而产生衍射图样,可以得到催化剂晶体结构、晶格常数等信息。
XRD可以帮助我们确定催化剂的晶体相、相纯度以及晶体尺寸等参数,进而推断其催化性能。
2. 透射电子显微镜(TEM)TEM可以观察催化剂的微观形貌和晶体结构,对于了解催化剂的微观结构和局域化学环境具有重要意义。
通过TEM可以获得催化剂粒子的形貌、粒径以及分布情况等信息,这些信息对于理解催化剂活性和选择性具有重要的指导作用。
3. 扫描电子显微镜(SEM)SEM能够观察催化剂的表面形貌和粒子分布情况,通过SEM可以了解催化剂的表面形貌、粒子形状和大小分布等特征。
这些信息对催化剂的反应活性和稳定性具有重要影响。
4. 紫外可见吸收光谱(UV-vis)UV-vis光谱可以帮助我们了解催化剂的电子结构和吸收性能。
通过UV-vis光谱可以获得催化剂的能带结构、价带和导带等信息,进一步推断其电子传输性能和催化活性。
二、性能评价指标1. 催化活性催化活性是评价催化剂性能的重要指标之一。
通过测定反应物的转化率、产物的选择性和产率等参数,可以评价催化剂的活性。
活性的高低决定了催化剂的实际应用性能。
2. 催化稳定性催化稳定性是衡量催化剂寿命和循环使用性能的重要指标。
通过长时间反应的实验,观察催化剂的活性变化情况,评估其稳定性。
催化剂的稳定性直接影响其在实际工业生产中的应用前景。
3. 表面酸碱性催化剂的表面酸碱性是其催化性能的重要基础。
通过吸附剂和探针分子等的测试,可以评估催化剂的酸碱性。
催化剂的酸碱性对于催化反应的催化活性和选择性具有直接的影响。
光催化常用表征与测试光催化是一种利用光照激发催化剂表面电子的能力来促进化学反应的技术。
在光催化反应中,催化剂吸收光能,产生电子激发态,从而参与反应过程。
光催化反应具有高效、环境友好等优点,在环境净化、能源转化等领域具有广泛应用前景。
要了解光催化反应的性能和机制,需要对催化剂进行表征和测试。
下面将介绍光催化常用的表征与测试方法。
1.吸收光谱分析:吸收光谱分析是评估催化剂对不同波长光的吸收能力的方法。
通过测量催化剂在可见光或紫外光区域的吸收光谱,可以获得有关催化剂电子能级结构和光敏性能的信息。
常用的仪器有紫外可见分光光度计和光电子能谱仪。
2.表面形貌观察:催化剂的表面形貌对光催化反应活性有重要影响。
扫描电子显微镜(SEM)和透射电子显微镜(TEM)可以用于观察催化剂的形貌和粒径分布。
此外,原子力显微镜(AFM)可以提供更高分辨率的表面形貌信息。
3.表面化学组成分析:催化剂的表面化学组成对其光催化性能具有重要影响。
X射线光电子能谱(XPS)和傅里叶变换红外光谱(FTIR)是常用的技术,可以定量分析催化剂表面的元素组成和化学键信息。
4.光电化学测试:光电化学测试是评估光催化剂光电转换性能的关键方法。
光电池测试可以测量光催化剂的光电流和光电压,评估其光电转换效率。
这些测试可以通过改变光照强度、波长和电势等参数,来研究催化剂的光电特性。
5.动力学研究:动力学研究是评估光催化反应速率和机理的重要手段。
常用的动力学测试方法包括时间分辨吸收光谱、荧光光谱、电化学阻抗谱等。
通过对反应速率和中间产物的监测,可以揭示光催化反应的机理和动力学过程。
6.稳定性测试:稳定性测试是评估光催化剂长期运行性能的重要手段。
常用的稳定性测试方法包括循环光电流测试和长时间连续光照测试。
这些测试可以评估催化剂在长期光照条件下的稳定性和寿命。
在光催化表征与测试中,需要注意以下几点:1.样品的制备要严格控制,避免杂质对测试结果的影响。
2.测试条件的选择要合理,光照强度、波长、温度等参数需要根据具体实验要求进行优化。
催化剂测定与表征技术催化剂在化学工业中扮演着重要的角色,它们能够加速反应速度,提高产物选择性,降低反应温度等。
为了充分了解催化剂的性能和稳定性,科学家们发展了各种测定和表征催化剂的技术。
本文将介绍几种常用的催化剂测定与表征技术。
一、物理吸附法物理吸附法是一种常用的催化剂表征技术。
通过测定催化剂表面吸附气体的物理吸附量,可以确定催化剂的比表面积、孔径分布和孔容等参数。
常用的物理吸附法包括比表面积测定、孔径分布测定和吸附等温线测定等。
其中,比表面积测定常用的仪器是比表面仪,可以测定催化剂的比表面积;孔径分布测定则可以通过气孔大小对吸附剂进行分类;吸附等温线测定可以获得催化剂的孔容和孔径分布。
二、扫描电子显微镜(SEM)扫描电子显微镜是一种高分辨率表征催化剂表面形貌和微观结构的技术。
通过扫描电子显微镜,可以观察到催化剂表面的形貌、颗粒大小和分布等信息。
同时,通过能谱分析功能,还可以确定催化剂表面元素的组成和分布。
扫描电子显微镜的应用广泛,可以对不同种类的催化剂进行表征,为改进催化剂性能提供依据。
三、透射电子显微镜(TEM)透射电子显微镜是一种高分辨率表征催化剂内部结构的技术。
通过透射电子显微镜,可以观察到催化剂微观结构的细节,如晶体结构、晶胞参数、晶界和缺陷等。
透射电子显微镜还可以进行能谱分析,确定催化剂微观结构元素的组成和分布。
透射电子显微镜在催化剂研究中起到了至关重要的作用,对于揭示催化机理和改善催化剂性能具有重要意义。
四、X射线衍射(XRD)X射线衍射是一种广泛应用于催化剂表征的技术。
通过X射线衍射,可以确定催化剂晶体结构、晶胞参数和晶面取向等信息。
X射线衍射还可以进行定性和定量分析,确定催化剂中晶体的相对含量。
X射线衍射技术是研究催化剂晶体结构和相变行为的重要手段,为催化剂的合成和改良提供了重要信息。
五、傅里叶变换红外光谱(FTIR)傅里叶变换红外光谱是一种用于催化剂表征的非常有用的技术。
通过傅里叶变换红外光谱,可以确定催化剂表面的吸附物质、化学键特征和表面活性位点等信息。
催化剂的表征与评估方法催化剂是许多化学反应中不可或缺的重要组成部分。
为了有效评估和优化催化剂的性能,科学家们开发出了各种表征方法和评估技术。
本文将介绍一些常用的催化剂表征与评估方法。
一、物理表征方法1. 扫描电子显微镜(SEM):通过SEM可以观察到催化剂的形貌和颗粒尺寸分布,从而评估催化剂的活性表面积。
2. 透射电子显微镜(TEM):TEM可以提供催化剂的高分辨率图像,从而观察到催化剂的晶体结构、晶粒大小以及形貌等信息。
3. X射线衍射(XRD):XRD可以用于分析催化剂的晶体结构和晶格参数,通过峰位和峰形分析可以确定催化剂的相态以及晶粒尺寸。
4. 紫外可见光谱(UV-Vis):这种表征方法可以通过测量催化剂在紫外和可见光区域的吸收光谱,来确定催化剂的电子结构和电荷转移过程。
二、化学表征方法1. X射线光电子能谱(XPS):通过XPS可以得到催化剂表面原子的电子能级和化学态,从而揭示催化剂的表面组成和表面反应活性位点。
2. 傅里叶变换红外光谱(FTIR):FTIR可以用于表征涂覆在催化剂表面的吸附物,例如吸附气体、表面中间体等。
3. 原位质谱(MS):通过质谱可以检测催化剂表面产生的化学物质,从而揭示催化剂的反应机制和活性物种。
三、催化活性评估方法1. 反应动力学:通过测量催化剂在给定反应条件下的反应速率,可以评估催化剂的活性和选择性。
2. 表面酸碱性:催化剂表面的酸碱性质对于某些反应过程至关重要,通过表征催化剂表面酸碱性,可以评估催化剂的活性和稳定性。
3. 比表面积测量:催化剂的活性表面积与其性能密切相关,通过测量催化剂的比表面积,可以评估催化剂的催化效果和稳定性。
4. 催化剂寿命评估:对于长期稳定性评估,科学家们通常会对催化剂进行寿命测试,以模拟实际工业条件下的使用情况。
总结:催化剂的表征与评估方法多种多样,上述仅为其中一部分常用方法。
综合利用这些表征和评估技术,可以更全面、准确地了解催化剂的性能和反应机制,进而指导催化剂的设计与改进。
催化剂的表征及其活性测试一、引言催化剂是从化学反应中非常关键的组成部分,可以加速化学反应速度,降低反应活化能,提高反应选择性。
因此,对于催化剂的表征和活性测试,一直是化学领域研究的热点和难点问题。
二、催化剂的表征技术1. X射线衍射(XRD)X射线衍射是一种常用的催化剂的表征技术。
该技术可以通过测定催化剂晶体结构的衍射图,来判断催化剂物理和化学性质,如化学组分、晶体结构、晶粒尺寸和晶格畸变等。
XRD技术还可以分析催化剂的形貌、表面态和晶体结构相,以及定量分析催化剂晶格畸变度和孔径分布。
2. 透射电子显微镜(TEM)TEM技术是一种高分辨率电子显微技术,可以在微观尺度上研究催化剂的微观形貌、结构和分子交互作用。
该技术通常用于研究催化剂的晶化程度、晶粒形貌、晶体内部结构、分子间空间关系和分布状态等方面的信息。
3. 稳态和瞬态表面分析技术稳态和瞬态表面分析技术主要包括吸附分析、催化反应动态表征分析和光电子光谱学等。
吸附分析可以用来研究催化剂表面与吸附物的相互作用,催化反应动态表征分析用来研究催化剂活性中心、反应过渡态和反应机理,光电子光谱学则可用于研究催化剂表面发射性质、表面电荷状态和表面吸附物的分子结构等。
三、催化剂的活性测试技术常用的催化剂活性测试技术主要包括:热重分析、催化反应动力学分析、催化反应机理分析和渗透技术等。
1. 热重分析热重分析是一种热学分析技术,可以测定催化剂在一定温度下的脱水率或烧结程度。
该技术可用于定量分析催化剂表面积、孔径分布和热稳定性,以及了解催化剂形态、晶体结构和离子交换能力。
2. 催化反应动力学分析催化反应动力学分析用于研究催化剂催化反应活性和反应速率等动力学参数。
该技术可通过变量温度反应和时域催化反应分析等方法确定催化反应动力学参数,如反应速率常数、反应活化能和反应级别等。
3. 催化反应机理分析催化反应机理分析可以研究催化剂的反应机理,了解催化反应中的关键步骤、反应中间体和反应产物等。
催化剂性能的评价、测试和表征 概述主要内容• 活性评价和动力学研究• 催化剂的宏观物理性质测定 • 催化剂微观性质的测定和表征工业催化剂性能评价的目的①为应用提供依据②为开发制备提供判别的标准 ③基础研究的需要 评价内容① 使用性能活性,选择性,寿命 ②.宏观性能:比表面积,孔结构,形状与尺寸 ③.微观性能:晶相组成,表面酸碱性• 工业催化剂的性能要求及其物理化学性质4催化剂测试• 催化剂的物理性质的测定 ,包括宏观物理性质(孔容、孔径分布、比表面等)及微观物理性质(催化剂的晶相、晶格缺陷、微观粒径尺寸等) 几个基本概念评价(evaluation ),对催化剂的化学性质考察和定量描述; 测试(test ),对工业催化剂物理性质(宏观和微观)的测定; 表征(Characterization ),综合考察催化剂的物理、化学的性质和内在联系,特别是研究活性、选择性、稳定性的本质原因。
第一节.活性评价和动力学研究活性测定方法:流动法和静态法,流动法用得最多(一般流动法、流动循环法、催化色谱法) 本质上是对工业催化过程的模拟流动循环法、催化色谱法多用于反应动力学和反应机理 活性测试的目的a )由催化剂制造商或用户进行的常规质量控制检验b )快速筛选大量催化剂,以便为特定的反应确定一个催化剂评价的优劣。
c )更详尽的比较几种催化剂d )测定在特定催化剂上反应的详尽动力学,包括失活或再生动力学。
e )模拟工业反应条件下催化剂的连续长期运转 活性的表示方法• 转化率(X A)活性的表示方法• 选择性(S)%100⨯=的起始摩尔数反应物已转化的摩尔数反应物A A X A %100⨯=摩尔数已转化的某一反应物的所得目的产物的摩尔数S收率(Y)Y=X A ×S• 时空得率(STY ):每小时、每升催化剂所得产物的量关于时空得率:指在一定条件(温度、压力、进料空速)下,单位体积或单位质量催化剂所得到产物量,多用于工业生产和工业设计,可直接计算出量产。
A 、体相组成与结构
体相组成:XRF 、AAS
物相分析:
XRD :晶体结构
DTA :记录样品与参比物温差随温度变 化曲线,吸热为负峰,放热为正峰
TG :样品质量随温度变化曲线
B 、比表面与孔结构
BET(压汞法)
C 、活性表面、分散度(XR
D 、Chemisorption 、TEM)
D 、表面组成与表面结构
H2-O2滴定:H2吸附饱和后用O2滴定或O2吸附饱和后用H2滴定
XPS :表面组成
LEED :表面结构排列
E 、酸碱性
TPD;IR
F 、氧化还原性
TPR
TPO
TPSR :表面吸附物种与载气中反应物发生反应并脱附
比表面积
转化率比活性=
3、X-射线衍射(XRD )
作用
a 、物相的鉴定、物相分析及晶胞参数的确定
b 、确定晶粒大小,研究分散度
c 、研究处理条件对催化剂微观结构的影响
原理:2dsin θ = n λ
例:XRD 物相分析
每种晶体都有它自己的晶面间距d ,而且其中原子按照一定的方式排布着。
这反映在衍射图上各种晶体的谱线有它自己特定的位置、数目和强度I 。
因此,只须将未知样品衍射图中各谱线测定的角度θ及强度I 去和已知样品所得的谱线进行比较就可以达到物相分析的目的。
XRD 测定平均晶粒度的测定
hkl
hkl k D θβλcos =
4、透射电镜(TEM )
作用
• 1、催化剂物性的检测
• a 、物相鉴别
• b 、粒子(或晶粒)大小及其分布的测定
• c 、孔结构的观察
• 2、研究负载型催化剂——金属分散度
• 3、催化剂制备过程研究
• 4、催化剂失活、再生研究
基本原理
• 以波长极短的电子束代替可见光,照射厚度在50nm 的超薄切片上,透过样品的电
子束通过多级电磁透镜聚集,放大成TEM 图像
使用电镜的电子衍射功能可以判断样品的结晶状态
5、扫描电镜(SEM )
特点:
1、能够以较高的分辨率和很大的景深清晰地显示粗糙样品的表面形貌,是进行试样表面形貌分析的有效工具;
2、与能谱(EDS ,WDS)组合,又可以以多种方式给出试样表面微区成份等信息。
原理
电子探针的入射电子与样品作用时,由于样品表面特征(形貌结构、原子序数、晶体结构等)不同,各处被激发的二次电子数不同,从而形成明暗不同的反差。
6、热分析(TA )
• 定义
• 热分析是通过测定物质加热或冷却过程中物理性质(目前主要是重量和能量)的变
化来研究物质性质及其变化,或者对物质进行分析鉴别的一种技术。
应用最广泛的方法是热重(TG )和差
• 热分析(DTA )
7、光电子能谱(XPS )
最常用的表面能谱之一。
因最初以化学领域应用为主要目标,故又称为化学分析用电子能谱法(ESCA)。
XPS 采用软X-射线(E<5Kev)照射被测样品,使被测样品中的金属原子核外电子(通常是内层电子)受激发射,研究受激发射电子的结合能的一种表征手段。
具有较好的分辨率和较高的灵敏度。
基本原理
k b E hv E -=
入射X 光子能量已知,这样,如果测出电子的动能Ek ,便可得到固体样品电子的结合能。
各种原子,分子的轨道电子结合能是一定的。
因此,通过测定样品产生的光
子的能量,就可以了解样品中元素的组成。
由于XPS 是一种表面分析技术,不可能接受到催化剂小孔内的活性组分的信息,因此,它所测得的活性组分的峰强不仅与活性组分的分散度有关,而且还与活性组分在载体表面上的分布有关。
只有当活性组分在载体的孔内外分布都是均匀的时候,测出的结果才比较可靠。
8、红外(IR )
• 作用
官能团的鉴定
吸附物种的研究
酸性的测定
原理
红外光和分子之间的相互作用,使分子对红外光产生了吸收,将物质吸收的强度对频率作图所形成的演变关系,称为红外光谱
9、程序升温脱附(TPD)
也叫热脱附技术,是一种研究催化剂表面性质及表面反应特性的有效手段。
表面科学研究的一个重要内容,可以了解吸附物与表面之间成键的本质。
吸附在固体表面上的分子脱附的难易,主要取决于这种键的强度,热脱附技术还可从能量角度研究吸附剂表面和吸附质之间的相互作用。
原理
•催化剂经预处理将表面吸附气体除去后,用一定的吸附质进行吹扫,再脱去非化学吸附的部分,然后等速升温。
当化学吸附物被提供的热能活化,足以克服逸出所需要越过的能垒(脱附活化能)时,就产生脱附。
•由于吸附质和吸附剂的不同,吸附质与表面不同中心的结合能不同,所以脱附的结果反映了在脱附发生时的温度和表面覆盖度下,脱附过程的动力学行为。
10、程序升温还原(TPR)
•作用
•研究催化剂的还原难易情况
•研究金属氧化物与金属氧化物之间以及金属氧化物与载体之间相互作用
原理
•发生还原反应的化合物主要是氧化物,在还原过
•程中,金属离子从高价态变成低价态直至变成金
•属态
第一章基本概念
1.催化剂:1)不能改变化学平衡;2)可通过改变反应历程二加可快特定反应的速率;
3)具有选择性
2.均相催化与多相催化
3.1)主催化剂、助催化剂、载体;2)分散度
4.1)催化剂活性表示方法:速率:TOF;速率常数;转化率; 2)选择性
5.1)多相催化反应步骤:外扩散、内扩散;吸附、表面反应、脱附;内扩散、外扩散;
2)内外扩散消除方法;3)催化循环;速率控制步骤;4)活化能
第二章吸附与多相催化
1.物理吸附与化学吸附;理解吸附位能曲线;Ed=Ea + qc;
2.解离吸附与非解离吸附;认识常见吸附态(p24-p28); 会写表面吸附反应方程
ngmuir等温方程
4.BET法测定比表面
5.催化剂堆密度、孔容、孔隙率、孔分布;Knudsen扩散;
第三章酸碱催化
1.重要催化反应:p41
2.B酸、L酸;二元氧化物中酸中心的形成
3.酸度、酸强度、Hammett函数; 固体酸性测定:1)指示剂;吸附量热;TPD;IR
4.正碳离子机理;酸强度与活性关系:p60
5. 分子筛吸附性能与硅铝比的关系:p65;Y型分子筛和ZSM-5分子筛的结构特点;氢型和多价阳离子交换分子筛酸中心的形成:p66-67;择形催化
6.FCC与加氢裂化;芳烃异构;甲醇制汽油
第四章金属催化剂
1.常见金属催化反应及其催化剂
2.火山形原理;常见气体在金属上吸附时电子转移方向:p87
3.了解能带理论和价键理论
4.晶格参数、Miller Index; 了解多位理论;认识表面缺陷对催化反应的重要性
5.分散度与活性的关系:Structure-sensitive、Structrue-insensitive; Hydrogen spillover;
6.合金催化剂: 表面富集、几何效应
7. 合成氨;乙烯环氧化;铂铼重整
第五章氧化物催化剂
1.常见氧化物催化反应及其催化剂;过渡金属氧化物催化剂的电子特性;nonstoichiometry
2.n型、p型半导体;杂质对半导体导电性能的影响
3.常见气体在半导体催化剂上吸附时电子转移方向:n键、p键吸附(p129);半导体催化剂的电子机理
4.Mars-van Krevelen机理;动力学同位素效应
5.了解晶体场稳定化能及其对催化作用的影响
6. 丙烯氧化制丙烯醛;丙烯氧化制丙酮;丁烷氧化制顺丁烯二酸酐;加氢脱硫、加氢脱氮
第七章催化剂制备与再生
1.催化剂制备方法:沉淀法、浸渍法、离子交换法、共混法;热分解法、熔融法、还原法
2.催化剂预处理:焙烧、还原、硫化
3.催化剂失活:中毒;烧结;积碳
4.催化剂再生:烧碳
第九章催化剂表征
1.体相组成与结构:XRF、AAS、XRD
2.孔结构:BET
3.表面组成:XPS、TEM
4.表面活性:H2-O2滴定;TPD、TPSR
5.酸碱性:Chemisorption; IR
6.其他表征仪器:AES; DTA; EPR; LEED; NMR; SEM; TG; TPR。