初中数学_中心对称教学课件设计
- 格式:ppt
- 大小:3.74 MB
- 文档页数:36
23.2.2中心对称图形一、教学内容中心对称图形二、教材分析“中心对称图形”是初中数学教学中的重要内容之一,它既与“轴对称图形”有紧密的联系和区别,同时又是图形的三种基本运动方式(平移,翻折,旋转)中的“旋转”的特殊情况﹒通过对这一节课的学习,丰富学生对“对称图形”的认识, 同时又向学生渗透了“旋转变换”的思想,使学生学会用运动的观点研究问题,发展学生的空间智能﹒本节课在生活中有丰富的实际素材,学习本节课后学生能进一步感受到数学的应用价值,能用数学的观点观察生活,解决生活中的实际问题,为续内容的学习奠定良好的基础,学习中涉及的归纳、类比等思想方法,对激发学生探索精神和创新意识等方面都有重要意义﹒三、学情分析学生已学过《生活中的轴对称》和《图形的平移和旋转》,初步积累了一定的图形变换的数学活动经验,在此基础上,组织学生观察、分析、识图、简单图案欣赏和设计等实践操作活动,丰富学生对图形变换的认识﹒由于学生的操作能力相对比较差,呈现内容时,力图为学生提供生动有趣的现实情境,安排观察、实践、交流等活动,进一步深化学生对中心对称图形定义和性质的理解,以及对识图、画图等操作技能的掌握,丰富学生数学活动体验,有意识培养学生积极的情感、态度,促进良好的数学观的养成﹒四、教学目标(一)知识与技能1.了解中心对称图形及其基本性质.2.掌握平行四边形是中心对称图形.(二)过程与方法1.经历观察、发现,探索中心对称图形的有关概念和基本性质的过程,积累一定的审美体验.2.了解中心对称图形及其基本性质,掌握平行四边形是中心对称图形.(三)情感态度价值观通过观察发现、动手操作、大胆猜想、自主探索、合作交流体验到成功的喜悦,学习的乐趣并积累一定的审美体验。
五、教学重难点重点:中心对称图形的定义及其性质.难点:(1)中心对称图形与轴对称图形的区别;(2)利用中心对称图形的有关概念和基本性质解决问题。
六、教学方法和手段实验观察,自主探究,合作交流七、学法指导合作指导八、教具准备多媒体课件、几张扑克牌、风车和平行四边形、细线及大头针九、教学过程(一)巧设情景问题,引入课题(多媒体显示图片),回答问题:1、这些图形有什么共同的特征?(都可由一个基本图形经过旋转而得到)演示"风车"旋转过程,复习旋转。
23.2.2 中心对称图形教学内容:中心对称图形的概念和性质.教学目标:1.知识与技能(1)掌握中心对称图形的定义和性质.(2)培养学生发现问题、观察问题、解决问题的能力.(3)培养学生的创新能力.2.过程与方法(1)在现实情境中,通过观察生活中的中心对称现象,探求中心对称现象的共同特征,让学生经历观察、发现、讨论、探究、应用的过程,培养学生的参与意识与合作精神.(2)通过对图形轴对称与中心对称的对比,渗透类比的思想方法;在用运动的观点观察和认识图形的过程中渗透旋转变换的思想.3.情感与态度深刻体会对称在生活中的广泛存在及运用价值,培养学生的审美理念。
激发学生学习数学的浓厚兴趣,使学生更加喜欢数学.教材分析:"中心对称和中心对称图形"是初中数学教学中的一则重要内容,它与轴对称和轴对称图形的基本概念,性质有着紧密的联系和区别,同时与图形的三种基本运动方式(平移,翻折,旋转)中的"旋转"有着不可分割的联系,实际生活中也随处可见轴对称,中心对称的应用.通过对这一节课的学习,可以完善初中对“对称图形”的知识讲授,并为后继学习平行四边形的相关知识等做充分准备.教学重、难点:.【教学重点】中心对称图形的概念,性质与简单运用.掌握概念及性质是应用的基础,只有充分理解了概念,才能更进一步的判定图形是否为中心对称图形,才能运用其性质解决实际问题。
【教学难点】中心对称图形的概念、性质的理解与运用.为了让学生突破难点,授课时采取以学生自主讨论、合作、交流为主的方法让学生发现规律并运用.教学过程一、情景导入先请同学们欣赏几张现实生活中常见的很漂亮的图片和几张神秘的麦田圈图片.问:这些图片你喜欢吗?是的,它们美丽而且神奇,你知道它们为什么会有这样的效果吗?学习了这节课之后,我相信你一定会知道其中的奥密,带着这个问题,这节课我们就来学习中心对称图形。
二、新授过程(一)观察与发现1.师:我们首来做个小游戏吧:(课件出示图片)将下面左图的四张扑克牌中的一张旋转180O后,得到右图,你知道旋转了哪一张扑克吗?议一议.问:你是怎么知道的呢?学生讨论后回答:只有方片J旋转180度后能与原来重合。
《中心对称》教学设计一、教材分析《中心对称》是初中数学“几何与图形”中第二部分图形与变换的内容。
人教版教材把这部分内容放在九年级上册第二十三章《旋转》的第二节。
中心对称和中心对称图形初中数学的重要概念,是现实模型的直接反映,是图形的三种变化(平移、翻折、旋转)中的旋转的特殊情况。
在2011版课程标准中,要求如下:(1)了解中心对称、中心对称图形的概念,探索它的基本性质:成中心对称的两个图形中,对应点的连线经过对称中心,且被对称中心平分。
(2)探索线段、平行四边形、正多边形、圆的中心对称性质。
(3)认识并欣赏自然界和现实生活中的中心对称图形。
因此,教材中列举了大量实例,让学生通过实例认识和感受中心对称图形的概念,欣赏自然界和现实生活的中心对称的图形,在此之后,进行概念的归纳和辨析,探索常见几何图形的中心对称性质,最后探索中心对称的性质:成中心对称的两个图形中,对应点的连线经过对称中心,且被对称中心平分。
教材注重联系实际,让学生感受数学和生活的密切联系,让学生在学习完新概念后,用中心对称的思想去回顾以前所学的知识,例如再去回顾平行四边形的性质,了解平行四边形性质的本质就是中心对称,也就是可以用中心对称去统领平行四边形所有的性质,让学生感受到知识的前后联系。
二、学情分析学生在七年级下册《相交线与平行线》学习了平移,在八年级上册《轴对称》学习了轴对称,对图形与变化的研究以及有了一定基础,而且在《旋转》这一章,学生先学习了旋转的概念和性质,有了一定的研究基础。
而且九年级学生已具备一定的操作、归纳、推理和论证能力,但在数学意识与应用能力方面尚需要进一步培养;大多数学生对数学学习有一定的兴趣,愿意积极参与动手操作与研究。
三、教学目标鉴于课程标准和学生的年龄特点,认知规律,这节课的教学目标为:1。
认识并欣赏自然界和现实生活中的中心对称图形,感受数学的对称美;2。
类比轴对称,了解中心对称图形、中心对称的概念,探索中心对称的性质;3。
《中心对称》教学设计【课标解读】1.经历图形的抽象、分类、性质探讨、运动、位置确定等过程,掌握图形与几何的基础知识和基本技能.2.在参与观察、实验、猜想、证明、综合实践等数学活动中,发展合情推理和演绎推理能力,清晰地表达自己的想法.3.初步学会从数学的角度发现问题和提出问题,综合运用数学知识解决简单的实际问题,增强应用意识,提高实践能力.4.在数学学习过程中,体验获得成功的乐趣,锻炼克服困难的意志,建立自信心.【教材分析】(一)地位与作用“中心对称”和下一节“中心对称图形”是初中数学教学中的一项重要内容,它与轴对称和轴对称图形有着紧密的联系和区别,同时与图形的变化(平移、旋转)中的“旋转”有着不可分割的联系.实际生活中也随处可见中心对称的应用.通过对这一节课的学习,可以完善初中对“对称图形”的知识讲授,并为后续平行四边形的学习做铺垫.(二)学习目标1.能准确叙述中心对称的概念及其性质,并会初步应用中心对称的概念及其性质解决有关问题2.经历中心对称的概念及其性质探究过程,发展合情推理能力,体会类比、特殊—一般等数学思想3.通过自主学习与合作探究,学会与他人合作、交流,在学习中感受数学美,迸发热爱生活,热爱数学的激情(三)教学重点难点重点:中心对称的概念与性质及其应用难点:中心对称性质的探索【学情分析】学生在小学阶段已对图形的平移、旋转有了初步、直观的认识,升入初中后,在七年级又学习了轴对称,在八年级学习中心对称之前进一步深入学习了图形的平移和旋转,积累了一定的探索图形变化方法的数学活动经验,这些都为本课时的学习奠定了基础.(一)教法设计:根据课程标准的指导思想,鉴于本节教材的特点和学生的心理特征,我确定了以启发、追问、交流为主的教学方法.努力培养学生观察、思考、交流、合作的学习品质,以及猜想、类比、归纳、概括的思维习惯.为了培养学生的抽象思维能力,我运用了的多媒体技术,把动态的问题直观地表现出来,突破难点,突出重点,使学生更容易理解并掌握中心对称的概念与性质的内涵.(二)学法设计:结合教法的安排,本节课的学法指导确定为:从学生已有的生活体验出发,鼓励学生自主探索和合作交流.引导学生自主地从事操作、观察、归纳与交流等数学活动,在动手动脑的过程中逐步理解中心对称的定义和性质,使学生形成对数学知识的有效学习策略,实现由“学会”到“会学”的质的飞跃.【评价设计】通过即时检测完成目标1,通过性质探究及小组展示完成目标2,3【教学过程】教学设计(一)回顾与思考【师生活动】教师播放课件图1图2图3提问:从这些生活情境中,你发现了哪些图形变化?它们的要素分别是什么?学生观察思考回答:平移与旋转.平移的要素是方向和距离:旋转的要素是旋转中心、旋转方向和旋转角度.教师追问:图1,图2同样是旋转,差别在哪里?学生回答:角度不同,前一个转动一般角度,后一个转动特殊角度180度O教师根据学生回答,引入课题:这种特殊的旋转就是我们这节课要来研究的中心对称.继续追问:看到对称,你想到了什么?学生回答:轴对称.教师出示投影,学生对照回顾轴对称的有关知识.定义:在平面内,如果把一个图形沿某条直线折叠后,能与另一个图形重合,那么就说这两个图形关于这条直线成轴对称,这条直线就叫做对称轴.性质:成轴对称的两个图形全等.对应点的连线被对称轴垂直平分.【设计意图】通过回顾平移与旋转导入新课,凸显中心对称与旋转的关系,做好新旧知识的衔接.通过回顾轴对称的相关知识,为本节课中心对称的探索,指明方向,做好知识储备.【问题应对】学生能找到画面中的图形运动,也能说出它们的要素.对于两个旋转的差别,学生可能说不到点子上,教师可提醒学生从要素上着手分析.由此启发学生按一定规律和顺序来思考和解决问题比较省时省力.(二)探索与发现任务一:认识中心对称【师生活动】教师出示问题:你能类比轴对称的定义给中心对称下个定义吗?学生回答教师根据学生回答出示定义:定义:在平面内,如果把一个图形绕着某个点旋转180°后,能与另一个图形重合,那么就说这两个图形关于这个点成中心对称,这点就叫做对称中心.教师肯定学生的回答后,布置学生自主学习课本100页中与中心对称定义有关的内容,完成导学案上.【设计意图】类比轴对称的定义得出中心对称的定义,降低了学习的难度,同时也能突出两个定义之间的联系与区别,为后面性质探索指明方向.【问题应对】学生能够类比轴对称的定义说出中心对称的定义,也能顺利完成自主学习,但对于对应点这个概念理解肯定不到位,会误以为对应点连线就是对应顶点的连线.对此,先不必指出,留待后面探究性质时再指出.即时检测:判断题:①如果两个图形关于某点成中心对称,那么这两个图形全等.( )②两个全等的图形一定关于某点成中心对称. ( )③如果两个图形关于某点成中心对称,那么将其中一个图形绕着对称中心旋转180°必定与另一个图形重合. ( )④两个图形,将其中一个绕一点旋转后能与另一个图形重合,则这两个图形成中心对称.()【设计意图】第二题引导学生学会用举反例的方法说明一个命题是错的,第四题强化中心对称旋转的是180度.由这四道题的思考过程,让学生体会到中心对称关注的是两个图形在形状、大小、位置上的关系.【问题应对】学生能顺利判断出对错,对原因表述可能不是很流畅师注意纠正引导.任务二:探索性质【师生活动】教师说明探究方法和要求:请类比轴对称性质的探索过程,完成导学案上的合作探究,注意先独立完成,然后在小组内交流,5分钟后我们进行全班展示.学生按要求进行探究.教师巡视指导,组织学生进行展示,梳理出以下三种思路:1.运用测量:OA=OA ',OB=OB ',OC=OC '教师评价:测量是我们发现数学知识最方便最快捷的方法.2.根据定义:旋转180度重合得到三角形全等以及OA=OA ',OB=OB ',OC=OC '教师评价:图形的定义是我们发现性质的源泉.3.根据中心对称是一种特殊的旋转得出上述性质.教师评价:抓住特殊图形运动的一般本质,由一般到特殊思考问题,是数学学习常用方法.教师追问:有没有小组在线段的位置关系上有所发现?学生回答中教师借助对顶角引发探究,得到AA ' 过对称中心并被平分的事实教师评价后,引导学生用数学语言归纳性质:出示性质:1.成中心对称的两个图形全等2.成中心对称的两个图形中对应点的连线经过对称中心,且被对称中心平分.3.成中心对称的两个图形对应线段平行或共线.教师追问:对上述得出的性质有疑问吗?在学生回答没有疑问后,教师引导学生思考:对应点连线有几条,借此让学生弄清对应点与对应顶点间的关系,借助几何画板的演示,强化由特殊到一般的思想方法.然后引导学生进行证明。
八年级下册3.3《中心对称》教学设计一、教学目标:☆知识与技能:了解中心对称、中心对称图形的概念,探索它的基本性质.☆过程与方法经历有关中心对称的观察、操作、欣赏和设计的过程,进一步积累数学活动经验,增强动手实践能力,发展空间观念.☆情感态度价值观发现生活中的数学美,欣赏自然界的中心对称图形;二、教学重点:了解中心对称、中心对称图形的概念,探索它的基本性质教学难点:在参与活动中发展学生观察问题、分析问题、解决问题的科学探究能力;三、教学时间:( 1学时)四、教学过程一、【复习引入】:[活动过程]:1.通过几何画板的动画演示,带领学生回顾旋转的定义以及性质;2.提出问题:当旋转哪些特殊角度会使旋转前后图形有特殊的位置关系?师生互动引出课题;[活动目的]:利用几何画板的演示,教师的提问、追问让学生体会中心对称与旋转之间的从属关系,为后续学习做铺垫;二、【探究新知】☞知识点1:两成中心对称★两图形成中心对称定义:关于这个点对称或中心对称[活动过程]:教师提问:图中两组图形通过怎样的图形变换能够重合?师生互动后利用几何画板演示总结定义,引导学生找出定义中的关键词;[活动目的]:引入定义以后,通过学生找关键词,体会成中心对称是旋转的一种特殊情况;☞知识点2:探索成中心对称两图形的性质★动手画图,探究中心对称的性质请自己画一个图形,选取一个旋转中心,把所画的图形绕旋转中心旋转180°,连接旋转前后一组对应点,你发现了什么?再选几组对应点试一试,并与同伴交流。
★中心对称的性质:[活动过程]:教师提出问题,引导学生通过小组合作画出旋转以后的图形,通过小组作品的展示,总结两图形成中心对称的性质,教师通过几何画板演示,以及学生说理进一步验证,最后学生动手画图;[活动目的]:通过学生的动手操作,经历探索性质的过程,通过几何画板直观演示,加深对性质的认识,最后通过推理证明,让学生感受数学的严谨性,在学生小组合作过程中,培养学生的团队意识.☞知识点3:中心对称图形先独立观察,再小组交流归纳:中心对称图形:[设计过程]:教师提出问题:通过怎样的变换图形能与原图形重合?师生互动总结定义,通过两组练习题进行训练,加深学生对中心对称图形的认识,并进一步举例我们所学过的平面图形中的中心对称图形.[活动目的]:通过几何画板直观演示认识定义,在总结定义关键词时,教师引导学生对比其与两图形成中心对称的区别与联系,发展学生类比学习的意识,通过练习、举例进一步加深学生对知识的理解.☞知识点4:旋转对称图形观看微视频,学习旋转对称图形定义[设计过程]:1.学生自主学习微课,了解旋转对称图形定义;2.举例说明旋转对称图形与中心对称图形之间的联系;[活动目的]:学习新知识的过程中,对比其与中心对称图形的联系,了解二者之间的从属关系,加深对中心对称图形的认识,发展类比学习的意识;三、【效果检测】1.下列图形中,中心对称图形有A. 个B. 个C. 个D. 个2.下列四个图形中,既是轴对称图形又是中心对称图形的是 ( )A. B. C. D.3.如图,与关于成中心对称,下列结论中不成立的是A. B. C. D.4.如图所示是一个中心对称图形,为对称中心,若,,,则的长为.5如图,在平面直角坐标系中,点,,,的坐标分别为,,,.Ⅰ请在图中画出,使得与关于点成中心对称;Ⅱ直接写出(1)中的三个顶点坐标.第3题第4题知者加速;我们把图(1)称作正六边形的基本图,将此基本图不断复制并平移,使得相邻两个基本图的一边重合,这样得到图(2),图(3),,如此进行下去,直至得图(n).(1)将图(n)放在直角坐标系中,设其中第一个基本图的对称中心的坐标为,则;(2)图(n)的对称中心的横坐标为.[活动过程]:学生学习完主要知识后是否达成了本节课的学习目标呢?教师通过效果检测来掌握.同时效果检测完成后教师应及时公布答案,组织学生通过“小组互帮进行对组内学习有困难的同学进行个别帮扶”,及时解决组内个别同学存在的问题.[活动目的]:通过学生自学、小组互帮、教师个别点拨等方式使学生养成独立思考、合作交流、反思质疑的学习习惯,再此过程中教师应对小组讨论给予适当的指导,包括知识的启发引导、学生交流合作中注意的问题及对困难学生的帮助等,使小组合作学习更具实效性.四、【自主建网】★1.通过本节课的学习:你有哪些收获与感悟?2.展示两图形成轴对称实例,体会二者之间联系;[活动过程]:学生回答,教师引导,串联本节课所学知识点;类比轴对称,体会二者之间的联系与区别,发展学生类比学习的意识;【因人作业】必做题:课本84页----1,2,3选做题:课本84页-----4[设计说明]:通过因人作业的设置,让不同层次的学生都能学有所获,能享受到成功的喜悦.《中心对称》学情分析《中心对称》是八下年级数学第三章《图形的平移与旋转》的第三节;学生的知识与技能基础:学生在小学阶段已经学习过平移、旋转.按照课标要求,小学阶段学习平移、旋转应该达到的水平是:通过实例,在方格纸上认识图形的平移,能在方格纸上按水平或垂直方向将简单图形平移;通过实例,在方格纸上认识图形的旋转,能在方格纸上将简单图形旋转90°,升入初中之后,学生在七年级下学期已经学习了轴对称,积累了一定的图形变换的数学活动经验.本章在此基础上,让学生进行观察、分析、画图等活动丰富学生对图形变换的认识;在本节课学习之前,学生已经学习了图形的旋转,掌握了旋转的定义与基本性质,立足于小学的基础和已经有的生活经验,本节课将探索中心对称的相关性质因为学生的基础和学力是有差异的,所以在上课的过程中应该遵循“为了每个学生”的教育教学理念。
23.2.2中心对称图形教案篇一:23.2.2中心对称图形教案九年级数学23.2.2中心对称图形教案设计篇二:23.2.2中心对称图形教案23.2.2中心对称图形篇三:23.2中心对称图形公开课教案23.2中心对称图形教学内容1.中心对称图形的概念.2.对称中心的概念及其它们的运用.教学目标了解中心对称图形的概念及中心对称图形的对称中心的概念,掌握这两个概念的应用.复习两个图形关于中心对称的有关概念,利用这个所学知识探索一个图形是中心对称图形的有关概念及其它的运用.重难点、关键1.重点:中心对称图形的有关概念及其它们的运用.2.难点与关键:区别关于中心对称的两个图形和中心对称图形.教具、学具准备小黑板、三角形教学过程一、复习引入1.(老师口问)口答:关于中心对称的两个图形具有什么性质?(老师口述):关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分.关于中心对称的两个图形是全等图形.2.(学生活动)作图题.(1)作出线段ao关于o点的对称图形,如图所示.o(2)作出三角形aoB关于o点的对称图形,如图所示.aoB(2)延长ao使oc=ao,延长Bo使od=Bo,连结cd则△cod为所求的,如图所示.adc.cn二、探索新知从另一个角度看,上面的(1)题就是将线段aB绕它的中点旋转180°,因为oa=?oB,所以,就是线段aB绕它的中点旋转180°后与它重合.上面的(2)题,连结ad、Bc,则刚才的两个关于中心对称的两个图形,就成平行四边形,如图所示.∵ao=oc,Bo=od,∠aoB=∠cod∴△aoB≌△cod∴aB=cdadoB也就是,aBcd绕它的两条对角线交点o旋转180°后与它本身重合.因此,像这样,把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.(学生活动)例1:从刚才讲的线段、平行四边形都是中心对称图形外,每一位同学举出三个图形,它们也是中心对称图形.老师点评:老师边提问学生边解答.(学生活动)例2:请说出中心对称图形具有什么特点?老师点评:中心对称图形具有匀称美观、平稳.例3.求证:如图任何具有对称中心的四边形是平行四边形.aodB分析:中心对称图形的对称中心是对应点连线的交点,也是对应点间的线段中点,因此,直接可得到对角线互相平分.证明:如图,o是四边形aBcd的对称中心,根据中心对称性质,线段ac、?Bd必过点o,且ao=co,Bo=do,即四边形aBcd的对角线互相平分,因此,?四边形aBcd是平行四边形.三、巩固练习教材P72练习.四、应用拓展例4.如图,矩形aBcd中,aB=3,Bc=4,若将矩形折叠,使c点和a点重合,?求折痕EF的长.分析:将矩形折叠,使c点和a点重合,折痕为EF,就是a、c两点关于o点对称,这方面的知识在解决一些翻折问题中起关键作用,对称点连线被对称轴垂直平分,进而转化为中垂线性质和勾股定理的应用,求线段长度或面积.解:连接aF,∵点c与点a重合,折痕为EF,即EF垂直平分ac.∴aF=cF,ao=co,∠Foc=90°,又四边形aBcd为矩形,∠B=90°,aB=cd=3,ad=?Bc=4设cF=x,则aF=x,BF=4-x,由勾股定理,得ac=Bc+aB=5222215∴ac=5,oc=ac=22∵aB+BF=aF∴3+(4-x)=2=x∴x=22222aoBFEd258222∵∠Foc=90°∴oF=Fc-oc=(.cn2525215215)-()=()oF=28881515同理oE=,即EF=oE+oF=84五、归纳小结(学生归纳,老师点评)本节课应掌握:1.中心对称图形的有关概念;2.应用中心对称图形解决有关问题.六、布置作业1.教材P74综合运用5P75拓广探索8、9篇四:23.2.2中心对称图形教案23.2.2中心对称图形一、教学内容中心对称图形二、教材分析“中心对称图形”是初中数学教学中的重要内容之一,它既与“轴对称图形”有紧密的联系和区别,同时又是图形的三种基本运动方式(平移,翻折,旋转)中的“旋转”的特殊情况﹒通过对这一节课的学习, 丰富学生对“对称图形”的认识,同时又向学生渗透了“旋转变换”的思想,使学生学会用运动的观点研究问题,发展学生的空间智能﹒本节课在生活中有丰富的实际素材,学习本节课后学生能进一步感受到数学的应用价值,能用数学的观点观察生活,解决生活中的实际问题,为续内容的学习奠定良好的基础,学习中涉及的归纳、类比等思想方法,对激发学生探索精神和创新意识等方面都有重要意义﹒三、学情分析学生已学过《生活中的轴对称》和《图形的平移和旋转》,初步积累了一定的图形变换的数学活动经验,在此基础上,组织学生观察、分析、识图、简单图案欣赏和设计等实践操作活动,丰富学生对图形变换的认识﹒由于学生的操作能力相对比较差,呈现内容时,力图为学生提供生动有趣的现实情境,安排观察、实践、交流等活动,进一步深化学生对中心对称图形定义和性质的理解,以及对识图、画图等操作技能的掌握,丰富学生数学活动体验,有意识培养学生积极的情感、态度,促进良好的数学观的养成﹒(一)知识与技能1.了解中心对称图形及其基本性质.2.掌握平行四边形是中心对称图形.(二)过程与方法1.经历观察、发现,探索中心对称图形的有关概念和基本性质的过程,积累一定的审美体验.2.了解中心对称图形及其基本性质,掌握平行四边形是中心对称图形.(三)情感态度价值观通过观察发现、动手操作、大胆猜想、自主探索、合作交流体验到成功的喜悦,学习的乐趣并积累一定的审美体验。
人教版九年级数学上册教案旋转《中心对称图形》一. 教材分析旋转是初中数学中的重要内容,是几何变换的基本形式之一。
《中心对称图形》是人教版九年级数学上册第二章几何变换的一部分,主要让学生了解中心对称图形的概念,理解中心对称与旋转的关系,学会用旋转来解决实际问题。
本节课的内容在学生的认知发展过程中起着承上启下的作用,为后续的旋转变换和其他几何变换的学习打下基础。
二. 学情分析九年级的学生已经掌握了平面几何的基本知识,对图形的变换有一定的了解。
但是,学生对中心对称图形的理解可能还停留在表象阶段,对中心对称与旋转的关系认识不足。
因此,在教学过程中,需要引导学生从实际问题中发现旋转的规律,培养学生的观察能力、操作能力和解决问题的能力。
三. 教学目标1.理解中心对称图形的概念,掌握中心对称与旋转的关系。
2.学会用旋转来解决实际问题,提高学生的应用能力。
3.培养学生的观察能力、操作能力和解决问题的能力。
四. 教学重难点1.中心对称图形的概念及判断。
2.中心对称与旋转的关系。
3.用旋转解决实际问题。
五. 教学方法采用问题驱动法、案例教学法和小组合作法。
通过实际问题引导学生发现旋转的规律,用案例展示中心对称图形的应用,让学生在小组合作中探讨中心对称与旋转的关系,提高学生的学习兴趣和参与度。
六. 教学准备1.准备相关的实际问题和案例。
2.准备多媒体教学设备,如投影仪、电脑等。
3.准备练习题和作业。
七. 教学过程1. 导入(5分钟)利用多媒体展示一个生活中的实际问题:“如何将一个图形绕某一点旋转?”让学生观察并思考,引出本节课的主题——旋转。
2. 呈现(10分钟)讲解中心对称图形的概念,呈现一些典型的中心对称图形,如圆、正方形等,让学生判断并解释为什么它们是中心对称图形。
同时,引导学生发现中心对称与旋转的关系,如圆的旋转可以看作是中心对称的运用。
3. 操练(10分钟)让学生进行一些实际的操作,如绘制中心对称图形,判断给定的图形是否为中心对称图形等。