初二数学中心对称和中心对称图
- 格式:doc
- 大小:155.00 KB
- 文档页数:4
初中数学知识点——轴对称与中心对称一、轴对称与轴对称图形:1.轴对称:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,两个图形中的对应点叫做对称点,对应线段叫做对称线段。
2.轴对称图形:如果一个图形沿着一条直线折叠,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线就是它的对称轴。
注意:对称轴是直线而不是线段3.轴对称的性质:(1)关于某条直线对称的两个图形是全等形;(2)如果两个图形关于某条直线对称,那么对称轴是对应点连线的垂直平分线;(3)两个图形关于某条直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上;(4)如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称。
4.线段垂直平分线:(1)定义:垂直平分一条线段的直线是这条线的垂直平分线。
(2)性质:①线段垂直平分线上的点到这条线段两个端点的距离相等;②到一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
注意:根据线段垂直平分线的这一特性可以推出:三角形三边的垂直平分线交于一点,并且这一点到三个顶点的距离相等。
5.角的平分线:(1)定义:把一个角分成两个相等的角的射线叫做角的平分线.(2)性质:①在角的平分线上的点到这个角的两边的距离相等.②到一个角的两边距离相等的点,在这个角的平分线上.注意:根据角平分线的性质,三角形的三个内角的平分线交于一点,并且这一点到三条边的距离相等.6.等腰三角形的性质与判定:性质:(1)对称性:等腰三角形是轴对称图形,等腰三角形底边上的中线所在的直线是它的对称轴,或底边上的高所在的直线是它的对称轴,或顶角的平分线所在的直线是它的对称轴;(2)三线合一:等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合;(3)等边对等角:等腰三角形的两个底角相等。
说明:等腰三角形的性质除“三线合一”外,三角形中的主要线段之间也存在着特殊的性质,如:①等腰三角形两底角的平分线相等;②等腰三角形两腰上的中线相等;③等腰三角形两腰上的高相等;④等腰三角形底边上的中点到两腰的距离相等。
中心对称和中心对称图形-培优拔尖精练
一、相关概念1.下列命题中正确的命题的个数有()①在成中心对称的两个图形中,连接对称点的线段都被对称中心平分;②关于某一点成中心对称的两个三角形能重合;③两个能重合的图形一定关于某点中心对称;④如果两个三角形的对应点连线都经过同一点,那么这两个三角形成中心对称;⑤成中心对称的两个图形中,对应线段互相平行或共线;
A .1个
B .2个
C .3个
D .4个
二、中心对称的性质的坐标是.
第2题图第3题图第4题图
四、对称点的坐标推导
4.如图,将ABC 绕点()0,1C -旋转180︒得到A B C ''' .设点A '的坐标为(),a b ,则点A 的坐标为()
A .(,)
a b --B .(,1)a b ---C .(,1)a b --+D .(,2)a b ---三、对称中心的确定
5.如图,在平面直角坐标系中,RtΔABC 的三个顶点分别是A (-3,2)
、B (0,4)、C (0,2).(1)将ΔABC 以点C 为中心旋转180°,画出旋转后对应的△A 1B 1C ;
(2)平移△ABC ,若点A 的对应点A 2的坐标为(1,-4)
,画出平移后对应的△A 2B 2C 2;(3)若将△A 1B 1C 绕某一点旋转可以得到△A 2B 2C 2,请直接写出旋转中心的坐标;
练习9.2第4题图第5题图xOy 中的位置如图所示,小正方形的边长为1个单位.
111A B C △.
(3)在x 轴上有一点P ,使1PA +______.。
2009-2010(上)学年度 八年级数学教学案备课时间: 9/29 课时安排2课时 授课总节次 28课题§3.2中心对称与中心对称图形(1)教学目标:1.了解中心对称图形及其基本性质 ;2.在探索的过程中培养学生有条理地表达,及与人交流合作的能力; 重 点: 成中心对称图形概念及其基本性质难 点: ⒈ 中心对称的性质.⒉ 成中心对称的图形的画法学法指导, 探索、合作、交流, 教具准备, 多媒体学习过程:一.自学质疑1.已知三点A 、B 、O .如果点A ′与点A 关于点O 对称,点B ′与点B 关于点O 对称,•那么线段AB 与A ′B ′的关系是________.2.已知线段AB 与点O 的位置如图所示,试画出线段AB 关于点O 的对称线段A ′B ′.A(1)(2)二、交流展示1、几幅中心对称的图片2、利用课本提供的两个实物图,引导学生观察、探索:他们的形状、大小是否相同?新知探究 ⒈ 引出概念:三、互动探究活动一 用一张透明纸覆盖在图3-5上,描出四边形ABCD 。
用大头针钉在点O 处,将四边形ABCD 绕点O 旋转180度问题一:四边形ABCD 与四边形A 'B 'C 'D '关于点O 成中心对称吗?问题二:在图3-5中,分别连接关于点O的对称点A和A'、B和B'、C和C'、 D 和D'。
你发现了什么?成中心对称的2个图形,对称点的连线都经过对称中心,并且被对称中心平分活动二中心对称与轴对称进行类比轴对称, 中心对称有一条对称轴——直线, 有一个对称中心——点图形沿对称轴对折(翻转180度)后重合, 图形绕对称中心旋转180度后重合对称点的连线被对称轴垂直平分, 对称点连线经过对称中心,且被对称中心平分四、精讲点拨:利用中心对称基本性质作图操作1作点关于点的对称点:已知A点和O点,画出点A关于点O的对称点A 操作2 作线段关于点成中心对称的图形:已知线段AB和O点,画出线段AB 关于点O的对称线段A’B’操作3 作三角形关于点成中心对称的图形已知△ABC和点O,画出△DEF,使△DEF与△ABC关于O 成中心对称。
数学教案-中心对称和中心对称图形教学建议知识归纳1.中心对称把一个图形绕着某一点旋转,如果它能够与另一个图形重合,那么就说这两个图形关于这个点重点、难点分析:本节课的重点是中心对称的概念、性质和作已知点关于某点的对称点.因为概念是推导三个性质的主要依据、性质是今后解决有关问题的理论依据;而作已知点关于某个点的对称点又是作中心对称图形的关键.本节课的难点是中心对称与中心对称图形之间的联系和区别.从概念角度来说,中心对称图形和中心对称是两个不同而又紧密相联的概念.从学生角度来讲,在学习轴对称时,有相当一部分学生对轴对称和轴对称图形的概念理解上出现误点.因此本节课的难点是中心对称与中心对称图形之间的联系和区别.教法建议本节内容和生活结合较多,新课导入可考虑以下方法:(1(2(3(4(5本田,(6(7品引入。
教学设计示例教学目标1.知道中心对称的概念,能说出中心对称的定义和关于中心对称的两个图形的性质。
2.会根据关于中心对称图形的性质定理2的逆定理来判定两个图形关于一点对称;会画与已知图形关于一点成中心对称的图形。
,23有一条对称轴---直线图形沿轴对折,即翻转180度翻转后与另一图形重合123两个图形是全等形的图形叫做中心对称图形,并介绍对称中心,对称点等概念。
问题2:你能给“中心对称”下一个定义吗?说明与建议:学生下定义会有困难,教师应及时修正,并给出明确的定义,然后指出定义中的三个要点:(l)有一个对称中心——点;(2)图形绕中心旋转180度;(3)旋转后与另一图形重合。
把这三要点填入引导性材料中的空表内,在顶空格内写上“中心对称”字样,以利于写“轴对称”进行练一练:在图4.7-3中,已知△ABC和△EFG关于点O成中心对称,分别找出图中的对称点和对称线段。
说明与建议:教师可演示△ABC绕点O旋转180度后与△EFG重合的过程,让学生说出点E 和点A和FGO、G在逆命题问题5:怎样证明这个逆命题是正确的?说明与建议:证明过程应在教师的引导下,师生共同完成。
中心对称图形的全等1、中心对称把一个图形绕着某个点旋转180°,如果它能够与另一个图形重合,那么这两个图形成中心对称,这个点叫做对称中心,这两个图形中的对应点,叫做关于对称中心的对称点.2、中心对称的特征在成中心对称的两个图形中,连结对称点的线段都经过对称中心,并且被对称中心平分.如果两个图形的对应点连成的线段都经过某一点,并且被这个点平分,那么这两个图形一定关于这个点成中心对称.4、中心对称图形如果一个图形绕着它的中心点旋转180°后能与原来的图形重合,那么这个图形叫做中心对称图形,这个中心点叫做对称中心.5、中心对称的特征及识别方法(1)关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分;(2)关于中心对称的两个图形是全等形;(3)如果两个图形的对应点连成的线段都经过某一点,并且被该点平分,那么这两个图形关于这点成中心对称。
(4)中心对称的特征揭示了其图形的特征如上图所示,如果△ABC与△A′B′C′关于点O成中心对称,则:①A,O,A′;B,O,B′;C,O,C′均三点共线,且OA=OA′,OB=OB′,OC=OC′;②△ABC≌△A′B′C′;(5)如果已知△ABC与△A′B′C′关于某点成中心对称,则点O必为AA′、BB′、CC′的中心,且它们是同一点,故也能够连结AA′、BB′,则其交点即为对称中心。
6、图形的全等能够完全重合的两个图形叫做全等图形,两个多边形是全等图形,也称为全等多边形.两个全等的多边形经过变换而重合,相互重合的顶点叫做对应顶点,相互重合的边叫做对应边,相互重合的角叫做对应角一个图形经过翻折、平移和旋转等变换所得到的新图形一定与原图形全等;反过来,两个全等的图形经过上述变换后一定能够互相重合.7、全等多边形的性质全等多边形的对应边相等,对应角相等。
特别地,全等三角形的对应边、对应角分别相等。
8、全等多边形的识别方法边、角分别对应相等的两个多边形全等。
第03讲中心对称与中心对称图形【题型1中心对称图形】【题型2中心对称的性质】【题型3利用中心对称的性质-找对称中心】【题型4利用中心对称的性质-求边长长度】【题型5利用中心对称的性质-求点坐标】【题型6利用中心对称的性质-求面积】【题型7利用中心对称的性质-作图】考点:中心对称(两个图形)1.概念把一个图形绕着某一点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称;2.性质(1)关于中心对称的两个图形是全等形。
(2)关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。
(3)关于中心对称的两个图形,对应线段平行(或在同一直线上)且相等。
3.判定如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称。
4.作图步骤:(1)连接原图形上所有的特殊点和对称中心。
(2)将以上所连线段延长找对称点,使得特殊点与对称中心的距离和对称点与对称中心的距离相等。
(3)将对称点按原图形的形状顺次连接起来,即可得出关于中心对称的图形5.中心对称图形(一个图形)把一个图形绕某一个点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个店就是它的对称中心。
【题型1中心对称图形】【典例1】(2023秋•南沙区期末)剪纸是我国源远流长的传统工艺,下列剪纸中是中心对称图形的是()A.B.C.D.【答案】A【解答】解:选项B、C、D中的图形都不能找到一个点,使图形绕某一点旋转180°后与原来的图形重合,所以不是中心对称图形.选项A中的图形能找到一个点,使图形绕某一点旋转180°后与原来的图形重合,所以是中心对称图形.故选:A.【变式1-1】(2023秋•蒙城县校级期末)下列图形中,是中心对称图形的是()A.B.C.D.【答案】C【解答】解:A、B、D中的图形不是中心对称图形,故A、B、D不符合题意;C中的图形是中心对称图形,故C符合题意.故选:C.【变式1-2】(2023秋•清河区校级期末)四幅作品分别代表“立春”、“立夏”、“芒种”、“大雪”,其中既是轴对称图形,又是中心对称图形的是()A.B.C.D.【答案】D【解答】解:A.该图是轴对称图形,不是中心对称图形,故此选项不合题意;B.该图是轴对称图形,不是中心对称图形,故此选项不合题意;C.该图不是轴对称图形,也不是中心对称图形,故此选项不合题意;D.该图既是轴对称图形,又是中心对称图形,故此选项合题意;故选:D.【变式1-3】(2023秋•沙坪坝区校级期末)下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【答案】D【解答】解:A、图形不是轴对称图形,也不是中心对称图形,故A不符合题意;B、图形是中心对称图形,不是轴对称图形,故B不符合题意;C、图形是中心对称图形,不是轴对称图形,故C不符合题意;D、图形既是中心对称图形,也是轴对称图形,故D符合题意.故选:D.【题型2中心对称的性质】【典例2】(2022秋•浦北县期末)如图,△ABC与△A'B'C'关于点O成中心对称,则下列结论不成立的是()A.点A与点A'是对称点B.BO=B'OC.AB=A'B'D.∠ACB=∠C'A'B'【答案】D【解答】解:∵△ABC与△A'B'C'关于点O成中心对称,∴点A与点A'是对称点,BO=B'O,AB=A'B',∴A,B,C正确,故选:D.【变式2-1】(2023春•内江期末)如图,△ADE与△CDB关于点D成中心对称,连结AB,以下结论错误的是()A.AD=CD B.∠C=∠EC.AE=CB D.S△ADE=S△ADB【答案】B【解答】解:∵△ADE与△CDB关于点D成中心对称,∴AD=CD,BD=ED,AE=CB,∠E=∠CBD,∵BD=ED,=S△ADE,∴S△ABD故选:B.【变式2-2】(2023春•泉港区期末)如图,△AOD与△BOC关于点O成中心对称,连结AB、CD,以下结论错误的是()A.OA=OB B.△AOD≌△COBC.AD=BC D.S△ACD=S△BCD【答案】A【解答】解:∵△AOD与△BOC关于点O成中心对称,∴△AOD≌△COB,故选项B正确;∴AD=BC,故选项C正确;但不一定OA=OB,故选项A不正确;∵△AOD≌△COB,=S△BCO,∴S△AOD+S△COD=S△BCD+S△COD,即S△ACD=S△BCD,故选项D正确,∴S△AOD故选:A.【变式2-3】(2023秋•安新县期中)如图,D是△ABC边BC的中点,连接AD并延长到点E,使DE=AD,连接BE.(1)△ADC和△EDB成中心对称;(2)已知△ADC的面积为4,则△ABE的面积是8.【答案】(1)△EDB;(2)8.【解答】解:(1)根据中心对称图形的性质可得;△ADC和△EDB成中心对称,故答案为:△EDB;(2)由(1)得:△ADC和△EDB成中心对称,∴线段BD是△ABC的中线,=S△ACD=4,∴S△ABD∵D是△ABC边BC的中点,=2S△EDB=8,∴S△ABE故答案为:8.【题型3利用中心对称的性质-找对称中心】【典例3】(2023秋•张北县期中)如图,在正方形网格中,A,B,C,D,E,F,G,H,M,N是网格线交点,△ABC与△DEF关于某点对称,则其对称中心是()A.点G B.点H C.点M D.点N【答案】C【解答】解:AD、CF、BE相交于点M,∴点M是△ABC与△DEF的对称中心,故选:C.【变式3-1】(2023春•渭南期末)如图,在平面直角坐标系xOy中,△ABC经过中心对称变换得到△A′B′C′,那么对称中心的坐标为()A.(0,0)B.(﹣1,0)C.(﹣1,﹣1)D.(0,﹣1)【答案】B【解答】解:由图可知,点A与点A'关于(﹣1,0)对称,点B与点B'关于(﹣1,0)对称,点C与点C′关于(﹣1,0)对称,所以△ABC与△A′B′C′关于点(﹣1,0)成中心对称,故选:B.【变式3-2】(2023春•高碑店市期末)如图,△ABC与△DEF关于某点成中心对称,则其对称中心是()A.点P B.点Q C.点M D.点N【答案】C【解答】解:如图,连接BE、CF,发现其交于点M,根据中心对称的性质可知点M即为其对称中心.故选C.【题型4利用中心对称的性质-求边长长度】【典例4】(2023秋•仪陇县期中)如图,菱形ABCD的对角线AC、BD交于点O,AC=2,BD=8,将△BOC绕着点C旋转180°得到△B′O′C,连接AB',则AB'的长是()A.3B.4C.5D.7【答案】C【解答】解:∵四边形ABCD是菱形,∴AC⊥BD,OC=AC,OB=BD,∵AC=2,BD=8,∴OC=1,OB=4,∵△BOC绕着点C旋转180°得到△B′O′C,∴∠O′=∠BOC=90°,CO′=OC=1,O′B′=OB=4,∴AO′=AC+O′C=3,∴AB′==5.故选:C.【变式4-1】(2022秋•广宗县期末)如图是一个中心对称图形,A为对称中心,若∠C=90°,∠B=30°,AC=1,则BB′的长为()A.4B.C.D.【答案】A【解答】解:∵在Rt△ABC中,∠B=30°,AC=1,∴AB=2AC=2,∴BB′=2AB=4.故选:A.【变式4-2】(2023秋•富县期末)如图,△ABC与△AB'C'关于点A对称,若∠C=90°,∠B=30°,AC=1,则BB'的长为4.【答案】4.【解答】解:如图,∵△ABC与△AB'C'关于点A对称,∴△ABC≌△AB′C′,∴AB=AB′,∵∠C=90°,∠B=30°,AC=1,∴AB=2AC=2,∴BB′=2AB=4,故答案为:4.【变式4-3】(2023秋•前郭县期中)如图,△AOB与△COD关于点O成中心对称,已知∠BAO=90°,AB=4,AO=3,则AD的长为2.【答案】2.【解答】解:∵△AOB与△COD关于点O成中心对称,∴AO=CO=3,CD=AB=4,∠C=∠BAO=90°,∴AD=,故答案为:2.【题型5利用中心对称的性质-求点坐标】【典例5】(2023秋•青岛月考)如图,线段AB与线段CD关于点P对称,若点A(3,3)、B(5,1)、D(﹣3,﹣1),则点C的坐标为()A.(﹣3,﹣3)B.(﹣1,﹣3)C.(﹣4,﹣2)D.(﹣2,﹣4)【答案】B【解答】解:∵B(5,1)、D(﹣3,﹣1)关于点P对称,=1,=0,∴点P的坐标为(1,0).设点C(x,y),∵A(3,3),∴=1,=0,∴x=﹣1,y=﹣3.∴C(﹣1,﹣3).故选:B.【变式5-1】(2022•市南区校级二模)如图,在平面直角坐标系中,△ABC与△A'B'C'关于D (﹣1,0)成中心对称.已知点A的坐标为(﹣3,﹣2),则点A'的坐标是()A.(1,3)B.(1,2)C.(3,2)D.(2,3)【答案】B【解答】解:设点A'的坐标是(a,b),根据题意知:=﹣1,=0.解得a=1,b=2.即点A'的坐标是(1,2),故选:B.【变式5-2】(2022春•青州市期末)如图,将△ABC绕点C(0,1)旋转180°得到△A'B'C,设点A的坐标为(﹣2,3),则点A'的坐标为()A.(2,﹣3)B.(﹣1,2)C.(2,﹣2)D.(2,﹣1)【答案】D【解答】解:设A′(m,n),∵AC=CA′,A(﹣2,3),C(0,1),∴=0,=1,∴m=2,n=﹣1,∴A′(2,﹣1),故选:D.【题型6利用中心对称的性质-求面积】【典例6】(2022秋•乌鲁木齐县校级期中)如图,正方形边长为a,则阴影部分面积为.【答案】见试题解答内容【解答】解:由题意得:S阴影=S正方形=,故答案为:.【变式6-1】(2022春•南关区期末)如图,直线a、b垂直相交于点O,曲线C关于点O成中心对称,点A的对称点是点A1,AB⊥a于点B,A1D⊥b于点D,若OB=5,OD=3,则阴影部分的面积之和为15.【答案】15.【解答】解:∵直线a、b垂直相交于点O,曲线C关于点O成中心对称,点A的对称点是点A',AB⊥a于点B,A'D⊥b于点D,OB=5,OD=3,∴AB=3,∴图形①与图形②面积相等,∴阴影部分的面积之和=长方形ABOE的面积=3×5=15.故答案为:15.【变式6-2】(2023春•徐汇区期末)如图,长为6,宽为3的矩形ABCD,阴影部分的面积为9.【答案】9.【解答】解:因为O为矩形的对称中心,则阴影部分的面积是矩形面积的一半,因为矩形面积为6×3=18,所以阴影部分的面积为9.故答案为:9.【变式6-3】(2023秋•东湖区期中)如图为某公园中心对称的观赏鱼池,阴影部分为观赏喂鱼台,已知OA=OB=2米.求阴影部分的面积.【答案】8π平方米.【解答】解:因为观赏鱼池是中心对称,且OA=OB=2米,所以阴影部分相当于2个以点O为圆心,OA长为半径的圆,所以阴影部分的面积为2×π×22=8π(平方米),答:阴影部分的面积为8π平方米.【题型7利用中心对称的性质-作图】【典例7】(2023秋•浦北县期末)如图,△ABC和△DEF关于点O成中心对称.(1)找出它们的对称中心O;(2)若AB=6,AC=5,BC=4,求△DEF的周长.【答案】(1)见解析;(2)15.【解答】解:(1)如图所示,点O即为所求;(2)∵△ABC和△DEF关于点O成中心对称,∴△ABC≌△DEF,∴AB=DE=6,AC=DF=5,BC=EF=4,∴△DEF的周长=DE+DF+EF=6+5+4=15;答:△DEF的周长为15.【变式7-1】(2023春•雁塔区校级期末)如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(1,4),(4,2),C(3,5).(1)请画出△A1B1C1,使△A1B1C1与△ABC关于原点成中心对称,并写出点A1,B1,C1的坐标.(2)求△A1B1C1的面积?【答案】见试题解答内容【解答】解:(1)如图所示,△A1B1C1即为所求.A1(﹣1,﹣4),B1(﹣4,﹣2),C1(﹣3,﹣5);(2)根据中心对称的性质可得S=3×3﹣=9﹣﹣1﹣3=.【变式7-2】(2022秋•沙河市期末)如图所示,三角形ABC和三角形A′B′C′关于某一点成中心对称,一同学不小心把墨水泼在纸上,只能看到三角形ABC和线段BC的对应线段B′C′,请你帮该同学找到对称中心O,且补全三角形A′B′C′.【答案】见试题解答内容【解答】解:如图,△A′B′C′即为所求;一.选择题(共10小题)1.(2023秋•江海区期末)下列环保标志,既是轴对称图形,也是中心对称图形的是()A.B.C.D.【答案】D【解答】解:A、是轴对称图形,不是中心对称图形,则此项不符合题意;B、是轴对称图形,不是中心对称图形,则此项不符合题意;C、不是轴对称图形,也不是中心对称图形,则此项不符合题意;D、是轴对称图形,也是中心对称图形,则此项符合题意;故选:D.2.(2023秋•长海县期末)平面直角坐标系内与点P(﹣1,2)关于原点对称的点的坐标是()A.(1,﹣2)B.(1,2)C.(2,﹣1)D.(﹣2,﹣1)【答案】A【解答】解:与点P(﹣1,2)关于原点对称的点的坐标是(1,﹣2).故选:A.3.(2023秋•武汉期中)已知点A(a,2023)与点A′(2024,b)是关于原点O的对称点,则a﹣b的值为()A.﹣1B.1C.﹣4047D.4047【答案】A【解答】解:∵点A(a,2023)与点A'(2024,b)是关于原点O的对称点,∴a=﹣2024,b=﹣2023,∴a﹣b=﹣2024﹣(﹣2023)=﹣1.故选:A.4.(2023秋•莱州市期末)下列各图中,四边形ABCD是正方形,其中阴影部分两个三角形成中心对称的是()A.B.C.D.【答案】A【解答】解:根据中心对称的定义可知,选项A中阴影部分两个三角形成中心对称.故选:A.5.(2022春•相城区校级期中)如图,菱形ABCD的对角线AC、BD交于点O,将△BOC 绕着点C旋转180°得到△B'O'C,若AC=2,AB′=5,则菱形ABCD的边长是()A.3B.4C.D.【答案】D【解答】解:∵四边形ABCD是菱形,且△BOC绕着点C旋转180°得到△B'O'C,AC =2,∴OA=OC=O'C=1,OB⊥OC,BC=B′C,∴O'B'⊥O'C,O'A=AC+O'C=2+1=3,∵AB′=5,∴,∴,∴,即菱形ABCD的边长是,故选:D.6.(2022秋•五华县期中)如图是北师大版九年级上册数学教材第25页第4题内容的变式,如图,三个边长相同的正方形重叠在一起,O1、O2是其中两个正方形的中心,阴影部分的面积和是8,则正方形的边长为()A.2B.4C.8D.2【答案】B【解答】解:如图所示,连接O1B、O1C,∵∠BO1F+∠FO1C=90°,∠FO1C+∠CO1G=90°,∴∠BO1F=∠CO1G,∵四边形ABCD是正方形,∴∠O1BF=∠O1CG=45°,在△O1BF和△O1CG中,,∴△O1BF≌△O1CG(ASA),∴=,,∴两个正方形重叠阴影部分的面积是S正方形ABCD,同理,另外两个正方形重叠阴影部分的面积也是S正方形ABCD,∴阴影部分的面积和=8=S正方形ABCD=16,∴S正方形ABCD∴正方形ABCD的边长==4,故选:B.7.(2023秋•德城区期中)如图,已知△ABC与△A'B'C'关于点O成中心对称,则下列判断不正确的是()A.∠ABC=∠A'B'C'B.∠BOC=∠B'A'C'C.AB=A'B'D.OA=OA'【答案】B【解答】解:∵△ABC与△A'B'C'关于点O成中心对称,∴△ABC≌△A′B′C′,∴∠ABC=∠A′B′C′,AB=A′B′,OA=OA′,故A,C,D正确,故选:B.8.(2023秋•泽州县期中)如图,在平面直角坐标系中,OA=AB=5,点B到y轴的距离为4,将△OAB关于原点对称得到△O′A′B′,再将△O′A′B′向左平移5个单位长度得到△O″A″B″,则点B″的坐标为()A.(﹣8,﹣8)B.(﹣8,﹣9)C.(﹣9,﹣9)D.(﹣9,﹣8)【答案】D【解答】解:如图,作BC⊥y轴于点C,∵点B到y轴的距离为4,∴BC=4,∴AC==3,∴OC=5+3=8,∴点B的坐标为(4,8),∴点B关于原点对称的点B′的坐标为(﹣4,﹣8),∴点B″的坐标为(﹣9,﹣8).故选:D.9.(2023秋•邯郸期末)如图,在正方形网格中,A,B,C,D,E,F,G,H,M,N是网格线交点,△ABC与△DEF关于某点对称,则其对称中心是()A.点G B.点H C.点M D.点N【答案】C【解答】解:AD、CF、BE相交于点M,∴点M是△ABC与△DEF的对称中心,故选:C.10.(2023秋•仪陇县期中)如图,菱形ABCD的对角线AC、BD交于点O,AC=2,BD=8,将△BOC绕着点C旋转180°得到△B′O′C,连接AB',则AB'的长是()A.3B.4C.5D.7【答案】C【解答】解:∵四边形ABCD是菱形,∴AC⊥BD,OC=AC,OB=BD,∵AC=2,BD=8,∴OC=1,OB=4,∵△BOC绕着点C旋转180°得到△B′O′C,∴∠O′=∠BOC=90°,CO′=OC=1,O′B′=OB=4,∴AO′=AC+O′C=3,∴AB′==5.故选:C.二.填空题(共6小题)11.(2023春•徐汇区期末)如图,长为6,宽为3的矩形ABCD,阴影部分的面积为9.【答案】9.【解答】解:因为O为矩形的对称中心,则阴影部分的面积是矩形面积的一半,因为矩形面积为6×3=18,所以阴影部分的面积为9.故答案为:9.12.(2023春•青冈县期末)如图,△ABC与△DEC关于点C成中心对称,AG为△ABC的=5.高,若CE=5,AG=2,则S△DEC【答案】5.【解答】解:∵△ABC与△DEC关于点C成中心对称,AG=2,=S△ABC,∴CE=BC,S△DEC∴,=5,∴S△DEC故答案为:5.13.(2023•靖江市校级模拟)第二十四届北京冬奥会入场式引导牌上的图案融入了中国结和雪花两种元素.如图所示,这个图案绕着它的中心旋转角α(0°<α<360°)后能够与它本身重合,则角α可以为60(答案不唯一)度.(写出一个即可)【答案】见试题解答内容【解答】解:360°÷6=60°,则这个图案绕着它的中心旋转60°后能够与它本身重合,故答案为:60(答案不唯一).14.(2023秋•开平市期末)如图,△AB'C'是△ABC绕点A旋转180°后得到的,已知∠B =90°,AB=1,∠C=30°,则CC'的长为4.【答案】4.【解答】解:在Rt△ABC中,sin C=,则,得AC=2.又因为△AB'C'是△ABC绕点A旋转180°后得到的,所以AC′=AC,且C,A,C′三点共线,所以CC′=2AC=4.故答案为:4.15.(2023秋•前郭县期中)如图,△AOB与△COD关于点O成中心对称,已知∠BAO=90°,AB=4,AO=3,则AD的长为2.【答案】2.【解答】解:∵△AOB与△COD关于点O成中心对称,∴AO=CO=3,CD=AB=4,∠C=∠BAO=90°,∴AD=,故答案为:2.16.(2023秋•二道区校级月考)如图,阴影部分组成的图案既是关于x轴成轴对称的图形又是关于坐标原点O成中心对称的图形.若点A的坐标为(1,3),点B的坐标为(3,1),点M的坐标为(a,b),点N的坐标为(c,d),则a+c的值为﹣2.【答案】﹣2.【解答】解:由图形可知,点A和点N关于x轴成轴对称,点M和点B关于坐标原点O 成中心对称,因为点A的坐标为(1,3),点B的坐标为(3,1),所以a=﹣3,c=1,a+c=﹣3+1=﹣2,故答案为:﹣2.三.解答题(共3小题)17.(2023秋•新民市期末)如图所示,在平面直角坐标系中,已知A(0,1),B(2,0),C(4,3).(1)在平面直角坐标系中画出△ABC,则△ABC的面积是4;(2)若点D与点C关于原点对称,则点D的坐标为(﹣4,﹣3);(3)已知P为x轴上一点,若△ABP的面积为4,求点P的坐标.【答案】(1)4;(2)(﹣4,﹣3);(3)(10,0)或(﹣6,0).【解答】解:(1)如图所示:△ABC的面积是:3×4﹣;故答案为:4;(2)点D与点C关于原点对称,则点D的坐标为:(﹣4,﹣3);故答案为:(﹣4,﹣3);(3)∵P为x轴上一点,△ABP的面积为4,∴BP=8,∴点P的横坐标为:2+8=10或2﹣8=﹣6,故P点坐标为:(10,0)或(﹣6,0).18.(2023秋•荔湾区校级期中)如图,△AGB与△CGD关于点G中心对称,若点E,F分别在GA,GC上,且AE=CF,求证:BF=DE.【答案】证明见解析.【解答】证明:∵△AGB与△CGD关于点G中心对称,∴BG=DG,AG=CG,∵AE=CF,∴AG﹣AE=CG﹣CF,∴EG=FG,又∵∠DGE=∠BGF,∴△DGE≌△BGF(SAS),∴BF=DE.19.(2022春•余江区期中)(1)如图1,在等边三角形ABC中,AB=2,BD是AC边上的高,延长BC至点E,使CE=CD,求BE的长;(2)如图2,将△ABC以点C为旋转中心,顺时针旋转180°,得到△DEC,过点A作AF∥BE,交DE的延长线于点F,求证:∠B=∠F.【答案】(1)BE的长为3;(2)见解析.【解答】(1)解:∵等边三角形ABC中,BD是AC边上的高,∴AB=BC=AC=2,∠ADB=∠CDB=90°,DB=DB,∴△ADB≌△CDB(HL),∴AD=CD=AC=AB=1,∵CE=CD,∴CE=CD=1,∴BE=BC+CE=3,∴BE的长为3;(2)证明:∵将△ABC以点C为旋转中心,顺时针旋转180°,得到△DEC,∴B、C、E在同一直线上,且△ABC≌△DEC,∴∠B=∠CED,∵AF//BE,∴∠F=∠CED,∴∠B=∠F.。
初中数学知识点总结:轴对称与中心对称知识点总结一、轴对称与轴对称图形:1.轴对称:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,两个图形中的对应点叫做对称点,对应线段叫做对称线段。
2.轴对称图形:如果一个图形沿着一条直线折叠,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线就是它的对称轴。
注意:对称轴是直线而不是线段3.轴对称的性质:(1)关于某条直线对称的两个图形是全等形;(2)如果两个图形关于某条直线对称,那么对称轴是对应点连线的垂直平分线;(3)两个图形关于某条直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上;(4)如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称。
4.线段垂直平分线:(1)定义:垂直平分一条线段的直线是这条线的垂直平分线。
(2)性质:①线段垂直平分线上的点到这条线段两个端点的距离相等;②到一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
注意:根据线段垂直平分线的这一特性可以推出:三角形三边的垂直平分线交于一点,并且这一点到三个顶点的距离相等。
5.角的平分线:(1)定义:把一个角分成两个相等的角的射线叫做角的平分线.(2)性质:①在角的平分线上的点到这个角的两边的距离相等.②到一个角的两边距离相等的点,在这个角的平分线上.注意:根据角平分线的性质,三角形的三个内角的平分线交于一点,并且这一点到三条边的距离相等.6.等腰三角形的性质与判定:性质:(1)对称性:等腰三角形是轴对称图形,等腰三角形底边上的中线所在的直线是它的对称轴,或底边上的高所在的直线是它的对称轴,或顶角的平分线所在的直线是它的对称轴;(2)三线合一:等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合;(3)等边对等角:等腰三角形的两个底角相等。
说明:等腰三角形的性质除“三线合一”外,三角形中的主要线段之间也存在着特殊的性质,如:①等腰三角形两底角的平分线相等;②等腰三角形两腰上的中线相等;③等腰三角形两腰上的高相等;④等腰三角形底边上的中点到两腰的距离相等。
【学习目标】1.掌握中心对称和中心对称图形的概念,知道它们之间的区别和联系.2.掌握成中心对称的两个图形的性质,会判断两个图形是否成中心对称.3.会作出已知图形关于已知点的中心对称图形.【主体知识归纳】1.中心对称:把一个图形绕着某一点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称,这个点叫做对称中心,两个图形关于点对称也称中心对称,这两个图形的对应点叫做关于中心的对称点.2.中心对称的性质(1)关于中心对称的两个图形是全等形.(2)关于中心对称的两个图形,对称点的连线都经过对称中心,并且被对称中心平分.(3)如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称.3.中心对称图形把一个图形绕某一点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.4.中心对称与中心对称图形的异同(1)中心对称是指两个图形的关系,中心对称图形是指具有某种性质的一个图形.(2)中心对称与中心对称图形都有对称中心,如果把成中心对称的两个图形看做一个整体,那么它就是一个中心对称图形;如果把中心对称图形对称的部分看做是两个图形,那么它们又成中心对称.【基础知识精讲】1.本节的重点是中心对称的概念和性质,关于中心对称的概念,可对照轴对称的概念2.轴对称图形与中心对称图形都是某个图形所具备的某种属性的一种称呼,因此,某个图形可能同时具备这两种属性,也可能具备其中之一,还有可能一种属性都不具备.【例题精讲】[例1]如图4-61,已知四边形ABCD和BC边上的中点M,画四边形A′B′C′D′,使它与四边形ABCD关于点M对称.图4—62画法:(1)连结AM并延长到A′,使MA′=MA,得到点A的对称点A′;同法得点D 的对称点D′;(2)B点的对称点B′和C重合,C点的对称点C′和B重合;(3)连结A′B′、A′D′、C′D′,则如图4-62,四边形A′B′C′D′就是所求作的四边形.图4—62说明:作一个图形关于某一点的中心对称图形可采用关键点定位法,将关键点的对称点作出,这个图形的对称图形即可画出.[例2]下列图形中,哪些是轴对称图形,哪些是中心对称图形?①平行四边形;②矩形;③菱形;④正方形;⑤等边三角形;⑥等腰直角三角形;⑦线段;⑧角.解:①②③④⑦是中心对称图形,②③④⑤⑥⑦⑧是轴对称图形,其中②③④⑦既是轴对称图形又是中心对称图形.【同步达纲练习】1.选择题(1)下列图形中,不是中心对称图形的是()A.平行四边形B.矩形C.菱形D.等边三角形(2)下列图形中,既是轴对称图形,又是中心对称图形的是()A.平行四边形B.菱形C.等腰三角形D.等边三角形(3)下列图形中,是中心对称图形,而不是轴对称图形的是()A.直线B.线段C.角D.平行四边形(4)如果△ABC和△A1B1C1关于某点成中心对称,△A1B1C1和△A2B2C2关于某条直线轴对称,则△ABC和△A2B2C2有()A.是全等关系B.无全等关系C.可能有全等关系D.以上都不对(5)下列命题中,真命题是()A.轴对称图形一定是中心对称图形B.中心对称图形一定是轴对称图形C.关于中心对称的两个四边形全等D.全等的两个三角形一定关于某一点成中心对称2.填空题(1)正方形既是_____图形,又是_____图形,它有_____条对称轴,对称中心是_____.(2)一个正方形要绕它的中心旋转_____度,才能和原来图形重合.(3)已知A、B、O三点不共线,A、A′关于O对称,B、B′关于O对称,那么线段AB 与A′B′的关系是_____.(4)P是∠AOB内任一点,分别作P关于AO、BO的对称点P1、P2,连结P1P2交OA于M,交OB于N,若P1P2=5,则△PMN的周长为_____.(5)矩形纸片ABCD中,AB=6,BC=8,将纸片折叠使得A、C重合,则折痕的长是_____. 3.分别按下列条件,画一个与已知△ABC成中心对称的三角形:(1)以顶点C为对称中心;(2)以△ABC外一点P为对称中心.4.在△ABC中,AD是BC边上的中线,AB=AD=2,AC=25,求(1)BC的长;(2)△ABC的面积.5.如图4-63,四边形ABCD的对角线AC、BD相交于点O,AC和BD均关于O成中心对称,且B、D关于AC成轴对称.求证:四边形ABCD是菱形.图4—63【思路拓展题】你知道吗一面镜子竖直悬挂在墙壁上,人眼位置如图4-64(O点)所示,有三个物体A、B、C 放在镜子前面,人眼能从镜子里看见哪个物体?图4—64参考答案【同步达纲练习】1.(1)D (2)B (3)D (4)A (5)C2.(1)轴对称中心对称 4 对角线的交点(2)90 (3)平行且相等(4)5 (5)7.53.略4.(1)42提示:延长AD到E使DE=AD,连结CE,得△ACE为直角三角形(2)45.略【思路拓展题】你知道吗能看见A、B两个物体.提示:因为点A、B关于MN的对称点在∠MON的内部,而点C 的对称点不在∠MON的范围内.。
【学习目标】
1.掌握中心对称和中心对称图形的概念,知道它们之间的区别和联系.
2.掌握成中心对称的两个图形的性质,会判断两个图形是否成中心对称.
3.会作出已知图形关于已知点的中心对称图形.
【主体知识归纳】
1.中心对称:把一个图形绕着某一点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称,这个点叫做对称中心,两个图形关于点对称也称中心对称,这两个图形的对应点叫做关于中心的对称点.
2.中心对称的性质
(1)关于中心对称的两个图形是全等形.
(2)关于中心对称的两个图形,对称点的连线都经过对称中心,并且被对称中心平分.(3)如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称.
3.中心对称图形把一个图形绕某一点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.4.中心对称与中心对称图形的异同
(1)中心对称是指两个图形的关系,中心对称图形是指具有某种性质的一个图形.(2)中心对称与中心对称图形都有对称中心,如果把成中心对称的两个图形看做一个整体,那么它就是一个中心对称图形;如果把中心对称图形对称的部分看做是两个图形,那么它们又成中心对称.
【基础知识精讲】
1.本节的重点是中心对称的概念和性质,关于中心对称的概念,可对照轴对称的概念来学习,因为它们是相仿的,要抓住下面三个要点:
中心对称轴对称
1 有一个对称中心——点有一条对称轴——直线
2 图形绕中心旋转180°图形“沿轴对折”
3 旋转后与另一图形重合翻转后与另一图形重合
2.轴对称图形与中心对称图形都是某个图形所具备的某种属性的一种称呼,因此,某个图形可能同时具备这两种属性,也可能具备其中之一,还有可能一种属性都不具备.
【例题精讲】
[例1]如图4-61,已知四边形ABCD和BC边上的中点M,画四边形A′B′C′D′,使它与四边形ABCD关于点M对称.
图4—62
画法:(1)连结AM并延长到A′,使MA′=MA,得到点A的对称点A′;同法得点D 的对称点D′;
(2)B点的对称点B′和C重合,C点的对称点C′和B重合;
(3)连结A′B′、A′D′、C′D′,则如图4-62,四边形A′B′C′D′就是所求作的四边形.
图4—62
说明:作一个图形关于某一点的中心对称图形可采用关键点定位法,将关键点的对称点作出,这个图形的对称图形即可画出.
[例2]下列图形中,哪些是轴对称图形,哪些是中心对称图形?
①平行四边形;②矩形;③菱形;④正方形;⑤等边三角形;⑥等腰直角三角形;⑦线段;⑧角.
解:①②③④⑦是中心对称图形,②③④⑤⑥⑦⑧是轴对称图形,其中②③④⑦既是轴对称图形又是中心对称图形.
【同步达纲练习】
1.选择题
(1)下列图形中,不是中心对称图形的是()
A.平行四边形B.矩形
C.菱形D.等边三角形
(2)下列图形中,既是轴对称图形,又是中心对称图形的是()
A.平行四边形B.菱形
C.等腰三角形D.等边三角形
(3)下列图形中,是中心对称图形,而不是轴对称图形的是()
A.直线B.线段
C.角D.平行四边形
(4)如果△ABC和△A1B1C1关于某点成中心对称,△A1B1C1和△A2B2C2关于某条直线轴对称,则△ABC和△A2B2C2有()
A.是全等关系B.无全等关系
C.可能有全等关系D.以上都不对
(5)下列命题中,真命题是()
A.轴对称图形一定是中心对称图形
B.中心对称图形一定是轴对称图形
C.关于中心对称的两个四边形全等
D.全等的两个三角形一定关于某一点成中心对称
2.填空题
(1)正方形既是_____图形,又是_____图形,它有_____条对称轴,对称中心是_____.(2)一个正方形要绕它的中心旋转_____度,才能和原来图形重合.
(3)已知A、B、O三点不共线,A、A′关于O对称,B、B′关于O对称,那么线段AB 与A′B′的关系是_____.
(4)P是∠AOB内任一点,分别作P关于AO、BO的对称点P1、P2,连结P1P2交OA于M,交OB于N,若P1P2=5,则△PMN的周长为_____.
(5)矩形纸片ABCD中,AB=6,BC=8,将纸片折叠使得A、C重合,则折痕的长是_____. 3.分别按下列条件,画一个与已知△ABC成中心对称的三角形:
(1)以顶点C为对称中心;
(2)以△ABC外一点P为对称中心.
4.在△ABC中,AD是BC边上的中线,AB=AD=2,AC=25,求(1)BC的长;(2)
△ABC的面积.
5.如图4-63,四边形ABCD的对角线AC、BD相交于点O,AC和BD均关于O成中心对称,且B、D关于AC成轴对称.
求证:四边形ABCD是菱形.
图4—63
【思路拓展题】
你知道吗
一面镜子竖直悬挂在墙壁上,人眼位置如图4-64(O点)所示,有三个物体A、B、C 放在镜子前面,人眼能从镜子里看见哪个物体?
图4—64
参考答案
【同步达纲练习】
1.(1)D (2)B (3)D (4)A (5)C
2.(1)轴对称中心对称 4 对角线的交点
(2)90 (3)平行且相等(4)5 (5)7.5
3.略
4.(1)42提示:延长AD到E使DE=AD,连结CE,得△ACE为直角三角形
(2)4
5.略
【思路拓展题】
你知道吗
能看见A、B两个物体.提示:因为点A、B关于MN的对称点在∠MON的内部,而点C 的对称点不在∠MON的范围内.。