14周周考卷(下)
- 格式:doc
- 大小:33.00 KB
- 文档页数:2
初二语文学情分析【篇一】初二语文学情分析【教学内容】义务教育教科书语文八年级上册第二单元第9课【设计理念】本文是一篇传记,教学时应让学生了解及体会到传记真实、生动的特点。
在教学方法的选择上,突出自读课课型特点,以学生为主体,放手让学生去自主读文章、自主研究、自主发现、自主构建。
【教材分析】本文是一篇人物传记,节选自《居里夫人传》,传主是先后两次分别获得诺贝尔物理学奖和化学奖的居里夫人。
作者艾XXXXX居里是居里夫人的次女。
课文节选的这部分内容主要记述了居里夫人和丈夫比埃尔XXXXX居里在棚屋中通过艰苦努力,终于在沥青铀矿里提炼出镭,见到镭的“美丽的颜色”的过程。
【知识要点】积累重要的词句;理解文章中重要词句的含义,理解人物传记类散文的文体特征。
【学情分析】通过初一的学习,以及老师对《藤野先生》、《我的母亲》、《列夫XXXXX托尔斯泰》深入细致的讲解引导,学生对自读课文并不陌生,也有自己独立的学习方法。
倡导学生先阅读与居里夫人有关的文章,大胆放手,多形式的培养学生自主阅读习惯。
【教学目标】知识与技能:1.了解居里夫人工作的环境和提取镭的过程,感受居里夫人的艰辛与快乐。
2.分析居里夫人的性格特点。
3.体会文中多处引用居里夫人的话的作用。
过程与方法:通过默读、批注等多种方法来理解作品的内容及作者的情感。
情感、态度与价值观:感受居里夫人对科学的热爱之情和孜孜不倦的探索精神。
【重点难点】1.分析居里夫人的性格特点。
2.感悟居里夫人对科学的热爱之情和孜孜不倦的探索精神。
【教学策略】朗读法引导法讨论交流法【教学启示】通过对学生在学习中存在问题的分析,既可以更清晰地探明学生的学习起点,又可以更准确地把握学生的思维脉搏,使教学能更好地符合学生的认知方式。
基于学生问题开展学情分析,关键在于如何及时、准确地了解学生所存在的问题。
实践证明,利用预习提纲不仅可以增强学生的问题意识,而且可以提高学生提出问题的质量。
教师在认真研究课标和教材的基础上,编制预习提纲并在新课前发给学生,学生围绕提纲进行预习,发现并提出问题,教师针对学生提出的问题进行收集整理和归纳提炼,这些源自学生的问题正是教师备课选择教学内容、组织教学活动、确定教学重难点的重要依据。
黄冈金榜大考卷配套用书周周练与测语文的答案1、65. 下列选项中,文言现象与其它三项不相同的一项是()[单选题] *A、左手依一衡木。
B、诎右臂支船。
C、便要还家。
D、率妻子邑人来此绝境。
(正确答案)2、1“爱而不见”的下一句是“俟我于城隅。
”[判断题] *对(正确答案)错3、“敕造”中“敕”的读音是“shè”。
[判断题] *对错(正确答案)4、47. 下面是对《钢铁是怎样炼成的》相关内容的叙述,不正确的一项是()[单选题] *A.保尔十二岁时因成绩不好,又把烟灰放在了瓦西里教父的复活节面包里,不得已退学。
后来到了一家旅店打杂,因为强迫加班导致误工而被赶出了旅店。
B.沙皇被推翻的消息轰动了俄罗斯。
保尔所在的小镇上,出现了一些“布尔什维克”。
富人都逃跑了,红军来了,市民得到了红军发配的枪支。
C.不好的消息“烧杀掳掠犹太人”在镇上传得沸沸扬扬,引起很多人的惊恐,保尔的好友谢廖沙等人商量着如何躲避。
屠杀进行了三天两夜,有很多人因此丧命,但只有几个人敢于抵抗。
D.苏维埃政权建立了,乌克兰共青团地方委员会建立起来了,红军攻占了谢别托夫卡小镇。
丽达不顾母亲阻拦,加入红军,成为了一个布尔什维克。
(正确答案)5、下列句子标点符号使用正确的是()[单选题] *“唉!天可真凉了—”(这“了”字念得很高,拖得很长)“唉,天可真凉了—”(这“了”字念得很高,拖得很长)(正确答案)“唉,天可真凉了—”(这“了”字,念得很高,拖得很长)“唉!天可真凉了—”(这“了”字,念得很高,拖得很长)6、下列选项中加着重号字读音不相同的一项是()[单选题] *A、消灭逍遥销路烟硝火药B、水淀纱锭靛蓝皮开肉绽(正确答案)C、菱角丘陵凌晨绫罗绸缎D、飘飞漂泊剽悍虚无缥缈7、下列关于名著的说明,不正确的一项是( ) [单选题] *A.在《红楼梦》中,如果说宝玉与宝钗的“金玉良姻”象征着封建婚姻,那么宝玉与黛玉的“木石前盟”则象征着自由恋爱。
2025届高三月考试卷(三)化学(答案在最后)本试题卷分选择题和非选择题两部分,共10页。
时量75分钟,满分100分。
可能用到的相对原子质量:H~1 O~16 Na~23 S~32 Cl~35.5 Cu~64 Br~80一、选择题(本题共14小题,每小题3分,共42分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.“定州花瓷瓯,颜色天下白”。
定窑烧制的白瓷胎质洁白细腻,釉色匀净,薄而坚硬,素有“白如玉、薄如纸、声如磬”的美誉,下列物质材质与之相同的是()A.黄花梨四撞提盒B.女史箴图C.曾侯乙青铜编钟D.青花山水长形瓷枕2.下列化学用语的表示正确的是()A.23592U 和23892U 互为同素异形体B.3BCl 的价层电子对互斥模型:C.+4NH 的电子式为+HH [H N H]∶∶,离子呈平面正方形结构D.天然橡胶的结构简式:3.下列有关物质结构与性质的说法错误的是()A.2N 和科学家合成的3N 、4N 分子,固态时都是分子晶体B.金刚石的熔点高于SiC ,是因为共价晶体中共价键越强,熔点越高C.石墨中相邻碳原子平面之间相隔很近,因此层和层之间存在很强的静电作用使电子几乎不能在碳原子平面中运动D.氨气易液化,是因为氨分子间形成氢键4.Z 是医药工业和香料工业的重要中间体,合成路线如图所示。
下列说法正确的是()A.X 和Y 互为同系物B.X →Y 属于取代反应,Y →Z 属于氧化反应C.X 生成Y 的过程中会有副产物D.X 、Y 、Z 中所有原子可共平面5.下列装置与对应操作正确的是()A.比较4KMnO 、2Cl 、S的氧化性B.分离苯酚和水的混合物C.制取3NaHCO 晶体D.测定KI 溶液的浓度A.AB.BC.CD.D 6.W 、X 、Y 、Z 、M 为原子序数依次增大的短周期主族元素,最外层电子数之和为17,X 和Z 的基态原子均有两个未成对电子,M 的某种盐的阴离子-3WXZ 由于形成如图的双聚物结构导致溶解度降低。
2024-2025学年七年级数学上学期第一次月考卷02(考试时间:120分钟;满分:120分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
4.测试范围:第一章---第二章。
5.难度系数:0.69。
第Ⅰ卷一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.《九章算术》中注“今两算得失相反,要令正负以名之”,意思是:有两数若其意义相反,则分别叫做正数和负数.若气温为零上10℃记作+10℃,则﹣8℃表示气温为()A.零上8℃B.零下8℃C.零上2℃D.零下2℃【解答】解:若气温为零上10℃记作+10℃,则﹣8℃表示气温为零下8℃.故选:B.2.将下列平面图形绕轴旋转一周,可得到图中所示的立体图形的是()A.B.C.D.【解答】解:A、绕轴旋转一周可得到圆柱,故此选项不合题意;B、绕轴旋转一周,可得到球体,故此选项不合题意;C、绕轴旋转一周,可得到一个中间空心的几何体,故此选项不合题意;D、绕轴旋转一周,可得到图中所示的立体图形,故此选项符合题意;故选:D.3.中国信息通信研究院测算,2020~2025年,中国5G商用带动的信息消费规模将超过8万亿元,直接带动经济总产出达10.6万亿元.其中数据10.6万亿用科学记数法表示为()A.10.6×104B.1.06×1013C.10.6×1013D.1.06×108【解答】解:10.6万亿=106000 0000 0000=1.06×1013.故选:B.4.用一个平面去截下列几何体,截面不可能是圆形的是()A. B.C. D.【解答】解:长方体用一个平面去截,可得出三角形、四边形、五边形、六边形的截面,不可能出现圆形的截面,因此选项A符合题意;圆锥体用平行于底面的一个平面去截,可得到圆形、因此选项B不符合题意,球体用一个平面去截可以得到圆形的截面,因此选项C不符合题意;圆锥体用平行于底面的平面去截,可得到圆形的截面,因此选项D不符合题意;故选:A.5.将一把刻度尺按如图所示的方式放在数轴上(数轴的单位长度是1cm),刻度尺上的“1cm”和“6cm”分别对应数轴上“﹣1.2cm”和“xcm”,则x的值为()A.3.8B.2.8C.4.8D.6【解答】解:根据数轴可知:x﹣(﹣1.2)=6﹣1,解得:x=3.8,故选:A.6.乐乐在数学学习中遇到了神奇的“数值转换机”,按如图所示的程序运算,若输入一个有理数x,则可相应的输出一个结果y.若输入x的值为﹣1,则输出的结果y为()A.6B.7C.10D.12【解答】解:把x=﹣1代入运算程序得:(﹣1)×(﹣3)﹣8=3﹣8=﹣5<0,把x=﹣5代入运算程序得:(﹣5)×(﹣3)﹣8=15﹣8=7>0,故输出的结果y为7.故选:B.7.如图是一个正方体的表面展开图,则在原正方体中,相对两个面上的数字之和的最小值是()A.5B.6C.7D.8【解答】解:根据题意,1与4相对,2与6相对,3与5相对,∴1+4=5,2+6=8,3+5=8,∴相对两个面上的数字之和的最小值是5.故选:A.8.若a是最大的负整数,b是绝对值最小的有理数,c是倒数等于它本身的自然数,则a2024+2023b﹣c2023的值为()A.2024B.2022C.2023D.0【解答】解:∵a是最大的负整数,b是绝对值最小的有理数,c是倒数等于它本身的自然数,∴a=﹣1,b=0,c=1,∴a2024+2023b﹣c2023=(﹣1)2024+2023×0﹣12023=1+0﹣1=0.故选:D.9.实数a,b满足a<0,a2>b2,下列结论:①a<b,②b>0,③1aa<1bb,④|a|>|b|.其中所有正确结论的序号是()A.①③B.①④C.②③D.②④【解答】解:∵a<0,a2>b2,∴|a|>|b|,∴a<b,故①符合题意,④符合题意;当a=﹣2,b=﹣1时,a2=4,b2=1,故②不符合题意;当a=﹣2,b=﹣1时,1aa=−12,1bb=−1,1aa>1bb,故③不符合题意;故选:B.10.若|m|=3,n2=4,且|m﹣n|=n﹣m,则m+n的值为()A.﹣1B.﹣1或5C.1或﹣5D.﹣1或﹣5【解答】解:∵|m|=3,n2=4,∴m=±3,n=±2,∵|m﹣n|=n﹣m,∴n﹣m≥0,即n≥m,∴n=2,m=﹣3或n=﹣2,m=﹣3,∴m+n=﹣1或m+n=﹣5,故选:D.第Ⅱ卷二、填空题(本大题共53分,共15分)11.若2m+1与﹣2互为相反数,则m的值为.【解答】解:∵2m+1与﹣2互为相反数,∴2m+1﹣2=0,∴m=12.故答案为:12.12.如图是由6个棱长均为1的正方体组成的几何体,该几何体的表面积为.【解答】解:主视图上有5个正方形,左视图和俯视图上有4个正方形,表面积为(5+4+4)x2=26.故答案为:26.13.高明区皂幕山某一天早晨的气温为16℃,中午上升了8℃,夜间又下降了10℃,则这天夜间皂幕山的气温是℃.【解答】解:16+8﹣10=14℃.故答案为:14.14.彰武县市场监督管理局规定我县出租车收费标准为:起步价2.50公里5.00元(即2.50公里内收费5.00元),超过2.50公里部分每超过0.60公里加收1.00元(不足0.60公里按0.60公里计算).周末小明和妈妈乘坐出租车去高山台森林公园游玩,已知小明家到高山台森林公园的里程是5.50公里,那么应付车费元.【解答】解:根据题意,得5+(5.50﹣2.50)÷0.6×1=10(元).故答案为:10.15.定义一个新运算ff(aa,bb)=�aa+bb(aa<bb)aa−bb(aa>bb),已知a2=4,b=1,则f(a,b)=.【解答】解:∵a2=4,∴a=±2,当a=2,b=1时,f(a,b)=f(2,1)=2﹣1=1;当a=﹣2,b=1时,f(a,b)=f(﹣2,1)=﹣2+1=﹣1;由上可得,f(a,b)的值为1或﹣1,故答案为:1或﹣1.三、解答题(本大题共9小题,共75分,解答应写出文字说明、证明过程或演算步骤)16.(每小题4分,共8分)计算:(1)(﹣1)2÷12+(7﹣3)×34−|﹣2|;(2)﹣14﹣0.5÷14×[1+(﹣2)2].【解答】解:(1)(﹣1)2÷12+(7﹣3)×34−|﹣2|=1×2+4×34−2=2+3﹣2=5﹣2=3;……………………4分(2)﹣14﹣0.5÷14×[1+(﹣2)2]=﹣1﹣0.5×4×(1+4)=﹣1﹣0.5×4×5=﹣1﹣10=﹣11.……………………8分17.(8分)把下列各数填在相应的大括号里(将各数用逗号分开):+8.3,﹣4,﹣0.8,﹣(﹣10),0,﹣13%,−343,﹣|﹣24|,π,﹣14.整数:{ …};非负数:{ …};分数:{ …};负有理数:{ …};【解答】解:﹣(﹣10)=10,﹣|﹣24|=﹣24,﹣14=﹣1,整数:{﹣4,﹣(﹣10),0,﹣|﹣24|,﹣14…};……………………2分非负数:{+8.3,﹣(﹣10),0,π…};……………………4分分数:{+8.3,﹣0.8,﹣13%,−343⋯};……………………6分负有理数:{﹣4,﹣0.8,﹣13%,−343,﹣|﹣24|,﹣14…}.……………………8分18.(7分)如图,直线上的相邻两点的距离为1个单位,如果点A、B表示的数是互为相反数,请回答下列问题:(1)那么点C表示的数是多少?(2)把如图的直线补充成一条数轴,并在数轴上表示:314,﹣3,﹣(﹣1.5),﹣|﹣1|.(3)将(2)中各数按由小到大的顺序用“<”连接起来.【解答】解:(1)∵点A、B表示的数是互为相反数,∴AB中点是原点,∴点C表示的数是﹣4;……………………1分(2)……………………4分(3)﹣3<﹣|﹣1|<﹣(﹣1.5)<314.……………………7分19.(8分)小车司机李师傅某天下午的营运全是在东西走向的常青公路上进行的,如果规定向东为正,向西为负,他这天下午行车里程(单位:千米)如下:+18,﹣7,+7,﹣3,+11,﹣4,﹣5,+11,+6,﹣7,+9(1)李师傅这天最后到达目的地时,距离下午出车时的出发地多远?(2)李师傅这天下午共行车多少千米?(3)若每千米耗油0.6升,则这天下午李师傅用了多少升油?【解答】解:(1)18﹣7+7﹣3+11﹣4﹣5+11+6﹣7+9=36(千米),所以李师傅这天最后到达目的地时,距离下午出车时的出发地36千米远;……………………2分(2)18+7+7+3+11+4+5+11+6+7+9=88(千米),所以李师傅这天下午共行车88千米;……………………5分(3)88×0.6=52.8(升),所以这天下午李师傅用了52.8升油.……………………8分20.(8分)如图,是由6个大小相同的小立方体块搭建的几何体,其中每个小正方体的棱长为1厘米.(1)直接写出这个几何体的表面积(包括底部):;(2)请按要求在方格内分别画出从这个几何体的三个不同方向看到的形状图.【解答】解:(1)(5+4+4)×2=26(cm2),故答案为:26cm2;……………………2分(2)根据三视图的画法,画出相应的图形如下:……………………8分21.(8分)根据下列条件求值:(1)若a、b互为相反数,c、d互为倒数,m的绝对值为6,求aa+bb mm+cccc−mm的值.(2)已知a2b>0,ab<0,a2=9,|b|=1,求a+b的值.【解答】解:(1)∵a、b互为相反数,c、d互为倒数,m的绝对值为6,∴a+b=0,cd=1,m=6或﹣6,当m=6时,原式=1﹣6=﹣5;当m=﹣6时,原式=1+6=7.综上所述:原式的值是﹣5或7.……………………4分(2)∵a2b>0,ab<0,∴b>0,a<0,∵a2=9,|b|=1,∴a=﹣3,b=1,∴a+b=﹣3+1=﹣2.……………………8分22.(8分)某自行车厂为了赶进度,一周计划生产1400辆自行车,平均每天生产200辆,由于各种原因实际每天生产量与计划量相比有出入,下表是某周的生产情况(超产为正,减产为负):星期一二三四五六日增减+4﹣2﹣4+13﹣11+15﹣9(1)根据记录可知第二天生产多少辆?(2)产量最多的一天比产量最少的一天多生产多少辆?(3)赶进度期间该厂实行计件工资加浮动工资制度.即:每生产一辆车的工资为60元,超过计划完成任务每辆车则在原来60元工资上再奖励15元;比计划每少生产一辆则在应得的总工资上扣发15元(工资按日统计,每周汇总一次),求该厂工人这一周的工资总额是多少?【解答】解:(1)200-2=198(辆),答:第二天生产198辆;……………………2分(2)15﹣(﹣11)=15+11=26(辆),答:产量最多的一天比产量最少的一天多生产26辆;……………………5分(3)60×[200×7+4+(﹣2)+(﹣4)+13+(﹣11)+15+(﹣9)]+15×[4+(﹣2)+(﹣4)+13+(﹣11)+15+(﹣9)]=60×1406+15×6=84450(元),答:该厂工人这一周的工资总额是84450元.……………………8分 23.(9分)已知13=1=14×12×22,13+23=9=14×22×32,13+23+33=36=14×32×42,…,按照这个规律完成下列问题:(1)13+23+33+43+53= =14× 2× 2. (2)猜想:13+23+33+…+n 3= .(3)利用(2)中的结论计算:(写出计算过程)113+123+133+143+153+163+…+393+403. 【解答】解:(1)13+23+33+43+53=225=14×52×62,……………………3分 (2)猜想:13+23+33+…+n 3=14×n 2×(n +1)2. ……………………5分(3)利用(2)中的结论计算:113+123+133+143+153+163+…+393+403.解:原式=13+23+33+…+393+403﹣(13+23+33+…+103) =14×402×412−14×102×112 =672400﹣3025=669375. ……………………9分24.(11分)如图,在数轴上点A 表示的数是8,若动点P 从原点O 出发,以2个单位/秒的速度向左运动,同时另一动点Q 从点A 出发,以4个单位/秒的速度也向左运动,到达原点后立即以原来的速度返回,向右运动,设运动的时间为t 秒.(1)当0.5=t 时,求点Q 到原点O 的距离; (2)当 2.5t =时,求点Q 到原点O 的距离;(3)当点Q 到点A 的距离为4时,求点P 到点Q 的距离.【答案】(1)解:当0.5=t 时,440.52t =×=,826−=, 当0.5=t 时,点Q 到原点O 的距离为6.………………………(2分)(2)解:当 2.5t =时,点Q 运动的距离为44 2.510t =×=, ∵点A 到原点的距离为8,点Q 从点A 出发,到达原点后再返回, ∴点Q 到原点O 的距离为2;………………………(4分) (3)解:点Q 到点的A 距离为4时,分三种情况讨论:①点Q 向左运动4个单位长度,此时运动时间:441t =÷=(秒),P 点表示的数是2−,Q 点表示的数是4;此时P 点到Q 点之间的距离是6.………………………(6分) ②点Q 向左运动8个单位长度到原点,再向右运动4个单位长度,则点Q 运动的距离为:8412+=,运动时间:1243t =÷=(秒) P 点表示的数是6−,Q 点表示的数是4;此时P 点到Q 点之间的距离是10.………………………(8分) ③点Q 向左运动8个单位长度到原点,再向右运动12个单位长度,则点Q 运动的距离为:81220+=,运动时间:2045t ÷(秒) P 点表示的数是10−,Q 点表示的数是12;此时P 点到Q 点之间的距离是22.综上,点P 到点Q 的距离为6或10或22.………………………(11分)。
Evaluation Only. Created with Aspose.Words. Copyright 2003-2016 Aspose Pty Ltd.周测4从科学社会主义理论到社会主义制度的建立、现代中国的政治建设与祖国统一基础卷一、选择题(每小题4分,共48分)1.(2018·邯郸市检测)1847年,马克思认为“社会主义是中等阶级(小工业家、小商人、学者、医生)的运动,而共产主义是工人阶级的运动”,虽然马克思、恩格斯把他们的理论称为共产主义,但是他们并没有放弃社会主义的名称。
这反映出马克思和恩格斯()A.调整了工人阶级的革命对象B.认为“社会主义”目标也是共产主义C.有联合中等阶级革命的要求D.还未区分“社会主义”与共产主义解析:据材料“社会主义是中等阶级(小工业家、小商人、学者、医生)的运动,而共产主义是工人阶级的运动”“但是他们并没有放弃社会主义的名称”可知,马克思和恩格斯有联合中等阶级革命的要求,通过社会主义的准备再过渡到共产主义,故C项正确。
答案:C2.1798年英国经济学家马尔萨斯发表了著名的《人口论》,认为生活资料的增长速度远低于人口的增长速度,多增加的人口总要以某种方式(如战争、饥荒等)被淘汰和消灭。
此理论称为“马尔萨斯陷阱”。
基于这个理论,他认为贫穷和罪恶是人口规律发生作用的结果,不是政治经济制度造成的;济贫法促使人口增长是不可取的。
下列推论正确的是()A.达尔文进化论对《人口论》产生重大影响B.《人口论》与马克思主义存在着一定程度上的分歧C.《人口论》的提出是资本主义经济高度发展的产物D.20世纪50年代起中国就已突破了“马尔萨斯陷阱”解析:马克思主义人口理论论述了人类自身生产和物质资料生产的关系以及社会生产方式对人口发展的制约作用,认为资本主义人口过剩是相对过剩,是相对于生活资料再生产条件的过剩,而不是马尔萨斯所谓的人口绝对过剩,认为资本主义社会的人口问题,根源于资本主义私有财产制度,只有变革资本主义制度,才能解决资本主义的人口问题,故B项正确。
八年级数学上学期【第一次月考卷】(浙教版)(满分100分,完卷时间90分钟)考生注意:1.本试卷含三个大题,共26题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出解题的主要步骤.一.选择题(共10小题)1.下列各组长度的线段能构成三角形的是()A.1.5cm,3.9cm,2.3cm B.3.5cm,7.1cm,3.6cmC.6cm,1cm,6cm D.4cm,10cm,4cm2.已知△ABC的三个内角的大小关系为∠A﹣∠B=∠C,则这个三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.无法确定3.已知,在△ABC中,∠A=60°,∠C=80°,则∠B=()A.60°B.30°C.20°D.40°4.如图,△ABC≌△A'B'C',其中∠A=36°,∠C'=24°,则∠B=()A.60°B.100°C.120°D.135°5.如图,在四边形ABCD中,∠ACB=∠DAC,添加一个条件后不能保证△BAC≌△DCA的是()A.AB∥CD B.∠B=∠D C.AB=CD D.AD=BC6.如图,已知∠AOB,按下面步骤作图:(1)在射线OA上任意取一点C,以点O为圆心,OC长为半径作弧MN,交射线OB于点D,连接CD;(2)分别以点C,D为圆心,CD长为半径作弧,两弧在∠AOB内部交于点E,连接CE,DE;(3)作射线OE交CD于点F.根据以上所作图形,有如下结论:①CE∥OB;②CE=2CF;③∠AOE=∠BOE;④CD⊥OE.其中正确的有()A.①②③④B.②③C.③④D.②③④7.如图,在△ABC中,D、E、F分别为BC、AD、CE的中点,且S△ABC=12cm2,则阴影部分△AEF的面积为()cm2.A.1B.1.5C.2D.38.如图,点B、F、C、E在一条直线上,AB∥ED,AC∥FD,那么添加下列一个条件后,仍无法判定△ABC≌△DEF的是()A.∠A=∠D B.AC=DF C.AB=ED D.BF=EC9.如图,△ABC中,AB=AC,AD⊥BC,下列结论中不正确的是()A.D是BC中点B.AD平分∠BACC.AB=2BD D.∠B=∠C10.如图,在Rt△ABC中,直角边AC=6,BC=8,将△ABC按如图方式折叠,使点B与点A重合,折痕为DE,则CD的长为()A.B.C.D.二.填空题(共8小题)11.若点(3+m,a﹣2)关于y轴对称点的坐标是(3,2),则m+a的值为.12.如图,已知∠BAC=130°,AB=AC,AC的垂直平分线交BC于点D,则∠ADB=度.13.若等腰三角形的一个角为50°,则它的顶角为.14.如图,在△ABC中,AC=DC=DB,∠ACD=100°,则∠B=.15.如图,∠A=120°,且∠1=∠2=∠3和∠4=∠5=∠6,则∠BDE=.16.如图,分别以正方形ABCD的两条边AD、CD为边向外作两个正三角形,即△ADG与△CDF,然后延长GA,FC交于点E,得到一个“镖型”ABCE.已知正方形ABCD的边长为2,则“镖型”ABCE的周长为.17.如图,图1是一个儿童滑梯,AE,DF,MN是滑梯的三根加固支架(如图2),且AE和DF都垂直地面BC,N是滑道DC的中点,小周测得FM=1米,MN=2米,MC=3米,通过计算,他知道了滑道DC长为米.18.在如图所示的4×4正方形网格中,∠1+∠2+∠3=°.三.解答题(共8小题)19.如图,线段AC、BD相交于点E,AE=DE,BE=CE.求证:∠B=∠C.20.如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,CE平分∠DCB交AB于点E (1)求证:∠AEC=∠ACE;(2)若∠AEC=2∠B,AD=1,求AB的长.21.如图,在△ABC中,∠ACB=90°,AC=BC,D是AB边上一点(点D与A,B不重合),连结CD,将线段CD绕点C按逆时针方向旋转90°得到线段CE,连结DE交BC于点F,连接BE.(1)求证:EB⊥AB;(2)当AD=BF时,求∠BEF的度数.22.勾股定理神秘而美妙,它的证法多样,其巧妙各有不同,其中的“面积法”给了小聪以灵感,他惊喜的发现,当两个全等的直角三角形如图2摆放时,都可以用“面积法”来证明,请你利用图2证明勾股定理(其中∠DAB=90°)求证:a2+b2=c2.23.在4×4的网格中,每个小正方形的边长为1,请在甲,乙,丙三个方格图中,分别按照要求画一个格点三角形(三个顶点都在格点上的三角形叫格点三角形).(1)请在图甲中作△DEF与△ABC全等.(2)请在图乙中作格点三角形与△ABC全等,且所作的三角形有一条边经过MN的中点.(3)请在图丙中作格点△PQR与△ABC不全等但面积相等.24.如图,∠ABE=∠ACD=Rt∠,AE=AD,∠ABC=∠ACB.求证:∠BAE=∠CAD.请补全证明过程,并在括号里写上理由.证明:在△ABC中,∵∠ABC=∠ACB∴AB=在Rt△ABE和Rt△ACD中,∵=AC,=AD∴Rt△ABE≌Rt△ACD∴∠BAE=∠CAD25.在4×4的方格中有五个同样大小的正方形如图摆放,请分别在甲、乙、丙三个图中添加一个正方形到空白方格中,使它与其余五个正方形组成的新图形是一个轴对称图形,并画出图形.26.如图,在Rt△ABC中,∠B=90°,AC=10,∠C=30°点D从点C出发沿CA方向以每秒2个单位长度的速度向点A匀速运动,同时点E从点A出发沿AB方向以每秒1个单位长度的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t 秒(t>0),过点D作DF⊥BC于点F,连接DE、EF.(1)DF=;(用含t的代数式表示)(2)求证:△AED≌△FDE;(3)当t为何值时,△DEF是等边三角形?说明理由;(4)当t为何值时,△DEF为直角三角形?(请直接写出t的值.)。
第一阶段月考卷时间:90分钟满分:100分积累与运用一、读下面的句子,根据拼音写词语。
(6分)1.你会从那小玻璃上面掠过的一条黑影,想象到这也许是灰色的biān fú(),也许是会唱歌的夜莺,也许是bà qì shí zú()的māo tóu yīnɡ()……2.bīnɡ xiānɡ()里如果使用一种纳米涂层,就会具有杀菌和chú ch òu()功能,能使shū cài()保鲜期更长。
二、选择题。
(20分)1.下列加点字的读音有误..的一项是()A.锄.草(chú)前俯.后仰(fǔ)B.迟钝.(dùn)渗.透(cān)C.脑颅.(lú)效率.(lǜ)D.敏捷.(jié)里程碑.(bēi)2.可能与“萩”的读音相同或者相近的一项是()A.鳅B.蒂C.茕D.蕊3.下列词语中书写完全正确....的一项是()A.松脂摧眠描绘河滩B.篱落和谐慰籍火辣辣C.纳米装饰账子觅食D.挣扎末期蛱蝶怒吼4.下列词语搭配中不是..近义词的一项是()A.朴素——朴实B.率领——带领C.详细——具体D.和谐——冲突5.下列句子中,和其他三项意思不同..的一项是()A.来福建的小朋友们很热情。
B.福建来的小朋友们很热情。
C.很热情的小朋友们来自福建。
D.来自福建的小朋友们很热情。
6.将词语依次填入句子中的画线处,正确..的一项是()乡下人家总爱在门前种几株花,各种花依着时令,顺序开放,______中带着几分______,显出一派______的农家风光。
A.华丽独特朴素B.朴素独特华丽C.朴素华丽独特D.独特朴素华丽7.下列作品、诗人、朝代对应不正确...的一项是()A.《清平乐·村居》——辛弃疾——宋代B.《四时田园杂兴》——范成大——唐代C.《夜书所见》——叶绍翁——宋代D.《山行》——杜牧——唐代8.下列句子中与其他三项运用的修辞手法不同..的一项是()A.啊,河流醒来了!三月的桃花水,舞动着绮丽的朝霞,向前流啊。
六年级上册数学教案周周大考卷期中测试卷讲评课|北师大版作为一名经验丰富的教师,我深知教学的重要性在于让学生掌握知识的同时,培养他们的思维能力和创新能力。
今天,我要为大家分享的是六年级上册数学教案——周周大考卷期中测试卷讲评课。
一、教学内容本节课的教学内容为北师大版六年级上册数学教材第五章《分数的应用》和第六章《几何图形》的测试卷。
主要内容包括分数的加减法、乘除法,以及几何图形的面积、周长等知识。
二、教学目标1. 使学生掌握分数的加减乘除法运算方法,提高运算速度和准确率。
2. 培养学生解决实际问题的能力,提高他们的数学思维。
3. 帮助学生巩固几何图形的面积、周长计算方法,提高空间想象力。
三、教学难点与重点1. 教学难点:分数的四则混合运算,几何图形的面积、周长计算。
2. 教学重点:培养学生解决实际问题的能力,提高他们的数学思维。
四、教具与学具准备1. 教具:黑板、粉笔、多媒体设备。
2. 学具:学生测试卷、笔记本、文具。
五、教学过程1. 课前热身(5分钟)2. 试卷分析(15分钟)让学生自主查看试卷,找出自己的错误和不足。
然后,我依次讲解每个题目的解题思路和方法,分析错误原因,引导学生进行思考。
3. 典题讲解(20分钟)选取具有代表性的典题进行讲解,重点讲解解题思路、方法和技巧。
引导学生进行互动,分享自己的解题心得。
4. 随堂练习(10分钟)设计一些与讲评内容相关的练习题,让学生在课堂上进行实际操作,巩固所学知识。
5. 课堂小结(5分钟)对本节课的内容进行简要回顾,强调重点知识点,提醒学生加强巩固。
六、板书设计1. 分数的四则混合运算顺序2. 几何图形的面积、周长计算公式七、作业设计1. 完成测试卷中的错题,加深对知识点的理解和掌握。
2. 选取两道类似的题目进行自主练习,提高解题能力。
八、课后反思及拓展延伸1. 课后反思:本节课的讲解是否清晰,学生是否掌握了所学知识。
2. 拓展延伸:鼓励学生参加数学竞赛和活动,提高他们的数学兴趣和能力。
金牌大考卷第8单元语文下册五年级1、“氓之蚩蚩”中“氓”的意思是民众、百姓,诗中指那个人,读音是“máng”。
[判断题] *对错(正确答案)2、1“今宵酒醒何处?”的下两句是“杨柳岸,晓风残月”。
[判断题] *对(正确答案)错3、“每当夏月塘荷盛开时,我每天至少有几次徘徊在塘边”中“徘徊”的读音是“pái huái”。
[判断题] *对(正确答案)错4、《故都的秋》作者是()[单选题] *柳永郭沫若周树人郁达夫(正确答案)5、下面对《红楼梦》主题理解最恰当的一项是( ) [单选题] *A.小说以贾、史、王、薛四大家族的兴衰为背景,以封建叛逆者贾宝玉、林黛玉的爱情悲剧为线索,反映了封建社会末期腐败、罪恶的社会现象和各种尖锐的社会矛盾。
揭示了我国封建社会走向衰亡的历史趋势。
(正确答案)B.小说通过贾府由极盛到衰败的过程,表现富贵如过眼云烟、万事转头空的哲理。
C.《红楼梦》通过描绘一批纯洁少女的悲惨遭遇,揭示了封建社会妇女的苦难,表现了红颜薄命的普遍现象。
D.《红楼梦》通过贾府由盛转衰,再归复崛起的叙述,真实地表现了世间万物“物极必反”的朴素真理。
6、下列中括号内字的读音全部正确的一项是()[单选题] *A.泣[涕](tì)[蒜]瓣(suàn)(正确答案)B.汤[匙](shí)[熬]粥(āo)C.机[杼](shū)初[旬](xún)D.杂[拌]儿(bàn)公[侯](hòu)7、下列关于名著的说明,不正确的一项是( ) [单选题] *A.在《红楼梦》中,如果说宝玉与宝钗的“金玉良姻”象征着封建婚姻,那么宝玉与黛玉的“木石前盟”则象征着自由恋爱。
其结果都是悲剧。
(《红楼梦》)B.贾探春是贾政与妾赵姨娘所生,是个“才自精明志自高”、有远见、有抱负、有作为的女子,发起组织了大观园里的诗社活动。
李纨自告奋勇当了社长,迎春、惜春当了副社长。
2024-2025学年八年级数学上学期第一次月考卷基础知识达标测(考试时间:120分钟试卷满分:120分)考前须知:1.本卷试题共24题,单选6题,填空10题,解答8题。
2.测试范围:第一章~第二章(苏科版)。
第Ⅰ卷一.选择题(共6小题,满分18分,每小题3分)1.(3分)如图,在4×4正方形网格中,已将图中的四个小正方形涂上阴影,若再从图中选一个涂上阴影,使得整个阴影部分组成的图形是轴对称图形,那么不符合条件的小正方形是( )A.①B.②C.③D.④【分析】根据轴对称图形的概念求解.【解答】解:有3个使之成为轴对称图形分别为:②,③,④.故选:A.2.(3分)如图,点D,E分别在线段AB,AC上,CD与BE相交于O点,已知AB=AC,现添加以下的哪个条件仍不能判定△ABE≌△ACD( )A.∠B=∠C B.BE=CD C.BD=CE D.AD=AE【分析】欲使△ABE≌△ACD,已知AB=AC,可根据全等三角形判定定理AAS、SAS、ASA添加条件,逐一证明即可.【解答】解:∵AB=AC,∠A为公共角,A、如添加∠B=∠C,利用ASA即可证明△ABE≌△ACD;B、如添BE=CD,因为SSA,不能证明△ABE≌△ACD,所以此选项不能作为添加的条件;C、如添BD=CE,等量关系可得AD=AE,利用SAS即可证明△ABE≌△ACD;D、如添AD=AE,利用SAS即可证明△ABE≌△ACD.故选:B.3.(3分)若等腰三角形中有一个角为50度,则这个等腰三角形的顶角的度数为( )A.50°B.80°C.65°或50°D.50°或80°【分析】因为题中没有指明该角是顶角还是底角,所以要分两种情况进行分析.【解答】解:①50°是底角,则顶角为:180°﹣50°×2=80°;②50°为顶角;所以顶角的度数为50°或80°.故选:D.4.(3分)如图,由9个完全相同的小正方形拼接而成的3×3网格,图形ABCD中各个顶点均为格点,设∠ABC=α,∠BCD=β,∠BAD=γ,则α﹣β﹣γ的值为( )A.30°B.45°C.60°D.75°【分析】根据全等三角形的判定与性质可得∠ECB=∠GBA,从而可得∠ABC=90°=α,再根据三角形外角的性质可得β+γ=45°,即可求解.【解答】解:如图,BE=AG,∠BEC=∠AGB=90°,EC=GB,∴△BEC≌△AGB(SAS),∴∠ECB=∠GBA,∵∠ECB+∠EBC=90°,∴∠GBA+∠EBC=90°,∴∠ABC=90°=α,∵∠β+∠CBD=90°,∠CBD+∠ABD=90°,∴∠ABD=β,∵∠ADF =∠ABD +∠BAD =45°,∴β+γ=45°,∴α﹣β﹣γ=90°﹣45°=45°,故选:B .5.(3分)如图,BO 、CO 分别平分∠ABC 、∠ACB ,OD ⊥BC 于点D ,OD =2,△ABC 的周长为28,则△ABC 的面积为( )A .28B .14C .21D .7【分析】连接OA ,作OE ⊥AB 于点E ,作OF ⊥AC 于点F ,由角平分线的性质得OD =OE =OF ,进而计算△OAB 、△OAC 、△OBC 的面积和便可得结果.【解答】解:连接OA ,作OE ⊥AB 于点E ,作OF ⊥AC 于点F ,∵BO ,CO 分别平分∠ABC 和∠ACB ,OD ⊥BC 于点D ,且OD =2,∴OD =OE =OF =2,∴S △ABC =S △OAB +S △OAC +S △OBC12AB •OE +12AC •OF +12BBC •OD =12(AB +AC +BC )•OD =12×28×2=28,故选:A .6.(3分)如图,△ABC中,∠ABC、∠EAC的角平分线BP、AP交于点P,延长BA、BC,PM⊥BE,PN⊥BF,则下列结论中正确的个数( )①CP平分∠ACF;②∠ABC+2∠APC=180°;③∠ACB=2∠APB;④S△PAC=S△MAP+S△NCP.A.1个B.2个C.3个D.4个【分析】过点P作PD⊥AC于D,根据角平分线的判定定理和性质定理判断①;证明Rt△PAM≌Rt△PAD,根据全等三角形的性质得出∠APM=∠APD,判断②;根据三角形的外角性质判断③;根据全等三角形的性质判断④.【解答】解:①过点P作PD⊥AC于D,∵PB平分∠ABC,PA平分∠EAC,PM⊥BE,PN⊥BF,PD⊥AC,∴PM=PN,PM=PD,∴PN=PD,∵PN⊥BF,PD⊥AC,∴点P在∠ACF的角平分线上,故①正确;②∵PM⊥AB,PN⊥BC,∴∠ABC+90°+∠MPN+90°,∴∠ABC+∠MPN=180°,在Rt△PAM和Rt△PAD中,PM=PD PA=PA,∴Rt△PAM≌Rt△PAD(HL),∴∠APM=∠APD,同理:Rt△PCD≌Rt△PCN(HL),∴∠CPD=∠CPN,∴∠MPN=2∠APC,∴∠ABC+2∠APC=180°,②正确;③∵PA平分∠CAE,BP平分∠ABC,∴∠CAE=∠ABC+∠ACB=2∠PAM,∠PAM=12∠ABC+∠APB,∴∠ACB =2∠APB ,③正确;④由②可知Rt △PAM ≌Rt △PAD (HL ),Rt △PCD ≌Rt △PCN (HL )∴S △APD =S △APM ,S △CPD =S △CPN ,∴S △APM +S △CPN =S △APC ,故④正确,故选:D .二.填空题(共10小题,满分30分,每小题3分)7.(3分)“线段、角、三角形、圆”这四个图形中,一定是轴对称图形的有 个.【分析】根据轴对称图形的概念分析判断即可得解.【解答】解:线段是轴对称图形,对称轴是线段的垂直平分线和线段本身所在的直线,角是轴对称图形,对称轴是角平分线所在的直线,三角形不一定是轴对称图形,圆是轴对称图形,对称轴是经过圆心的直线.综上所述,是轴对称图形的有3个.故答案为:3.8.(3分)请仔细观察用直尺和圆规作一个角∠A 'O 'B '等于已知角∠AOB 的示意图.请你根据所学的三角形全等的有关知识,说明画出∠A 'O 'B '=∠AOB 的依据是 .【分析】由作法易得OD =O ′D ′,OC =O ′C ′,CD =C ′D ′,依据SSS 定理得到△COD ≌△C 'O 'D ',由全等三角形的对应角相等得到∠A ′O ′B ′=∠AOB .【解答】解:由作法易得OD =O ′D ′,OC =O ′C ′,CD =C ′D ′,在△COD 与△C ′O ′D ′中,OD =O′D′OC =O′C′CD =C′D′,∴△COD ≌△C 'O 'D '(SSS ),∴∠A 'O 'B '=∠AOB (全等三角形的对应角相等).故答案为:SSS .9.(3分)如图,△ABC ≌△ADE ,延长BC ,分别交AD ,ED 于点F ,G ,若∠EAB =120°,∠B =30°,∠CAD =10°,则∠CFD = .【分析】利用全等三角形的性质求出∠CAB =∠EAD =55°,再利用三角形的外角的性质求解.【解答】解:∵△ABC ≌△ADE ,∴∠CAB =∠EAD ,∵∠EAB =120°,∠DAC =10°,∴∠CAB =∠EAD =12(120°﹣10°)=55°,∴∠FAB =∠CAD +∠CAB =10°+55°=65°,∴∠CFD =∠FAB +∠B =65°+30°=95°.故答案为:95°.10.(3分)如图,在△ABC 中,∠ABC 、∠ACB 的角平分线交于点O ,MN 过点O ,且MN ∥BC ,分别交AB 、AC 于点M 、N .若BM =3cm ,CN =2cm ,则MN = cm .【分析】根据平行线性质和角平分线的性质先证出∠MBO =∠MOB ,∠NOC =∠NCO ,从而得出OM =BM ,ON =CN ,再根据MN =MO +ON ,即可求出MN 的值.【解答】解:∵MN ∥BC ,∴∠OBC =∠MOB ,∠OCB =∠NOC ,∵OB 是∠ABC 的角平分线,OC 是∠ACB 的角平分线,∴∠MBO =∠OBC ,∠NCO =∠OCB ,∴∠MBO =∠MOB ,∠NOC =∠NCO ,∴OM=BM,ON=CN,∵BM=3cm,CN=2cm,∴OM=3cm,ON=2cm,∴MN=MO+ON=3+2=5cm;故答案为:5.11.(3分)如图,在由边长为1的小正方形组成的5×5的网格中,点A,B在小方格的顶点上,要在小方格的顶点确定一点C,连接AC和BC,使△ABC是等腰三角形.则方格图中满足条件的点C的个数有 个.【分析】分两种种情况,CA=CB,BA=BC.【解答】解:如图所示:分两种种情况:当C在C1,C2,C3,C4位置上时,AC=BC;当C在C5,C6位置上时,AB=BC;即满足点C的个数是6,故答案为:6.12.(3分)如图,在Rt△BAC和Rt△BDC中,∠BAC=∠BDC=90°,O是BC的中点,连接AO、DO.若AO=3,则DO的长为 .【分析】利用直角三角形斜边中线的性质即可解决问题.【解答】解:在Rt △BAC 和Rt △BDC 中,∵∠BAC =∠BDC =90°,O 是BC 的中点,∴AO =12BC ,DO =12BC ,∴DO =AO ,∵AO =3,∴DO =3,故答案为3.13.(3分)如图,△ABC 是等边三角形,点D 是BC 边上任意一点,DE ⊥AB 于点E ,DF ⊥AC 于点F .若BC =6,则AE +AF = .【分析】根据等边三角形的性质可得AB =AC =BC =6,∠B =∠C =60°,再根据垂直定义可得∠DEB =∠DFC =90°,从而可得∠EDB =30°,∠FDC =30°,然后利用含30度角的直角三角形的性质可得BE =12BD ,CF =12CD ,从而可得BE +CF =12BC =6,最后利用线段的和差关系进行计算即可解答.【解答】解:∵△ABC 是等边三角形,∴AB =AC =BC =6,∠B =∠C =60°,∵DE ⊥AB ,DF ⊥AC ,∴∠DEB =∠DFC =90°,∴∠EDB =90°﹣∠B =30°,∠FDC =90°﹣∠C =30°,∴BE =12BD ,CF =12CD ,∴BE +CF =12BD +12CD =12BC =3,∴AE +AF =AB +AC ﹣(BE +CF )=9,故答案为:9.14.(3分)如图,在△ABC 中,AD 为BC 边的中线,E 为AD 上一点,连接BE 并延长交AC 于点F ,若∠AEF=∠FAE,BE=4,EF=1.6,则CF的长为 .【分析】延长AD至G,使DG=AD,连接BG,可证明△BDG≌△CDA(SAS),则BG=AC,∠CAD=∠G,根据AF=EF,得∠CAD=∠AEF,可证出∠G=∠BEG,即得出AC=BE=4,然后利用线段的和差即可解决问题.【解答】解:如图,延长AD至G,使DG=AD,连接BG,在△BDG和△CDA中,BD=CD∠BDG=∠CDA DG=DA,∴△BDG≌△CDA(SAS),∴BG=AC,∠CAD=∠G,∵∠AEF=∠FAE,∴∠CAD=∠AEF,∵∠BEG=∠AEF,∴∠CAD=∠BEG,∴∠G=∠BEG,∴BG=BE=4,∴AC=BE=4,∵∠AEF=∠FAE,∴AF=EF=1.6,∴CF=AC﹣AF=4﹣1.6=2.4.故答案为:2.4.15.(3分)如图,在△ABC中,∠A=56°,∠C=46°,D是线段AC上一个动点,连接BD,把△BCD沿BD折叠,点C落在同一平面内的点C'处,当C'D平行于△ABC的边时,∠CDB的大小为 .【分析】分三种情况讨论,一是C′D∥AB,则∠ADC′=∠A=56°,所以∠CDC′=124°,得∠CDB=118°;二是C′D∥BC,则∠ADC'=∠C=46°,得∠CDB=67°;三是由于点D在AC 上,所以不存在C′D与AC平行的情况,于是得到问题的答案.【解答】解:∵把△BCD沿BD折叠,点C落在点C′处,∴∠CDB=∠C′DB,当C′D∥AB时,如图1,则∠ADC′=∠A=56°,∴∠CDC′=180°﹣∠ADC′=124°,∴∠CDB=12×(360°﹣124°)=118°;当C′D∥BC时,如图2,则∠ADC'=∠C=46°,∴∠CDB=12×(180°﹣46°)=67°;∵点D在AC上,∴不存在C′D与AC平行的情况,综上所述,∠CDB=118°或∠CDB=67°,故答案为:118°或67°.16.(3分)如图,在△ABC中,∠ACB=90°,AC=6,BC=8,点C在直线l上.点P从点A出发,在三角形边上沿A→C→B的路径向终点B运动;点Q从B点出发,在三角形边上沿B→C→A的路径向终点A运动.点P和Q分别以1单位/秒和2单位/秒的速度同时开始运动,在运动过程中,若有一点先到达终点时,该点停止运动,另一个点要继续运动,直到两点都到达相应的终点时整个运动才能停止.在某时刻,分别过P和Q作PE⊥l于点E,QF⊥l于点F,则点P的运动时间等于 秒时,△PEC与△CFQ全等.【分析】分四种情况,点P在AC上,点Q在BC上;点P、Q都在AC上;点P到BC上,点Q 在AC上;点Q到A点,点P在BC上.【解答】解:∵△PEC与△CFQ全等,∴斜边PC=斜边CQ,分四种情况:当点P在AC上,点Q在BC上,如图:∵CP=CQ,∴6﹣t=8﹣2t,∴t=2,当点P、Q都在AC上时,此时P、Q重合,如图:∵CP=CQ,∴6﹣t=2t﹣8,∴t=14 3,当点P到BC上,点Q在AC上时,如图:∵CP =CQ ,∴t ﹣6=2t ﹣8,∴t =2,不符合题意,当点Q 到A 点,点P 在BC 上时,如图:∵CQ =CP ,∴6=t ﹣6,∴t =12,综上所述:点P 的运动时间等于2或143或12秒时,△PEC 与△CFQ 全等,故答案为:2或143或12.三.解答题(共8小题,满分72分)17.(6分)如图所示,E 为AB 延长线上的一点,AC ⊥BC ,AD ⊥BD ,AC =AD求证:∠CEA =∠DEA .【分析】首先利用“HL ”证明Rt △ABC ≌Rt △ABD ,得出∠CAB =∠DAB ,进一步利用“SAS ”证得△ACE ≌△ADE ,证得∠CEA =∠DEA .【解答】证明:∵AC ⊥BC ,AD ⊥BD ,∴∠ACB =∠ADB =90°,在Rt △ABC 和Rt △ABD 中,AC =AD AB =AB∴Rt △ABC ≌Rt △ABD (HL ),∴∠CAB=∠DAB,在△ACE和△ADE中,AC=AD∠CAE=∠DAE AE=AE∴△ACE≌△ADE(ASA),∴∠CEA=∠DEA.18.(6分)已知,如图,∠ABC=∠ADC=90°,M,N分别是AC,BD的中点.求证:①BM=DM;②MN⊥BD.【分析】(1)连接BM、DM,根据直角三角形斜边上的中线等于斜边的一半可得BM=DM=12 AC;(2)根据等腰三角形三线合一的性质证明即可.【解答】(1)证明:如图,连接BM、DM,∵∠ABC=∠ADC=90°,M是AC的中点,∴BM=DM=12 AC,∴BM=DM;(2)∵点N是BD的中点,BM=DM,∴MN⊥BD.19.(8分)作图:(1)如图1,△ABC在边长为1的正方形网格中:①画出△ABC关于直线l轴对称的△DEF(其中D、E、F是A、B、C的对应点);②直接写出△DEF的面积= .(2)如图,画一个等腰△ABC,使得底边BC=a,它的高AD=h(保留作图痕迹,不写作法).【分析】(1)①分别作出点A,B,C关于直线l的对称点,再顺次连接即可得;②利用割补法求解可得;(2)先画BC=a,进而作出BC的垂直平分线DM,交BC于D,以D为圆心,h为半径画弧,交DM于点A,连接AB,AC即可.【解答】解:(1)①如图1所示,△DEF即为所求;;②△DEF的面积为4×5﹣0.5×1×5﹣0.5×1×4﹣0.5×3×4=9.5,故答案为:9.5;(2)如图2所示.△ABC就是所求的三角形..20.(8分)如图,△ABC中,AB的垂直平分线分别交AB,BC于点D,E,AC的垂直平分线分别交AC,BC于点F,G,连接AE,AG.(1)若△AEG的周长为10,求线段BC的长;(2)若∠BAC=104°,求∠EAG的度数.【分析】(1)根据线段的垂直平分线的性质得到EA=EB,GA=GC,根据三角形的周长公式计算,得到答案;(2)根据三角形内角和定理得到∠B+∠C=76°,根据等腰三角形的性质求出∠EAB+∠GAC,结合图形计算即可.【解答】解:(1)∵DE垂直平分AB,GF垂直平分AC,∴EA=EB,GA=GC,∵△AEG的周长为10,∴AE+EG+AG=10,∴BC=BE+EG+GC=AE+EG+GC=10;(2)∵∠BAC=104°,∴∠B+∠C=180°﹣104°=76°,∵EA=EB,GA=GC,∴∠EAB=∠B,∠GAC=∠C,∴∠EAB+∠GAC=∠B+∠C=76°,∴∠EAG=∠BAC﹣(∠EAB+∠GAC)=104°﹣76°=28°.21.(10分)如图,△ABC D在BC边上,∠BAD=100°,∠ABC的平分线交AC于点E,过点E作EF⊥AB,垂足为F,且∠AEF=50°,连接DE.(1)求证:DE平分∠ADC;=15,求△ABE的面积.(2)若AB=7,AD=4,CD=8,且S△ACD【分析】(1)过点E作EG⊥AD于G,EH⊥BC于H,先通过计算得出∠FAE=∠CAD=40,根据角平分线的性质得EF=EG,EF=EH,进而得EG=EH,据此根据角平分线的性质可得出结论;(2)设EG=x,由(1)得:EF=EH=EG=x,根据S=15,AD=4,CD=8可求出x=2.5,△ACD故得EF=2.5,然后S△ABE=1/2AB•EF可得出答案.【解答】(1)证明:过点E作EG⊥AD于G,EH⊥BC于H,如图:∵EF⊥AB,∠AEF=50°,∴∠FAE=90°﹣50°=40°,∵∠BAD=100°,∴∠CAD=180°﹣100°﹣40°=40°,∴∠FAE=∠CAD=40,即CA为∠DAF的平分线,又EF⊥AB,EG⊥AD,∴EF=EG,∵BE是∠ABC的平分线,∴EF=EH,∴EG=EH,∴点E在∠ADC的平分线上,∴DE平分∠ADC;(2)解:设EG=x,由(1)得:EF=EH=EG=x,∵S△ACD=15,AD=4,CD=8,∴12AD•EG+12CD•EH=15,即:4x+8x=30,解得:x=2.5,∴EF=x=2.5,∴S△ABE =12AB•EF=12×7×2.5=354.22.(10分)如图,在△ABC中,∠BAC=90°,AB=AC,EC⊥AC,垂足为C,AE交线段BC于F,D是AC边上一点,连接BD,且BD=AE.(1)求证:CE=AD;(2)BD与AE有怎样的位置关系?证明你的结论;(3)当∠CFE=∠ADB时,求证:BD平分∠ABC.【分析】(1)根据HL证明Rt△CAE与Rt△ABD全等,进而解答即可;(2)根据全等三角形的性质和角之间的关系解答即可;(3)证出FB=AB,由等腰三角形的性质可得出结论.【解答】(1)证明:∵∠BAC=90°,EC⊥AC,∴∠ACE=∠BAD=90°,在Rt△ACE和Rt△BAD中,AE=BD CA=AB,∴Rt△ACE≌Rt△BAD(HL),∴CE=AD;(2)解:BD⊥AE,证明:∵△ACE≌△BAD,∴∠CAE=∠ABD,∴∠AOD=∠BAE+∠ABD=∠BAE+∠CAE=∠BAC=90°,∴AE⊥BD.(3)证明:∵∠ADB+∠DAE=∠DAE+∠BAE=90°,∴∠ADB=∠BAE,∵∠CFE=∠ADB,∠CFE=∠AFB,∴∠AFB=∠BAE.∴FB=AB,∵BD⊥AE,∴∠ABD=∠FBD,即BD平分∠ABC.23.(12分)(1)如图1,已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E.求证:DE=BD+CE.(2)如图2,将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.(3)如图3,D、E是D、A、E三点所在直线m上的两动点(D、A、E三点互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD、CE,若∠BDA=∠AEC=∠BAC,求证:△DEF是等边三角形.【分析】(1)根据BD⊥直线m,CE⊥直线m得∠BDA=∠CEA=90°,而∠BAC=90°,根据等角的余角相等得∠CAE=∠ABD,然后根据“AAS”可判断△ADB≌△CEA,则AE=BD,AD=CE,于是DE=AE+AD=BD+CE;(2)由∠BDA=∠AEC=∠BAC,就可以求出∠BAD=∠ACE,进而由AAS就可以得出△BAD≌△ACE,就可以得出BD=AE,DA=CE,即可得出结论;(3)由等边三角形的性质,可以求出∠BAC=120°,就可以得出△BAD≌△ACE,就有BD=AE,进而得出△BDF≌△AEF=EF,∠BFD=∠AFE,而得出∠DFE=60°,即可推出△DEF为等边三角形.【解答】(1)证明:如图1,∵BD⊥直线m,CE⊥直线m,∴∠BDA=∠CEA=90°,∵∠BAC=90°,∴∠BAD+∠CAE=90°∵∠BAD+∠ABD=90°,∴∠CAE=∠ABD,在△ADB和△CEA中,∠BDA=∠CEA ∠CAE=∠ABD AB=AC,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴DE=AE+AD=BD+CE;(2)解:结论DE=BD+CE成立.理由:如图2,∵∠BDA=∠BAC=α,∴∠DBA+∠BAD=∠BAD+∠CAE=180°﹣α,∴∠DBA=∠CAE,在△ADB和△CEA中,∠BDA=∠CEA ∠CAE=∠ABD AB=AC,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴DE=AE+AD=BD+CE;(3)证明:如图3,由(2)可知,△ADB≌△CEA,∴BD=AE,∠DBA=∠CAE,∵△ABF和△ACF均为等边三角形,∴∠ABF=∠CAF=60°,BF=AF,∴∠DBA+∠ABF=∠CAE+∠CAF,∴∠DBF=∠FAE,在△DBF和△EAF中,BD=AE∠DBF=∠FAE BF=AF,∴△DBF≌△EAF(SAS),∴DF=EF,∠BFD=∠AFE,∴∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=60°,∴△DEF为等边三角形.24.(12分)定义:如果1条线段将一个三角形分割成2个等腰三角形,我们把这条线段叫做这个三角形的“双等腰线”.如果2条线段将一个三角形分成3个等腰三角形,我们把这2条线段叫做这个三角形的“三等腰线”.如图1,BE 是△ABD 的“双等腰线”,AD 、BE 是△ABC 的“三等腰线”.(1)请在图2三个图中,分别画出△ABC 的“双等腰线”,并做必要的标注或说明.(2)如果一个等腰三角形有“双等腰线”,那么它的底角度数是 .(3)如图3,△ABC 中,∠C =32∠B ,∠B <45°.画出△ABC 所有可能的“三等腰线”,使得对∠B 取值范围内的任意值都成立,并做必要的标注或说明.(每种可能用一个图单独表示,如果图不够用可以自己补充)【分析】(1)根据等腰三角形的性质和三角形内角和解答即可;(2)设底角度数为x,分三种情况利用等腰三角形的性质和三角形内角和解答即可;(3)根据两种情况、利用等腰三角形的性质和三角形内角和解答即可.【解答】解:(1)如图2,取AB的中点D,则AD=CD=BD,∴△ADC和△BCD是等腰三角形;如图3,取CD=BC,则∠CDB=∠B=70°,∵∠A=35°,∴∠ACD=70°﹣35°=35°,∴∠ACD=∠A,∴AD=CD=BC,∴△ADC和△BCD是等腰三角形;如图4,作AB的垂直平分线DE,交AC于D,交AB于E,连接BD,∴AD=BD,∴∠A=∠ABD=27°,∴∠CDB=54°,∵∠ABC=81°,∴∠CBD=81°﹣27°=54°=∠BDC,∴CD=BC,∴△ADB和△BCD是等腰三角形;(2)①设△ABC是以AB、AC为腰的锐角三角形,BD为“双等腰线”,如图5,当AD=BD,BD=BC时,设∠A=x°,则∠ABD=x°,∴∠BDC=∠C=2x°,∴∠ABC=∠C=2x°,∵∠A+∠ABC+∠C=180°,∴x°+2x°+2x°=180°,∴x=36°,2x=72°,∴∠C=72°,②设△ABC是以AB、AC为腰的钝角三角形,AD为“双等腰线”,如图6,当AB=BD,AD=CD时,设∠B=y°,则∠C=y°,∵AD=CD,∴∠DAC=∠C=y°,∴∠ADB=2y°,∵AB=BD,∴∠BAD=∠ADB=2y°,∵∠B+∠BAD+∠ADB=180°,∴y°+2y°+2y°=180°,∴y=36°,∴∠B=∠C=36°,③设△ABC是以AB、AC为腰的直角三角形,AD为“双等腰线”,如图7,当AB =BD ,AD =CD 时,AD 为BC 的垂直平分线,设∠B =z °,则∠C =z °,∠BAD =z °,∴∠B +∠BAD =90°,∴z °+z °=90°,∴z =45°,∴∠B =∠C =45°,④设顶角为x ,可得,x +3x +3x =180°解得:x =(1807)°,∴∠C =3x =(5407)°,故答案为:72°或36°或45°或(5407)°;(3)∵要画出使得对∠B 取值范围内的任意值都成立的“三等腰线”,∴不能使∠B 等于具体的数值,∴值需要使分割后的三个等腰三角形的底角成比例即可,第一种画法:如图8,∵∠C=32∠B,设∠B=2x°,∠C=3x°,当AD、DE将△ABC分成BD=DE,DE=AE,AD=AC的三个等腰三角形时,则有∠BED=∠B=2x°,∠ADC=∠C=3x°,∵∠EDC=∠B+∠BED=4x°,∴∠EDA=∠EDC﹣∠ADC=x°,∴∠EAD=x°,∴“三等腰线”使得三个等腰三角形的底角比为∠B:∠C:∠EDA=2:3:1,即可使得对∠B取值范围内的任意值都成立,第二种画法:∵∠C=32∠B,设∠B=2x°,∠C=3x°,当AD、DE将△ABC分成BE=DE,AD=AE,AD=CD的三个等腰三角形时,则∠EDB=∠B=2x°,∠DAC=∠C=3x°,∵∠AED=∠B+∠BDE=4x°,∴∠EDA=4x°,因此,“三等腰线”使得三个等腰三角形的底角比为∠B:∠C:∠AED=2:3:4,即可使得对∠B取值范围内的任意值都成立,综上所述,如图所示的两种“三等腰线”可以使得对∠B取值范围内的任意值都成立.。
第1页
(代替家长抄卷)
班级: 姓名: 分数:
一、 算一算。(2×22=44分)
73+5= 70+28= 56+5= 72-50=
75-9= 39+40= 38+6= 94-6=
50+26= 97-7= 80-8= 40+58=
43-9= 30+70= 75+8= 67+9=
50+27-9= 37-4+5= 60+38-90=
38-30+8= 20+8+6= 43-8+30=
二、填空。(1×10=分)
⑴36比48( )8,58比38多( )。
⑵比52多9的数是( ),比78少9的数是( )。
⑶最小的两位数比最大的两位数小( )。
⑷比99多1的数是( ),这个数是( )位数。
⑸7个十和9个一是( ),它减去3个十是( )。
⑹已知差是36,减数是20,被减数是( )。
三、判断对错。(对的打“√”,错的打“×”)(2×5=10分)
1、分针从“3”走到“5”走了2分钟。 ( )
2、时针、分针都指向12,表示12时。 ( )
3、10时50分可写成10:500分。 ( )
第2页
4、7:35可写成7小时35分。 ( )
5、分针指向6,时针指向8和9之间,这时是9时30分。( )
四、列式计算。(6×6=36分)
1、白兔和黑兔一共有27只,其中黑兔有9只,白兔有多少只?
2、有红花14朵,黄花8朵,黄花再拿多少朵就和红花同样多?
3、书架上的书拿走25本后,还剩9本,书架上原来有多少本?
4、鸭有30只,鸡有45只,鹅有20只。
⑴鹅比鸭少多少只?
⑵鸡比鸭多多少只?
⑶你还能提出什么问题,并列式解答。