精选2019年数学高考第一轮复习考核题库完整版(含参考答案)
- 格式:doc
- 大小:630.00 KB
- 文档页数:8
2019年高考数学第一轮复习模拟测试题学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.已知等比数列()n a 中21a =,则其前3项的和3S 的取值范围是( ) (A)(],1-∞- (B)()(),01,-∞+∞(C)[)3,+∞ (D)(][),13,-∞-+∞(2008四川理)【解1】:∵等比数列()n a 中21a = ∴当公比为1时,1231a a a ===,33S = ; 当公比为1-时,1231,1,1a a a =-==-,31S =- 从而淘汰(A)(B)(C) 故选D ;【解2】:∵等比数列()n a 中21a = ∴312321111S a a a a q q q q⎛⎫=++=++=++ ⎪⎝⎭ ∴当公比0q >时,31113S q q =++≥+=; 当公比0q <时,31111S q q ⎛⎫=---≤-=- ⎪⎝⎭ ∴(][)3,13,S ∈-∞-+∞ 故选D ;2.已知a 1>a 2>a 3>0,则使得2(1)1(123)i a x i -<=,,都成立的x 取值范围是( ) A .110a ⎛⎫⎪⎝⎭,B .120a ⎛⎫ ⎪⎝⎭,C .310a ⎛⎫ ⎪⎝⎭,D .320a ⎛⎫⎪⎝⎭,(2008宁夏理)3.(2005全国卷2) 双曲线22149x y -=的渐近线方程是( )A . 23y x =±B . 49y x =±C . 32y x =±D . 94y x =±4.(2006全国2理)已知ABC ∆的顶点B 、C 在椭圆2213x y +=上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在BC 边上,则ABC ∆的周长是 ( )(A) (B )6 (C) (D )12解析(数形结合)由椭圆的定义椭圆上一点到两焦点的距离之和等于长轴长2a,可得ABC ∆的周长为4a=所以选C5.向高为H 的水瓶中注水,注满为止.如果注水量V 与水深h 的函数关系的图象如图2—4所示,那么水瓶的形状是( )(1998全国文11理10)6.在△ABC 中,b sin A <a <b ,则此三角形有 A.一解 B .两解 C.无解 D.不确定二、填空题7.点M 是椭圆22221(0)x y a b a b+=>>上的点,以M 为圆心的圆与x 轴相切于椭圆的焦点F ,圆M 与y 轴相交于P ,Q ,若△PQM 是钝角三角形,则椭圆离心率的取值范围是________.8.△ABC 三个内角A 、B 、C 所对边为a 、b 、c ,设),(),,(a c a b q b c a p --=+=,若p //q ,则∠C 的大小为_____________.9.数列{}n a 中,)2(112,1,21121≥+===-+n a a a a a n n n ,则其通项公式为=n a 。
2019年高考数学第一轮复习模拟测试题学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.下列函数中,既是偶函数,又在区间(1,2)内是增函数的为( )A .cos 2y x =B .2log ||y x =C .2x x e e y --= D .31y x =+(2012天津文)2.曲线=xy e 在点A (0,1)处得切线斜率为( ) A .1 B .2 C .e D .1e(2011江西文4) 3.由直线0,3,3==-=y x x ππ与曲线x y cos =所围成的封闭图形的面积为A.21B. 1C. 23D. 3二、填空题4.一份试卷有10个题目,分为,A B 两组,每组5题,要求考生选择6题,且每组至多选择4题,则考生有 ▲ 种不同的选答方法.5.已知空间中两点P 1(x ,2,3)和P 2(5,x +3,7)间的距离为6,则x= .6.某小卖部为了了解冰糕销售量y(箱)与气温x(C ︒)之间的关系,随机统计了某4天卖出的冰糕的箱数与当天气温,并制作了对照表(如左所示):由表中数据算得线性回归方程a bx y+=ˆ中的2-≈b ,预测当气温为25C ︒时, 冰糕销量为 杯.分析:线性回归方程a bx y+=ˆ恒过(,)x y ,由表中算得(,)x y =(10,40)代入回归方程,可得a =60,即ˆ260yx =-+,将5x =-代入回归方程,得ˆy =70. 7.已知225,xx-+= 则88x x -+=8.如果在今后若干年内我国国民经济生产总值都保持年平均9%的增长率,则要达到国民经济生产总值比2006年翻两番的年份大约是___.(0374.2109lg ,4771.03lg ,3010.02lg ===)9.已知函数))(2(log )(1*+∈+=N n n n f n ,定义使)()2()1(k f f f ⋅⋅⋅⋅为整数的数)(*∈N k k 叫做企盼数,则在区间[1,2009]内这样的企盼数共有 ▲ 个.10.已知直线,a b 相交于点P 夹角为60,过点P 作直线,又知该直线与,a b 的夹角均为60,这样的直线可作______条11.已知直线l m αβ⊥⊂平面,直线平面,有下列命题:;l m αβ①若∥,则⊥②若αβ∥,则l ∥m ;,,l m l m αβαβ③若∥则⊥;④若⊥则∥。
2019年高考数学第一轮复习模拟测试题学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.设P 、Q 为两个非空实数集合,定义集合P+Q=},5,2,0{},,|{=∈∈+P Q b P a b a 若}6,2,1{=Q ,则P+Q 中元素的个数是( ) A .9B .8C .7D .6(2005湖北卷)2.将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中.若每个信封放2张,其中标号为1,2的卡片放入同一信封,则不同的方法共有(A )12种 (B )18种 (C )36种 (D )54种(2010全国卷2理数)(6)3.设集合U={1,2,3,4,5},A={1,3,5},B={2,3,5},则 )(B A C U 等于( )A .{1,2,4}B .{4}C .{3,5}D .φ (2004福建文)4.已知123,,ααα是三个相互平行的平面,平面12,αα之间的距离为1d ,平面23,a α之前的距离为2d ,直线l 与123,,ααα分别相交于123,,P P P .那么“1223P P P P =”是“12d d =”的( )A 、充分不必要条件B 、必要不充分条件C 、充分必要条件D 、既不充分也不必要条件(2011江西理8)5.命题“若α=4π,则tan α=1”的逆否命题是 A.若α≠4π,则tan α≠1 B. 若α=4π,则tan α≠1C. 若tan α≠1,则α≠4πD. 若tan α≠1,则α=4π6.91)x展开式中的常数项是( C ) (A) -36 (B)36 (C) -84 (D) 847.动点(),A x y 在圆221x y +=上绕坐标原点沿逆时针方向匀速旋转,12秒旋转一周。
已知时间0t =时,点A的坐标是1(2,则当012t ≤≤时,动点A 的纵坐标y 关于t (单位:秒)的函数的单调递增区间是 A 、[]0,1 B 、[]1,7 C 、[]7,12 D 、[]0,1和[]7,12二、填空题8. 已知集合{}1 3 5 9U =,,,,{}1 3 9A =,,,{}1 9B =,,则()U A B =U ð ▲ .9.异面直线a , b 所成的角为︒60,过空间一定点P ,作直线L ,使L 与a ,b 所成的角均为︒60,这样的直线L 有 条。
2019年高考数学第一轮复习模拟测试题学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.复数()221i i +=( A )(A)4- (B)4 (C)4i - (D)4i (2008四川理)2.设I 为全集,321S S S 、、是I 的三个非空子集,且I S S S =⋃⋃321,则下面论断正确的是(A )Φ=⋃⋂)(321S S S C I (B )123I I S C S C S ⊆⋂() (C )123I I I C S C S C S ⋂⋂=Φ(D )123I I S C S C S ⊆⋃()(2005全国1理)3.已知集合A={x 1x >},B={x 2x 1-<<},则A B=( )(A ) {x 2x 1-<<} (B ){x 1-x >} (C ){x 1x 1-<<} (D ){x 2x 1<<}(2011辽宁文1)【精讲精析】选D ,解不等式组⎩⎨⎧<<->211x x ,得21<<x .所以A B={}21<<x x ..4.若函数f(x)=121+X , 则该函数在(-∞,+∞)上是( )A .单调递减无最小值B . 单调递减有最小值C .单调递增无最大值D . 单调递增有最大值(2005上海) 5.把曲线ycosx+2y -1=0先沿x 轴向右平移2π个单位,再沿y 轴向下平移1个单位,得到的曲线方程是( ) A .(1-y )sinx+2y -3=0B .(y -1)sinx+2y -3=0C .(y+1)sinx+2y+1=0D .-(y+1)sinx+2y+1=0(2003上海春15)6.已知二次函数()y f x =的图象如图所示,则它与x 轴所围图形的面积为A .2π5 B .43C .32D .π27.数列{an}的通项公式是an=2n+5,则此数列 A.是公差为2的等差数列 B.是公差为5的等差数列 C.是首项为5的等差数列D.是公差为n 的等差数列二、填空题8.如图,AD 与BC 是四面体ABCD 中互相垂直的棱,2=BC ,若c AD 2=,且a CD AC BD AB 2=+=+,其中a 、c 为常数,则四面体ABCD 的体积的最大值是 。
2019年高考数学第一轮复习模拟测试题学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.1 .(2013年普通高等学校招生统一考试福建数学(理)试题(纯WORD 版))满足{},1,0,1,2a b ∈-,且关于x 的方程220ax x b ++=有实数解的有序数对(,)a b 的个数为( )A .14B .13C .12D .102.已知a,b 是单位向量,a·b=0.若向量c 满足|c-a-b|=1,则|c|的最大值为____ C .____ ( )A1- BC1+ D2+(2013年高考湖南(文))3.已知函数kx y x y ==与41log 的图象有公共点A ,且点A 的横坐标为2,则k ( )A .41-B .41 C .21-D .21(2004全国) 4.下列函数中,周期为π,且在[,]42ππ上为减函数的是( )(2010重庆文6) (A )sin(2)2y x π=+(B )cos(2)2y x π=+(C )sin()2y x π=+ (D )cos()2y x π=+5.函数f (x)=sinx+cosx 的最小正周期是________________2π(1993山东理1)6.已知实数x 、y 满足223y x y x x ≤⎧⎪≥-⎨⎪≤⎩则目标函数z=x-2y 的最小值是___________.(2009上海文)7.(2007福建理6)以双曲线221916x y -=的右焦点为圆心,且与其渐近线相切的圆的方程是( )A .221090x y x +-+= B .2210160x y x +-+= C .2210160x y x +++=D .221090x y x +++=8.已知圆O :222x y r +=,点()P a b ,(0ab ≠)是圆O 内一点,过点P 的圆O 的最短弦所在的直线为1l ,直线2l 的方程为20ax by r ++=,那么 A .12l l ∥,且2l 与圆O 相离 B .12l l ⊥,且2l 与圆O 相切 C .12l l ∥,且2l 与圆O 相交 D .12l l ⊥,且2l 与圆O 相离9.某校有6间不同的电脑室,每天晚上至少开放2间,欲求不同安排方案的种数,现有四位同学分别给出下列四个结果:①26C ;②665646362C C C C +++;③726-;④26P 。
2019年高考数学第一轮复习模拟测试题学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.若数列{a n }是首项为1,公比为a -32的无穷等比数列,且{a n }各项的和为a ,则a 的值是( )A .1B .2C .12D .54(2008上海理) 2.函数f (x )=cos x (x )(x ∈R)的图象按向量(m,0) 平移后,得到函数y =-f ′(x )的图象,则m 的值可以为A.2π B.πC.-πD.-2π(2008福建理) 3.从20名男同学,10名女同学中任选38名参加体能测试,则选到的3名同学中既有男同学又有女同学的概率为( ) A .929B .1029C .1929D .2029(2008全国Ⅱ理6)4.某单位拟安排6位员工在今年6月14日至16日(端午节假期)值班,每天安排2人,每人值班1天 . 若6位员工中的甲不值14日,乙不值16日,则不同的安排方法共有 (A )30种 (B )36种(C )42种 (D )48种(2010重庆文10)5.已知右图对应的函数为y=f(x),则右图对应的函数为( )A .(||)y f x =B .(||)y f x =-C .|()|y f x =D .(||)y f x =-二、填空题6.已知函数(31)4,1()log ,1a a x a x f x x x -+<⎧=⎨≥⎩,是(,)-∞+∞上的减函数,那么a 的取值范围是 ▲ .7.已知函数)3,2(, cos )(ππ∈=x x x f ,若方程a x f =)(有三个不同的根,且从小到大依次成等比数列,则a 的值为 ▲ .12-8.已知函数()x f 的定义域为[0,1],值域为[1,2],则函数()2+x f 的定义域和值域分别是9.已知总体中各个个体的值由小到大依次为2、3、3、7、a 、b 、12、13.7、18.3、20,且总体的中位数为10.5,若要使该总体的方差最小,则a 、b 的取值分别是 ▲ 。
2019年高考数学第一轮复习模拟测试题学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.已知方程0)2)(2(22=+-+-n x x m x x 的四个根组成一个首项为41的的等差数列,则=-||n m ( )A .1B .43 C .21 D .83(2003山东理7)2.设集合{}{}{}1,2,3,4,5,1,2,3,2,3,4U A B ===,则()U AB =ð( )(A){}2,3 (B){}1,4,5 (C){}4,5 (D){}1,5(2008四川卷理1文1)3.设a ∈R ,则“a =1”是“直线l 1:ax+2y=0与直线l 2 :x+(a+1)y+4=0平行 的 A 充分不必要条件 B 必要不充分条件 C 充分必要条件 D 既不充分也不必要条件4.设,,x y R ∈则“2x ≥且2y ≥”是“224x y +≥”的 A. 充分而不必要条件 B .必要而不充分条件C .充分必要条件D .即不充分也不必要条件5.同时抛两枚均匀硬币10次,设两枚硬币同时出现反面的次数为X ,则()D X =( ) A .815B .415 C .25 D .5二、填空题6.若直线l 在x 轴和y 轴上的截距分别为-1和2,则直线l 的斜率为 2 .7.如图所示是毕达哥拉斯的生长程序:正方形一边上连接着等腰直角三角形,等腰直角三角形两直角边再分别连接着一个正方形,如此继续下去,共得到127个正方形.若最后得到的正方形的边长为1,则初始正方形的边长为 ▲ .8. 已知ABC ∆2θ,ABC ∆的面积为S ,则cos S θ⋅= ▲.9.将全体正整数排成一个三角形数阵:12345678910按照以上排列的规律,第n 行(3)n ≥从左向右的第3个数为 262n n -+ .10.已知全集,U R =且{}{}2|12,|680,A x x B x x x =->=-+<则()U C A B =11.若数列{a n }的前n 项和为S n =6·2n -1,则{a n }的通项公式为________.12.如图,︒=∠90BAD 的等腰直角三角形ABD 与正三角形CBD 所在平面互相垂直,E 是BC 的中点,则AE 与CD 所成角的大小为 。
2019年高考数学第一轮复习模拟测试题学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.1 .(2012安徽理)甲、乙两人在一次射击比赛中各射靶5次,两人成绩的条形统计图如图所示,则( )A .甲的成绩的平均数小于乙的成绩的平均数B .甲的成绩的中位数等于乙的成绩的中位数C .甲的成绩的方差小于乙的成绩的方差D .甲的成绩的极差小于乙的成绩的极差2.对于函数()2sin cos f x x x =,下列选项中正确的是 (B )(2010陕西理) (A )()f x f (x )在(4π,2π)上是递增的 (B )()f x 的图像关于原点对称 (C )()f x 的最小正周期为2π (D )()f x 的最大值为23.函数2110,sin(),()0.,x x x f x x e π--<<⎧=⎨≥⎩若(1)()2,f f a +=则a 的所有可能值为( )(A ) 1 (B) -(C) 1,1,2(2005山东理) 4.方程22ay b x c =+中的,,{3,2,0,1,2,3}a b c ∈--,且,,a b c 互不相同,在所有这些方程所表示的曲线中,不同的抛物线共有( )A .60条B .62条C .71条D .80条(2012四川理) [答案]B[解析]方程22ay b x c =+变形得222bcy b a x -=,若表示抛物线,则0,0≠≠b a 所以,分b=-3,-2,1,2,3五种情况:(1)若b=-3,⎪⎪⎩⎪⎪⎨⎧-==-==-===-=2,1,0,233,1,0,2,23,2,0,2c ,13,2,1,0,2或或或,或或或或或或或或或c a c a a c a ; (2)若b=3, ⎪⎪⎩⎪⎪⎨⎧-==-==-===-=2,1,0,233,1,0,2,23,2,0,2c ,13,2,1,0,2或或或,或或或或或或或或或c a c a a c a以上两种情况下有9条重复,故共有16+7=23条;同理当b=-2,或2时,共有23条; 当b=1时,共有16条. 综上,共有23+23+16=62种5.设数列{a n }是递增等差数列,前三项的和为12,前三项的积为48,则它的首项是( ) A .1B .2C .4D .6(2001全国理3)6.命题“若△ABC 不是等腰三角形,则它的任何两个内角不相等”的逆否命题是( ) A .若△ABC 是等腰三角形,则它的任何两个内角相等 B .若△ABC 任何两个内角不相等,则它不是等腰三角形 C .若△ABC 有两个内角相等,则它是等腰三角形D .若△ABC 任何两个角相等,则它是等腰三角形,(2006试题)7.如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与ABC △相似的是【 ▲ 】8.正方体各棱所在的直线中,与此正方体的一条对角线异面的共有( ) A .2条 B 。
2019年高考数学第一轮复习模拟测试题学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.下列函数中,图象的一部分如右图所示的是(A )sin 6y x π⎛⎫=+⎪⎝⎭(B )sin 26y x π⎛⎫=-⎪⎝⎭(C )cos 43y x π⎛⎫=-⎪⎝⎭(D )cos 26y x π⎛⎫=-⎪⎝⎭(2006四川理) 2.(2010广东文数7)若一个椭圆长轴的长度、短轴的长度和焦距成等差数列,则该椭圆的离心率是( ) A .54 B .53 C .52 D .513.正方体ABCD-1111A B C D 中,B 1B 与平面AC 1D 所成角的余弦值为A B C .23D .3全国I 理 4. 设m 、n 是两条不同的直线,,,αβγ是三个不同的平面,给出下列四个命题: ①若m ⊥α,n //α,则m n ⊥ ②若αβ//,βγ//,m ⊥α,则m ⊥γ ③若m //α,n //α,则m n // ④若αγ⊥,βγ⊥,则//αβ 其中正确命题的序号是________________________5.已知在△ABC 中,sin A :sin B :sin C =3:2:4,那么cos C 的值为A.-41B.41C.-32D.326.若)(x f 在[-5,5]上是奇函数,且)()(13f f <,则--------------------------------------------------------( )(A))()(31-<-f f (B))()(10f f > (C))()(11f f <- (D))()(53->-f f 17.双曲线2222ay b x -=1的两条渐近线互相垂直,那么该双曲线的离心率是( )A .2B .3C .2D .23(2000京皖春,3)二、填空题8.如图2所示的算法流程图中,若2()2,(),xf xg x x ==则(3)h 的值等于 ▲ .9.不等式ax 2+ bx + c >0 ,解集区间(- 21,2),对于系数a 、b 、c ,则有如下结论:a >0 ②b >0 ③c >0 ④a + b + c >0 ⑤a – b + c >0,其中正确的结论的序号是10.函数22(2)5y x a =+-+在区间(4,)+∞上是增函数,则实数a 的取值范围是____________开始输入x f(x)>g(x)h(x)=f(x)h(x)=g(x)输出h(x)结束是否图211.已知函数2122(),[1,)x x f x x x ++=∈+∞,⑴试判断()f x 的单调性,并加以证明;⑵试求()f x 的最小值. 【例1】⑴增函数;⑵72. 12.已知1sin cos ,82ππααα=<<且4,则cos sin αα-=__________;13.在等比数列}{n a 中,若364=+a a ,则)2(7535a a a a ++=______14.如图所示的直观图,其平面图形的面积为---------------( )(A) 3 (B)2(C) 6 (D)15.实数,x y 满足t an ,t an x x y y ==,且x y ≠,则sin()sin()x y x y x y x y+--=+-16.函数y =的定义域是 .17.某单位200名职工的年龄分布情况如图2,现要从中抽取40名职工作样本,用系统抽样法,将全体职工随机按1-200编号,并按编号顺序平均分为40组(1-5号,6-10号…,196-200号).若第5组抽出的号码为22,则第8组抽出的号码应是_____。
2019年高考数学第一轮复习模拟测试题学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.“18a =”是“对任意的正数x ,21ax x+≥”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件(2008陕西理) 2.(2000上海春14)x =231y -表示的曲线是( )A .双曲线B .椭圆C .双曲线的一部分D .椭圆的一部分3.若函数()y f x =的图象按向量a 平移后,得到函数(1)2y f x =+-的图象,则向量a =( )A .(12)--,B .(12)-,C .(12)-,D .(12),(2007辽宁6)4.以下命题(其中a ,b 表示直线,α表示平面)①若a ∥b ,b ⊂α,则a ∥α ②若a ∥α,b ∥α,则a ∥b ③若a ∥b ,b ∥α,则a ∥α ④若a ∥α,b ⊂α,则a ∥b 其中正确命题的个数是( )(A )0个(B )1个(C )2个(D )3个二、填空题5.两平行线l 1,l 2分别过点(1,0)与(0,5),设l 1,l 2之间的距离为d ,则d 的取值范围是________.解析:最大距离在两直线与两定点的连线垂直时,此时d 最大=(5-0)2+(0-1)2=26.6.如果椭圆191622=+y x 上一点P 到它的右焦点是3,那么点P 到左焦点的距离为: 关键字:已知椭圆方程;定义7.已知PA 垂直平行四边形ABCD 所在平面,若PC BD ⊥,则平行四边形ABCD 一定是 .8.把一条长是6m 的绳子截成三段,各围成一个正三角形,则这三个正三角形的面积和最小值是 m 2.9.已知实数x 、y 满足约束条件311x y y x +⎧⎪⎨⎪⎩≤≥≥,则22z x y =+的最小值为 ▲ .10.()25lg 50lg 2lg 2lg 2+⨯+=_____________11.求函数的定义域 (1)xx x y -+=||)(01; (2)6542-+--=x x x y ;(3)xy 111+=; (4)12||y x =+-(5)20(54)lg(43)x y x x =+-+; (6)lg(cos )y x =12.函数x y 416-=值域为 ▲ .13.若两个球的表面积之差为48π,它们的大圆周长之和为12π,则这两个球的半径之差为____________14.若方程2log 2x x =-+的解为0x ,且0(,1),x k k k N ∈+∈,则k = ▲ ;15.已知P 是边长为a 的正三角形ABC 边上的任意一点,则222++的最小值是 ▲ .16.已知数列{}n a 的前n 项和为n S ,且n n a n S a 21,1== *N n ∈,试归纳猜想出n S 的表达式为17.若66mC >,则m 的取值范围是____________18.双曲线98222y x -=8的渐近线方程是 . (1995上海,10)19.已知()f x 的定义域是[0,1],且()()f x m f x m ++-的定义域是∅,则正数m 的取值范围是20.如图,□ABCD 的周长为16cm ,AC 、BD 相交于点O ,OE ⊥AC 交AD 于E ,则△DCE 的周长为________________21.圆C :x 2+y 2-2x -4y +4=0的圆心到直线3x +4y +4=0的距离d =________. 解析:∵x 2+y 2-2x -4y +4=0,∴(x -1)2+(y -2)2=1. 圆心(1,2)到3x +4y +4=0的距离为d =|3×1+4×2+4|32+42=3.22.阅读右图所示的程序框图,运行相应的程序,输出的结果是( )ABCOEDA .2B .4C . 8D .16(2009福建理) 23.函数)3π2sin(3)(-=x x f 的图象为C , ①图象C 关于直线π1211=x 对称; ②函数)(x f 在区间)12π5,12π(-内是增函数;③由x y 2sin 3=的图象向右平移3π个单位长度可以得到图象C .以上三个论断中,正确的论断的个数是_______________224.已知数列{}6,321==a a a n 中且n n n a a a -=++12,那么4a =25.已知是虚数单位,复数31iz i+=+对应的点在第___象限。
2019年高考数学第一轮复习模拟测试题学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1. 【2014全国2高考理第15题】已知偶函数()f x 在[)0,+∞单调递减,()20f =.若()10f x ->,则x 的取值范围是__________.2.已知菱形ABCD 的边长为2,120BAD?,点,E F 分别在边,BC DC 上,3BC BE =,DC DF l =.若1AE AF?,则l 的值为_______.3.(2006年高考重庆文)设11229(,),(4,),(,)5A x yBC x y 是右焦点为F 的椭圆221259x y +=上三个不同的点,则“,,AF BF CF 成等差数列”是 “128x x +=”的( A ) (A )充要条件 (B )必要不充分条件 (C )充分不必要条件 (D )既非充分也非必要4. “-1<x <1”是“x 2<1”的( ) A .充分必要条件B .充分但不必要条件C .必要但不充分条件D .既不充分也不必要条件(2010重庆文5) 5.下列说法正确的是 . [答]( ) (1)若直线l 的倾斜角为α,则0απ≤<;(2)若直线l 的一个方向向量为(,)d u v =,则直线l 的斜率v k u=; (3)若直线l 的方程为220(0)ax by c a b ++=+≠,则直线l 的一个法向量为(,)n a b =. A .(1)(2) B. (1)(3) C.(2)(3) D.(1)(2)(3)6.空间四边形ABCD 中,A B B CC D 、、的中点分别是P Q R 、、,且2,,3P Q Q P R ==,那么异面直线AC 和BD 所成的角是________________7.已知2()82f x x x =+-,如果2()(2)g x f x =-,那么()g x ------------------------------( )A.在区间(-1,0)上是减函数B.在区间(0,1)上是减函数C.在区间(-2,0)上是增函数D.在区间(0,2)上是增函数 二、填空题8.设,x y 满足约束条件1210,0≤+⎧⎪≥-⎨⎪≥≥⎩y x y x x y ,若目标函数()0,0z abx y a b =+>>的最大值为35,则a b +的最 小值为 .9.设x 、y 满足条件310x y y x y +⎧⎪-⎨⎪⎩≤≤≥,则22(1)z x y =++的最小值 ▲ .10.已知向量)12,5(=→--OA , 将→--OA 绕原点按逆时针方向旋转90得到→--OB ,则与→--OB 同向的单位向量是__________.11.如图1,设P 、Q 为△ABC 内的两点,且2155AP AB AC =+,AQ =23AB +14AC ,则△ABP 的面积与△ABQ 的面积之比为图1 图212.集合A={x||x+1|=1},B={x||x|=1}则A ∪B 等于_____________13.已知集合A={x|y=21x -,x ∈R},B={x|x=t 2,t ∈A},则集合A B14.函数22log (23)y x x =++的定义域为 ,值域为 .15. 某同学在研究函数 xxx f +=1)((x R ∈) 时,分别给出下面几个结论: ①等式()()0f x f x -+=在x R ∈时恒成立; ②函数)(x f 的值域为 (-1,1); ③若21x x ≠,则一定有)()(21x f x f ≠;④方程x x f =)(在R 上有三个根. 其中正确结论的序号有 ▲ .(请将你认为正确的结论的序号都填上)16.在ABC △中,2AB =,BC =4AC =,则边AC 上的高为______________17.若数列{}n a 满足11111,111n na a a +==+++,则10a =18.若,,a b c 表示三条不重合的直线,M 表示平面,则下列四个命题中正确命题的序号为____________;①若//,//a M b M ,则//a b ②若,//b M a b ⊂,则//a M ③若,a c b c ⊥⊥,则//a b ④若,a M b M ⊥⊥,则//a b 19.已知复数11222i,34i,z z m z z =+=-若为实数,则实数m 的值为 ▲ . 32- 20.袋中有40个小球,其中红色球16个、蓝色球12个,白色球8个,黄色球4个,从中随机抽取10个球作成一个样本,则这个样本恰好是按分层抽样方法得到的概率为A.12344812161040C C C C CB.21344812161040C C C C C C.23144812161040C C C C CD.13424812161040C C C C C 〖解〗A21.经过点A (5,2),B (3,2),圆心在直线2x -y -3=0上的圆的方程为 .22.Cos 0750= .23.某算法的伪代码如图所示,若输出y 的值为1,则输入x 的值为 .24.设⎩⎨⎧<+-≥--=0,620,12)(2x x x x x x f ,若2)(>t f ,则实数t 的取值范围是 .),3(0,(+∞⋃-∞) (江苏省南京外国语学校2011年3月高三调研) 25.已知椭圆的长轴长是短轴长的2倍,则椭圆的离心率等于________. 解析:由题意得a =2b .于是e =a 2-b 2a 2=1-⎝⎛⎭⎫b a 2=1-14=32.26.若直线y =kx +1(k ∈R)与椭圆x 25+y 2m =1恒有公共点,则实数m 的取值范围是________.解析:由于直线y =kx +1过定点(0,1),故点(0,1)恒在椭圆内或椭圆上,所以m ∈[1,+ ∞).又因为m ≠5,所以实数m 的取值范围应为[1,5)∪(5,+∞).27.定义在R 上的函数()f x 满足(4)1,()()f f x f x '=为的导函数,已知()y f x '=的图象如图所示,若两个正数,a b 满足1(2)1,1b f a b a ++<+则的取值范围是28.如图,在ABC ∆中,2AB =,3AC =,D 是边BCRead x If x ≤0 Then y ←x +2 Else y ←log 2014x End If (第4的中点,则AD BC ⋅=____________。
29.函数]),0[)(26sin(2ππ∈-=x x y的单调增区间是 。
30.(2013年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD 版含附加题))在正项等比数列}{n a 中,215=a ,376=+a a ,则满足n n a a a a a a 2121>+++的最大正整数n 的值为_____________.31.若向量)2,1,2(),2,,1(-==b a λ,且a 与b 的夹角余弦为98,则λ等于__________32.已知命题p :∀x ∈R ,ax 2+2x +3>0,如果命题p 是假命题,那么实数a 的取值范围是________. 33.函数2()3(0,1)x f x aa a -=+>≠恒过定点 ▲ .34.已知平行六面体1111D C B A ABCD - 中,4=AB ,3=AD ,51=AA ,90=∠BAD , 6011=∠=∠DAA BAA ,则1AC35.若函数)4sin(π+=x y 的图象向右平移)0(>ϕϕ个单位得到的图象关于y 轴对称,则ϕ的最小值为43π 36.函数()ln 2f x x x =-+的零点的个数为 ▲ . 三、解答题37.(本小题14分)设函数32()f x x bx cx =++,'()()()g x f x f x =-,若()g x 是奇函数,求,b c 的值.38.(本小题满分14分)已知椭圆1:C 22+=143x y ,其左准线为1l ,右准线为2l ,抛物线2C 以坐标原点O 为顶点,2l 为准线,2C 交1l 于,A B 两点.(1) 求抛物线2C 的标准方程;ABDC(2) 求线段AB 的长度.39.函数()sin()16f x A x πω=-+(0,0A ω>>)的最大值为3, 其图像相邻两条对称轴之间的距离为2π, (1)求函数()f x 的解析式; (2)设(0,)2πα∈,则()22f α=,求α的值。
【2012高考真题陕西理16】(本小题满分12分)40.已知点P (-3,0),点A 在y 轴上,点Q 在x 轴非负半轴上,点M 在直线AQ 上,满足PA →·AM →=0,AM →=-32MQ →.(1)当点A 在y 轴上移动时,求动点M 的轨迹C 的方程;(2)设轨迹C 的准线为l ,焦点为F ,过F 作直线m 交轨迹C 于G ,H 两点,过点G 作平 行于轨迹C 的对称轴的直线n ,且n ∩l =E ,试问点E ,O ,H (O 为坐标原点)是否在同一 条直线上?并说明理由.41.为了降低能源损耗,最近上海对新建住宅的屋顶和外墙都要求建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C (单位:万元)与隔热层厚度x (单位:cm )满足关系:()()01035kC x x x =≤≤+,若不建隔热层,每年能源消耗费用为8万元.设()f x 为隔热层建造费用与20年的能源消耗费用之和. (1)、求k 的值及()f x 的表达式;(2)、隔热层修建多厚时,总费用()f x 达到最小,并求最小值.(江苏省宿豫中学2011年3月高考第二次模拟考试)42.设函数()f x 满足:任意x R ∈,恒有()()0,f x f x ≥当[)0,1x ∈时,()120,211,2x x f x x ⎧⎛⎫+≤< ⎪⎪⎪⎝⎭=⎨⎫⎪≤<⎪⎪⎭⎩则()19.7f =43.如图所示的几何体ABCDE 中,DA ⊥平面EAB ,,2,CB DA EA DA AB CB EA AB ===⊥∥,M 是EC 的中点(1)求证:DM EB ⊥(2)求二面角M BD A --的余弦值44.已知各项都为正数的等比数列{a n }中,a 2*a 4=4, a 1+a 2+a 3=14, 则满足a n +a n+1+a n+2>91的最大正整数n 的值为________。
(江苏省南京市2011年3月高三第二次模拟考试)4 45.在三棱锥S -ABC 中,△ABC 是边长为4的正三角形,平面SAC ⊥平面ABC ,SA =SC =22,M ,N 分别为AB ,SB 的中点.(1)证明:AC ⊥SB ;(2)求二面角N -CM -B 的余弦值; (3)求点B 到平面CMN 的距离.46.如果双曲线的一个焦点到一条渐近线的距离等于实半轴长,求双曲线的离心率。