基于Lingo软件的目标规划序贯解法
- 格式:pdf
- 大小:400.08 KB
- 文档页数:5
例:某工厂生产Ⅰ、Ⅱ两种产品,需要用到A ,B ,C 三种设备,已知有关数据见下表。
企业的经营目标不仅仅是利润,还需要考虑多个方面:(1) 力求使利润不低于1500元;(2) 考虑到市场需求,Ⅰ、Ⅱ两种产品的产量比应尽量保持1:2;(3) 设备A 为贵重设备,严格禁止超时使用;(4) 设备C 可以适当加班,但要控制;设备B 即要求充分利用,又尽可能不加班。
在重要性上,设备C 是设备B 的3倍。
ⅠⅡ设备的生产能力/hA (h/件) 2 2 12B (h/件) 4 0 16C (h/件) 0 5 15 利润 元/件200300解:此题中只有设备A 是刚性约束,其余都是柔性约束。
首先,最重要的指标是企业的利润,将它的优先级列为第一级;其次是Ⅰ、Ⅱ两种产品的产量保持1:2的比例,列为第二级;再次,设备B 、C 的工作时间要有所控制,列为第三级。
在第三级中,设备B 的重要性是设备C 的3倍,因此它们的权重不一样,设备B 的系数是设备C 的3倍。
该计划问题可用数学模型表示为: 目标函数min)33()(433322211++-+--+++++=d d d p d d p d p z满足约束条件 2122x x + 12≤15003002001121=-+++-d d x x022221=-+-+-d d x x 14x 1633=-++-d d155442=-++-d d x3,2,1,0,,,21=≥+-i d d x x i i LINGO 程序为:求第一级目标。
LINGO 程序如下: model: sets:variable/1..2/:x;S_Con_Num/1..4/:g,dplus,dminus; S_con(S_Con_Num,Variable):c; endsets data:g=1500 0 16 15; c=200 300 2 -1 4 0 0 5; enddata min=dminus(1); 2*x(1)+2*x(2)<12;@for(S_Con_Num(i):@sum(Variable(j):c(i,j)*x(j))+dminus(i)-dplus(i )=g(i)); end求得dminus(1)=0,即目标函数的最优值为0,第一级偏差为0。
LINGO 在多目标规划和最大最小化模型中的应用在许多实际问题中,决策者所期望的目标往往不止一个,如电力网络管理部门在制定发电计划时即希望安全系数要大,也希望发电成本要小,这一类问题称为多目标最优化问题或多目标规划问题。
一、多目标规划的常用解法多目标规划的解法通常是根据问题的实际背景和特征,设法将多目标规划转化为单目标规划,从而获得满意解,常用的解法有:1.主要目标法确定一个主要目标,把次要目标作为约束条件并设定适当的界限值。
2.线性加权求和法对每个目标按其重要程度赋适当权重0≥i ω,且1=∑i i ω,然后把)(x f i ii ∑ω作为新的目标函数(其中p i x f i ,,2,1),( =是原来的p 个目标)。
3.指数加权乘积法设p i x f i ,,2,1),( =是原来的p 个目标,令∏==p i a i ix f Z 1)]([其中i a 为指数权重,把Z 作为新的目标函数。
4.理想点法先分别求出p 个单目标规划的最优解*i f ,令∑-=2*))(()(i i f x f x h然后把它作为新的目标函数。
5.分层序列法将所有p 个目标按其重要程度排序,先求出第一个最重要的目标的最优解,然后在保证前一个目标最优解的前提条件下依次求下一个目标的最优解,一直求到最后一个目标为止。
这些方法各有其优点和适用的场合,但并非总是有效,有些方法存在一些不足之处。
例如,线性加权求和法确定权重系数时有一定主观性,权重系数取值不同,结果也就不一样。
线性加权求和法、指数加权乘积法和理想点法通常只能用于两个目标的单位(量纲)相同的情况,如果两个目标是不同的物理量,它们的量纲不相同,数量级相差很大,则将它们相加或比较是不合适的。
二、最大最小化模型在一些实际问题中,决策者所期望的目标是使若干目标函数中最大的一个达到最小(或多个目标函数中最小的一个达到最大)。
例如,城市规划中需确定急救中心的位置,希望该中心到服务区域内所有居民点的距离中的最大值达到最小,称为最大最小化模型,这种确定目标函数的准则称为最大最小化原则,在控制论,逼近论和决策论中也有使用。
基础题:1.目标规划问题最近,某节能灯具厂接到了订购16000套A 型和B 型节能灯具的订货合同,合同中没有对这两种灯具的各自数量做要求,但合同要求工厂在一周内完成生产任务并交货。
根据该厂的生产能力,一周内可以利用的生产时间为20000min ,可利用的包装时间为36000min 。
生产完成和包装一套A 型节能灯具各需要2min ;生产完成和包装完成一套B 型节能灯具各需要1min 和3min 。
每套A 型节能灯成本为7元,销售价为15元,即利润为8元;每套B 型节能灯成本为14元,销售价为20元,即利润为6元。
厂长首先要求必须按合同完成订货任务,并且即不要有足量,也不要有超量。
其次要求满意销售额达到或者尽量接近275000元。
最后要求在生产总时间和包装总时间上可以有所增加,但过量尽量地小。
同时注意到增加生产时间要比包装时间困难得多。
试为该节能灯具厂制定生产计划。
解:将题中数据列表如下:根据问题的实际情况,首先分析确定问题的目标级优先级。
第一优先级目标:恰好完成生产和包装完成节能灯具16000套,赋予优先因子p1;第二优先级目标:完成或者尽量接近销售额为275000元,赋予优先因子p2; 第三优先级目标:生产和包装时间的增加量尽量地小,赋予优先因子p3; 然后建立相应的目标约束。
在此,假设决策变量12,x x 分别表示A 型,B 型节能灯具的数量。
(1) 关于生产数量的目标约束。
用1d -和1d +分别表示未达到和超额完成订货指标16000套的偏差量,因此目标约束为1111211min ,..16000z d d s t x x d d -+-+=+++-=要求恰好达到目标值,即正、负偏差变量都要尽可能地小(2) 关于销售额的目标约束。
用2d -和2d +分别表示未达到和超额完成满意销售指标275000元的偏差值。
因此目标约束为221222min ,..1520-275000.z d s t x x d d --+=++=要求超过目标值,即超过量不限,但必须是负偏差变量要尽可能地小,(另外:d +要求不超过目标值,即允许达不到目标值,就是正偏差变量要尽可能地小) (3) 关于生产和包装时间的目标约束。
Lindo 和Lingo 数学软件的简单使用方法一、Lindo最新版本:6.1版(注册版)限制:4000个约束、8000个变量、800个整型变量功能:可以求解线性规划、整数规划、混合整数规划、二次规划、目标规划。
我们主要用它来求解整数规划或混合整数规划。
特点:执行速度非常快 例1:求解整数规划问题12121212max 58..65945,0z x x s t x x x x x x =++≤+≤≥且整解:在lindo 的运行窗口中输入 max 5x1+8x2 stx1+x2<6 5x1+9x2<45 end gin 2然后按Solve 菜单或快捷键得运行结果。
OBJECTIVE FUNCTION V ALUE (目标函数最优值) 1) 40.00000VARIABLE V ALUE REDUCED COST (变量增加1时目标函数改变量) X1 0.000000 -5.000000 X2 5.000000 -8.000000ROW SLACK OR SURPLUS DUAL PRICES (行) (松弛变量值) (对偶价格,表示约束右边常数增加1时目标函数改变量)) 2) 1.000000 0.000000 3) 0.000000 0.000000RANGES IN WHICH THE BASIS IS UNCHANGED (灵敏度分析) OBJ COEFFICIENT RANGES (目标函数中变量的系数的变动范围,在此范围内最优解不变) V ARIABLE CURRENT ALLOWABLE ALLOWABLECOEF (当前系数) INCREASE (增加量) DECREASE (减少量) X1 5.000000 0.000000 INFINITY X2 8.000000 0.000000 INFINITYRIGHTHAND SIDE RANGES (约束条件右边常数的变化范围,在此范围内最优基不变) ROW CURRENT ALLOWABLE ALLOWABLERHS (当前系数)INCREASE (增加量) DECREASE (减少量) 2 6.000000 INFINITY 1.000000 (第一个约束) 3 45.000000 INFINITY 0.000000 (第二个约束)注意:1. 软件中已经假设所以的变量是非负的,所以非负约束不必输入; 2. 可以用 FREE 变量 来取消变量的非负限制; 3. 不区分大小写; 4. 约束条件“<=”、“>=”可以用“<”、“>”代替; 5. 变量名不能超过8个字符;6. 变量与系数间可以有空格,但不能有任何运算符号(如*等); 7. 不允许变量出现在一个约束条件的右端; 8. 输入中不能有“()”和“,”;比如4(x1+x2)应写成4x1+4x2等;9. 在一个式中同一变量不能出现一次以上,比如2x1+3x2-x1应简化为x1+3x2;gin 变量 变量为整数变量 gin nint n 模型中的前n 个变量为0/1整数变量,关于变量的顺序可由输出结果查证! 整数变量申明须放在最后(即end 后)例2:集合覆盖问题设有一集合S={1,2,3,4,5},及S 的一个子集簇P={{1,2},{1,3,5},{2,4,5},{3},{1},{4,5}},假设选择P 中各个元素的费用为1、1.5、1.5、0.8、0.8、1,试从P 中选一些元素使之覆盖S 且所选元素费用之和最小。
实验二:目标规划一、实验目得目标规划就是由线性规划发展演变而来得,线性规划考虑得就是只有一个目标函数得问题,而实际问题中往往需要考虑多个目标函数,这些目标不仅有主次关系,而且有得还相互矛盾。
这些问题用线性规划求解就比较困难,因而提出了目标规划。
熟悉目标规划模型得建立,求解过程及结果分析。
二、目标规划得一般模型设)...2,1(n j x j =就是目标规划得决策变量,共有m 个约束就是国内刚性约束,可能就是等式约束,也可能就是不等式约束。
设有l 个柔性目标约束,其目标规划约束得偏差就是),...,2,1(,l i d d i i =-+。
设有q 个优先级别,分别为q p p p ,...,21。
在同一个优先级k p 中,有不同得权重,分别记为),...,2,1(,l j w w kj kj =-+。
因此目标规划模型得一般数学表达式为: min ∑∑=++--=+=l j j kj j kj q k kd w d w p z 11);(s 、t 、,,...2,1,),(1m i b x a n j i j ij =≥=≤∑= .,...2,1,0,,,...,2,1,,,...2,1,1l i d d n x o x l i g d d x ci i j i n j i i j ij =≥=≥==-++-=+-∑ 三、实验设备及分组实验在计算机中心机房进行,使用微型电子计算机,每人一机(一组)。
四、实验内容及步骤1、打开LINGO ,并利用系统菜单与向导在E 盘创建一个项目。
目录与项目名推荐使用学生自己得学号。
2、以此题为例,建立数学模型,并用说明语句进行说明,增强程序得可读性。
例2、1:某工厂生产Ⅰ、Ⅱ两种产品,需要用到A ,B ,C 三种设备,已知有关数据见下表。
企业得经营目标不仅仅就是利润,还需要考虑多个方面:(1) 力求使利润不低于1500元;(2) 考虑到市场需求,Ⅰ、Ⅱ两种产品得产量比应尽量保持1:2;(3) 设备A 为贵重设备,严格禁止超时使用;(4) 设备C 可以适当加班,但要控制;设备B 即要求充分利用,又尽可能不加班。
数学建模必备LINGO 在多目标规划和最大最小化模型中的应用一、多目标规划的常用解法多目标规划的解法通常是根据问题的实际背景和特征,设法将多目标规划转化为单目标规划,从而获得满意解,常用的解法有:1.主要目标法确定一个主要目标,把次要目标作为约束条件并设定适当的界限值。
2.线性加权求和法对每个目标按其重要程度赋适当权重0≥i ω,且1=∑ii ω,然后把)(x f i ii ∑ω作为新的目标函数(其中p i x f i ,,2,1),( =是原来的p 个目标)。
3.指数加权乘积法设p i x f i ,,2,1),( =是原来的p 个目标,令∏==pi a i ix f Z 1)]([其中i a 为指数权重,把Z 作为新的目标函数。
4.理想点法先分别求出p 个单目标规划的最优解*i f ,令∑-=2*))(()(iifx f x h然后把它作为新的目标函数。
5.分层序列法将所有p 个目标按其重要程度排序,先求出第一个最重要的目标的最优解,然后在保证前一个目标最优解的前提条件下依次求下一个目标的最优解,一直求到最后一个目标为止。
这些方法各有其优点和适用的场合,但并非总是有效,有些方法存在一些不足之处。
例如,线性加权求和法确定权重系数时有一定主观性,权重系数取值不同,结果也就不一样。
线性加权求和法、指数加权乘积法和理想点法通常只能用于两个目标的单位(量纲)相同的情况,如果两个目标是不同的物理量,它们的量纲不相同,数量级相差很大,则将它们相加或比较是不合适的。
二、最大最小化模型在一些实际问题中,决策者所期望的目标是使若干目标函数中最大的一个达到最小(或多个目标函数中最小的一个达到最大)。
例如,城市规划中需确定急救中心的位置,希望该中心到服务区域内所有居民点的距离中的最大值达到最小,称为最大最小化模型,这种确定目标函数的准则称为最大最小化原则,在控制论,逼近论和决策论中也有使用。
最大最小化模型的目标函数可写成)}(,),(),(max{min 21X f X f X f p X或)}(,),(),(min{max 21X f X f X f p X式中T n x x x X ),,,(21 是决策变量。
基于LINGO的多目标规划模型求解唐家德(楚雄师范学院数学与统计学院,云南楚雄 675000)摘要建立实际问题的多目标规划数学模型并求解是运筹学中常遇到的问题,应用最优化软件LINGO可以快捷准确地求出该类问题的解,本文以实例的方式介绍了多目标规划数学模型的建立、LINGO求解程序的编写,为实际工作者解决这类优化问题提供了一种便捷的途径。
关键词多目标规划;LINGO;偏差变量;优先级.中图分类号 O221.6文献标识码A0引言多目标规划是运筹学的一个重要内容,它研究在一定约束条件下多个目标函数的极值问题,与传统的单目标函数问题不同,在多目标规划问题中,通常不存在能使得所有目标函数同时得到优化的最优解,往往只需要求出满意解.求解多目标规划的方法主要有两类:第一类是化多为少的方法,即把多目标化为较容易求解的单目标问题进行求解,第二类是分级序列法,即把目标按其重要性给出一个优先级,每次在上一优先级目标的最优解集内求下一优先目标的最优解,直到求出共同的最优解,本文主要介绍第二种方法。
下面我们以一个实例来说明多目标规划的特点、采用分级序列法求解的步骤和LINGO程序的编写。
1 一个实例(运输问题模型)要把一种产品从产地运到客户处,发量、需求量及产地到客户的运输费单价如表1所示.表1 运输费用单价表2 线性规划建模求解设从产地i (1,2i =)到客户(1,2,3)j j =的运送量为ij x ,单位运输费用为ij c ,产地i 的发量为i e ,客户j 的需求量为j d ,则可建立如下的线性规划模型: min 2311ijij i j z cx ===⋅∑∑ (1)s.t.21,1,2,3ijj i xd j ===∑ (2)31,1,2iji j xe i =≤=∑ (3)使用LINGO 软件求解,发现无可行解。
无可行解的原因是客户总需求量(8500)大于产地的总发量(7000),客户需求量无法满足。
由于该问题是一个供求不平衡问题,总需求量缺少1500个单位,因此按下列目标来考虑运输方案:第一目标,客户1为重要部门,需求量必须全部满足; 第二目标,满足其他两个客户至少75%的需要量; 第三目标,使运费尽量少;第四目标,从产地2到客户1的运量至少有1000个单位.3 采用分级序列法对多目标规划求解[13]-3.1 确定目标的优先级与权系数 首先确定目标的优先级与权系数,目标的优先分为两个层次,第一个层次是目标分成不同的优先级,在计算多目标规划时,必须先优化高优先级的目标,然后再优化低优先级的目标,通常以12,,,k P P P 表示不同的优先级,并规定k k p p >-1,在上述实例中,有四个目标,按重要性分为第一至第四目标,我们分别记这四个目标的优先级为1234,,,P P P P 。
用LINDO、LINGO 解运筹学问题一、 软件简介LINDO是一种专门用于求解数学规划问题的软件包。
由于LINDO执行速度很快、易于方便输入、求解和分析数学规划问题。
因此在数学、科研和工业界得到广泛应用。
LINDO主要用于解线性规划、非线性规划、二次规划和整数规划等问题。
也可以用于一些非线性和线性方程组的求解以及代数方程求根等。
LINDO中包含了一种建模语言和许多常用的数学函数(包括大量概论函数),可供使用者建立规划问题时调用。
一般用LINDO(Linear Interactive and Discrete Optimizer)解决线性规划(LP—Linear Programming)。
整数规划(IP—Integer Programming)问题。
其中LINDO 6 .1 学生版至多可求解多达300个变量和150个约束的规划问题。
其正式版(标准版)则可求解的变量和约束在1量级以上。
LINGO则用于求解非线性规划(NLP—NON—LINEAR PROGRAMMING)和二次规则(QP—QUARATIC PROGRAMING)其中LINGO 6.0学生版最多可版最多达300个变量和150个约束的规则问题,其标准版的求解能力亦再10^4量级以上。
虽然LINDO和LINGO不能直接求解目标规划问题,但用序贯式算法可分解成一个个LINDO和LINGO能解决的规划问题。
要学好用这两个软件最好的办法就是学习他们自带的HELP文件。
二、下面拟举数例以说明这两个软件的最基本用法。
(例子均选自张莹《运筹学基础》)例1.(选自《运筹学基础》P54.汽油混合问题,线性规划问题)一种汽油的特性可用两个指标描述:其点火性用“辛烷数”描述,其挥发性用“蒸汽压力”描述。
某炼油厂有四种标准汽油,设其标号分别为1,2,3,4,其特性及库存量列于下表1中,将上述标准汽油适量混合,可得两种飞机汽油,某标号为1,2,这两种飞机汽油的性能指标及产量需求列于表2中。
数学建模:运用L i n d o l i n g o软件求解线性规划-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN1、实验内容:对下面是实际问题建立相应的数学模型,并用数学软件包Lindo/lingo 对模型进行求解。
某厂生产甲乙两种口味的饮料,每百箱甲饮料需用原料6千克,工人10名,可获利10万元;每百箱乙饮料需用原料5千克,工人20名,可获利9万元.今工厂共有原料60千克,工人150名,又由于其他条件所限甲饮料产量不超过8百箱.问如何安排生产计划,即两种饮料各生产多少使获利最大.进一步讨论:1)若投资0.8万元可增加原料1千克,问应否作这项投资.2)若每百箱甲饮料获利可增加1万元,问应否改变生产计划.数学建模论文运用lindo/lingo软件求解线性规划运用lindo/lingo软件求解线性规划一、摘要本文要解决的问题是如何安排生产计划,即两种饮料各生产多少使获利最大。
首先,对问题进行重述明确题目的中心思想,做出合理的假设,对符号做简要的说明。
然后,对问题进行分析,根据题目的要求,建立合适的数学模型。
最后,运用lindo/lingo软件求出题目的解。
【关键词】最优解 lindo/lingo软件第二、问题的重述某厂生产甲乙两种口味的饮料,每百箱甲饮料需用原料6千克,工人10名,可获利10万元;每百箱乙饮料需用原料5千克,工人20名,可获利9万元.今工厂共有原料60千克,工人150名,又由于其他条件所限甲饮料产量不超过8百箱.问如何安排生产计划,即两种饮料各生产多少使获利最大.进一步讨论:1)若投资0.8万元可增加原料1千克,问应否作这项投资。
2)若每百箱甲饮料获利可增加1万元,问应否改变生产计划。
第三、模型的基本假设1、每一箱饮料消耗的人力、物力相同。
2、每个人的能力相等。
3、生产设备对生产没有影响。
第四、符号说明1、x.....甲饮料2、y.....乙饮料3、z.....增加的原材料第五、问题分析根据题目要求:如何安排生产计划,即两种饮料各生产多少使获利最大,可知本题所求的是利润的最大值。
06.多目标规划模型的LINGO 求解(序贯算法)例. 一个化工厂生产两种化学试剂,然后用这两种试剂合成一种产品,其利润(千美元)等于两种基本试剂数量的乘积。
这两种试剂将采用相同的加工过程,无论第一种或第二种试剂,每一加仑需1小时的加工时间,而每周可用的加工时间为6小时。
在将两种试剂合成新产品之前,要经过一道老化工序。
每种试剂的老化时间为其每周产量的非线性函数。
用1x 代表试剂1生产的加仑数,2x 代表试剂2生产的加仑数,则其老化时间分别为21)3(−x 和22x 。
经理确定如下原则:① 每周至少获利16000美元;② 限定每周老化时间为9小时;③ 利润目标较限定老化时间的目标重要两倍。
使用LINGO 软件,采用序贯算法,P94例题的程序编制如下:步骤一min =d3;x1*x2+d1_-d1=16;(x1-3)^2+x2^2+d2_-d2=9;x1+x2+d3_-d3=6;使用LINGO 求解,Local optimal solution found.Objective value: 0.000000Total solver iterations: 16Variable Value Reduced Cost D3 0.000000 1.000000 X1 0.000000 0.000000 X2 0.000000 0.000000 D1_ 16.00000 0.000000 D1 0.000000 0.000000 D2_ 0.000000 0.000000 D2 0.000000 0.000000 D3_ 6.000000 0.000000Row Slack or Surplus Dual Price 1 0.000000 -1.000000 2 0.000000 0.0000003 0.000000 0.0000004 0.000000 0.000000步骤二,将步骤一的结果加入的约束条件中,的模型程序如下:min=2*d1_+d2;x1*x2+d1_-d1=16;(x1-3)^2+x2^2+d2_-d2=9;x1+x2+d3_-d3=6;d3=0;使用LINGO求解,得结果如下:Local optimal solution found.Objective value: 14.00000Total solver iterations: 4Variable Value Reduced CostD1_ 7.000000 0.000000D2 0.000000 1.000000X1 3.000000 0.000000X2 3.000000 0.000000D1 0.000000 2.000000D2_ 0.000000 0.000000D3_ 0.000000 6.000000D3 0.000000 0.000000Row Slack or Surplus Dual Price1 14.00000 -1.0000002 0.000000 -2.0000003 0.000000 0.0000004 0.000000 6.0000005 0.000000 6.000000。