经典:角平分线的性质定理及其逆定理课件
- 格式:ppt
- 大小:486.50 KB
- 文档页数:18
角平分线的性质定理及其逆定理定理一、角平分线的性质定理及其逆定理1.角平分线的性质定理:角平分线上的点到这个角的两边的距离相等。
2.角平分线的逆定理:在角的内部,且到角的两边距离相等的点,在这个角的平分线上。
不难发现,定理1的条件是定理2的结论,同时它的结论又是定理2的条件,它们互为逆定理。
定理1说明了角平分线上点的纯粹性,即:只要是角平分线上的点,它到此角两边一定等距离,而无一例外;定理2反映了角平分线的完备性,即只要是到角两边距离相等的点,都一定在角平分线上,而绝不会漏掉一个。
在实际应用中,前者用来证明线段相等,后者用来证明角相等或证明点在一个角的平分线上。
用数学语言可表示如下:例题一:(1)∵OC平分∠AOB,点P在射线OC上,PD⊥OA于D,PE⊥OB于E∴PD=PE(定理1)(2)∵PD⊥OA,PE⊥OB,PD=PE∴OC平分∠AOB(定理2)例题二:如图,△ABC的ㄥB平分线BD与ㄥC的外角的平分线CE相较于点P。
求证:点P到三边AB、BC、CA所在直线的距离相等。
从P点向边AB做垂线,垂足为F,向BC边作垂线,垂足为G,向AC边作垂线,垂足为H因为BD是角ABC的角平分线所以PF=PG因为CE是角ACB的外角平分线所以PH=PG所以PF=PG=PH即,点P到三这AB,BC,CA所在直线的距离相等从P点向边AB做垂线,垂足为F,向BC边作垂线,垂足为G,向AC边作垂线,垂足为H因为BD是角ABC的角平分线所以PF=PG因为CE是角ACB的外角平分线所以PH=PG所以PF=PG=PH即,点P到三这AB,BC,CA所在直线的距离相等这题对吗?。